中职升高职数学试题及答案:套
中职升学数学试卷及答案
中职升学数学试卷一、单项选择题(本大题共12小题,每小题4分,共48分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.若集合{1,2}M =,{2,3}N =,则M N 等于()A .{2}B .{1}C .{1,3}D .{1,2,3}2.若函数()cos()f x x ϕ=+(πϕ≤≤0)是R 上的奇函数,则ϕ等于()A .0B .4πC .2πD .π3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是()A.2m =-B.2m =C.2n =-D.2n =4.已知向量(1,)a x = ,(1,)b x =- .若a b ⊥,则||a 等于()A .1B C .2D .45.若复数z 满足(1)1i z i +=-,则z 等于()A .1i+B .1i-C .iD .i-6.若直线l 过点(1,2)-且与直线2310x y -+=平行,则l 的方程是()A.3280x y ++=B.2380x y -+=C.2380x y --=D.3280x y +-=7.若实数x 满足2680x x -+≤,则2log x 的取值范围是()A.[1,2]B.(1,2)C.(,1]-∞D.[2,)+∞8.设甲将一颗骰子抛掷一次,所得向上的点数为a ,则方程012=++ax x 有两个不相等实根的概率为()A .32B .31C .21D .1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为,则此双曲线的渐近线方程为()A.y =B.2y x=±C.22y x =±D.12y x =±10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成立的是()A .3()2f -<(1)f -<(2)f B .(1)f -<3()2f -<(2)f C .(2)f <(1)f -<3()2f -D .(2)f <3()2f -<(1)f -11.若圆锥的表面积为S ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为()B.D.12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A.(B.[C.33()33-D.33[,]33-二、填空题(本大题共6小题,每小题4分,共24分)13.sin150︒=.14.已知函数()f x 11x =+,则[(1)]f f =.15.用数字0,3,5,7,9可以组成个没有重复数字的五位数(用数字作答).16.在ABC ∆中,====B A b a 2cos ,23sin ,20,30则.17.设斜率为2的直线l 过抛物线22y px =(0)p >的焦点F ,且与y 轴交于点A .若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为.18.若实数x 、y 满足220x y +-=,则39x y+的最小值为.三、解答题(本大题7小题,共78分)19.(6分)设关于x 的不等式||x a -<1的解集为(,3)b ,求a b +的值.20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最小正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值.21.(10分)已知数列{n a }的前n 项和为n S 2n n =-,n N +∈.(1)求数列{n a }的通项公式;(2)设2na nb =1+,求数列{n b }的前n 项和n T .22.(10分)对于函数()f x ,若实数0x 满足00()f x x =,则称0x 是()f x 的一个不动点.已知2()(1)(1)f x ax b x b =+++-.(1)当1a =,2b =-时,求函数()f x 的不动点;(2)假设12a =,求证:对任意实数b ,函数()f x 恒有两个相异的不动点.23.(14分)甲、乙两位选手互不影响地投篮,命中率分别为31与p .假设乙投篮两次,均未命中的概率为254.(1)若甲投篮4次,求他恰命中3次的概率;(2)求乙投篮的命中率p ;(3)若甲、乙两位选手各投篮1次,求两人命中总次数ξ的概率分布与数学期望.24.(14分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =.(1)证明:当点E 在棱AB 上移动时,11D E A D ⊥;(2)当E 为AB 的中点时,求①二面角1D EC D --的大小(用反三角函数表示);②点B 到平面1ECB 的距离.25.(14分)已知椭圆C :22221x y a b+=(0)a b >>的离心率为23,且该椭圆上的点到右焦点的最大距离为5.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,且过点(9,)D m 的直线DA 、DB 与此椭圆的另一个交点分别为M 、N ,其中0m ≠.求证:直线MN 必过x 轴上一定点(其坐标与m 无关).数学试题答案及评分参考一、单项选择题(本大题共12小题,每小题4分,共48分)题号123456789101112答案DCAB CBAACDB D二、填空题(本大题共6小题,每小题4分,共24分)13.1214.2315.9616.1317.28y x=18.6三、解答题(本大题共7小题,共78分)19.(本小题6分)解:由题意得11x a -<-<,………………………………………………………………1分11a x a -+<<+,…………………………………………………………1分113a b a -+=⎧⎨+=⎩,………………………………………………………………2分解得21a b =⎧⎨=⎩,………………………………………………………………1分所以3a b +=.…………………………………………………………1分20.(本小题10分)解:(1)由题意得()cos f x x x=+…………………………………………………1分2sin(6x π=+,……………………………………………………2分所以函数()f x 的最小正周期2T π=.……………………………1分(2)由1()2f α=得1sin(64πα+=,…………………………………………………………1分因为(,)63ππα∈-,所以(0,)62ππα+∈,…………………………1分15cos(64πα+=,…………………………1分从而sin sin[()]66ππαα=+-sin(cos cos()sin6666ππππαα=+-+131514242=⨯-3158-=.…………………………3分21.(本小题10分)解:(1)当1n =时,211110a S ==-=,………………………………1分当2n ≥时,1n n n a S S -=-22()[(1)(1)]n n n n =-----22n =-,……………………………………………2分综合得22n a n =-,n ∈N +………………………………………2分(2)222121n an n b -=+=+141n -=+,…………………………………1分21(1444)n n T n -=+++++ 1(14)14n n ⨯-=+-4133n n =+-.…………………………………4分22.(本小题10分)(1)解:由题意得2(21)(21)x x x +-++--=,……………………………1分即2230x x --=,解得11x =-,23x =,……………………………………2分所以函数()f x 的不动点是1-和3.……………………………1分(2)证明:由题意得21(1)(1)2x b x b x +++-=,①……………………………1分即21(1)02x bx b ++-=,……………………………1分因为判别式22(1)b b ∆=--222b b =-+……………………………2分2(1)1b =-+0>,……………………………1分所以方程①有两个相异的实根,即对任意实数b ,函数()f x 恒有两个相异的不动点.……1分23.(本小题14分)解:(1)记甲投篮4次,恰命中3次的概率为1P ,由题意得1P =334128C (3381⨯⨯=.……………………………4分(2)由题意得24(1)25p -=,……………………………3分解得35p =.……………………………………………1分(3)由题意ξ可取0,1,2,…………………………………1分154)531()311()0(=-⨯-==ξP ,15853311(531(31)1(=⨯-+-⨯==ξP ,1535331)2(=⨯==ξP .所以ξ的概率分布列为……………………………………………3分1514153215811540)(=⨯+⨯+⨯=ξE .……………………………………2分24.(本小题14分)(1)证明:连接1AD .在长方体1111ABCD A B C D -中,因为1AD AA =,所以11AA D D 为正方形,从而11AD A D ⊥.因为点E 在棱AB 上,所以1AD 就是1ED 在平面11AA D D 上的射影,从而11D E A D ⊥.……………………………………………4分ξ12P154158153(2)解:①连接DE .由题意知11AD AA ==,1AE EB ==.在Rt DAE ∆中,DE ==,在Rt EBC ∆中,EC ==,从而2224DE EC DC +==,所以EC DE ⊥,又由1D D ⊥面ABCD 知1D D EC ⊥,即1EC D D ⊥,从而EC ⊥面1D DE ,所以1EC D E ⊥,因此1D ED ∠是二面角1D EC D --的平面角.…………………2分在1Rt D DE ∆中,11tan2D D D ED DE ∠==,得1D ED ∠2arctan2=,即二面角1D EC D --的大小为arctan 2.…………………3分②设点B 到平面1ECB 的距离为h ,由11EB BC BB ===知11EC B C B E ===123342ECB S ∆==.……………………………1分因为11B ECB B ECBV V --=,所以111133ECB ECB S h S BB ∆∆⋅=⋅,即131113232h ⋅⋅=⋅⋅,所以33h =,故点B 到平面1ECB 的距离为33.……………………………4分25.(本小题14分)解:(1)设右焦点为)0,(c ,则由题意得⎪⎩⎪⎨⎧=+=532c a a c ,……………………………………………2分解得⎩⎨⎧==23c a ,所以549222=-=-=c a b ,椭圆C 的方程为15922=+y x .………………………………………2分(2)由(1)知)0,3(),0,3(B A -,直线DA 的方程为)3(12+=x my ………………………………………1分直线DB 的方程为)3(6-=x my ………………………………………1分设点M 的坐标为),(11y x ,点N 的坐标为),(22y x ,由⎪⎪⎩⎪⎪⎨⎧=++=159)3(1222y x x m y ,………………………………………1分得0451291254)1295(22222222=-+++m x m x m ,由于),0,3(-A M ),(11y x 是直线DA 与此椭圆的两个交点,所以2222211295451293m m x +-=⋅-,解得221803240mm x +-=,从而2118040)3(12m m x m y +=+=.…………2分由⎪⎪⎩⎪⎪⎨⎧=+-=159)3(622y x x m y ,………………………………………1分得04569654)695(22222222=-+-+m x m x m ,由于),0,3(B N ),(22y x 是直线DB 与此椭圆的两个交点,所以22222269545693m m x +-=⋅,解得22220603m m x +-=,从而2222020)3(6m m x m y +-=-=.…………2分若21x x =,则由222220603803240mm m m +-=+-,得402=m 此时121==x x ,从而直线MN 的方程为1=x ,它过点E )0,1(;若21x x ≠,则402≠m ,直线ME 的斜率2222401018032408040mm m m m mk ME-=-+-+=,直线NE 的斜率222240101206032020m m mm m mk NE-=-+-+-=,得NE ME k k =,所以直线MN 过点)0,1(E ,因此直线MN 必过x 轴上的点)0,1(E .………………………………2分。
中职数学试题库及答案
中职数学试题库及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c答案:A2. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -5B. 1C. -1D. 5答案:A3. 以下哪个数是无理数?A. 0.5B. πC. √4D. 0.333...答案:B4. 一个圆的半径为5,它的面积是多少?A. 25πC. 25D. 50答案:B5. 一个等差数列的首项是3,公差是2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:A6. 以下哪个选项是不等式3x - 5 > 2的解集?A. x > 1B. x < 1C. x > 3D. x < 3答案:A7. 一个函数y = f(x)的图象关于y轴对称,那么f(x)是哪种函数?A. 奇函数B. 偶函数C. 非奇非偶函数D. 以上都不是答案:B8. 以下哪个选项是复数的共轭?B. z - z*C. z/z*D. z*答案:D9. 一个等比数列的首项是2,公比是3,那么它的第三项是多少?A. 18B. 54C. 162D. 486答案:A10. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 6D. x = -1答案:A二、填空题(每题3分,共30分)1. 函数y = sin(x)的周期是________。
答案:2π2. 一个圆的直径是10,那么它的周长是________。
答案:10π3. 已知一个等差数列的第二项是5,第三项是7,那么它的首项是________。
答案:34. 一个函数y = f(x)满足f(x + y) = f(x) + f(y),那么f(x)是________函数。
职高数学复习题附答案
职高数学复习题附答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \(y = x^2\)B. \(y = |x|\)C. \(y = x^3\)D. \(y = \cos x\)答案:C2. 已知等差数列的首项为2,公差为3,那么它的第5项是多少?A. 17B. 14C. 11D. 8答案:A3. 函数\(y = \frac{1}{x}\)的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 圆的面积公式是什么?A. \(A = \pi r^2\)B. \(A = 2\pi r\)C. \(A = \pi d\)D. \(A = \frac{\pi d^2}{4}\)答案:A5. 已知\(\sin A = \frac{1}{2}\),且\(A\)是锐角,那么\(\cos A\)的值是多少?A. \(\frac{\sqrt{3}}{2}\)B. \(\frac{1}{2}\)C. \(\frac{\sqrt{2}}{2}\)D. \(\frac{\sqrt{5}}{5}\)答案:A6. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 2D. 4答案:A7. 一次函数\(y = 2x + 3\)与x轴的交点坐标是什么?A. \((-\frac{3}{2}, 0)\)B. \((\frac{3}{2}, 0)\)C. \((-3, 0)\)D. \((3, 0)\)答案:C8. 已知\(\tan 45^\circ = 1\),那么\(\tan 135^\circ\)的值是多少?A. 1B. -1C. 0D. \(\sqrt{2}\)答案:B9. 等比数列的前三项分别是2,6,18,那么它的公比是多少?A. 3B. 2C. 1D. \(\frac{1}{2}\)答案:A10. 函数\(y = x^2 - 4x + 4\)的顶点坐标是什么?A. \((2, 0)\)B. \((-2, 0)\)C. \((2, 4)\)D. \((-2, 4)\)答案:A二、填空题(每题4分,共20分)1. 函数\(y = x^2 - 6x + 9\)的顶点坐标是\(\boxed{(3, 0)}\)。
职高数学统招试题及答案
职高数学统招试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是:A. (0,1)B. (3/4, -1/8)C. (1, -1)D. (-1, 2)3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的结果是:A. {1}B. {2, 3}C. {4}D. {2, 3, 4}4. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 30π5. 已知sinθ = 3/5,且θ为锐角,求cosθ的值:A. 4/5C. 3/5D. -3/56. 一个等差数列的首项是2,公差是3,那么它的第5项是:A. 17B. 14C. 11D. 87. 根据题目所给的统计数据,某班学生的平均身高是165cm,标准差是8cm,那么身高在157cm到173cm之间的学生占该班学生总数的百分比是多少?A. 68%B. 95%C. 99%D. 50%8. 下列哪个是二次方程的解?A. x = 2B. x = -3C. x = 1/2D. x = 09. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 810. 已知等比数列的第1项是2,第2项是4,求第3项:B. 16C. 32D. 64二、填空题(每题3分,共15分)11. 计算(3x^2 - 4x + 2) / (x - 1)的结果是______。
12. 如果一个数列的前n项和为S_n,且S_5 = 15,S_10 = 45,那么S_15 = ______。
13. 一个函数的增长速度是指数型的,如果它的初始值是a,增长率是r,那么经过t时间后的值为a * (1 + r)^t,假设初始值为100,增长率为0.05,经过2年后的值为______。
14. 一个长方体的长、宽、高分别是2米、3米和4米,那么它的体积是______立方米。
中职升高职数学试题及答案:套
中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分) 1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =U I ( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( ) A. ()2f x x = B.2()f x x =- C.()2x f x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )C.25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( )A. 80B.81C. 26D. -266、下列向量中与向量(1,2)a =r垂直的是( )A. (1,2)b =rB.(1,2)b =-rC. (2,1)b =rD. (2,1)b =-r7、直线10x y -+=的倾斜角的度数是( )A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________ 10、函数22()log (56)f x x x =--的定义域为_______________________11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
职高数学试题及答案
职高数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = 2x + 3在x=1时的值是多少?A. 5B. 6C. 7D. 8答案:A3. 以下哪个不是二次方程?A. x^2 + 4x + 4 = 0B. x^2 - 5x + 6 = 0C. 3x^2 - 2x + 1 = 0D. 4x + 7 = 0答案:D4. 圆的面积公式是什么?A. πr^2B. 2πrC. r^2D. πd答案:A5. 直线y = 3x + 2与x轴的交点坐标是什么?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 1, 1, 1D. 1, 4, 9, 16答案:A7. 一个直角三角形的两条直角边分别为3和4,斜边长度是多少?A. 5B. 6C. 7D. 8答案:A8. 以下哪个是复数的实部?A. 3 + 4iB. 2 - 3iC. 5iD. -1答案:D9. 以下哪个是正弦函数的周期?A. 2πB. πC. 1D. 3π答案:A10. 一个数的平方根是它自己,这个数是什么?A. 0B. 1C. -1D. 2答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是它自己,这个数是______或______。
答案:正数;02. 圆的周长公式是C = ______。
答案:2πr3. 一个二次方程ax^2 + bx + c = 0的判别式是______。
答案:b^2 - 4ac4. 函数y = kx的斜率是______。
答案:k5. 一个数的倒数是1/x,这个数是______。
答案:非零数6. 正弦函数sin(x)的值域是______。
答案:[-1, 1]7. 一个数的对数以10为底,记作______。
中职单招数学试题及答案
中职单招数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是正整数?A. 1B. 2C. 3D. 4答案:D2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:C3. 函数f(x) = 2x + 3在x=1时的值是:A. 5B. 6C. 7D. 8答案:A4. 圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。
答案:57. 一个数的立方根是2,那么这个数是________。
答案:88. 一个圆的直径是10,其周长是________。
答案:π0(或31.4)9. 函数y = x^2 - 4x + 4的顶点坐标是________。
答案:(2, 0)10. 一个数的相反数是-5,那么这个数是________。
答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2)^2,其中x = 1。
答案:(3*1 - 2)^2 = 1^2 = 112. 解方程:2x + 5 = 11。
答案:2x = 11 - 5 => 2x = 6 => x = 313. 化简并求值:(2a + 3b)(2a - 3b),其中a = 2,b = 1。
答案:(2*2 + 3*1)(2*2 - 3*1) = (4 + 3)(4 - 3) = 7*1 = 714. 计算下列三角函数值:sin(30°)。
答案:sin(30°) = 1/2四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求其体积。
答案:长方体的体积 = 长 * 宽 * 高 = 5cm * 4cm * 3cm =60cm³16. 一个等腰三角形的底边长为6cm,两腰相等,求其周长。
中职升高职招生考试数学仿真试卷
中职升高职招生考试数学仿真试卷(一)一、单项选择题(每小题2分,共20分)1.若集合A={0,1,2,3},B={1,2,4}则集合B A ⋃= ( )A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D. φ2.“b a 22>”是“b a 22log log >”的 ( )A .充要条件B . 必要而非充分条件C . 充分而非必要条件D . 既非充分也非必要条件3.已知sin cos 0a a >,且sin tan 0a a < ( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列函数为奇函数的是 ( )A .1+=x yB .2x y =C .x x y +=2D .3x y =5.等差数列{}n a 中,2,365-==a a ,则公差=d ( )A.5B.1C.5-D.1-6.设,a b 为任意实数且a b <,则下列各式中恒成立的是 ( )A .1b a <B .22a b <C .11()()22a b >D .12log ()0b a ->7.函数2sin y x =的最小正周期是 ( )A πB 2πC 4πD 24π8.在下列条件下,可判定两平面平行的是 ( )A .两平面平行于同一条直线B . 两平面垂直于同一条直线C . 两平面垂直于同一平面D . 两平面内分别有无数条直线互相平行9.用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A. 60个B. 30个C. 24个D. 12个10.将一枚骰子连抛2次,所得点数之积为6的概率为 ( B ) A.61 B.19 C.121 D.361 二、填空题(每小题2分,共20分)11.若角α终边上一点P 的坐标是(-3,4),则αcos =12.时钟的分针走了10分钟,所转过的角的弧度数为13.3log 6log 22-=__ ___14.已知过点(3,2)且斜率为31的直线方程一般式为____ ___ 15.不等式|x -2|<3的解集是____ ___16.以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为______ __17.函数23-=x y (R x ∈)的反函数是18.已知椭圆的方程为22916144x y +=,则焦距为19.抛物线 x 2=4y 的准线方程为20.二项式7)2(-x 展开式中第三项为三、解答题(共50分)21.求函数x x x f -+-=2)1lg()(的定义域。
职高数学试题及答案
职高数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:C2. 函数y = 2x + 3的斜率是多少?A. 2B. 3C. 4D. 5答案:A3. 圆的面积公式是πr^2,其中r是圆的半径。
已知圆的面积是25π,那么半径r是多少?A. 5B. 3C. 4D. 2答案:B4. 一个等差数列的前三项是2,5,8,那么第四项是多少?A. 11B. 10C. 12D. 9答案:A二、填空题(每题5分,共20分)5. 已知函数f(x) = 3x - 1,求f(2)的值。
答案:56. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。
答案:57. 已知一个等比数列的前三项是2,4,8,那么第四项是______。
答案:168. 一个圆的周长是2πr,已知周长是16π,那么半径r是______。
答案:8三、解答题(每题10分,共30分)9. 解方程:2x - 3 = 7。
答案:x = 510. 已知一个等差数列的前四项是a, a+d, a+2d, a+3d,求第五项。
答案:a+4d11. 求函数y = x^2 - 6x + 8在x = 3处的值。
答案:1四、证明题(每题15分,共15分)12. 证明:如果a, b, c是实数,且a^2 + b^2 = c^2,那么a, b, c 构成一个直角三角形。
答案:略(注:此处应包含完整的证明过程,由于篇幅限制,此处用“略”表示。
)五、应用题(15分)13. 一个工厂生产了100个产品,其中10个是次品。
如果随机抽取一个产品,求抽到次品的概率。
答案:0.1注意:本试题及答案仅供参考,请根据实际情况进行调整和修改。
中职高中试题数学及答案
中职高中试题数学及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. -3B. πC. √2D. i2. 已知f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. -5D. 53. 一个圆的半径为5,其面积是多少?A. 25πB. 50πC. 100πD. 200π4. 一个等差数列的首项为3,公差为2,第10项是多少?A. 23B. 21C. 19D. 175. 函数y = x^2 - 4x + 4的顶点坐标是?A. (2, -4)B. (2, 0)C. (-2, 0)D. (-2, -4)6. 一个直角三角形的两直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 87. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}8. 一个正六边形的内角是多少度?A. 60B. 90C. 120D. 1809. 已知等比数列的首项为2,公比为3,求第5项。
A. 486B. 243C. 81D. 2710. 一个长方体的长、宽、高分别为2、3、4,其体积是多少?A. 24B. 12C. 36D. 48二、填空题(每题2分,共20分)11. 一个圆的周长是12π,其半径是________。
12. 函数y = |x - 1|的图像关于________对称。
13. 一个数的平方根等于它本身,这个数是________。
14. 已知等差数列的前三项分别为5,7,9,求第4项。
15. 一个三角形的内角和为________。
16. 一个正方体的体积是27,其边长是________。
17. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)。
18. 一个圆的面积是π,其半径是________。
19. 一个数的绝对值是5,这个数可以是________或________。
中职数学试题集及答案
中职数学试题集及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333…B. √2C. 0.5D. 1/3答案:B2. 函数y=x^2+2x+1的顶点坐标是?A. (-1, 0)B. (-1, 1)C. (1, 0)D. (1, 1)答案:B3. 以下哪个表达式等价于x^2 - 4x + 4?A. (x-2)^2B. (x+2)^2C. x^2 - 2x + 4D. x^2 + 2x + 4答案:A4. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B是?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B5. 直线y=2x+3与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)答案:C6. 函数y=sin(x)的周期是?A. 2πB. πC. 1D. 4π答案:A7. 以下哪个选项是等比数列?A. 1, 2, 3, 4B. 2, 4, 8, 16C. 1, 3, 5, 7D. 3, 6, 9, 12答案:B8. 已知等差数列的首项a1=2,公差d=3,求第5项的值?A. 17B. 20C. 23D. 26答案:A9. 以下哪个图形不是中心对称图形?A. 圆B. 等边三角形C. 正方形D. 菱形答案:B10. 函数y=|x|的值域是?A. (-∞, 0]B. [0, +∞)C. (-∞, +∞)D. (0, +∞)答案:B二、填空题(每题4分,共20分)11. 圆的面积公式为__________。
答案:πr^212. 已知等差数列的前n项和公式为S_n=n/2(a1+an),则第n项的公式为__________。
答案:an=a1+(n-1)d13. 函数y=cos(x)的值域是__________。
答案:[-1, 1]14. 已知向量a=(3, -1),b=(1, 2),则向量a与向量b的数量积为__________。
职高试题及答案数学
职高试题及答案数学一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0B. 1C. πD. 2答案:C2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 函数y=2x+3的斜率是:A. 2B. 3C. -2D. -3答案:A4. 一个等差数列的首项是2,公差是3,那么它的第5项是:A. 17B. 14C. 11D. 8答案:A5. 计算(3-2i)(2+i)的结果是:A. 7-4iB. 7+4iC. 5-4iD. 5+4i答案:A6. 下列哪个图形是中心对称图形?A. 圆B. 等边三角形C. 矩形D. 正五边形答案:A7. 一个圆的半径是5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π答案:C8. 函数y=x^2-6x+9的顶点坐标是:A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)答案:A9. 一个数列的前三项是1, 2, 4,那么它的第四项是:A. 8B. 7C. 6D. 5答案:A10. 一个三角形的三个内角分别是45°,45°,90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B二、填空题(每题4分,共20分)1. 一个等比数列的前三项是2, 6, 18,那么它的第四项是______。
答案:542. 一个二次函数的顶点是(-1, 4),且它开口向上,那么它的解析式可以是y=a(x+1)^2+4,其中a的值是______。
答案:-13. 计算(√2+1)(√2-1)的结果是______。
答案:14. 一个数的绝对值是5,那么这个数可以是______。
答案:±55. 一个圆的直径是10,那么它的面积是______。
答案:25π三、解答题(每题10分,共50分)1. 已知数列{an}是等差数列,且a1=3,d=2,求数列的第10项。
数学试题及答案职高版
数学试题及答案职高版数学试题及答案(职高版)一、选择题(本题共10小题,每小题3分,共30分)1. 下列函数中,为偶函数的是()。
A. y = x^2 + 1B. y = x^3 - 2xC. y = x^2 - 2x + 3D. y = x + 1答案:A2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()。
A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {3, 4}答案:B3. 函数f(x) = 2x - 3的反函数为()。
A. f^(-1)(x) = (x + 3) / 2B. f^(-1)(x) = (x - 3) / 2C. f^(-1)(x) = (x + 3) / 4D. f^(-1)(x) = (x - 3) / 4答案:A4. 已知向量a = (3, -2),b = (-1, 2),则向量a与向量b的数量积为()。
A. -7B. 7C. -5D. 5答案:A5. 计算极限lim(x→0) (sin(x) / x)的值为()。
A. 0B. 1C. -1D. ∞答案:B6. 已知双曲线方程为x^2 / a^2 - y^2 / b^2 = 1,其中a > 0,b > 0,若双曲线的渐近线方程为y = ±2x,则a与b的关系为()。
A. a = 2bB. a = b/2C. b = 2aD. b = a/2答案:D7. 计算定积分∫(0 to 1) x^2 dx的值为()。
B. 1/2C. 1D. 2答案:A8. 已知矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],则矩阵A与矩阵B的乘积AB为()。
A. [19 22; 43 50]B. [23 30; 53 62]C. [19 22; 43 50]D. [23 30; 53 62]答案:A9. 计算二项式(1 + x)^3的展开式中x^2的系数为()。
中职数学考试题及答案
中职数学考试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 1.1010010001…(每两个1之间依次多一个0)B. √2C. 0.33333(无限循环小数)D. 0.1250625(无限循环小数)答案:B2. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. 1C. 4D. -4答案:A3. 若sinθ = √3/2,且θ为锐角,则cosθ的值为:A. 1/2B. √3/2C. 1/√3D. -1/√3答案:A4. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B5. 以下哪个选项是等差数列5, 7, 9, 11的第5项?A. 13B. 15C. 17D. 19答案:B6. 如果一个三角形的三边长分别为3, 4, 5,那么这是一个:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:A7. 以下哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = sinx答案:C8. 圆心在原点,半径为1的圆的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 2C. x^2 + y^2 = 0D. x^2 + y^2 ≤ 1答案:A9. 集合{1, 2, 3}与{2, 3, 4}的交集是:A. {1}B. {2, 3}C. {1, 2, 3, 4}D. 空集答案:B10. 以下哪个是二项式定理的展开式?A. (x+y)^2 = x^2 + 2xy + y^2B. (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3C. (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. 所有选项答案:D二、填空题(每题2分,共20分)1. 一个数的平方根是它本身的数是 __ 。
答案:02. 一个正数的对数以10为底的对数称为 __ 。
中职考试数学试题及答案
中职考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 如果一个角的度数是30°,那么它的余角是多少?A. 30°B. 45°C. 60°D. 90°答案:C3. 以下哪个表达式的结果不是整数?A. 3 + 2B. 4 - 1C. 5 × 2D. 6 ÷ 2答案:A4. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 下列哪个是二次方程?A. x + 2 = 0B. x² + 3x + 2 = 0C. x³ - 4 = 0D. 2y - 7 = 0答案:B6. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 7B. 8C. 11D. 14答案:C7. 以下哪个是不等式?A. x + 2 = 5B. 3x - 4 ≥ 5C. 2y + 3 = 0D. 5z - 1 < 4答案:B8. 一个三角形的三边长分别为3, 4, 5,那么它是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C9. 如果一个函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -2B. -1C. 0D. 1答案:A10. 下列哪个是复数?A. 3 + 4iB. -2C. √2D. π答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个数的绝对值是10,那么这个数可以是________或________。
答案:10 或 -1013. 一个圆的直径是14,那么它的半径是________。
答案:714. 如果一个数的平方根是4,那么这个数是________。
答案:1615. 一个数列的前3项分别是1, 4, 9,那么它的第4项是________。
辽宁省中职升高职招生考试数学试卷
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案。
每小题2分,共20分)1、设集合U={小于6的正整数},A={1,5},则 为A 、{1,2,3,4,5}B 、{2,3,4}C 、{1,5}D 、φ 2、命题甲:x > 4 ,命题乙: x > 6,则甲是乙的 A 、充分且不必要条件 B 、必要且不充分条件 C 、充分必要条件 D 、既不充分也不必要条件3、下列函数中,是偶函数且在(-∞,0)上为增函数的是 A 、22y x = B 、2y x =- C 、2xy = D 、2log ()y x =- 4、sin 75的值是A 、264-B 、264C 、624D 、6245、2与8的等比中项是A 、-4B 、4C 、±4D 、±166、若角α终边上一点P 的坐标是(-3,4),则cos α等于 A 、35- B 、45 C 、34- D 、347、若a > b ,则下列不等式 ○12a ab > ○2 1a b > ○311a b< ○422a b >恒成立的个数是 A 、0 B 、1 C 、2 D 、38、圆224x y +=与圆224240x y x y ++--=的位置关系是A 、相交B 、相离C 、外切D 、内切9、有5本不同的书,分别借给三个同学,每人借一本,共有多少种不同的借法 A 、20种 B 、40种 C 、60种 D 、80种10、在10件产品中,有7件正品,3件次品,现从中任取2件产品,恰好取到一件正品、一件次品的概率为 A 、19 B 、29 C 、730D 、715二、填空题(每空2分,共20分)11、如果sin 0,cos 0αα<>且,则α是第 象限的角. 12、求值:55log 15log 3-=13、点A (-2,3)到直线3 x + 4 y - 5 = 0 的距离是14、如果两条直线a 、b 分别与平面α垂直,那么直线a 与b 的位置关系是15、函数228y x x =-++的最大值为16、过点A (3,4)且与直线 3 x - 2 y - 7 = 0 平行的直线方程是 17、不等式201x x -<+的解集为 18、函数y=3sin (2x+)6π的最小正周期是 .19、抛物线220x y =的准线方程是 20、6(2)x y +的展开式中的第四项为三、解答题(共80)21、求函数2232log (3)y x x x =-++的定义域。
中职数学试题及答案
中职数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数f(x) = 2x + 3的值域是什么?A. (-∞, +∞)B. [3, +∞)C. (0, +∞)D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}答案:C4. 直线y = 3x + 1与x轴的交点坐标是什么?A. (0, 1)B. (1, 0)C. (-1/3, 0)D. (0, 0)答案:C5. 已知等差数列的首项a1=2,公差d=3,求第5项a5。
A. 14B. 17C. 20D. 23答案:A6. 圆的方程为(x-2)² + (y-3)² = 9,圆心坐标是什么?A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A7. 函数y = x² - 4x + 4的最小值是多少?A. 0B. 4C. -4D. 1答案:A8. 已知向量a = (3, 4),b = (-1, 2),求a·b。
A. 10B. 2C. -2D. 6答案:C9. 抛物线y = x²的对称轴是什么?A. x = 0B. y = 0C. x = 1D. y = 1答案:A10. 已知三角形ABC中,角A = 60°,边a = 3,边b = 4,求边c的范围。
A. (1, 5)B. (2, 4)C. (3, 5)D. (1, 7)答案:C二、填空题(每题2分,共20分)11. 已知等比数列的第3项是8,第1项是2,那么第5项是________。
答案:3212. 函数y = sin(x)的周期是________。
答案:2π13. 已知三角形ABC中,角A = 90°,边a = 5,边b = 12,那么边c的长度是________。
中职数学考试题及答案
中职数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:A. 2^3B. 3^2C. 4^1D. 5^0答案:D3. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. 7答案:B4. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 2答案:A5. 圆的周长公式是:A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B6. 已知直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 7C. 9D. 12答案:A7. 计算下列表达式的值:A. (-3)^2B. (-3)^3C. (-3)^4D. (-3)^5答案:A8. 一个数的立方根是2,这个数是:A. 8B. 2C. 4D. 6答案:A9. 已知等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A10. 已知等比数列的首项为2,公比为2,求第4项的值。
A. 32B. 16C. 8D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数是______。
答案:±52. 一个数的相反数是-7,这个数是______。
答案:73. 计算(-3) × (-4) = ______。
答案:124. 计算√16 = ______。
答案:45. 已知一个数的平方是25,这个数是______。
答案:±56. 计算(-2)^3 = ______。
答案:-87. 已知一个数的立方根是3,这个数是______。
答案:278. 已知直角三角形的两条直角边长分别为6和8,斜边长为______。
答案:109. 已知等差数列的首项为10,公差为2,求第10项的值是______。
答案:2810. 已知等比数列的首项为1,公比为3,求第3项的值是______。
中职数学考试题及答案
中职数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:A. 2^3B. 3^2C. 4^1D. 5^0答案:D3. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. 7答案:B4. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 2答案:A5. 圆的周长公式是:A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B6. 已知直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 7C. 9D. 12答案:A7. 计算下列表达式的值:A. (-3)^2B. (-3)^3C. (-3)^4D. (-3)^5答案:A8. 一个数的立方根是2,这个数是:A. 8B. 2C. 4D. 6答案:A9. 已知等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A10. 已知等比数列的首项为2,公比为2,求第4项的值。
A. 32B. 16C. 8D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数是______。
答案:±52. 一个数的相反数是-7,这个数是______。
答案:73. 计算(-3) × (-4) = ______。
答案:124. 计算√16 = ______。
答案:45. 已知一个数的平方是25,这个数是______。
答案:±56. 计算(-2)^3 = ______。
答案:-87. 已知一个数的立方根是3,这个数是______。
答案:278. 已知直角三角形的两条直角边长分别为6和8,斜边长为______。
答案:109. 已知等差数列的首项为10,公差为2,求第10项的值是______。
答案:2810. 已知等比数列的首项为1,公比为3,求第3项的值是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职升高 职招 生: 考 试数学试卷( 一)一、单项选择题(在每小题的四个备选答案中选岀一个正确的答案。
本大题共 8小题,每小题3分,共24分)1、设集合A {0,5}B {0,3,5} ,C {4,5,6},则(BUC)IA ()A. {0,3,5}B.{0,5} C{3}D.2、命题甲: a b命题乙:w3 b ,甲是乙成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D 既不充分又不必要条件 3、下列各函数中偶函数为( )A. f(x)2x B.f (x)2x C .f(x) 2xD.f (x) log 2 x14、若COS2,(0,-),则 sin的值为( )A.返B.—C.232D. 735、已知等数比列{a n },首项a 12,公比:q 3,则前4项和 S 4等于( )A. 80C.26D.-266、下列向量中与向量r a (1,2)垂直的是( )A. b (1,2)B. b (1, 2)C.r b(2,1)D.b (2, 1)7、 直线xy 1 0的倾斜角的度数是( )A.60B.30 C. 45D.135 8、 如果直线a 和直线b 没有公共点,那么 a 与b()A. 共面B. 平行C. 是异面直线 D 可能平行, 也可能是异面直线、填空题(本大题共 4小题,每小题 4分,共 16分)9、 在 ABC 中 , 已知AC=8,AB=3, A 60 贝U BC 的长为210、函数f (x ) log 2(x 5x 6)的定义域为11、 设椭圆的长轴是短轴长的 2倍,则椭圆的离 心率为 _______________1 9 312、 (X 一)9的展开式中含X 3的系数为X参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选 岀一个正确的答案。
本大题共8小题,每小题316分) 9.7210.(,1)U (6,),也可以写成5、下列直线中与 x 2y 6 0平行的是{xx 1 或 x 6} A. 2x 4y 1 0 B. 2x y 3 0 C. x 2y 3D. 2x4y 112. 84 中职升高职招生考试 数学试卷(二)一、单项选择题(在每小题的四个备选答案中选 岀一个正确的答案。
本大题共 8小题,每小题 3 分,共24分) 1、设全集 U {123,4,5} , A {2,3} , B {3,4,5},则 6、一条直线和两条异面直线中的一条平行,则它 与另一条直线的位置关系是 A.平行 B. 相交 D.相交或异面下列函数中,A.x 2 2x抛物线y 2 ( C.) 异面定义域为) R 的函数是B.C.D.8x 的准线方程为((C u A) U B 等于( ) C. {4,5} A. {1} B. {3} D.{1,3,4,5}2、设命题甲: x 2 命题乙:x 1,甲是乙成 立的( )A.充分不必要条件B. 必要不充分条件C.充分必要条件 D 既不充分又不必要条件3、设 a b 0,下列不等式正确的是( )A. 0.3a 0.3b B . 2a 2bC . log 0.3 a log 0.3 bD . log 2 a log 2 b 4、若 sin 1 是第二象限角,则 cos 的 2 值为 ( ) A.- B辽C.222D. 1A. x 2B. y 2C.D. y 2二、填空题(本大题共 4小题,每小题 4分,共16分)rrr r9、若向量a ( 2, x ),b (3,2)且 ab ,则 x等于 _____________________10、 一名教师与4名学生随机站成一排,教师恰 好站在中间位置的概率为 _______________a11、 已知数列{a n }为等比数列, — 6, a 1 2,a 2则a3____________12、 直二面角I 内一点S ,S 到两个半平 面的距离分别是 3和4,则S 到I 的距离为参考答案中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选 岀一个正确的答案。
本大题共 8小题,每小题3分,共24分)110.511. 1212. 5中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选岀一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合M {1,2},集合N { 2,0,1,2,4},则MIN ( )A. { 2,0,4} B{2,0,124} C.{1,2} D.2、设命题p : x2命题q : (x 2)(x 3)0,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D既不充分又不必要条件3、点(2,1)关于x轴的对称点的坐标为( )A. (2,1)B.(2,1)C.(2, 1) D.(1, 2)r 4、向量a (2,3),br(5, 4),则a( )A. 22B. 7C. -2D. -155、双曲线3x2 y23的渐近线方程为( )A. y 3xB.y1—x C. y.3x3D. y x346、已知sin且是第二象限角,则tan5的值为()人33C.3A. B.5544D.37、用一个平面去截正方体, 所得截面的形状不可能是()A.六边形B.梯形C.圆形D三角形8、前n个正整数的和等于( )典2A. n B n(n1)1 /C. n(n 1)2D. 2n2二、填空题(本大题共4小题,每小题4分,共16分)9、若f(X)为奇函数,f(2)3则f ( 2)的值为10、圆x2寸2x 4y 4 0的圆心坐标为__________________11、若2sinx a成立,则a的取值范围是___________________________812、在(2x 1)展开式中各项系数和为参考答案中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选岀一个正确的答案。
本大题共8小题,每小题3分,共24分)中职升高职招生考试数学试卷(四)一、单项选择题(在每小题的四个备选答案中选岀一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合M {xx 4},集合N {x x 6},则MUN 等于()A. R B. {x 4 x 6} C.D. {x 4 x 6}2、下列结论正确的是()1 1a. 若b 0,a 0,则一一a bb. 对任意实数x,都有x2x成立。
C.已知x, y是实数,若x2 y2 0 ,贝Ux y 0D.若a 0,b c,贝y ab ac3、已知直线h:y kx 1 , l2: y 3x 1,且h J,则斜率k的值为()A. -3B.1- C. 3 D133 4、不等式x 11的解集为( )A. 0,2B.(,0] U[2,)C. ( ,2]D. [2,)5、首项为5,末项为160,公比为2的等比数列共有( )A. 4项B.6项C.5项D.7项6、已知log 2 5a,log23 b,则2a b的值为( )A. 5B.8C. 10D. 157、已知直线过点(1,5)和点(2,3),则该直线的斜率为()A. 2B.1C. -2D. 1228、和两条异面直线都垂直的直线()A. 有无数条B. 有两条C.只有一条 D.不存在二、填空题(本大题共4小题,每小题4分,共16分)2 29、椭圆—1的离心率为25 1610、函数f1 sin(3x -)的最小值为(x)A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件b __________________12、已知(1 2x)7a 0 a-|X a 2x 2La 7x 7, 则3、下列各函数中是偶函数且在(0,)内是增函数的是( )D . y1、 设全集,A {1,2,3} , B {3,4},则 AI B ( )A. {1,2,3}B. {3}C. {1,2,3,4}D.{1,2,4}2 22、 a b 是a b 0成立的()d 3,则第3项a 3的值为()A. 5B. 4C. -4D. -5二、填空题(本大题共 4小题,每小题 4分,共 16分)19、计算83 (1)0 Ig1的值为a 。
_______________________ 参考答案 中职升高职招生考试数学试卷(四)4、计算 A. sin15B. cos15 的结果正确的是C.一、单项选择题(在每小题的四个备选答案中选 岀一个正确的答案。
本大题共 8小题,每小题 3 分,共24分)、填空题(本大题共 4小题,每小题4分,共 D.16分) 3 9. 5 110. 2 11. (4,3) 12. 1 中职升高职招生考试 数学试卷(五)一、单项选择题(在每小题的四个备选答案中选 岀一个正确的答案。
本大题共 8小题,每小题 3分,共24分) 5、要使直线I ( ) A.两条不同直线 平面,只需I 垂直于平面B.无数条直线C.不平行的概率是( )751 A.B.C.36 3691 D.62 2的两条直线D.不垂直的两条直线6、同时抛掷两颗均匀的骰子,岀现点数之和为 7x y7、椭圆1的焦距长为()259A. 18B. 16C. 12D.88、等差数列{a n }的首项a 1 1,公差11、向量 a ( 1,1), a(3,4),则2A. y xB.y log s x C .110、函数f(x) 2sin( x )的最小正周期为2 411、若向量a (2,5)与b (4, y)共线,贝Uy ____________12、如图,在正方体ABCD A1B1C1D1中,直AD1与AB所成的角的度数是参考答案中职升高职招生考试数学试卷(五)一、单项选择题(在每小题的四个备选答案中选岀一个正确的答案。
本大题共8小题,每小题3分,共24分)题号12345678答案B B A BCD D D16分)9.110.411.112.60。