浙江省温州市七校联考2019-2020学年九年级(上)期末数学试卷 含解析
2019-2020学年浙江省温州市九年级(上)期末数学试卷(解析版)
2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分):1.已知O 的半径为4cm ,点P 在O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm 2.已知23a b =,则a b a +的值为( ) A .52 B .53 C .32 D .233.抛物线223y x x =-+ 的对称轴为( )A .直线1x =-B .直线2x =-C .直线1x =D .直线2x =4.如图,在O 中,点M 是AB 的中点,连结MO 并延长,交O 于点N ,连结BN ,若140AOB ∠=︒,则N ∠的度数为( )A .70︒B .40︒C .35︒D .20︒5.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A .12B .38C .13D .146.如图, 四边形ABCD 是O 的内接四边形, 若3D B ∠=∠,则B ∠的度数为( )A .30︒B .36︒C .45︒D .60︒7.已知点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,则a ,b ,c 的大小关系为( )A .a c b >>B .b a c >>C .c a b >>D .b c a >>8.如图,正六边形ABCDEF 的边长为2,现将它沿AB 方向平移1个单位,得到正六边形A B C D E F '''''',则阴影部分A BCDE F '''的面积是( )A .B .CD .2+9.如图,在Rt ABC ∆中,20A ∠=︒,6AC =,将ABC ∆绕直角顶点C 按顺时针方向旋转得到△A B C '',当点B '第一次落在AB 边上时,点A 经过的路径长(即AA '的长)为( )A .23πB .43πC .2πD .73π 10.如图,点A 为x 轴上一点,点B 的坐标为(,)a b ,以OA ,AB 为边构造OABC ,过点O ,C ,B 的抛物线与x 轴交于点D ,连结CD ,交边AB 于点E ,若AE BE =,则点C 的横坐标为( )A .a b -B .2bC .3aD .4a 二、填空题(共8小题,每小题3分,共24分):11.如图,直线////AB CD EF ,已知3AC =,4CE =, 3.6BD =,则DF 的长为 .12.某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为 .13.请写出一个开口向上,且其图象经过原点的抛物线的解析式 .14.已知扇形的圆心角为45︒,半径为3cm ,则该扇形的面积为 2cm .15.如图,点P 是ABC ∆的重心,过点P 作//DE AB 交BC 于点D ,交AC 于点E ,若AB 的长度为6,则DE 的长度为 .16.一根排水管的截面如图所示,已知水面宽40AB cm =,水的最大深度为8cm ,则排水管的半径为 cm .17.函数28(y ax ax a =-为常数,且0)a >在自变量x 的值满足23x 剟时,其对应的函数值y的最大值为3-,则a 的值为 .18.如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O 的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当1号舱比3号舱高5米时,1号舱的离地高度为 米.三、解答题(共6小题,共46分):19.有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求两张卡片的数字之和为偶数的概率.20.如图,在所给的方格纸中,每个小正方形边长都是1,ABC ∆是格点三角形(顶点在方格顶点处).(1)在图1画格点△111A B C ,使△111A B C 与ABC ∆相似,相似比为2:1.(2)在图2画格点△222A B C ,使△222A B C 与ABC ∆相似,面积比为2:1.21.如图,抛物线223y x x =--与x 轴交于A ,B 两点(A 在B 的左侧),顶点为C .(1)求A ,B 两点的坐标;(2)若将该抛物线向上平移t 个单位后,它与x 轴恰好只有一个交点,求t 的值.22.如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,过A ,C ,D 三点的圆交BA 的延长线于点E,连接EC.(1)求证:90∠=︒;E(2)若6BC=,求AE的长.AB=,1023.创客联盟的队员想用3D打印完成一幅边长为4米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形A B C D'''',用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表设矩形的较短边AH的长为x米,打印材料的总费用为y元.(1)A D''的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于3时,预备材料的购买资金700元够用吗?请利用函数的增减性来说明理由.24.如图,在平面直角坐标系中,(3,4)A,(5,0)B,连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF x⊥轴于F,交BC于G.(1)AO的长为,AB的长为(直接写出答案)(2)求证:ACE BEF∽;∆∆(3)若圆心H落在EF上,求BC的长;(4)若CEG∆是以CG为腰的等腰三角形,求点C的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分):1.已知O 的半径为4cm ,点P 在O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm【解答】解:点P 在O 上,4OP cm ∴=.故选:C .2.已知23a b =,则a b a +的值为( ) A .52 B .53C .32D .23 【解答】解:23a b =, ∴23522a b a ++==, 故选:A .3.抛物线223y x x =-+ 的对称轴为( )A .直线1x =-B .直线2x =-C .直线1x =D .直线2x =【解答】解: 2223(1)2y x x x =-+=-+,∴对称轴为1x =,故选:C .4.如图,在O 中,点M 是AB 的中点,连结MO 并延长,交O 于点N ,连结BN ,若140AOB ∠=︒,则N ∠的度数为( )A .70︒B .40︒C .35︒D .20︒【解答】解:点M 是AB 的中点,∴AM BM =,140AOB ∠=︒,1702BOM AOB ∴∠=∠=︒, 1352N BOM ∴∠=∠=︒, 故选:C .5.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A .12B .38C .13D .14【解答】解:口袋里装有2个白球,3个黑球和3个红球,∴口袋里共有8个球,∴摸出白球的概率是2184=; 故选:D .6.如图, 四边形ABCD 是O 的内接四边形, 若3D B ∠=∠,则B ∠的度数为( )A .30︒B .36︒C .45︒D .60︒ 【解答】解:四边形ABCD 是O 的内接四边形,180B D ∴∠+∠=︒,3D B ∠=∠,4180B ∴∠=︒,解得:45B ∠=︒,故选:C .7.已知点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,则a ,b ,c 的大小关系为( )A .a c b >>B .b a c >>C .c a b >>D .b c a >>【解答】解:抛物线2222(1)1y x x x =-+=-+,∴该抛物线的对称轴是直线1x =,当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,点(2,)A a -,(1,)B b ,(3,)C c 是抛物线222y x x =-+上的三点,1(2)3--=,110-=,312-=,a cb ∴>>,故选:A .8.如图,正六边形ABCDEF 的边长为2,现将它沿AB 方向平移1个单位,得到正六边形A B C D E F '''''',则阴影部分A BCDE F '''的面积是( )A .B .CD .2+【解答】解:连接A E '',BD ,过F '作F H A E '⊥''于H ,则四边形A E DB ''是矩形,正六边形ABCDEF 的边长为2,120A F E ∠'''=︒,30F A E ∴∠'''=︒,1F H ∴'=,A H '=,A E ∴''=,将它沿AB 方向平移1个单位,1A B ∴'=,∴阴影部分A BCDE F '''的面积12112A F E BCD A E DB S S S '''∆''=++=⨯⨯+⨯=矩形, 故选:B .9.如图,在Rt ABC∆中,20A∠=︒,6AC=,将ABC∆绕直角顶点C按顺时针方向旋转得到△A B C'',当点B'第一次落在AB边上时,点A经过的路径长(即AA'的长)为( )A.23πB.43πC.2πD.73π【解答】解:90ACB∠=︒,20A∠=︒,70B∴∠=︒,将ABC∆绕直角顶点C按顺时针方向旋转得到△A B C'',BC B C∴=',70BB C B∴∠'=∠=︒,40BCB∴∠'=︒,40ACA∴∠'=︒,∴点A经过的路径长40641803ππ⨯==,故选:B.10.如图,点A为x轴上一点,点B的坐标为(,)a b,以OA,AB为边构造OABC,过点O,C,B的抛物线与x轴交于点D,连结CD,交边AB于点E,若AE BE=,则点C的横坐标为()A .a b -B .2bC .3aD .4a 【解答】解:四边形OABC 为平行四边形,//BC OA ∴,BC OA =,设(,)C t b ,则BC a t =-,//BC AD ,EBC EAD ∴∠=∠,在EBC ∆和EAD ∆中BEC AED EB EAEBC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()EBC EAD ASA ∴∆≅∆,BC AD a t ∴==-,∴点A 为OD 的中点,∴抛物线的对称轴为直线x a t =-,()a t t a a t ∴--=--,13t a ∴=. 故选:C .二、填空题(共8小题,每小题3分,共24分):11.如图,直线////AB CD EF ,已知3AC =,4CE =, 3.6BD =,则DF 的长为 4.8 .【解答】解:直线////AB CD EF ,∴AC BD CE DF=, 即3 3.64DF =, 解得: 4.8DF =,故答案为:4.812.某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为 98% .【解答】解:这批保温杯的合格率9801000100%98%=÷⨯=.故答案为:98%.13.请写出一个开口向上,且其图象经过原点的抛物线的解析式 2y x x =+ .【解答】解:设抛物线解析式为2y ax bx c =++,抛物线开中向上, 0a ∴>,故可取1a =,抛物线过原点,0c ∴=,对称没有限制,∴可取1b =,故答案为:2y x x =+.14.已知扇形的圆心角为45︒,半径为3cm ,则该扇形的面积为 8 2. 【解答】解:2224539()3603608n r s cm πππ===, 故答案为98π. 15.如图,点P 是ABC ∆的重心,过点P 作//DE AB 交BC 于点D ,交AC 于点E ,若AB 的长度为6,则DE 的长度为 4 .【解答】解:连接CP 并延长交AB 于F ,由重心的性质得,:2:1CP PF =.//DE AB ,::2:1CD DB CP PF ∴==,:2:3CD CB ∴=, ∴23DE CD AB CB ==, 6AB =,4DE ∴=,故答案为:4.16.一根排水管的截面如图所示,已知水面宽40AB cm =,水的最大深度为8cm ,则排水管的半径为 29 cm .【解答】解:过点O 作OD AB ⊥,交AB 于点E ,40AB cm =,11402022BE AB cm ∴==⨯=, 在Rt OBE ∆中,8OE OB =-,222OB OE BE ∴=+,即22220(8)OB OB =+-,29OB cm ∴=;故答案为:2917.函数28(y ax ax a =-为常数,且0)a >在自变量x 的值满足23x 剟时,其对应的函数值y的最大值为3-,则a 的值为4 . 【解答】解:228(4)16y ax ax a x a =-=--,∴函数28(y ax ax a =-为常数,且0)a >的大致函数图象如图所示,在自变量x 的值满足23x 剟时,其对应的函数值y 的最大值为3-, ∴当2x =时,3y =-最大值,即4163a a -=-,解得14a =. 故答案是:14.18.如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O 的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当1号舱比3号舱高5米时,1号舱的离地高度为 20 米.【解答】解:如图所示:作BA 、CD 分别垂直于摩天轮水平的直径,A 、D 为垂足,则90BAO ODC ∠=∠=︒,90AOB B ∠+∠=︒,由题意得:90BOC ∠=︒,25OB OC ==,5AB CD =+,90AOB COD ∴∠+∠=︒,B OCD ∴∠=∠,在AOB ∆和DCO ∆中,BAO ODC B OCD OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB DCO AAS ∴∆≅∆,OA CD ∴=,AB OD =,设OA x =,则5AB x =+,在Rt AOB ∆中,由勾股定理得:222(5)25x x ++=,解得:15x =,15520AB ∴=+=(米),即号舱的离地高度为20米;故答案为:20.三、解答题(共6小题,共46分):19.有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求两张卡片的数字之和为偶数的概率.【解答】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)共有6种等可能的结果数,抽取的两张卡片的数字之和为偶数的有2种情况,∴两张卡片的数字之和为偶数的概率是:13. 20.如图,在所给的方格纸中,每个小正方形边长都是1,ABC ∆是格点三角形(顶点在方格顶点处).(1)在图1画格点△111A B C ,使△111A B C 与ABC ∆相似,相似比为2:1.(2)在图2画格点△222A B C ,使△222A B C 与ABC ∆相似,面积比为2:1.【解答】解:(1)如图所示:△111A B C 即为所求:(2)如图所示:△222A B C 即为所求:21.如图,抛物线223y x x =--与x 轴交于A ,B 两点(A 在B 的左侧),顶点为C .(1)求A ,B 两点的坐标;(2)若将该抛物线向上平移t 个单位后,它与x 轴恰好只有一个交点,求t 的值.【解答】解:(1)当0y =时,2230x x --=,解得13x =,21x =-,所以A 点坐标为(1,0)-,B 点坐标为(3,0);(2)抛物线223y x x =--向上平移t 个单位后所得抛物线解析式为223y x x t =--+, 则△2(2)4(3)0t =---+=,解得4t =.22.如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,过A ,C ,D 三点的圆交BA 的延长线于点E ,连接EC .(1)求证:90E ∠=︒;(2)若6AB =,10BC =,求AE 的长.【解答】解:(1)如图,连接AD ,AB AC =,D 是BC 中点,AD BC ∴⊥,即90ADC ADB ∠=∠=︒,∴点A ,C ,D 在以AC 为直径的圆上,90E ∴∠=︒;(2)10BC =, 152BD BC ∴==, B B ∠=∠,90ADB E ∠=∠=︒,BAD BCE ∴∆∆∽, ∴BA BD BC BE =,即65106AE=+, 解得:73AE =. 23.创客联盟的队员想用3D 打印完成一幅边长为4米的正方形作品ABCD ,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形A B C D '''',用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表设矩形的较短边AH 的长为x 米,打印材料的总费用为y 元. (1)A D ''的长为 42x - 米(用含x 的代数式表示);(2)求y 关于x 的函数解析式;(3)当中心区的边长不小于3时,预备材料的购买资金700元够用吗?请利用函数的增减性来说明理由.【解答】解:(1)AH GD x ='=,4AD =,42A D x ∴''=-; 故答案为:42x -;(2)y 关于x 的函数解析式为:22604(4)30(42)120480480y x x x x x =⨯⨯-+⨯-=-++;(3)当中心区的边长不小于3米时,423x ∴-…,解得:0.5x …,2120480480y x x =-++,1200a =-<,22b a-=, ∴当0.5x …时,y 随x 增大而增大, 所以当12x =时,690700y =<, 所以当中心区的边长不小于3米时,预备材料的购买资金700元够用.24.如图,在平面直角坐标系中,(3,4)A ,(5,0)B ,连结AO ,AB .点C 是线段AO 上的动点(不与A,O重合),连结BC,以BC为直径作H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF x⊥轴于F,交BC于G.(1)AO的长为5,AB的长为(直接写出答案)(2)求证:ACE BEF∽;∆∆(3)若圆心H落在EF上,求BC的长;(4)若CEG∆是以CG为腰的等腰三角形,求点C的坐标.【解答】解:(1)(3,4)A,(5,0)B.∴=,5OA5OB=,AB==.故答案为:5;.(2)如图1中,==,5OA OB∴∠=∠,A EBFBC是直径,∴∠=∠=︒,BEC AEC90EF OB⊥,∴∠=︒,90EFBAEC EFB∴∠=∠=︒,90∴∆∆∽.ACE BEF(3)如图2中,当GC GE=时,点G与点H重合,∴==,GE GB GCGEB EBG∴∠=∠,∠+∠=︒,90GEB ABO∴∠+∠=︒,EBG ABO90=,OA OB∴∠=∠,A OBA∴∠+∠=︒,90A EBG∴∠=︒,90ACB∴⊥,BC AOOC OB AOB∴=∠=,cos3BC∴===;4(4)①如图2中,当GC GE=时,点G与点H重合,∴==,GE GB GCGEB EBG∴∠=∠,∠+∠=︒,90GEB ABO∴∠+∠=︒,EBG ABO90=,OA OBA OBA ∴∠=∠,90A EBG ∴∠+∠=︒,90ACB ∴∠=︒,BC AO ∴⊥,cos 3OC OB AOB ∴=∠=,9(5C ∴,12)5. ②如图3中,当CE CG =时,作AK OB ⊥于K .设4CD k =,3OD k =.CE CG =,CEG CGE BGF ∴∠=∠=∠,90CEG BEF ∠+∠=︒,90BGF CBD ∠+∠=︒, CBD BEF ∴∠=∠,EF OB ⊥,AK PB ⊥,//EF AK ∴,BEF BAK ∴∠=∠,CBD BAK ∴∠=∠,90CDB AKB ∠=∠=︒,CBD BAK ∴∆∆∽, ∴CD BD BK AK =, ∴45324k k -=, 511k ∴=,15(11C ,20)11.。
2019-2020学年浙江省温州市九年级(上)期末数学试卷 (解析版)
2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)已知O 的半径为5cm ,点P 在O 上,则OP 的长为( )A .4cmB .5cmC .8cmD .10cm 2.(3分)若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .35- 3.(3分)将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为( )A .21y x =-B .23y x =-C .2(1)2y x =+-D .2(1)2y x =--4.(3分)如图,在56⨯的方格纸中,画有格点EFG ∆,下列选项中的格点,与E ,G 两点构成的三角形中和EFG ∆相似的是( )A .点AB .点BC .点CD .点D5.(3分)某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )A .0.1B .0.2C .0.3D .0.66.(3分)如图,ACB ∠是O 的圆周角,若O 的半径为10,45ACB ∠=︒,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π7.(3分)已知点(3,)A a -,(2,)B b -,(1,)C c 均在抛物线23(2)y x k =++上,则a ,b ,c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .b c a <<8.(3分)如图,AD 是O 的直径,以A 为圆心,弦AB 为半径画弧交O 于点C ,连结BC交AD 于点E ,若3DE =,8BC =,则O 的半径长为( )A .256B .5C .163D .2539.(3分)有一等腰三角形纸片ABC ,AB AC =,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁10.(3分)如图,抛物线2()5y x m =-++交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( )A .52B .114C .3D .134二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)抛物线29y x =-与y 轴的交点坐标为 .12.(3分)如图,是用卡钳测量容器内径的示意图.量得卡钳上A ,D 两端点的距离为4cm ,25AO DO OC OB ==,则容器的内径BC 的长为 cm .13.(3分)如图,已知AB 是半圆O 的直径,20BAC ∠=︒,D 是弧AC 上任意一点,则D ∠的度数是 .14.(3分)如图,ABC ∆绕点A 逆时针旋转得到△AB C '',点C 在AB '上,点C 的对应点C '在BC 的延长线上,若80BAC '∠=︒,则B ∠= 度.15.(3分)如图,正五边形ABCDE 内接于O ,若O 的半径为10,则AB 的长为 .16.(3分)如图,在ABC ∆中,90ABC ∠=︒,6AB =,4BC =,P 是ABC ∆的重心,连结BP ,CP ,则BPC ∆的面积为 .17.(3分)已知二次函数243y x x =-+,当5a x a +时,函数y 的最小值为1-,则a 的取值范围是18.(3分)如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是BD 的中点,连结AC 交BD 于点E ,连结AD ,若4BE DE =,6CE =,则AB 的长为 .三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.20.(6分)我们把端点都在格点上的线段叫做格点线段.如图,在77⨯的方格纸中,有一格点线段AB ,按要求画图.(1)在图1中画一条格点线段CD 将AB 平分.(2)在图2中画一条格点线段EF .将AB 分为1:3.21.(6分)如图,在平面直角坐标系中,抛物线2122y x x a =-++交x 轴于点A ,B ,交y 轴于点C ,点A 的横坐标为2-.(1)求抛物线的对称轴和函数表达式.(2)连结BC 线段,BC 上有一点D ,过点D 作x 轴的平行线交抛物线于点E ,F ,若6EF =,求点D 的坐标.22.(8分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD∠,AE AB=.(1)求证:AC AD=.(2)当32AEEB=,6AD=时,求CD的长.23.(8分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利1y元,乙店每件衬衫降价b元时,一天可盈利2y元.(1)当5a=时,求1y的值.(2)求2y关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?24.(12分)如图,在矩形ABCD中,6AB=,8BC=,点E,F分别在边BC,AB上,2AF BE==,连结DE,DF.动点M在EF上从点E向终点F匀速运动,同时,动点N 在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN x=,求y关于x的函数表达式,并写出自变量x的取值范围.=,EM y(3)连结MN,当MN与DEF∆的一边平行时,求CN的长.参考答案一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)已知O 的半径为5cm ,点P 在O 上,则OP 的长为( )A .4cmB .5cmC .8cmD .10cm 解:点P 在O 上,5OP r cm ∴==, 故选:B .2.(3分)若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .35- 解:52x y =, ∴531122x y x y y -=-=-=. 故选:C .3.(3分)将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为( )A .21y x =-B .23y x =-C .2(1)2y x =+-D .2(1)2y x =-- 解:将抛物线22y x =-向上平移1个单位后所得新抛物线的表达式为221y x =-+,即21y x =-.故选:A .4.(3分)如图,在56⨯的方格纸中,画有格点EFG ∆,下列选项中的格点,与E ,G 两点构成的三角形中和EFG ∆相似的是( )A .点AB .点BC .点CD .点D解:观察图形可得EFG ∆中,直角边的比为12FG EF =, 观各选项,51225EG DG ==,只有D 选项三角形符合,与所给图形的三角形相似. 故选:D .5.(3分)某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )A .0.1B .0.2C .0.3D .0.6解:共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.1∴张抽奖券中奖的概率是1020300.6100++=, 故选:D .6.(3分)如图,ACB ∠是O 的圆周角,若O 的半径为10,45ACB ∠=︒,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π解:45ACB ∠=︒,90AOB ∴∠=︒, 半径为10,∴扇形AOB 的面积为:2901025360ππ⨯=, 故选:D .7.(3分)已知点(3,)A a -,(2,)B b -,(1,)C c 均在抛物线23(2)y x k =++上,则a ,b ,c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .b c a << 解:函数的对称轴为:2x =-,30a =>,故开口向上,1x =比3x =-离对称轴远,故c 最大,b 为函数最小值,故选:C .8.(3分)如图,AD 是O 的直径,以A 为圆心,弦AB 为半径画弧交O 于点C ,连结BC 交AD 于点E ,若3DE =,8BC =,则O 的半径长为( )A .256B .5C .163D .253 解:由作法得AC AB =,∴AB AC =,ADB ABE ∴∠=∠,AB 为直径,AD BC ∴⊥,142BE CE BC ∴===,90BEA BED ∠=∠=︒, 而BDE ABE ∠=∠,Rt ABE Rt BDE ∴∆∆∽,::BE DE AE BE ∴=,即4:3:4AE =,163AE ∴=, 1625333AD AE DE ∴=+=+=, O ∴的半径长为256. 故选:A .9.(3分)有一等腰三角形纸片ABC ,AB AC =,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁 解:AD BC ⊥,AB AC =,527BD CD ∴==+=,213AD =+=, 1217322ABD ACD S S ∆∆∴==⨯⨯=//EF AD , EBF ABD ∴∆∆∽,∴2525()749ABD S S ∆==甲, 7514S ∴=甲, 2175362147S ∴=-=乙, 同理224()39ACD S S ∆==丙, 429S ∴=丙, 2142952918S ∴=-=丁, 95751814>, ∴面积最大的是丁,故选:D .10.(3分)如图,抛物线2()5y x m =-++交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为()A.52B.114C.3D.134解:将抛物线2()5y x m=-++向右平移3个单位后得到2(3)5y x m=-+-+,根据题意得:22()5(3)5y x my x m⎧=-++⎨=-+-+⎩,解得:32114x my⎧=-⎪⎪⎨⎪=⎪⎩,∴交点C的坐标为3(2m-,11)4,故选:B.二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)抛物线29y x=-与y轴的交点坐标为(0,9)-.解:令0x=,299y x=-=-,故答案为:(0,9)-12.(3分)如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,25AO DOOC OB==,则容器的内径BC的长为10cm.解:如图,连接AD,BC,25AO DO OC OB ==,AOD BOC ∠=∠, AOD BOC ∴∆∆∽,∴25AD AO BC CO ==, 又4AD cm =,5102BC AD cm ∴==. 故答案是:10cm .13.(3分)如图,已知AB 是半圆O 的直径,20BAC ∠=︒,D 是弧AC 上任意一点,则D ∠的度数是 110︒ .解:AB 是半圆O 的直径90ACB ∴∠=︒902070ABC ∴∠=︒-︒=︒18070110D ∴∠=︒-︒=︒故答案是:110︒.14.(3分)如图,ABC ∆绕点A 逆时针旋转得到△AB C '',点C 在AB '上,点C 的对应点C '在BC 的延长线上,若80BAC '∠=︒,则B ∠= 30 度.解:ABC ∆绕点A 逆时针旋转得到△AB C '',C AB CAB ∴∠''=∠,AC AC '=,80BAC '∠=︒,1402C AB CAB C AB ∴∠''=∠=∠'=︒, 70ACC ∴∠'=︒,30B ACC CAB ∴∠=∠'-∠=︒,故答案为:30.15.(3分)如图,正五边形ABCDE 内接于O ,若O 的半径为10,则AB 的长为 4π .解:如图所示:连接OA 、OB .O 为正五边形ABCDE 的外接圆,O 的半径为5,360725AOB ︒∴∠==︒, ∴AB 的长为:72104180ππ⨯=. 故答案为4π.16.(3分)如图,在ABC ∆中,90ABC ∠=︒,6AB =,4BC =,P 是ABC ∆的重心,连结BP ,CP ,则BPC ∆的面积为 4 .解:ABC ∆的面积11641222S AB BC =⨯=⨯⨯=, 延长BP 交AC 于点E ,则E 是AC 的中点,且23BP BE =(证明见备注),BEC ∆的面积162S ==,23BP BE =, 则BPC ∆的面积23BEC =∆的面积4=, 故答案为4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:ABC ∆,E 、F 是AB ,AC 的中点.EC 、FB 交于G .求证:12EG CG = 证明:过E 作//EH BF 交AC 于H . AE BE =,//EH BF ,12AH HF AF ∴==, 又AF CF =,12HF CF ∴=, 1:2HF CF ∴=, //EH BF ,1::2EG CG HF CF ∴==, 12EG CG ∴=. 17.(3分)已知二次函数243y x x =-+,当5a x a +时,函数y 的最小值为1-,则a 的取值范围是 32a -解:二次函数2243(2)1y x x x =-+=--,∴对称轴为直线2x =,当25a a <<+时,则在5a x a +范围内,2x =时有最小值1-,当2a 时,则在5a x a +范围内,x a =时有最小值1-,2431a a ∴-+=-,解得2a =,当52a +时,则在5a x a +范围内,5x a =+时有最小值1-,2(5)4(5)31a a ∴+-++=-,解得3a =-,a ∴的取值范围是32a -,故答案为32a -.18.(3分)如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是BD 的中点,连结AC 交BD 于点E ,连结AD ,若4BE DE =,6CE =,则AB 的长为 410 .解:如图,连接OC 交BD 于K .CD BC =,OC BD ∴⊥,4BE DE =,∴可以假设DE k =.4BE k =,则 2.5DK BK k ==, 1.5EK k =,AB 是直径,90ADK DKC ACB ∴∠=∠=∠=︒,//AD CK ∴,::AE EC DE EK ∴=,:6:1.5AE k k ∴=,4AE ∴=,ECK EBC ∆∆∽,2EC EK EB∴=,36 1.54k k∴=⨯,k>,6k∴=,229636215BC BE EC∴=-=-=,222210(215)410AB AC BC∴=+=+=.故答案为410.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,()5 9P∴=颜色相同,答:获胜的概率为59.20.(6分)我们把端点都在格点上的线段叫做格点线段.如图,在77⨯的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:3.解:(1)如图,线段CD 即为所求.(2)如图,线段EF 即为所求,注意有两种情形.21.(6分)如图,在平面直角坐标系中,抛物线2122y x x a =-++交x 轴于点A ,B ,交y 轴于点C ,点A 的横坐标为2-.(1)求抛物线的对称轴和函数表达式.(2)连结BC 线段,BC 上有一点D ,过点D 作x 轴的平行线交抛物线于点E ,F ,若6EF =,求点D 的坐标.解:(1)A 点的横坐标为2-,(2,0)A ∴-,点A 在抛物线2122y x x a =-++上, 240a ∴--+=,解得:6a =,∴函数的解析式为:21262y x x =-++, ∴对称轴为22122()2b x a =-=-=⨯-;(2)(2,0)A -,对称轴为2x =,∴点B 的坐标为(6,0),∴直线BC 的解析式为6y x =-+,点D 在BC 上,∴设点D 的坐标为(,6)m m -+,∴点E 和点F 的纵坐标为6m -+,212662y x x m ∴=-++=-+,解得:2x =±2(2EF ∴=--=6EF =,6∴=,解得: 2.5m =,∴点D 的坐标为(2.5,3.5).22.(8分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD∠,AE AB=.(1)求证:AC AD=.(2)当32AEEB=,6AD=时,求CD的长.【解答】(1)证明:BA平分EBD∠,ABE ABD∴∠=∠,ABE ADC∠=∠,ABD ACD∠=∠,ACD ADC∴∠=∠,AC AD∴=;(2)解:AE AB=,E ABE∴∠=∠,E ABE ACD ADC∴∠=∠=∠=∠,ABE ACD∴∆∆∽,∴32AE ADBE CD==,226433CD AD∴==⨯=.23.(8分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a 元时,一天可盈利1y 元,乙店每件衬衫降价b 元时,一天可盈利2y 元.(1)当5a =时,求1y 的值.(2)求2y 关于b 的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?解:(1)由题意可得,1(40)(202)y a a =-+,当5a =时,1(405)(2025)1050y =-⨯+⨯=,即当5a =时,1y 的值是1050;(2)由题意可得,22(30)(322)228960y b b b b =-+=-++,即2y 关于b 的函数表达式为22228960y b b =-++;(3)设两家下降的价格都为x 元,两家的盈利和为w 元,222(40)(202)(228960)48817604(11)2244w x x x x x x x =-++-++=-++=--+, ∴当11x =时,w 取得最大值,此时2244w =,答:每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.24.(12分)如图,在矩形ABCD 中,6AB =,8BC =,点E ,F 分别在边BC ,AB 上,2AF BE ==,连结DE ,DF .动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF 的长.(2)设CN x =,EM y =,求y 关于x 的函数表达式,并写出自变量x 的取值范围.(3)连结MN ,当MN 与DEF ∆的一边平行时,求CN 的长.解:(1)四边形ABCD是矩形,90B∴∠=︒,6AB CD==,8AD BC==,2AF BE==,624BF∴=-=,22224225EF BF BE∴=+=+=.(2)由题意:12EF EM CD CN=,∴56yx=5(012)6y x x∴=.(3)如图31-中,延长FE交DC的延长线于H.EFB EHC∆∆∽,∴EF BE BF EH EC CH ==, ∴25246EH CH ==, 65EH ∴=,12CH =, 当//MN DF 时,HM HN HF BD =, ∴65121885yx ++=, 56y x =, 解得125x =,这种情形不存在.如图32-中,当//MN DE 时,EH DH EM DN=,∴65186x =-, 5y x =, 解得12x =,综上所述,满足条件的CN 的值为125或12.。
浙江省温州市九年级(上)期末数学试卷
第 2 页,共 19 页
A. 点 C
B. 点 D
C. 点 E
二、填空题(本大题共 8 小题,共 24.0 分)
D. 点 F
11.
已知������
������
=
4,则������−������=______.
3
������
12. 将抛物线 y=x2+2 向上平移 1 个单位后所得新抛物线的表达式为______.
18. 如图,四边形 ABDC 内接于半圆 O,AB 为直径,AD 平分∠CAB,AB-AC=4,AD=3 7,作 DE⊥AB 于点 E, 则 BE 的长为______,AC 的长为______.
三、解答题(本大题共 6 小题,共 46.0 分) 19. 有 4 张卡片,正面分别写上 1,2,3,4,它们的背面都相同.现将它们背面朝上,
D. ������ < ������ < ������
8. 如图,圆上有两点 A,B,连接 AB,分别以 A,B 为 圆心,AB 的长为半径画弧,两弧相交于点 C,D,CD 交 AB 于点 E,交������������于点 F.若 EF=1,AB=6,则该 圆的半径长是( )A. 4来自B. 5C. 6
先从中任意摸出一张,卡片不放回,再任意摸出一张. (1)请用树状图或列表法表示出所有可能的结果. (2)求摸出的两张卡片上的数之和大于 5 的概率.
20. 如图,△ABC 内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹). (1)在图 1 中画出一个圆心角,所作角的度数是∠ACB 的 2 倍. (2)在图 2 中画出一个圆周角,所作角的度数是∠ACB 的 2 倍.
23. 小张准备给长方形客厅铺设瓷砖,已知客厅长 AB=8m,宽 BC=6m,现将其划分成 一个长方形 EFGH 区域 I 和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺 设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知 N 是 GH 中 点,点 M 在边 HE 上,HN=3HM,设 HM=x(m). (1)用含 x 的代数式表示以下数量. 铺设甲瓷砖的面积为______m2. 铺设丙瓷砖的面积为______m2. (2)若甲、乙、丙瓷砖单价分别为 300 元/m2,200 元/m2,100 元/m2,且 EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?
2019-2020学年浙教版九年级上期末考试数学试卷及答案解析
2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。
2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)-最新推荐
【期末专题复习】浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 102.△ABC∽△A′B′C′,且∠A=6 °,则∠A′=().A. 22°B . ° C.6 ° D.0°3.如图,将△ABC绕点C顺时针方向旋转 0°,得△A′B′C,若AC⊥A′B′,则∠A等于()A. 0°B . 60° C.70° D.0°4.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. 2B.2C. 2D.5.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3 C. 3<t≤ D. -5<t≤BC,则=()6.如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,且CE=2A. B.C. 2D.27.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A. 4:25B. 4:9C. 9:25D. 2:39.一条排水管的截面如图.已知排水管的截面圆半径OB=10,水面宽AB是16,则截面水深CD是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是()A. y的最小值大于-1B. 当x=0时,y的值大于0C. 当x=2时,y的值等于-1 D. 当x>3时,y 的值大于0二、填空题(共10题;共33分)11.若抛物线22的开口向上,则的取值范围是________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为1,2,3,其中标号为1的小球有,则m 3个,标号为2的小球2个,标号为3的小球有m个,若随机摸出一个小球,其标号为偶数的概率为6的值为________.14.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是________,半径是________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .16.如图,是半圆的直径,是一条弦,是的中点,于点且交于点,交于点.若,则 ________.17.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.18.(20 7•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB 在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于________.19.如图,在扇形AOB中,∠AOB= 00,以点A为圆心, OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.20.如图,在Rt△ABC中,∠BAC= 0°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转 0°,将△CEF绕点E逆时针旋转 0°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共9题;共57分)21.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1), B(-3,1),C (-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转 0°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?23.已知函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?24.某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.(1)根据题意,完成下表:25.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离 2 ,颖颖与楼之间的距离 0 (,,在一条直线上),颖颖的身高 6 ,亮亮蹲地观测时眼睛到地面的距离0.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=2.[MISSING IMAGE: , ](1)求AE的长;(2)求ΔCEF的周长和面积.27.某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)求所获利润y (元)与售价x(元)之间的函数关系式;(2)为获利最大,商店应将价格定为多少元?(3)为了让利顾客,且获利最大,商店应将价格定为多少元?28.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D二、填空题11.【答案】a>212.【答案】513.【答案】714.【答案】(5,2);215.【答案】x=116.【答案】17.【答案】218.【答案】3﹣﹣619.【答案】π20.【答案】≤l<13三、解答题21.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .22.【答案】解:画树状图如下:由树状图知,P(一黑一白)22,P(颜色相同)2,∵ 2∴不公平23.【答案】解:(1)函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数,得2220,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.24.【答案】解:(1)20200 0 0 0 00200 0= 0 2 00 20当 0020时,售价为:50-5=45(元)0 2 00200022 0,答:T恤的销售单价定为45元时该批发商可获得最大利润,最大利润为2250元.25.【答案】过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM= 0°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:60 22 0,解得MF=20m.∴MN=MF+FN=20+0. =20. m.∴住宅楼的高度为20.8m.26.【答案】27.【答案】解:(1)当x>120时,y1=﹣10x2+2500x﹣150000;当100<x<120时,y2=﹣30x2+6900x﹣390000;(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;6750>6250,所以当售价定为115元获得最大为6750元;(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);当降价x=5(元)时,所获利润y2的最大值=6750(元).∴为获利最大,应降价5元,即将价格定为115元.28.【答案】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴ ①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB= . m≈6.0m.答:路灯杆AB的高度约为6.0m.29.【答案】(1)解:由题意可知:0 0解得:2∴抛物线的解析式为:y=﹣x2﹣2x+3 (2)解:∵△PBC的周长为:PB+PC+BC ∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC= 2,BC= 0∴△PBC的周长最小是:2 0.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)。
浙教版2019—2020学年度九年级上学期期末数学试卷及答案
浙教版2019—2020学年度九年级上学期期末数学试卷及答案一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:254.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm26.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( ) A.B.C.D.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为__________.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=__________度.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为__________.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为__________.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是__________.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是__________.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.24.如图1;在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合;分别连接ED;EC;可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似;我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似;我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中;∠A=∠B=∠DEC=50°;证明点E是四边形ABCD的AB边上的相似点.(2)①如图2;画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限;不写画法;保留画图痕迹或有必要的说明)②对于任意的一个矩形;是否一定存在强相似点?如果一定存在;请说明理由;如果不一定存在;请举出反例.(3)如图3;在四边形ABCD中;AD∥BC;AD<BC;∠B=90°;点E是四边形ABCD的AB边上的一个强相似点;判断AE与BE的数量关系并说明理由.25.某蔬菜经销商到蔬菜种植基地采购一种蔬菜;经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时;直接写y与x之间的函数关系式:__________.(2)蔬菜的种植成本为2元/千克;某经销商一次性采购蔬菜的采购量不超过200千克;当采购量是多少时;蔬菜种植基地获利最大;最大利润是多少元?(3)在(2)的条件下;求经销商一次性采购的蔬菜是多少千克时;蔬菜种植基地能获得418元的利润?26.在平面直角坐标系xOy中;一块含60°角的三角板作如图摆放;斜边AB在x轴上;直角顶点C在y轴正半轴上;已知点A(﹣1;0).(1)请直接写出点B、C的坐标:B__________、C__________;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°;∠DEF=60°);把顶点E放在线段AB上(点E是不与A、B两点重合的动点);并使ED所在直线经过点C.此时;EF所在直线与(1)中的抛物线交于点M.①设AE=x;当x为何值时;△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在;请写出点P的坐标;若不存在;请说明理由.一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.考点:比例的性质.分析:根据比例设x=6k;y=5k;然后分别代入对各选项进行计算即可判断.解答:解:∵x:y=6:5;∴设x=6k;y=5k;A、==;故本选项错误;B、==;故本选项错误;C、==6;故本选项错误;D、==﹣5;故本选项正确.故选D.点评:本题考查了比例的性质;利用“设k”法表示出x、y可以使计算更加简便.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个考点:抛物线与x轴的交点.分析:先计算根的判别式的值;然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.解答:解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0;∴二次函数y=x2﹣2x﹣2与x轴有2个交点;与y轴有一个交点.∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.故选D.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a;b;c是常数;a≠0)与x轴的交点坐标;令y=0;即ax2+bx+c=0;解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a;b;c是常数;a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△= b2﹣4ac>0时;抛物线与x轴有2个交点;△=b2﹣4ac=0时;抛物线与x轴有1个交点;△=b2﹣4ac<0时;抛物线与x轴没有交点.3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形性质得出DC=AB;DC∥AB;求出DE:AB=2:5;推出△DEF∽△BAF;求出=()2=;==;根据等高的三角形的面积之比等于对应边之比求出===;即可得出答案.解答:解:∵四边形ABCD是平行四边形;∴DC=AB;DC∥AB;∵DE:CE=2:3;∴DE:AB=2:5;∵DC∥AB;∴△DEF∽△BAF;∴=()2=;==;∴===(等高的三角形的面积之比等于对应边之比);∴S△DEF:S△ADF:S△ABF等于4:10:25;故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用;注意:相似三角形的面积之比等于相似比的平方.4.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况;看卡片上的数字之和为奇数的情况数占总情况数的多少即可.解答:解:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由列表可知:共有3×4=12种可能;卡片上的数字之和为奇数的有8种.所以卡片上的数字之和为奇数的概率是.故选C.点评:本题考查求随机事件概率的方法.注意:任意取两张;相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm2考点:扇形面积的计算.专题:压轴题.分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.解答:解:大扇形的圆心角是90度;半径是5;所以面积==m2;小扇形的圆心角是180°﹣120°=60°;半径是1m;则面积==(m2);则小羊A在草地上的最大活动区域面积=+=(m2).故选D.点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的;然后分别计算即可.6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程;再令x=0求出y的值;进而可得出结论.解答:解:∵二次函数y=ax2﹣2x﹣3(a<0)的对称轴为直线x=﹣=﹣=<0;∴其顶点坐标在第二或三象限;∵当x=0时;y=﹣3;∴抛物线一定经过第四象限;∴此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质;熟知二次函数的对称轴方程是解答此题的关键.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项.解答:解:A、不在同一直线上的三点确定一个圆;故错误;B、圆内接等边三角形有无数个;故错误;C、一个三角形有且只有一个外接圆;正确;D、并不是所有的四边形一定有外接圆;故错误;故选C.点评:本题考查了命题与定理的知识;解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识;难度不大.8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号;由抛物线与y轴的交点得出c的值;然后根据图象经过的点的情况进行推理;进而对所得结论进行判断.解答:解:抛物线的开口向上;则a>0;对称轴为x=﹣=1;即b=﹣2a;故b<0;故(2)错误;抛物线交y轴于负半轴;则c<0;故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0;故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0;则(a+b+c)(a﹣b+c)>0;故(4)错误;不正确的是(2)(3)(4);故选C.点评:本题考查二次函数图象与二次函数系数之间的关系;二次函数与方程之间的转换;根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子;如:y=a+b+c;y=4a+2b+c;然后根据图象判断其值.9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是xcm;根据题意可得这两个图形相似;根据相似图形的面积比等于相似比的平方;可列方程=()2;解此方程即可求得答案;注意统一单位.解答:解:设这块草坪在设计图纸上的长度是xcm;4000m2=40000000m2;40m=4000cm;根据题意得:=()2;解得:x=10;即这块草坪在设计图纸上的长度是10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大;注意相似图形的面积比等于相似比的平方的应用与方程思想的应用.10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答:解:∵抛物线y=﹣(x﹣2)2+1的顶点坐标为(2;1);抛物线y=﹣(x+1)2﹣2的顶点坐标为(﹣1;﹣2);∴顶点由(2;1)到(﹣1;﹣2)需要向左平移3个单位再向下平移3个单位.故选A.点评:本题考查了二次函数图象与几何变换;此类题目;利用顶点的变化确定抛物线解析式更简便.11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:认真读图;在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.解答:解:由图可得tan∠AOB=.故选B.点评:本题考查了锐角三角函数的概念:在直角三角形中;正切等于对边比邻边.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( )A.B.C.D.考点:动点问题的函数图象.专题:几何图形问题;压轴题.分析:此题可分为两段求解;即C从D点运动到E点和A从D点运动到E点;列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x;△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时;即0≤x≤2时;y==.当A从D点运动到E点时;即2<x≤4时;y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.点评:本题考查的动点变化过程中面积的变化关系;重点是列出函数关系式;但需注意自变量的取值范围.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为60°.考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1:5的两部分;根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.解答:解:∵弦AB把圆周分成1:5的两部分;∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中;如果两个圆心角、两条弧、两条弦中有一组量相等;那么它们所对应的其余各组量都分别相等.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.根据垂径定理可得OD=OE;AD=CD;根据三角形中位线定理可得OD=BC;再根据等边三角形的判定和性质;以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.∴OD=OE;AD=CD;∵AB是直径;∴∠ACB=90°;OD=BC;又∵OC=OB;∴△OBC是等边三角形;∴∠BOC=60°;∴∠AOC=180°﹣60°=120°;即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题);垂径定理;三角形中位线定理;等边三角形的判定和性质;以及邻补角的定义;综合性较强;难度中等.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为3+.考点:二次函数综合题.分析:连接AC;BC;有抛物线的解析式可求出A;B;C的坐标;进而求出AO;BO;DO的长;在直角三角形ACB中;利用射影定理可求出CO的长;进而可求出CD的长.解答:解:连接AC;BC;∵抛物线的解析式为y=x2﹣2x﹣3;∴点D的坐标为(0;﹣3);∴OD的长为3;设y=0;则0=x2﹣2x﹣3;解得:x=﹣1或3;∴A(﹣1;0);B(3;0)∴AO=1;BO=3;∵AB为半圆的直径;∴∠ACB=90°;∵CO⊥AB;∴CO2=AO•BO=3;∴CO=;∴CD=CO+OD=3+;故答案为:3+.点评:本题是二次函数综合题型;主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理;读懂题目信息;理解“果圆”的定义是解题的关键.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为7.考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来;利用对应边的比相等;即可推出x的值答题解答:解:如图∵在Rt△ABC中∠C=90°;放置边长分别3;4;x的三个正方形;∴△CEF∽△OME∽△PFN;∴OE:PN=OM:PF;∵EF=x;MO=3;PN=4;∴OE=x﹣3;PF=x﹣4;∴(x﹣3):4=3:(x﹣4);∴(x﹣3)(x﹣4)=12;∴x1=0(不符合题意;舍去);x2=7.故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质;解题的关键在于找到相似三角形;用x的表达式表示出对应边.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是y=.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出∠AED=120°;得出∠EAD+∠EDC=60°;由等边三角形的性质得出∠BEC=∠EBC =∠ECB=60°;BE=CE=BC=;得出∠ABE=∠ECD=120°;证出∠AEB=∠EDC;证明△ABE∽△ECD;得出对应边成比例;即可得出结果.解答:解:连接AE、DE;如图所示:∵∠AOD=120°;∴360°﹣120°=240°;∴∠AED=×240°=120°;∴∠EAD+∠EDC=60°;∵△BCE是等边三角形;∴∠BEC=∠EBC=∠ECB=60°;BE=CE=BC=;∴∠ABE=∠ECD=120°;∠EAD+∠AEB=60°;∴∠AEB=∠EDC;∴△ABE∽△ECD;∴;即;∴y=.故答案为:y=.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握圆周角定理和等边三角形的性质;并能进行推理论证与计算是解决问题的关键.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是①②③.考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出∠ABG=∠BCD;然后利用“角边角”证明△ABC和△BCD全等;根据全等三角形对应边相等可得AG=BD;然后求出AG=BC;再求出△AFG和△CFB相似;根据相似三角形对应边成比例可得=;从而判断出①正确;由AG=BC;所以FG=FB;故②正确;根据相似三角形对应边成比例求出=;再根据等腰直角三角形的性质可得AC=AB;然后整理即可得到AF=AB;判断出③正确;过点F作MF⊥AB于M;根据三角形的面积整理即可判断出④错误.解答:解:∵∠ABC=90°;BG⊥CD;∴∠ABG+∠CBG=90°;∠BCD+∠CBG=90°;∴∠ABG=∠BCD;在△ABC和△BCD中;;∴△ABG≌△BCD(ASA);∴AG=BD;∵点D是AB的中点;∴BD=AB;∴AG=BC;在Rt△ABC中;∠ABC=90°;∴AB⊥BC;∵AG⊥AB;∴AG∥BC;∴△AFG∽△CFB;∴;∵BA=BC;∴;故①正确;∵△AFG∽△CFB;∴;∴FG=FB;故②正确;∵△AFG∽△CFB;∴;∴AF=AC;∵AC=AB;∴AF=AB;故③正确;过点F作MF⊥AB于M;则FM∥CB;∴;∵;∴====;故④错误.故答案为:①②③.点评:本题考查了相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形的性质;熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幂、特殊角的三角函数值等运算;然后合并.解答:解:原式=6﹣1﹣1+2=6.点评:本题考查了二次根式的混合运算;涉及了二次根式的乘法、零指数幂、特殊角的三角函数值等知识;属于基础题.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.考点:相似三角形的判定与性质;等边三角形的性质.分析:(1)由∠ADE=60°;可证得△ABD∽△DCE;(2)可用等边三角形的边长表示出DC的长;进而根据相似三角形的对应边成比例;求得△ABC的边长.解答:(1)证明:∵△ABC是等边三角形;∴∠B=∠C=60°;∴∠BAD+∠ADB=120°∵∠ADE=60°;∴∠ADB+∠EDC=120°;∴∠DAB=∠EDC;又∵∠B=∠C=60°;∴△ABD∽△DCE;(2)解:∵△ABD∽△DCE;∴;∵BD=3;CE=2;∴;解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质;能够证得△ABD∽△DCE是解答此题的关键.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中;知道已知角和其邻边;只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E;则有AE⊥CD;四边形ABDE是矩形;AE=BD=39米.∵∠CAE=45°;∴△AEC是等腰直角三角形;∴CE=AE=39米.在Rt△AED中;tan∠EAD=;∴ED=39×tan30°=13米;∴CD=CE+ED=(39+13)米.答:楼CD的高是(39+13)米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题;涉及到特殊角的三角函数值及等腰三角形的判定;熟知以上知识是解答此题的关键.22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意;用列表法列举出所有情况;看所求的情况与总情况的比值即可得答案.解答:解:画树状图如下:所有可能出现的结果共有9种;其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=.点评:考查了列表法与树状图法求概率的知识;树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出∠BOE=60°;进而得出∠COE=∠BOE=60°;再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO、CO;∵BC垂直平分OD;∴直角△OEB中.cos∠BOE==;∠BOE=60°;由垂径定理得∠COE=∠BOE=60°;由于AD为直径;∴∠AOB=∠AOC=120°;∴AB=BC=CA;。
九年级上册温州数学期末试卷测试卷(解析版)
九年级上册温州数学期末试卷测试卷(解析版)一、选择题1.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定2.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°3.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤4.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .235.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .12 7.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .2 8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 9.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 10.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .111.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1212.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题13.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.14.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.15.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.16.正方形ABCD的边长为4,圆C半径为1,E为圆C上一点,连接DE,将DE绕D顺时针旋转90°到DE’,F在CD上,且CF=3,连接FE’,当点E在圆C上运动,FE’长的最大值为____.17.若53x yx+=,则yx=______.18.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.20.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.21.已知⊙O半径为4,点,A B在⊙O上,21390,sin13BAC B∠=∠=,则线段OC的最大值为_____.22.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.23.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.24.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题25.解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=026.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).27.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣12x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD 5MA的最小值.28.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.29.解方程 (1)(x +1)2﹣25=0 (2)x 2﹣4x ﹣2=030.解方程:3x 2﹣4x +1=0.(用配方法解)31.如图,在平面直角坐标系中,⊙O 的半径为1,点A 在x 轴的正半轴上,B 为⊙O 上一点,过点A 、B 的直线与y 轴交于点C ,且OA 2=AB •AC .(1)求证:直线AB 是⊙O 的切线;(2)若AB 3AB 对应的函数表达式.32.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交t t>秒.抛物线于点D,交线段AB于点E.设运动时间为(0)①当t为何值时,线段DE长度最大,最大值是多少?(如图1)⊥,垂足为F,连结BD,若BOC与BDF相似,求t的值(如②过点D作DF AB图2)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.A解析:A 【解析】 【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】∵抛物线开口向下,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等, 故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确; 如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c >0, 当x=0时,y=c <-1 ∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.4.D解析:D 【解析】 【分析】根据概率公式直接计算即可.解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.5.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.C解析:C 【解析】 【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论. 【详解】解:连接OB ,OC , ∵∠BAC =30°, ∴∠BOC =60°. ∵OB =OC ,BC =8, ∴△OBC 是等边三角形, ∴OB =BC =8. 故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.7.C解析:C 【解析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 8.C解析:C 【解析】 【分析】根据因式分解法,可得答案. 【详解】 解:2x x =, 方程整理,得,x 2-x=0 因式分解得,x (x-1)=0, 于是,得,x=0或x-1=0, 解得x 1=0,x 2=1, 故选:C . 【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.10.A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题13.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.15.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.16.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=22+=17,41∴FE’=171+,+故答案是:171【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:. 【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.20.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2 解析:272-【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°, ∴FD=12MD=1, ∴FM=DM×cos30°=3,∴2227MC FM CF =+=,∴A′C=MC ﹣MA′=272-.故答案为272-.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.21.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵13sin13B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90 EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC ACBE AB==,∴23OC BE=,在△OEB中,根据三角形三边关系可得:BE OE OB≤+,∵222264213OE AE AO=+=+=,∴2134OE OB+=,∴BE 的最大值为:2134+,∴OC 的最大值为:()24138213433+=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到解析:1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到O (此时和O 不重合).若△BEF 是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E 与点O 重合,即t=1; 当∠BEF=90°时,则BE=BF=34,此时点E 走过的路程是214或274,则运动时间是74s 或94s . 故答案是t=1或74或94. 考点:圆周角定理.23.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m+1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.24.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)
2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A. B. C. D.2.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为3.如图,⊙O 中,弦AB、CD 相交于点P,∠A=40°,∠APD=75°,则∠B=()A. 15°B. 40°C. 75°D. 35°4.二次函数y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数1-a+b的值为()A. -3B. -1C. 2D. 55.以下说法正确的是()A. 在同一年出生的400人中至少有两人的生日相同B. 一个游戏的中奖率是1%,买100张奖券,一定会中奖C. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D. 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( )A. -2B. 1C.D. 27.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 88.如图,半径为1的圆中,圆心角为120°的扇形面积为()A. B. C. π D.9.如图,分别是边上的点,,若,则的长是().A. 1B. 2C. 3D. 410.已知过点、和的抛物线的图象大致为A. B. C. D.二、填空题(共6题;共24分)11.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,若OA2﹣AB2=8,则k的值为________.14.如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.15.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________.16.如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.三、解答题(共8题;共66分)17.小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.18.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).19.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;20.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.21.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?(3)商家应把商品的单价定为多少元时,可获得最大利润,并求出此时的利润为多少?22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
{3套试卷汇总}2019年温州市九年级上学期数学期末质量检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点B 、D 、C 是⊙O 上的点,∠BDC=130°,则∠BOC 是( )A .100°B .110°C .120°D .130°【答案】A 【分析】首先在优弧BC 上取点E ,连接BE ,CE ,由点B 、D 、C 是⊙O 上的点,∠BDC=130°,即可求得∠E 的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧BC 上取点E ,连接BE ,CE ,如图所示:∵∠BDC=130°,∴∠E=180°-∠BDC=50°,∴∠BOC=2∠E=100°.故选A .【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.如图.已知O 的半径为3,8OA =,点P 为O 上一动点.以PA 为边作等边PAM ∆,则线段OM 的长的最大值为( )A .9B .11C .12D .14【答案】B 【分析】以OP 为边向下作等边△POH ,连接AH ,根据等边三角形的性质通过“边角边”证明△HPA ≌△OPM ,则AH=OM ,然后根据AH ≤OH+AO 即可得解.【详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【点睛】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.3.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为()A.3 B.6 C.12 D.无法确定【答案】B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.【详解】如图,设⊙O分别与边BC、CA相切于点E、F,连接OE,OF,∵⊙O分别与边AB、BC、CA相切于点D、E、F,∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,∴∠OEC=∠OFC=90°,∵∠C=90°,∴四边形OECF是矩形,∵OE=OF ,∴四边形OECF 是正方形,设EC=FC=r ,∴AC=AF+FC=2+r ,BC=BE+EC=3+r ,AB=AD+BD=2+3=5,在Rt △ABC 中,2AB =2BC +2AC ,∴25=()23r ++()22r +,∴2560r r +-=,即160r r -+=,解得:1r =或6r =-(舍去).∴⊙O 的半径r 为1, ∴()()ABC 113121622S BC AC =⨯=⨯++=. 故选:B【点睛】 本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD =2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC =D .2AC AE= 【答案】D【分析】只要证明AC AB AE AD=,即可解决问题. 【详解】解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D. 2AC AB AE AD==,可得DE//BC ,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24πB.33πC.56πD.42π【答案】D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.6.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【答案】D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm【答案】B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.8.一元二次方程x 2+4x =﹣3用配方法变形正确的是( )A .(x ﹣2)2=1B .(x+2)2=1C .(x ﹣2)2=﹣1D .(x+2)2=﹣1 【答案】B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x 2+4x =﹣3,∴x 2+4x+4=1,∴(x+2)2=1,故选:B .【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.下列一元二次方程中,有两个不相等的实数根的方程是( )A .210x x -+=B .240x +=C .2210x x ++=D .2410x x -+= 【答案】D【分析】根据根的判别式△=b 2-4ac 的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A.∵△=b2-4ac=1-4×1×1=-3<0,∴此方程没有实数根,故本选项错误;B.240x+=变形为24x=-∴此方程有没有实数根,故本选项错误;C.∵△=b2-4ac=22-4×1×1=0,∴此方程有两个相等的实数根,故本选项错误;D.∵△=b2-4ac=42-4×1×1=12,∴此方程有两个不相等的实数根,故本选项正确.故选:D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→AB→B O的路径以每秒1cm 的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.【答案】C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.11.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是10【答案】B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=15(1+2+3+4+5)=3,方差=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.12.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误..的是( )A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE【答案】D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D 错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.二、填空题(本题包括8个小题)13.若点M(-1,y1),N(1,y2),P(72, y3 )都在抛物线y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).【答案】y1<y3<y1【分析】利用图像法即可解决问题.【详解】y=-mx1 +4mx+m1 +1(m>0),对称轴为x = 422m m -=-, 观察二次函数的图象可知:y 1<y 3<y 1.故答案为:y 1<y 3<y 1.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.14.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点C 在第一象限内,且在正方形网格的格点上,若()31P ,是钝角ABC ∆的外心,则C 的坐标为__________.【答案】()4,3或()1,2【解析】由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点即可.【详解】解:由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为()4,3或()1,2.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C 点. 15.如图,将Rt △ABC 绕着顶点A 逆时针旋转使得点C 落在AB 上的C′处,点B 落在B′处,联结BB′,如果AC =4,AB =5,那么BB′=_____.10【分析】根据旋转的性质和勾股定理,在Rt △BC′B′中,求出BC′,B′C′即可解决问题.【详解】解:在Rt △ABC 中,∵AC =4,AB =5,∠C =90°,∴BC 22AB AC -2254-3,∵AC =AC′=4,BC =B′C′=3,∴BC′=AB =AC′=5﹣4=1,∵∠BC′B′=90°,∴BB′22BC BC '''+2213+10, 10.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键. 16.分解因式:4x 3﹣9x =_____.【答案】x (2x+3)(2x ﹣3)【分析】先提取公因式x ,再利用平方差公式分解因式即可.【详解】原式=x (4x 2﹣9)=x (2x+3)(2x ﹣3),故答案为:x (2x+3)(2x ﹣3)【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.已知,点A(-4,y 1),B(12,y 2)在二次函数y =-x 2+2x+c 的图象上,则y 1与y 2的大小关系为________. 【答案】<【分析】由题意可先求二次函数y =-x 2+2x+c 的对称轴为2122b xa ,根据点A 关于x=1的对称点即可判断y 1与y 2的大小关系.【详解】解:二次函数y=-x 2+2x+c 的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<12<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.18.已知23xy=,则x yx y-=+__________.【答案】15-【分析】根据比例的性质,由23xy=得,x=23y,再将其代入所求式子可得出结果.【详解】解:由23xy=得,x=23y,所以213253y yx yx y y y--==-++.故答案为:15-.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.三、解答题(本题包括8个小题)19.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【答案】(1)线段OD的长为1.(2)存在,DE保持不变.DE=.【解析】试题分析:(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD 的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==1,即线段OD的长为1.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.考点:垂径定理;三角形中位线定理.20.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=25,BP=1,求⊙O的半径.【答案】(1)见解析;(2)1【分析】(1)由圆周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,证出CD∥BF,得出AB⊥BF,即可得出结论;(2)设⊙O的半径为r,连接OD.由垂径定理得出PD=PC=12CD=5,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.【详解】解:(1)证明:∵弧AC=弧AC,∴∠ABC=∠ADC,∵∠AFB=∠ABC,∴∠ADC=∠AFB,∴CD∥BF,∵CD⊥AB,∴AB⊥BF,∵AB是圆的直径,∴直线BF是⊙O的切线;(2)解:设⊙O的半径为r,连接OD.如图所示:∵AB⊥BF,CD=25,∴PD=PC=12CD=5,∵BP=1,∴OP=r﹣1在Rt△OPD中,由勾股定理得:r2 =(r﹣1)2+(5)2解得:r=1.即⊙O的半径为1.【点睛】本题考查切线的判定、勾股定理、圆周角定理、垂径定理以及勾股定理和平行线的判定与性质等知识,解题的关键熟练掌握圆周角定理和垂径定理.21.LED 显示屏(LED display )是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个88⨯正三角形网格的示意图,其中每个小正三角形的边长均为l.位于AD 中点处的输入光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径:(2)求光点P 经过的路径总长.【答案】(1)见解析;(2)4π【分析】(1)根据要求画出图形即可;(2)光点P 经过的路径总长为圆的周长,利用圆的周长公式计算即可.【详解】解(1)光点P 经过的路径如图所示,(2)光点P 经过的路径总长224ππ=⨯=【点睛】本题主要考查了旋转变换作图,以及圆的周长公式.根据题意画出图形是解题的关键.22.如图,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且BD=BC ,延长AD 到E ,且有∠EBD=∠CAB .⑴求证:BE是⊙O的切线;⑵若BC=3,AC=5,求圆的直径AD的长.【答案】(1)详见解析;(2)1【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵ OB∥AC, OA=OD,AC=5,.∴ OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2 ,BD=BC3∴r1=3 ,r2=-0.5(舍).∴圆的直径AD 的长是1.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线. 23.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.【答案】(1)2y x 2x 3=-++;(2)6;(3)()1,1P【解析】(1)将M,N 两点代入2y x bx c =-++求出b,c 值,即可确定表达式;(2)令y=0求x 的值,即可确定A 、B 两点的坐标,求线段AB 长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M 关于对称轴的对称点G 的坐标,直线NG 与对称轴的交点即为所求P 点,利用一次函数求出P 点坐标.【详解】解:将点()0,3M ,()2,5N --代入2y x bx c =-++中得, 3425c b c =⎧⎨--+=-⎩ , 解得,23b c =⎧⎨=⎩, ∴y 与x 之间的函数关系式为2y x 2x 3=-++;(2)如图,当y=0时,2230x x -++=,∴x 1=3,x 2= -1,∴A(-1,0),B(3,0),∴AB=4,∴S △ABM =14362⨯⨯= . 即ABM ∆的面积是6.(3)如图,抛物线的对称轴为直线2122bx a , 点()0,3M 关于直线x=1的对称点坐标为G(2,3),∴PM=PG,连MG 交抛物线对称轴于点P ,此时NP+PM=NP+PG 最小,即MNP ∆周长最短.设直线NG 的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,2523m n m n -+=-⎧⎨+=⎩, 解得,21m n =⎧⎨=-⎩, ∴y=2m-1,∴P 点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x ²+bx+c 的图像经过M(0,3),N(-2,-5)两点.24.如图所示,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC 面积相等的概率.【答案】(1)△DFG 或△DHF ;(2)1 2.【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.【详解】(1)、ABC 的面积为:134=62⨯⨯, 只有△DFG 或△DHF 的面积也为6且不与△ABC 全等,∴与△ABC 不全等但面积相等的三角形是:△DFG 或△DHF ;(2)、画树状图如图所示:由树状图可知共有6种等可能结果, 其中与△ABC 面积相等的有3种,即△DHF ,△DGF ,△EGF , 所以所画三角形与△ABC 面积相等的概率P=3162= 答:所画三角形与△ABC 面积相等的概率为12. 【点睛】本题综合考查了三角形的面积和概率.25.如图,Rt ABC △中,90ABC ∠=︒,以AB 为直径作半圆O 交AC 与点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆O 的切线;(2)若30BAC ∠=︒,2DE =,求AD 的长.【答案】(1)见解析;(2)1.【分析】(1)连接OD ,OE ,BD ,证△OBE ≌△ODE (SSS ),得∠ODE=∠ABC=90°;(2)证△DEC 为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD ,OE ,BD ,∵AB 为圆O 的直径,∴∠ADB=∠BDC=90°,在Rt △BDC 中,E 为斜边BC 的中点,∴DE=BE ,在△OBE 和△ODE 中,OB OD OE OE BE DE =⎧⎪=⎨⎪=⎩,∴△OBE ≌△ODE (SSS ),∴∠ODE=∠ABC=90°,则DE 为圆O 的切线;(2)在Rt △ABC 中,∠BAC=30°,∴BC= 12AC , ∵BC=2DE=4,∴AC=8,又∵∠C=10°,DE=CE ,∴△DEC 为等边三角形,即DC=DE=2,则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.26.如图,平面直角坐标系中,一次函数y =﹣x+b 的图象与反比例函数y =﹣4x在第二象限内的图象相交于点A ,与x 轴的负半轴交于点B ,与y 轴的负半轴交于点C .(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.【答案】(1)∠BCO=45°;(2)A(﹣4,1);(3)点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,316)或(4,1).【分析】(1)证明△OBC是等腰直角三角形即可解决问题;(2)如图1中,作MN⊥AB于N.根据一次函数求出交点N的坐标,用b表示点A坐标,再利用待定系数法即可解决问题;(3)分两种情形:①当菱形以AM为边时,②当AM为菱形的对角线时,分别求解即可.【详解】(1)∵一次函数y=﹣x+b的图象交x轴于B,交y轴于C,则B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如图1中,作MN⊥AB于N,∵M(0,4),MN⊥AC,直线AC的解析式为:y=﹣x+b,∴直线MN的解析式为:y=x+4,联立4y xy x b=+⎧⎨=-+⎩,解得:4242bxby-⎧=⎪⎪⎨+⎪=⎪⎩,∴N(42b-,42b+),∵MA=MB,MN⊥AB,∴NA=BN,设A(m,n),则有4 2204 22 mbbn b+-⎧=⎪⎪⎨++⎪=⎪⎩,解得:44mn b=-⎧⎨=+⎩,∴A(﹣4,b+4),∵点A在y=﹣4x上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1);(3)如图2中,由(2)可知A(﹣4,1),M(0,4),∴AM=2234+=5,当菱形以AM为边时,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),当A,Q关于y轴对称时,也满足条件,此时Q(4,1),当AM为菱形的对角线时,设P″(0,b),则有(4﹣b)2=42+(b﹣1)2,∴b=﹣16.∴AQ″=MP″=256,∴Q″(﹣4,316),综上所述,满足条件的点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,316)或(4,1).【点睛】本题主要考查反比例函数与一次函数的综合以及菱形的性质定理,根据题意添加辅助线画出图形,数形结合,式是解题的关键.27.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.【答案】(1)14;(2)P(BC两位同学参加篮球队)16=【分析】(1)根据概率公式Pmn=(n次试验中,事件A出现m次)计算即可(2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B4=恰好选中B参加校篮球队的概率是14.(2)列表格如下:∴P(BC两位同学参加篮球队)21 126 ==【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y ax bx c =++的图象如右图所示,那么一次函数y bx a =-的图象大致是( )A .B .C .D .【答案】D【分析】可先根据二次函数的图象判断a 、b 的符号,再判断一次函数图象与实际是否相符,判断正误.【详解】解:由二次函数图象,得出a >0,02b a->,b <0, A 、由一次函数图象,得a <0,b >0,故A 错误;B 、由一次函数图象,得a >0,b >0,故B 错误;C 、由一次函数图象,得a <0,b <0,故C 错误;D 、由一次函数图象,得a >0,b <0,故D 正确.故选:D .【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.某水库大坝的横断面是梯形,坝内一斜坡的坡度3i = )A .30°B .45°C .60°D .90° 【答案】A【分析】根据坡度可以求得该坡角的正切值,根据正切值即可求得坡角的角度. 【详解】∵坡度为1:3i = ∴333tan α==, ∵3303tan ︒=,且α为锐角, ∴30α=︒.故选:A .【点睛】本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用. 4.化简24·a a 的结果是( )A .8aB .6aC .4aD .2a 【答案】B【解析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】a 2•a 4=a 2+4=a 1.故选:B.5.如图,AB 是O 的直径,1BC =,,C D 是圆周上的点,且30CDB ∠=︒,则图中阴影部分的面积为( )A .362π-B .332π- C .3124π- D .364π- 【答案】D【分析】连接OC ,过点C 作CE ⊥OB 于点E,根据圆周角定理得出260BOC CDB ∠=∠=︒,则有BOC 是等边三角形,然后利用=S BOC BOC S S -阴影扇形求解即可.【详解】连接OC ,过点C 作CE ⊥OB 于点E30CDB ∠=︒260BOC CDB ∴∠=∠=︒OC OB =∴BOC 是等边三角形1OC OB BC ∴===3sin 60CE OC ∴=︒= 2601133=S 136026BOCBOC S Sππ∴-=-⨯=-阴影扇形 故选:D .【点睛】 本题主要考查圆周角定理及扇形的面积公式,掌握圆周角定理及扇形的面积公式是解题的关键. 6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 7.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10【答案】C 【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C8.反比例函数y =k x 图象经过A (1,2),B (n ,﹣2)两点,则n =( ) A .1B .3C .﹣1D .﹣3【答案】C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n ,然后解方程即可.【详解】解:∵反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是13,则随机摸出一个球是蓝球的概率是()A.23B.13C.29D.49【答案】D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:3 32x ++=13,解得:x=4,则随机摸出一个球是蓝球的概率是4432++=49;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= 13x2(x≥0)的图象于B,C两点,过点C作y轴的平行线交y1=x2(x≥0)的图象于点D,直线DE∥AC交y2=13x2(x≥0)的图象于点E,则DEAB=()A.33B.1 C.22D.3﹣3【答案】D【分析】设点A的纵坐标为b, 可得点B的坐标为b,b), 同理可得点C的坐标为3b,b),D 点坐标(3b ,3b ),E 点坐标(3b ,3b),可得DE AB的值. 【详解】解:设点A 的纵坐标为b, 因为点B 在21y x =的图象上, 所以其横坐标满足2x =b, 根据图象可知点B 的坐标为(b ,b), 同理可得点C 的坐标为(3b ,b),∴所以点D 的横坐标为3b ,因为点D 在21y x =的图象上, 故可得y=2(3)b =3b ,所以点E 的纵坐标为3b,因为点E 在2213y x =的图象上, ∴213x =3b , 因为点E 在第一象限, 可得E 点坐标为(3b ,3b),故DE=33b b -=(33)b -,AB=b所以DE AB=33- 故选D.【点睛】本题主要考查二次函数的图象与性质.11.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD =4,AB =6,BC =12,则DE 等于( )A .4B .6C .8D .10【答案】C 【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质可得出AD DE AB BC =,再代入AD =4,AB =6,BC =12即可求出DE 的长.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD DE AB BC =,即4612DE =, ∴DE =1.故选:C .【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.12.在阳光的照射下,一块三角板的投影不会是()A.线段B.与原三角形全等的三角形C.变形的三角形D.点【答案】D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.二、填空题(本题包括8个小题)13.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.【答案】100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.14.若关于x的方程x2-kx+9=0(k为常数)有两个相等的实数根,则k=_____.【答案】±1【分析】根据方程x2-kx+9=0有两个相等的实数根,所以根的判别式△=b2-4ac=0,即k2-4×1×9=0,然后解方程即可.【详解】∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2-4×1×9=0,解得k=±1.故答案为±1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值______.。
2019-2020学年浙江省温州市人教版九年级(上)期末数学试卷 解析版
2019-2020学年浙江省温州市九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选错选均不给分)1.(3分)下列选项中的事件,属于随机事件的是()A.在一个只装有黑球的袋中,摸出红球B.两个正数相加,和是正数C.一打开电视机,正在播新闻D.在一个只装有黑球的袋中,摸出黑球2.(3分)抛物线y=x2﹣9与y轴的交点坐标是()A.(﹣9,0)B.(0,﹣9)C.(3,0)D.(0,3)3.(3分)如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.(3分)如图,在△ABC中,∠C=90°,AB=5,AC=4,D,E分别是AC,AB的中点,若作半径为2的⊙D,则下列选项中的点在⊙D外的是()A.点A B.点B C.点C D.点E5.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若AD=3BD,△ADE的周长为3,则△ABC的周长为()A .4B .6C .9D .126.(3分)如图,在3×3的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是( )A .17B .27C .37D .47 7.(3分)已知点A (﹣2,a ),B (﹣1,b ),C (3,c )均在抛物线y =﹣2(x +1)2+3上,则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .a <b <c8.(3分)如图,圆上有两点A ,B ,连接AB ,分别以A ,B 为圆心,AB 的长为半径画弧,两弧相交于点C ,D ,CD 交AB 于点E ,交AB̂于点F .若EF =1,AB =6,则该圆的半径长是( )A .4B .5C .6D .109.(3分)如图,P 是矩形ABCD 内一点,连结P 与矩形ABCD 各顶点,矩形EFGH 各顶点分别在边AP ,BP ,CP ,DP 上,已知AE =2EP ,EF ∥AB ,图中两块阴影部分的面积和为S .则矩形ABCD 的面积为( )A.4S B.6S C.12S D.18S10.(3分)如图,在坐标系网格中,过点B的抛物线顶点为A,且点A,B,C,D,E,F,O都在格点上,则该抛物线还经过下列选项中的()A.点C B.点D C.点E D.点F二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)已知xy =43,则x−yy=.12.(3分)将抛物线y=x2+2向上平移1个单位后所得新抛物线的表达式为.13.(3分)如图,AB∥CD∥EF,点E,F分别在线段AD,BC上,已知BF=4,CF=6,AE=5,则DE的长为.14.(3分)如图,在一个半径为3的圆中,若圆周角∠ABC为30°,则AĈ的长为.15.(3分)如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在DÊ上,连接CD,CE,则∠DCE等于度.16.(3分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为.17.(3分)如图1,G为△ABC纸片的重心,DG∥AC交BC于点D,连结BG,剪去△BGD 纸片,剩余部分纸片如图2所示,若原△ABC纸片面积为5,则图2纸片的面积为.18.(3分)如图,四边形ABDC内接于半圆O,AB为直径,AD平分∠CAB,AB﹣AC=4,AD=3√7,作DE⊥AB于点E,则BE的长为,AC的长为.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求摸出的两张卡片上的数之和大于5的概率.20.(6分)如图,△ABC内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹).(1)在图1中画出一个圆心角,所作角的度数是∠ACB的2倍.(2)在图2中画出一个圆周角,所作角的度数是∠ACB的2倍.21.(6分)已知抛物线y=x2﹣4x+a+1.(1)若抛物线经过点(3,5),求该抛物线的表达式.(2)若该抛物线与x轴有且只有一个交点,求a的值.22.(8分)如图,在Rt△ABC中,∠B=90°,BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDE,DE交AC于点F,作EG⊥AC交AC于点G,BC于点H.(1)求证:△AEF≌△EDH.(2)若AB=3,DH=2DF,求BC的长.23.(8分)小张准备给长方形客厅铺设瓷砖,已知客厅长AB=8m,宽BC=6m,现将其划分成一个长方形EFGH区域I和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知N是GH中点,点M在边HE上,HN=3HM,设HM=x(m).(1)用含x的代数式表示以下数量.铺设甲瓷砖的面积为m2.铺设丙瓷砖的面积为m2.(2)若甲、乙、丙瓷砖单价分别为300元/m2,200元/m2,100元/m2,且EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?24.(12分)如图,在矩形BCD中,AB=3,AD=8,O为AD中点,P是线段AO上一动点,以O为圆心,OP为半径作⊙O分别交BO及BO延长线于点E,F,延长AE交BC 于点H.(1)当OP=2时,求BH的长.(2)当AH交⊙O于另一点G时,连接FG,DF,作DM⊥BF于点M,求证:△EFG ∽△FDM.(3)连结HO,当△EHO是直角三角形时,求OP的长.2018-2019学年浙江省温州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选错选均不给分)1.(3分)下列选项中的事件,属于随机事件的是()A.在一个只装有黑球的袋中,摸出红球B.两个正数相加,和是正数C.一打开电视机,正在播新闻D.在一个只装有黑球的袋中,摸出黑球【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、在一个只装有黑球的袋中,摸出红球是不可能事件,错误;B、两个正数相加,和是正数是必然事件,错误;C、一打开电视机,正在播新闻是随机事件,正确;D、在一个只装有黑球的袋中,摸出黑球是必然事件,错误;故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)抛物线y=x2﹣9与y轴的交点坐标是()A.(﹣9,0)B.(0,﹣9)C.(3,0)D.(0,3)【分析】令x=0,求出y的值,然后写出交点坐标即可.【解答】解:x=0时,y=﹣9,所以,抛物线与y轴的交点坐标为(0,﹣9).故选:B.【点评】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象与坐标轴的交点的求解方法是解题的关键.3.(3分)如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似对各选项进行判断.【解答】解:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为√2,2√2,√10,因为(√2)2+(2√2)2=(√10)2,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似;而B选项中长直角边与短直角边的比为3,C、D选项中的两直角边的比为1:1.故选:A.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.4.(3分)如图,在△ABC中,∠C=90°,AB=5,AC=4,D,E分别是AC,AB的中点,若作半径为2的⊙D,则下列选项中的点在⊙D外的是()A.点A B.点B C.点C D.点E【分析】分别求出AD、CD、BD、ED的长,根据点与圆的位置关系的判断方法进行判断即可.【解答】解:∵∠C=90°,AB=5,AC=4,∴BC=3,∵且点D,E分别是AC,AB的中点,∴CD =AD =2,BE =AE =52,DE =12BC =32,∴BD =√22+32=√13,∵半径为2,∴点B 在⊙C 外,∴点E 在⊙C 内,∴点A ,C 在⊙C 上,故选:B .【点评】本题考查的是点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.5.(3分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .若AD =3BD ,△ADE 的周长为3,则△ABC 的周长为( )A .4B .6C .9D .12【分析】证明△ADE ∽△ABC ,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵AD =3BD ,∴AD AB =34, ∵DE ∥BC ,∴△ADE ∽△ABC ,∴△ADE 的周长△ABC 的周长=34, ∵△ADE 的周长为3,∴△ABC 的周长=4,故选:A .【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的周长比等于相似比是解题的关键.6.(3分)如图,在3×3的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是( )A .17B .27C .37D .47 【分析】在7个空白处分别涂黑,再根据轴对称图形的对应进行判断,然后根据概率公式求解.【解答】解:在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率=37.故选:C .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.7.(3分)已知点A (﹣2,a ),B (﹣1,b ),C (3,c )均在抛物线y =﹣2(x +1)2+3上,则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .a <b <c 【分析】根据二次函数的性质得到抛物线y =﹣2(x +1)2+3的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值a 、b 、c 的大小.【解答】解:∵抛物线y =﹣2(x +1)2+3的开口向下,对称轴为直线x =﹣1,而B (﹣1,b )直线x =﹣1上,C (3,c )点离直线x =﹣1最远,A (﹣2,a )离直线x =﹣1的距离较近,∴c <a <b .故选:C .【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.(3分)如图,圆上有两点A ,B ,连接AB ,分别以A ,B 为圆心,AB 的长为半径画弧,两弧相交于点C ,D ,CD 交AB 于点E ,交AB̂于点F .若EF =1,AB =6,则该圆的半径长是( )A .4B .5C .6D .10【分析】先根据作图知AB ⊥CD ,再根据垂径定理知AE =BE =12AB =3,设该圆的半径为r ,根据r 2=(r ﹣1)2+32求解可得. 【解答】解:由作图知AB ⊥CD 且AB 平分CD , ∴AE =BE =12AB =3, 设该圆的半径为r , 则r 2=(r ﹣1)2+32,解得:r =5,即该圆的半径长是5, 故选:B .【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的尺规作图和垂径定理及勾股定理等知识点.9.(3分)如图,P 是矩形ABCD 内一点,连结P 与矩形ABCD 各顶点,矩形EFGH 各顶点分别在边AP ,BP ,CP ,DP 上,已知AE =2EP ,EF ∥AB ,图中两块阴影部分的面积和为S .则矩形ABCD 的面积为( )A .4SB .6SC .12SD .18S【分析】根据矩形的性质得到∠DAB =∠HEF =90°,根据平行线的性质得到∠PEF =∠P AB ,求得∠PEH =∠P AD ,推出EH ∥AD ,同理,FG ∥BC ,根据相似三角形的性质得到S △PEH S △PAD=(PE PA)2=19,同理,S △PFG S △PBC=19,于是得到结论.【解答】解:∵AE =2EP , ∴PE PA=13,∵四边形ABCD 与四边形EFGH 是矩形, ∴∠DAB =∠HEF =90°, ∵EF ∥AB , ∴∠PEF =∠P AB , ∴∠PEH =∠P AD , ∴EH ∥AD , 同理,FG ∥BC , ∵EF ∥AB , ∴△PEF ∽△P AB , ∴PEPA =PFPB =13,∴S △PEH S △PAD=(PE PA)2=19,同理,S △PFG S △PBC=19,∵S △P AD +S △PBC =12S 矩形ABCD , ∴S =19(S △P AD +S △PBC )=19×12S 矩形ABCD, ∴矩形ABCD 的面积=18S . 故选:D .【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.10.(3分)如图,在坐标系网格中,过点B 的抛物线顶点为A ,且点A ,B ,C ,D ,E ,F ,O 都在格点上,则该抛物线还经过下列选项中的( )A .点CB .点DC .点ED .点F【分析】根据二次函数的性质和图象,可以解答本题. 【解答】解:由图象可得, 该抛物线经过点A 、B 、F , 故选:D .【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题有8个小题,每小题3分,共24分) 11.(3分)已知xy=43,则x−y y =13.【分析】由xy=43,得x =43y ,再代入所求的式子化简即可.【解答】解:x y=43,得x =43y ,把x =43y ,代入x−y y=13.故答案为:13.【点评】考查了比例的性质,找出x 、y 的关系,代入所求式进行约分.12.(3分)将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为 y =x 2+3 . 【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为y =x 2+2+1,即y =x 2+3. 故答案是:y =x 2+3.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.(3分)如图,AB ∥CD ∥EF ,点E ,F 分别在线段AD ,BC 上,已知BF =4,CF =6,AE =5,则DE 的长为152.【分析】三条平行线截两条直线,所得的对应线段成比例.依据平行线分线段成比例定理可得结论.【解答】解:∵AB ∥CD ∥EF , ∴AE DE=BF CF,即5DE=46,∴DE =152, 故答案为:152.【点评】本题主要考查了平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例.14.(3分)如图,在一个半径为3的圆中,若圆周角∠ABC 为30°,则AĈ的长为 π .【分析】连接OA ,OC ,根据圆周角定理求出∠AOC ,利用弧长公式计算,得到答案. 【解答】解:连接OA ,OC ,由圆周角定理得,∠AOC =2∠ABC =60°, ∴AC ̂的长=60π×3180=π, 故答案为:π.【点评】本题考查的是弧长的计算,圆周角定理,掌握弧长公式是解题的关键. 15.(3分)如图,AB 是半圆O 的直径,点D ,E 在半圆上,∠DOE =100°,点C 在DE ̂上,连接CD ,CE ,则∠DCE 等于 130 度.【分析】补全⊙O ,在⊙O 上AB 的下方取一点M ,连接DM ,EM .根据圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=12∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为130【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.16.(3分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为144°.【分析】根据多边形的内角和,可求出∠BAE=∠AED=∠F AM=∠AMH= 180×(5−2)5=108°,即可求出∠EAM的度数,根据旋转的性质,可得x的最小值.【解答】解:∵五边形ABCDE,AFGHM是正五边形∴∠BAE=∠AED=∠F AM=∠AMH=180×(5−2)5=108°,∴∠AEM=∠AME=72°,∴∠EAM=180°﹣72°﹣72°=36°,∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,顺时针旋转最小需144°,逆时针旋转最小需216°,∴x的最小值为36+108=144°故答案为:144°【点评】本题考查了旋转的性质,多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.17.(3分)如图1,G为△ABC纸片的重心,DG∥AC交BC于点D,连结BG,剪去△BGD纸片,剩余部分纸片如图2所示,若原△ABC纸片面积为5,则图2纸片的面积为359.【分析】连接AG,延长AG交BD于E,如图1,设△DGE的面积为S,利用三角形重心的性质得到BE=CE,AG=2EG,根据平行线分线段成比例定理得到ED:DC=EG:AG=1:2,根据三角形的面积公式得到S△DGC=2S,最后表示出S△ABC=18S,即18S=5,解得S=5 18,然后计算图2纸片的面积.【解答】解:连接AG,延长AG交BD于E,如图1,设△DGE的面积为S,∵G为△ABC纸片的重心,∴BE=CE,AG=2EG,∵DG∥AC,∴ED:DC=EG:AG=1:2,∴S△DGC=2S△DEG=2S,∴S△BEG=S△CEG=3S,∴S△ABG=2S△BEG=6S,∵S△ABE=3S+6S=9S,∴S△ABC=2S△ABE=18S,即18S=5,解得S=5 18,∴S△BDG=4S=10 9,∴图2纸片的面积=5−109=359.故答案为359.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形面积公式.18.(3分)如图,四边形ABDC 内接于半圆O ,AB 为直径,AD 平分∠CAB ,AB ﹣AC =4,AD =3√7,作DE ⊥AB 于点E ,则BE 的长为 2 ,AC 的长为 5 .【分析】如图,作DF ⊥AC 交AC 的延长线于F .由Rt △DFC ≌Rt △DEB (HL ),推出CF =BE ,由Rt △ADF ≌Rt △ADE (HL ),推出AF =AE ,由AB ﹣AC =AE +EB ﹣(AF ﹣CF )=2BE =4,推出BE =2,由△ADE ∽△ABD ,推出AD AB=AE AD,可得AD 2=AE •AB ,设AE =x ,由此构建方程即可解决问题.【解答】解:如图,作DF ⊥AC 交AC 的延长线于F .∵AD 平分∠CAB ,DF ⊥AC ,DE ⊥AB , ∴DE =DF , ∵∠DAC =∠DAB , ∴CD ̂=BD ̂, ∴CD =DB ,∵∠F =∠DEB =90°, ∴Rt △DFC ≌Rt △DEB (HL ),∴CF =BE ,∵∠F =∠AED =90°,AD =AD .DF =DE , ∴Rt △ADF ≌Rt △ADE (HL ), ∴AF =AE ,∵AB ﹣AC =AE +EB ﹣(AF ﹣CF )=2BE =4, ∴BE =2, ∵AB 是直径, ∴∠ADB =90°,∵∠DAE =∠BAD ,∠AED =∠ADB =90°, ∴△ADE ∽△ABD , ∴AD AB=AE AD,∴AD 2=AE •AB ,设AE =x , 则有:63=x (x +2), 解得x =7或﹣9(舍弃), ∴AE =7, ∴AB =AE +BE =9, ∵AB ﹣AC =4, ∴AC =5, 故答案为2,5.【点评】本题考查圆周角定理,角平分线的性质定理,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程) 19.(6分)有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张. (1)请用树状图或列表法表示出所有可能的结果. (2)求摸出的两张卡片上的数之和大于5的概率.【分析】(1)首先根据题意画出树状图,得出所有等可能的结果数;(2)根据(1)得出所有等可能的结果数和两张卡片的数字之和大于5的情况数,再利用概率公式求解即可求得答案.【解答】解:(1)根据题意画图如下:共有12种等情况数;(2)根据(1)可得:共有12种等情况数,摸出的两张卡片上的数之和大于5的有4种,则摸出的两张卡片上的数之和大于5的概率是412=1 3.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.20.(6分)如图,△ABC内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹).(1)在图1中画出一个圆心角,所作角的度数是∠ACB的2倍.(2)在图2中画出一个圆周角,所作角的度数是∠ACB的2倍.【分析】(1)根据同圆中,同弧所对圆心角等于圆周角的2倍连接OA=OB即可得;(2)作直线BO,再过点A作BO的垂线,交⊙O于点D,连接CD,则∠ACD即为所求.【解答】解:(1)如图1,∠AOB=2∠ACB;(2)如图2,∠ACD=2∠ACB.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角、弧、弦的关系及过直线外一点作已知直线的垂线的尺规作图.21.(6分)已知抛物线y=x2﹣4x+a+1.(1)若抛物线经过点(3,5),求该抛物线的表达式.(2)若该抛物线与x轴有且只有一个交点,求a的值.【分析】(1)利用待定系数法确定函数解析式;(2)利用抛物线与一元二次方程的关系以及根的判别式解答.【解答】解:(1)把(3,5)代入y=x2﹣4x+a+1,得32﹣4×3+a+1=5,解得a=7,故该抛物线解析式是y=x2﹣4x+8;(2)∵抛物线y=x2﹣4x+a+1与x轴有且只有一个交点,∴△=(﹣4)2﹣4(a+1)=0,解得a=3.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征以及待定系数法确定函数解析式,难度不大.22.(8分)如图,在Rt△ABC中,∠B=90°,BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDE,DE交AC于点F,作EG⊥AC交AC于点G,BC于点H.(1)求证:△AEF≌△EDH.(2)若AB=3,DH=2DF,求BC的长.【分析】(1)根据ASA证明:△AEF≌△EDH;(2)设DF=x,则DH=2x,根据正方形的性质得:AB∥DF,得△DFC∽△BAC,列比例式可得DC的长,可得结论.【解答】证明:(1)∵四边形ABDE是正方形,∴AE =DE ,∠AED =∠EDH =90°,∵EG ⊥AC ,∴∠AGE =90°,∴∠GAE +∠AEG =∠AEG +∠DEH =90°,∴∠GAE =∠DEH ,在△AEF 和△EDH 中,∵{∠GAE =∠DEH AE =ED ∠AEF =∠EDH,∴△AEF ≌△EDH (ASA );(2)设DF =x ,则DH =2x ,∵△AEF ≌△EDH .∴EF =DH =2x ,∴ED =EF +DF =3x =AB ,∵四边形ABDE 是正方形,∴AB ∥DF ,∴△DFC ∽△BAC ,∴DF AB =DC BC =x 3x ,∵BD =3,∴DC =32,∴BC =BD +CD =3+32=4.5.【点评】本题考查了三角形全等的性质和判定、正方形的性质、三角形相似的判定和性质等知识,熟练掌握三角形全等的判定是关键.23.(8分)小张准备给长方形客厅铺设瓷砖,已知客厅长AB =8m ,宽BC =6m ,现将其划分成一个长方形EFGH 区域I 和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知N 是GH 中点,点M 在边HE 上,HN =3HM ,设HM =x (m ).(1)用含x 的代数式表示以下数量.铺设甲瓷砖的面积为 12x 2 m 2.铺设丙瓷砖的面积为 48﹣24x 2 m 2.(2)若甲、乙、丙瓷砖单价分别为300元/m2,200元/m2,100元/m2,且EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?【分析】(1)由HM=x(m)得出HN=3x(m),则EF=GH=6x(m),再根据菱形的面积、三角形的面积、矩形的面积计算方法即可得出结果;(2)由已知条件EF≥FG+2,得出x≥1,求出三种瓷砖总价,即可得出结果.【解答】解:(1)设HM=x(m),则HN=3x(m),根据题意得:EF=GH=6x(m),FG=4x(m),∴铺设甲瓷砖的面积为2×12×6x×2x=12x2(m2),铺设乙瓷砖的面积为8×12×3x×x=12x2(m2),∴铺设丙瓷砖的面积为8×6﹣12x2﹣12x2=48﹣24x2(m2);故答案为12x2,48﹣24x2;(2)∵EF≥FG+2,∴6x≥4x+2,解得:x≥1,∴铺设好整个客厅,三种瓷砖总价为300×12x2+200×12x2+100(48﹣24x2)=3600x2+4800≥3600+4800=8400(元),即铺设好整个客厅,三种瓷砖总价至少需要8400元.【点评】本题考查了菱形、矩形的性质,菱形、矩形和三角形面积的计算以及列代数式;熟练掌握菱形和矩形的性质,列出各种瓷砖的面积是解题关键.24.(12分)如图,在矩形BCD中,AB=3,AD=8,O为AD中点,P是线段AO上一动点,以O为圆心,OP为半径作⊙O分别交BO及BO延长线于点E,F,延长AE交BC 于点H.(1)当OP=2时,求BH的长.(2)当AH 交⊙O 于另一点G 时,连接FG ,DF ,作DM ⊥BF 于点M ,求证:△EFG ∽△FDM .(3)连结HO ,当△EHO 是直角三角形时,求OP 的长.【分析】(1)在Rt △ABO 中,利用勾股定理求出OB ,由BH ∥OA ,推出BH OA =BE EO ,由此即可解决问题;(2)利用两角对应相等两三角形相似即可证明;(3)分两种情形画出图形分别求解即可;【解答】解:(1)如图1中,∵四边形ABCD 是矩形,∴∠BAD =90°,AD ∥BC ,∵AB =3,AO =OD =4,∴OB =√32+42=5,∵OP =OE =2,∴BE =3,∵BH ∥OA ,∴BH OA =BE EO , ∴BH 4=32,∴BH =6.(2)如图2中,∵EF 是直径,∴∠EGF =90°,∵OA =OD ,∠AOE =∠DOF ,OE =OF ,∴△AOE ≌△DOF (SAS ),∴∠EAO =∠ODF ,∴AH ∥DF ,∴∠DFG =∠EGF =90°,∵DM ⊥BF ,∴∠DMF =∠EGF =90°,∵∠GFE +∠DFM =90°,∠DFM +∠FDM =90°,∴∠EFG =∠FDM ,∴△EFG ∽△FDM .(3)如图3﹣1中,当∠HEO =90°时,∵12•AB •AO =12•OB •AE ,∴AE =125, ∴OE =2−AE 2=165, ∴OP =OE =165.如图3﹣2中,当∠EOH =90°时,∵BC ∥AD ,∴∠BOA =∠OBH ,∵∠BAO =∠BOH =90°,∴△ABO ∽△OHB ,∴OB BH =OA OB , ∴5BH=45,∴BH =254, ∵OA ∥BH , ∴OE EB =OA BH =4254=1625,∴OE =1641•OB =8041,∴OP =OE =8041,综上所述,OP 的值为165或8041.【点评】本题属于圆综合题,考查了矩形的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2019-2020学年浙江省温州市七校联考九年级(上)期中数学试卷 (含答案解析)
2019-2020学年浙江省温州市七校联考九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列事件中,属于必然事件的是()A. 打开电视,它正在播广告B. 掷两枚质地均匀的骰子,点数之和一定大于6C. 某射击运动员射击一次,命中靶心D. 早晨的太阳从东方升起2.抛物线y=(x+3)2−5的顶点为()A. (3,−5)B. (−3,5)C. (−3,−5)D. (3,5)3.已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是()A. OP>5B. OP=5C. 0<OP<5D. 0≤OP<54.如图,点A、B、C在⊙O上,∠AOC=70°,则∠ABC的度数为()A. 10°B. 20°C. 35°D. 55°5.将抛物线y=3x2平移得到抛物线y=3(x−4)2−1的步骤是()A. 向左平移4个单位,再向上平移1个单位B. 向左平移4个单位,再向下平移1个单位C. 向右平移4个单位,再向上平移1个单位D. 向右平移4个单位,再向下平移1个单位6.已知圆心角为的弧长为4π,则扇形的半径为()A. 6B. 163C. 4 D. 837.每个内角都为108°的正多边形的边数为()A. 3B. 4C. 5D. 68.一男生推铅球,铅球在运动过程中,高度不断发生变化。
已知当铅球飞出的水平距离为x时,其高度为(−112x2+23x+53)米,则这位同学推铅球的成绩为()A. 9米B. 10米C. 11米D. 12米9.已知二次函数y=ax2+bx+c的图象如图所示,则在“①a<0,②b>0,③c<0,④b2−4ac>0”中正确的判断是()A. ①②③④B. ④C. ①②③D. ①④10.如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A. 40°B. 50°C. 60°D. 80°二、填空题(本大题共6小题,共30.0分)11.桌子上倒扣着六个杯子,有的杯子下面放着一份球,有的杯子下面没有球,如果告诉你任意拿一个杯子看到下面有球的概率是1,那么有球的杯子有______个。
【40套试卷合集】浙江省温州市名校2019-2020学年数学九上期末模拟试卷含答案
2019-2020学年九上数学期末模拟试卷含答案(考试时间120分钟 满分120分)学校 班级 姓名 考号一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1. 下列图形是中心对称图形的是A. B.D.2. 已知⊙O 1和⊙O 2的半径分别为4cm 和2cm ,圆心距O 1O 2为6cm ,则这两个圆的位置关系是 A .外离B .外切C .相交D .内切3. 如图,已知△ABC 中,AB= AC ,∠ABC=70°,点I 是△ABC 的内心, 则∠BIC 的度数为A. 40°B. 70°C. 110°D. 140° 4. 抛物线1)2(2+-=x y 是由抛物线2x y =平移得到的,下列对于 抛物线2x y =的平移过程叙述正确的是 A .先向右平移2个单位,再向上平移1个单位B .先向右平移2个单位,再向下平移1个单位 (第3题图)C .先向左平移2个单位,再向上平移1个单位D .先向左平移2个单位,再向下平移1个单位5. 如图,⊙O 的半径OC 垂直于弦AB , D 是优弧AB 上的一点 (不与点A 、B 重合),若∠AOC=50°,则∠CDB 等于A .25°B .30°C .40°D .50° (第5题图)6. 如图是一个照相机成像的示意图,如果底片AB 宽40mm ,焦距是60mm ,所拍摄的2m 外的 景物的宽CD 为A .12mB .3mC .23m D .34m (第6题图) 7. △ABC 在平面直角坐标系中的位置如图所示, 其中A(1, 2),B(1, 1),C(3, 1),将△ABC 绕原点O 顺时针旋转90后得到△'''C B A ,则点A 旋转到点'A 所经过的路线长为A .π25B .π45 C .π25D .(第7题图) 8. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于 点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示 y 关于x 的函数关系的图象大致是A. B. C. D. 二、填空题(共4个小题,每小题4分,共16分)9. 如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为 .(第9题图)(第11题图)10. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R 的值是 .11. 如图,梯形ABCD 中,AD ∥BC ,∠C=90°,AB=AD=4,BC=6,以点A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是 .12. 古希腊著名的毕达哥拉斯学派把1,3,6,10 ,… 这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定11a =,23a =,36a =,410a =,…;11b =,24b =,39b =,416b =,…;1112y a b =+,2222y a b =+,3332y a b =+,4442y a b =+,…,那么,按此规定,=6y ,n y = (用含n 的式子表示,n 为正整数).三、解答题(共13个小题,共72 分) 13.(本小题满分5分)计算:︒-︒+︒30cos 245sin 60tan 2.y 5Ox14916图②图①10631y O14.(本小题满分5分)如图,已知4=AC ,求AB 和BC 的长.15.(本小题满分5分)如图,□ABCD 中,点E 在BA 的延长线上, 连接CE ,与AD 相交于点F. (1)求证:△EBC ∽△CDF ;(2)若BC =8,CD =3,AE =1,求AF 的长.16.(本小题满分4分)如图,在平面直角坐标系中,△ABC 和△'''C B A 是以 坐标原点O 为位似中心的位似图形,且点B (3,1), B′(6,2).(1)若点A (25,3),则A′的坐标为 ;(2)若△ABC 的面积为m ,则△A ′B ′C ′的面积= .17.(本小题满分5分)二次函数2y ax bx c =++的部分图象如图所示,其中图象与 x 轴交于点A (-1,0),与y 轴交于点C (0,-5),且经过点 D (3,-8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成2()y a x h k =-+的形式,并直接写出此二次函数图象的顶点坐标以及它与x 轴的另一个交点B 的坐标.18. (本小题满分5分)经过18个月的精心酝酿和290多万首都市民投票参与,,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布. 为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料. 第一周发放宣传材料300份,第三周发放宣传材料363份. 求发放宣传材料份数的周平均增长率.19. (本小题满分5分)如图,CD 与AB 是⊙O 内两条相交的弦,且AB 为⊙O 的直径, CE ⊥AB 于点E ,CE=5,连接AC 、BD. (1)若135sin =D ,则cosA= ;(2)在(1)的条件下,求BE 的长.A20. (本小题满分5分)小红在学习了教科书上相关内容后自制了一个测角仪(图①),并尝试用它来测量校园内一座教学楼CD 的高度(如图②).她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米,参考数据:41.12≈,73.13≈,24.25≈).图① 图②21.(本小题满分5分)已知抛物线4)1(21-+++=m x m x y 与x(1)求m 的值; (2)画出这条抛物线;(2)若直线b kx y +=2过点B P (-2m ,-3m ),根据图象回答:当x 取什么值时,1y ≥2y .22. (本小题满分6分)某超市销售一款进价为50元/调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y (个)与销售价x (元/个)之间的函数关系式; (2)求该超市这款书包平均每周的销售利润w (元)与销售价x (元/个)之间的函数关系式; (3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元?23.(本小题满分6分)如图,在△ABC 中,∠ACB=90°,O 为BC 边上一点, 以O 为圆心,OB 为半径作半圆与AB 边和BC 边分别 交于点D 、点E ,连接CD ,且CD=CA ,BD=56, tan ∠ADC=2.(1)求证:CD 是半圆O 的切线;BC A(3)求AD 的长.24. (本小题满分8分)已知,在△ABC 中,∠BAC=90°,AB=AC ,BC=22,点D 、E 在BC 边上(均不与点B 、C 重合,点D 始终在点E 左侧),且∠DAE =45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上 , ; (2)设BE =m ,CD =n ,求m 与n 的函数关系式,并写出自变量n 的取值范围; (3)如图②,当BE =CD 时,求DE 的长;(4)求证:无论BE 与CD 是否相等,都有DE 2=BD 2+CE 2.图① 图② 备用图25.(本小题满分8分)已知抛物线y =ax 2+bx +6与x 轴交于A 、B 两点(点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,且OB=21OC ,tan ∠ACO=61,顶点为D .(2)求直线CD 与x 轴的交点E 的坐标.(3)在此抛物线上是否存在一点F ,使得以点A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(4)若点M (2,y )是此抛物线上一点,点N 是直线AM 上方的抛物线上一动点,当点N 运动到什么位置时,四边形ABMN 的面积S 最大? 请求出此时S 的最大值和点N 的坐标.(5)点P 为此抛物线对称轴上一动点,若以点P 为圆心的圆与(4)中的直线AM 及x 轴同时相切,则此时点P 的坐标为 .备用图① 备用图②数学试卷 参考答案及评分标准一、选择题(共8个小题,每小题4分,共32分)题号12345678答案D B C A A D A C二、填空题(共4个小题,每小题4分,共16分) 9. 3 10. 6 11.π4 12. 78,n n +22(每空2分)三、解答题(共13个小题,共72 分) 13.(本小题满分5分)解: 2322232⨯-⎪⎪⎭⎫ ⎝⎛+=原式,……………………………………………3分 21=. ……………………………………………………………………5分14.(本小题满分5分) 解:作CD ⊥AB 于点D , 在Rt △ACD 中,∵∠A =30°, ∴∠ACD =90°-∠A =60°,221==AC CD , 32cos =⋅=A AC AD . ……………………………………………………………3分在Rt △CDB 中,∵∠DCB =∠ACB -∠ACD =45°, ∴2==CD BD ,2245sin =︒=CDBC . …………………………………………………………………4分∴322+=+=BD AD AB .…………………………………………………………5分15.(本小题满分5分)(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD.∴△EAF ∽△EBC ,△EAF ∽△CDF. ……………………………………………2分 ∴△EBC ∽△CDF. …………………………………………………………………3分(2)解:∵△EAF ∽△EBC ,∴BC AF EB EA =,即8311AF=+. 解得2=AF . …………………………………………………………………………5分16. (本小题满分4分)(1)(5,6);…………………………………………………………………………………2分(2) 4m. ……………………………………………………………………………………4分17. (本小题满分5分) 解:(1)由题意,有⎪⎩⎪⎨⎧-=++-==+-.839,5,0c b a c c b a 解得 ⎪⎩⎪⎨⎧-=-==.5,4,1c b a ∴此二次函数的解析式为542--=x x y . …………………………………2分(2)9)2(2--=x y ,顶点坐标为(2,-9),B (5,0). …………………………5分18. (本小题满分5分)解:设发放宣传材料份数的周平均增长率为x ,由题意,有.363)1(3002=+x …………………………………………………………………3分 解得 1.01=x ,1.22-=x . …………………………………………………………4分 ∵1.2-=x <0,不符合题意,舍去,∴%101.0==x . ……………………………………………………………………5分 答:这两次发放材料数的平均增长率为10%.19. (本小题满分5分) (1)1312. …………………………………………………………………………………2分 (2)解:如图,连接BC.∵AB 为⊙O 的直径,∴∠ACB =90°. ∴由(1)知AC =13, 12=AE ,1312cos =A . 在Rt △ACB 中,ABACA =cos ,∴12169=AB . ………………………………………………………………………4分 ∴1225=-=AE AB BE . …………………………………………………………5分20.(本小题满分5分)解:∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.A21.(本小题满分5分) 解:(1)由题意,有121-=+-m ,解得m =1. ……………………………………………………………2分(2)如图1;…………………3分图1图2(3)如图2,x ≤-2或x ≥1. ……………………………………………………………5分22.(本小题满分6分)解:(1)由题意,有 )60(2100--=x y ,即2202+-=x y ;………………………………………………………………………2分 (2)由题意,有 )2202)(50(+--=x x w ,即1100032022-+-=x x w ;…………………………………………………………4分(3)∵抛物线1100032022-+-=x x w 的开口向下,在对称轴80=x 的左侧,w 随x 的增大而增大. 由题意可知7060≤≤x ,………………………………………………………………5分 ∴当70=x 时,w 最大为1600. ………………………………………………………6分 因此,当每个书包的销售价为70元时,该超市可以获得每周销售的最大利润1600元.23.(本小题满分6分) (1)证明:如图,连接OD ,∵OD =OB ,∴∠1=∠2. ∵CA =CD ,∴∠ADC =∠A. 在△ABC 中,∵∠ACB =90°,∴∠A +∠1=90°. ∴∠ADC +∠2=90°. ∴∠CDO =90°. ∵OD 为半圆O 的半径,∴CD 为半圆O 的切线. ………………………………………………………………2分 (2)解:如图,连接DE.BPA∵BE 为半圆O 的直径, ∴∠EDB =90°. ∴∠1+∠3=90°. ∴∠ADC =∠3. ∴23tan ==∠EDBD. ∴53=ED . ∴1522=+=DE BD EB . ………………………………………………………4分(3)解:作CF ⊥AD 于点F ,∴AF =DF.设x DF =,∵2tan =∠ADC ,∴CF =2x. ∵∠1+∠FCB =90°, ∴ADC FCB ∠=∠. ∴2tan =∠FCB . ∴FB =4x. ∴BD =3 x =56. 解得52=x .∴A D =2D F =2x =54. ……………………………………………………………6分24.(本小题满分8分)解:(1)△ADE ∽△BAE ,△ADE ∽△CDA ,△BAE ∽△CDA ;(写出任意两对即可) (2)∵∠BAC =90°,AB =AC ,BC =22,由(1)知 △BAE ∽△CDA , ∴CABECD BA =. ∴22m n =. ∴nm 4= (222<<n ). ……………………………………4分(3)由(2)只BE·CD =4,∴BE =CD =2.∴BD =BC -CD =222-.∴DE =BE -BD =224-.………………………………………………………5分 (4)如图,依题意,可以将△AEC 绕点A 顺时针旋转90°至△AFB 的位置,则FB =CE ,AF =AE ,∠1=∠2, ∴∠FBD =90°.∴22222CE BD FB BD DF +=+=. (6)∵∠3+∠1=∠3+∠2=45°, ∴∠FAD =∠DAE. 又∵AD =AD ,AF =AE , ∴△AFD ≌△AED.∴DE =DF. ………………………………………………………………………7分 ∴222CE BD DE +=. …………………………………………………………8分25.(本小题满分8分)解:(1)根据题意,得C (0,6).在Rt △AOC 中,61tan =∠ACO ,OC =6, ∴OA =1. ∴A (-1,0). ……………………………………………………………1分 (2)∵OC OB 21=,∴OB =3. ∴B (3,0). 由题意,得 ⎩⎨⎧=++=+-.0639,06b a b a 解得⎩⎨⎧=-=.4,2b a ∴6422++-=x x y .∴D (1,8). ……………………………………………………………………2分 可求得直线CD 的解析式为62+=x y .∴E (-3,0). ……………………………………………………………………3分 (3)假设存在以点A 、C 、F 、E 为顶点的平行四边形,则F 1(2,6),F 2(-2,6),F 3(-4,-6).经验证,只有点(2,6)在抛物线6422++-=x x y 上,∴F (2,6). ………………………………………………………………………4分(4)如图,作NQ ∥y 轴交AM 于点Q ,设N (m, 6422++-m m ).当x =2时,y =6,∴M (2,6). 可求得直线AM 的解析式为22+=x y . ∴Q (m ,2m +2).∴NQ =422)22(64222++-=+-++-m m m m m . ∵AMN ABM S S S ∆∆+=,其中126421=⨯⨯=∆ABM S , ∴当AMN S ∆最大时,S 值最大. ∵MNQ ANQ AMN S S S ∆∆∆+=)422(3212++-⨯⨯=m m , 6332++-=m m ,427)21(32+--=m .∴当21=m 时,AMN S ∆的最大值为427. ∴S 的最大值为475.……………………………………………………………………6分 当21=m 时,2156422=++-m m . ∴N (21,215). ……………………………………………………………………7分 (5)P 1(1,15-),P 2(1,15--). …………………………………………8分说明:写成P 1(1,154+),P 2(1,154--)不扣分.2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠07.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F 是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q 落在△OBC的内部,求t的取值范围.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y 轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,1), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为6(图中的阴影部分), ∴AC•AA′=3AA′=6, ∴AA′=2,即将函数y=(x ﹣2)2+1的图象沿y 轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x ﹣2)2+3. 故选:B .【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【分析】当点N 在AD 上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N 在DC 上时,MN 长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M 运动的速度为a ,则AM=at , 当点N 在AD 上时,MN=tanα×AM=tanα•at ,此时S=×at ×tanα•at=tanα×a 2t 2,∴前半段函数图象为开口向上的抛物线的一部分, 当点N 在DC 上时,MN 长度不变,此时S=×at ×MN=a ×MN ×t , ∴后半段函数图象为一条线段, 故选:C .【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=1.【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5.【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=3×﹣()2+﹣2×=﹣+2﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.【分析】把解析式化为顶点式即可.【解答】解:∵y=x2﹣10x+3=(x﹣5)2﹣22,∴二次函数的顶点坐标为(5,﹣22).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.【分析】先根据sinA=知c==6,再根据勾股定理求解可得.【解答】解:如图,∵a=2,sin,∴c===6,则b===4.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦函数的定义及勾股定理.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.【分析】(1)根据题意画出树状图,即可解决问题;(2)根据树状图,利用概率公式即可求得小红获胜的概率,由概率相等,即可判定这个游戏公平;【解答】解:(1)树状图如右:则小红获胜的概率:=,小丁获胜的概率:=,所以这个游戏比较公平.【点评】本题考查的是用列表法与树状图法求事件的概率,解题的关键是学会正确画出树状图,判断游戏。
每日一学:浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答
每日一学:浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答答案浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2020温州.九上期末) 如图,在矩形ABCD 中,AB=6,BC=8,点E ,F 分别在边BC ,AB 上,AF=BE=2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动。
(1) 求EF 的长。
(2) 设CN=x ,EM=y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围。
(3) 连结MN ,当MN 与△DEF 的一边平行时,求CN 的长。
考点: 几何图形的动态问题;平行线分线段成比例;相似三角形的判定与性质;~~ 第2题 ~~(2020温州.九上期末) 如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 变BD 于点E ,连结AD,若BE=4DE ,CE=6,则AB 的长为________。
~~ 第3题 ~~(2020温州.九上期末) 如图,抛物线y=-(x+m)+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( )A .B .C . 3D .浙江省温州市2019-2020学年九年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:2解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。
2019-2020学年浙江省温州市苍南县九年级(上)期末数学试卷(附答案详解)
2019-2020学年浙江省温州市苍南县九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A. 1cmB. 2cmC. 4cmD. 8cm2.抛物线y=2x2−4x+3的对称轴为()A. 直线x=−1B. 直线x=1C. 直线x=−2D. 直线x=23.在一个不透明的口袋里装有2个白球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是()A. 12B. 23C. 25D. 354.如图,在⊙O中,弦AB=8,OA=5,则弦心距OC的长是()A. 3B. 4C. 5D. 65.将抛物线y=−2x2向右平移1个单位,得到的抛物线表达式为()A. y=−2x2−1B. y=−2(x−1)2C. y=−2x2+1D. y=−2(x+1)26.在△ABC中,已知∠C=90°,AB=13,BC=5,则cos A的值是()A. 513B. 512C. 513D. 12137.如图,在Rt△ABC中,D是斜边AB的中点,DE⊥AB交AC于点E,若AC=8,BC=6,则DE的长为()A. 3B. 165C. 154D. 48.如图,AB切⊙O于点A,BO的延长线交⊙O于点C,∠B=40°,若⊙O的半径长为3,则AC⏜的长为()A. 136πB. 73πC. 134πD. 72π9. 已知关于x 的方程−x 2+bx =m 的两个根分别是x 1=−23,x 2=83,若A(−2,y 1),B(1,y 2),C(2,y 3)是二次函数y =−x 2+bx +m 图象上的三点,则y 1,y 2,y 3的大小关系为( ) A. y 1<y 2<y 3 B. y 2<y 1<y 3 C. y 3<y 1<y 2 D. y 1<y 3<y 210. 如图,在▱ABCD 中,∠A =60°,AD =2.以点A 为圆心,AD 为半径作DE⏜,交边AB 于点E ,G 是DE⏜的中点,作GF//BC 交CD 于点F ,以点F 为旋转中心,将线段FG 按逆时针方向旋转90°至线段FG′,若点G′恰好落在边BC 上,则AB 的长为( )A. 115B. 4√33 C. 2√33+1 D. 2√3−43 二、填空题(本大题共6小题,共30.0分)11. 若a b =32,则a+bb 的值为______.12. 二次函数y =x 2−2x +3图象与y 轴的交点坐标是______ .13. 已知扇形的半径为6,圆心角为150°,则此扇形的面积是______.(结果保留π)14. 如图,BE 是△ABC 的角平分线,作CD//AB 交BE 的延长线于点D ,AB =2,AE =1.若△ABE 与△CDE 的周长之比为2:3,则△ABC 的周长为______.15. 小明用一把角尺和一块边长为3cm 的正方形小木块测量并计算圆的半径,如图,小木块(正方形ABCD)两边紧靠在角尺的两边,顶点C 紧靠⊙O 上,角尺的较长边与⊙O相切于点E.量得AE=8cm,则⊙O的半径等于______cm.16.如图,正六边形ABCDEF的边长为2,点P在对角线AC上,∠EDP=75°,PQ⊥EF于点Q,则PQ的长是______;过点Q作QG//ED交DP于点G,则△PQG的面积为______.三、解答题(本大题共8小题,共80.0分)17.(1)计算:sin30°−3tan45°+√3cos30°.(2)已知二次函数的图象以A(2,3)为顶点,且过点B(3,−1),求二次函数的表达式.18.如图,在矩形ABCD中,点E,F分别在边AB,AD上,连接CE,EF,CF,∠CFE=90°,CF=EF.(1)求证:△AEF≌△DFC.(2)若DF=2,AF=3,求tan∠BCE的值.19.如图,在7×4方格纸中,点A,B,C,D都在格点上.(1)在图1中画一个格点△CDE,使△CDE与△ABC相似(2)在图2中画一个格点△BDF,使∠BFD=∠BAC,且△BDF与△ABC不相似.20.为了让孩子们掌握垃圾分类知识,树立环保意识,李老师制作了一盒垃圾分类卡片,其中,“可回收物”卡片有30张,“易腐垃圾”卡片22张,“其他垃圾”卡片20张以及若干张“有害垃圾”卡片,这些卡片除图案外都相同.(1)从这盒卡片中任取一张,使“其他垃圾”卡片的概率是1,求“有害垃圾”卡片5的数量.(2)现从中取出4张卡片:A.塑料瓶,B.旧书本,C.过期药品,D.剩饭菜(其中A,B为可回收物,C为有害垃圾,D为易腐垃圾),将取出的四张卡片放入一个不透明的袋子中,小聪和小明从袋子中各取一张卡片,问两人取到的卡片恰好都是“可回收物”卡片的概率(要求列表或画树状图).21.如图,抛物线y=a(x−1)2+4交x轴负半轴于点A,交y轴于点B,过抛物线的顶点C作CD⊥y轴,D为垂足,四边形AOCD是平行四边形.(1)求a的值.(2)作BE//x轴,交抛物线于另一点E,交OC于点F,求EF的长.22.如图,四边形ABCD内接于⊙O,点E在CD的延长线上,AD垂直平分BE,连接AC.(1)求证:AB=AC.(2)连接AE,若AE//BC,AB=3,BC=2,求CE的长.23.随着我市“明眸皓齿”工程的启动实施,教室照明越来越受到重视,为满足市场需求,某照明公司生产销售防眩光LED格栅灯,已知该灯具的成本为70元/套,销售单价在82元到100元(含82元,100元)浮动,根据市场销售情况可知:当销售单价为100元/套时,日均销量为600套;销售单价每降低1元,则日均销量增加50套.(1)请直接写出该灯日均销量y(套)与销售单价x(元/套)之间的函数关系式.(2)当该灯具的销售单价定为多少元时,该照明公司获得的日销售利润W最大?最大利润为多少元?(3)该公司决定每销售一套灯具,就捐赠m元给希望工程.若在每套捐出m元后,公司的日销售利润最少为15000元,求m的值.24.如图,点A,B都在x轴上,过点A作x轴的垂线交抛物线y=−x2+4x于点C,过点B作x轴的垂线交该抛物线于点D,点C,D都在第一象限,点D在点C的右侧,DE⊥AC于点E,连接CD,BE,CD//EB.(1)若OA=2,求AB的长.(2)若点A是线段OB的中点,求点E的坐标.(3)根据(2)的条件,连接OD,动点P在线段OB上,作PQ⊥OD交OD于点Q.当△PDQ与△CDE相似时,求OQ的值.QD答案和解析1.【答案】C【解析】解:∵点P在⊙O上,∴OP=4cm.故选:C.根据点在圆上,点到圆心的距离等于圆的半径求解.本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.【答案】B【解析】解:∵抛物线y=2x2−4x+3,=1,∴该抛物线的对称轴是直线x=−−42×2故选:B.求得即可.根据抛物线的对称轴是直线x=−b2a本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.【答案】C【解析】解:∵口袋里装有2个白球,3个红球,∴口袋里共有8个球,∴摸出白球的概率是2;5故选:C.让白球的个数除以球的总个数即为所求的概率.此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n4.【答案】A【解析】解:由题意得:OC⊥AB,∴AC=BC=12AB=4,∴OC=√OA2−AC2=√52−42=3,故选:A.由题意得:OC⊥AB,再由垂径定理得AC=BC=12AB=4,然后由勾股定理得OC=3即可.本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理是解题的关键.5.【答案】B【解析】解:将抛物线y=−2x2向右平移1个单位,得到的抛物线表达式为:y=−2(x−1)2.故选:B.可根据二次函数图象左加右减,上加下减的平移规律进行解答.主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6.【答案】D【解析】解:∵∠C=90°,AB=13,BC=5,∴AC=√AB2−CB2=12,∴cosA=ACAB =1213,故选:D.先根据勾股定理计算出AC,再根据余弦定义计算出cos A的值即可.此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.7.【答案】C【解析】解:在Rt△ABC中,由勾股定理得:AB=√AC2+BC2=√82+62=10,∵D是斜边AB的中点,∴AD=12AB=5,∵DE⊥AB,∴∠ADE=90°,∴△ADE∽△ACB,∴DECB =ADAC,∴DE6=58,∴DE154,故选:C.在Rt△ABC中,由勾股定理得:AB=10,则AD=5,再利用△ADE∽△ACB,对应边成比例即可.本题主要考查了勾股定理,相似三角形的判定与性质,得出△ADE∽△ACB是解题的关键.8.【答案】A【解析】解:连接OA,∵AB切⊙O于点A,∴∠OAB=90°,∵∠B=40°,∴∠AOB=90°−40°=50°,∴∠AOC=180°−∠AOB=130°,∵⊙O的半径长为3,∴AC⏜的长为130⋅π×3180=136π,故选:A.连接OA,根据切线的性质得到∠OAB=90°,根据直角三角形的性质得到∠AOB=90°−40°=50°,根据弧长公式计算即可.本题考查了切线的性质,直角三角形的性质,弧长的计算,正确的作出辅助线构造直角三角形是解题的关键.9.【答案】D【解析】解:∵−x2+bx=m的两个根分别是x1=−23,x2=83,∴y=−x2+bx的对称轴为x=−23+832=1,∴y=−x2+bx+m的对称轴为x=1,∵|1−1|<|1−2|<|1−(−2)|,∴y1<y3<y2,故选:D.先求出抛物线的对称轴,然后根据离对称轴越远函数值越小即可得出答案.本题考查了二次函数的对称轴和增减性,关键是求出函数的对称轴.10.【答案】D【解析】解:连接AG,过点D作DT⊥AB于T,过点G作GN⊥AB于N,交CD于M.在Rt△ADT中,AD=2,∠DAT=60°,∴AT=AD⋅cos60°=1,DT=√3AT=√3,∵DG⏜=GE⏜,∴∠DAG=∠GAB=30°,在Rt△AGN中,GN=12AG=1,AN=√3GN=√3,∵四边形ABCD是平行四边形,∴AB//CD,∵DT⊥AB,∴DT⊥CD,∴∠DTN=∠MNT=∠TDM=90°,∴DT=MN=√3,DM=TN=AN−AT=√3−1,∴GM=MN−GN=√3−1,∵AD//FG,∴∠ADF+∠DFG=180°,∵∠ADC=180°−∠DAB=120°,∴∠GFM=60°,∴FM=√3=1−√33,∴FG=FG′=2FM=2−2√33,∵∠C=∠DAB=60°,∴CF=FG′sin60∘=2−2√33√32=4√33−43,∴AB=CD=DM+FM+CF=√3−1+1−√33+4√33−43=2√3−43,故选:D.连接AG,过点D作DT⊥AB于T,过点G作GN⊥AB于N,交CD于M.想办法求出DM,FM,CF,可得结论.本题考查圆周角定理,平行四边形的性质,解直角三角形等知识,解题的关键是熟练掌握圆周角定理解决问题,属于中考常考题型.11.【答案】2.5【解析】解:∵ab =32∴a+bb =ab+1=32+1=2.5.故答案为2.5.a+b b =ab+bb=ab+1;因为ab=32,直接代入计算.解答本题不仅要会通分,还要将ab当做一个整体看待.12.【答案】(0,3)【解析】解:当x=0时,y=x2−2x+3=3,则抛物线与y轴的交点坐标为(0,3).故答案为(0,3).计算自变量对应的函数值即可得到抛物线与y轴的交点坐标.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.13.【答案】15π【解析】解:扇形的面积=150π×62360=15π,故答案为:15π.把已知数据代入扇形面积公式计算,得到答案.本题考查的是扇形面积计算,掌握扇形面积公式:S=nπR2360是解题的关键.14.【答案】7.5【解析】解:∵CD//AB,∴△CDE∽△ABE,∠D=∠ABE,∴CDAB =CEAE=32,∵AB=2,AE=1,∴CD=3,CE=1.5,∵BE是△ABC的角平分线,∴∠ABE=∠DBC,∴∠DBC=∠D,∴BC=CD=3,∴△ABC的周长为AB+BC+AC=AB+CD+AE+CE=2+3+1+1.5=7.5故答案为:7.5.根据CD//AB,△CDE∽△ABE,∠D=∠ABE,得CDAB =CEAE=32,求出CD和CE的长,再由角平分线,可证得BC=CD,即可解决问题.本题主要考查了相似三角形的判定与性质,角平分线的定义等知识,证明出BC=CD是解题的关键.15.【答案】173【解析】解:设圆的半径为r(cm),如图,连接OC、OE,作CF⊥OE,垂足为F.则OF=(r−3)(cm),CF=BE=8−3=5(cm),在Rt△COF中,r2=(r−3)2+52.解得:r=173cm.即该圆的半径为173.故答案为:173设圆的半径为r(cm),连接OC、OE,作CF⊥OE,垂足为F,利用勾股定理,在Rt△COF 中,得到r2=(r−3)2+52,求出r即可.本题考查的是切线的性质,正方形的性质,根据切线的性质,利用图形得到直角三角形,然后用勾股定理计算求出圆的半径.16.【答案】2√3−113−4√34【解析】解:如图1中,过点E作EJ⊥AC于J,过点D作DK⊥EJ于K,过点Q作QM⊥EJ 于M,过点P作PN⊥QM于N,则四边形PNMJ是矩形,四边形DKJC是矩形,设PQ=m.∵∠DEF=∠EDC=120°,∠EDP=75°,∴∠PDC=45°,∵∠DCP=90°,∴∠CDP=∠CPD=45°,∴CP=CD=2,∵PQ⊥EF,∴∠PQE=90°,∴∠DPQ=360°−75°−120°−90°=75°,∵∠DPN=45°,∴∠QPN=30°,∴NQ=12m,PN=MJ=√32m,在Rt△DEM中,∠EDM=30°,DE=2,∴EK=1,∵EM+PN=3,∴PN=√32m,∵DK=CJ=√3,∴MN=PJ=2−√3,∴QM=12m+2−√3,∵∠EQM=30°,∴EM=√33QM=√33(12m+2−√3),∴3=√33(12m+2−√3)+√32m,∴m=2√3−1,∴PQ=2√3−1,如图2中,过点G作GH⊥PQ于H.∵QG//DE,∴∠QGP=∠EDP=75°,∵∠QPG=75°,∴∠QGP=∠QPG,∴GQ=QP,∠GQP=30°,∴GH=12QG=2√3−12,∴S△PQG=12⋅PQ⋅GH=12×(2√3−1)×2√3−12=13−4√34.故答案为:2√3−1,13−4√34.如图1中,过点E作EJ⊥AC于J,过点D作DK⊥EJ于K,过点Q作QM⊥EJ于M,过点P作PN⊥QM于N,则四边形PNMJ是矩形,四边形DKJC是矩形,设PQ=m.用两种方法求出EJ,构建方程求出m,即可解决问题.本题考查正多边形与圆,解直角三角形,平行线的性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)原式=12−3×1+√3×√32=−1;(2)设二次函数的表达式为:y=a(x−2)2+3,把(3,1)代入表达式得:1=a(3−2)2+3,解得:a=−4,∴y=−4(x−2)2+3(或y=−4x2+16x−13).【解析】(1)将特殊角的三角函数值代入求解即可;(2)根据顶点坐标设二次函数的解析式为y=a(x−2)2+3,将B(3,−1)代入解析式,求出a即可.本题考查了用待定系数法求二次函数的解析式,能正确设出解析式是解此题的关键;也考查了特殊角的三角函数值.18.【答案】(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠DCF+∠CFD=90°,∵∠CFE=90°,∴∠AFE+∠CFD=90°,∴∠DCF=∠AFE,在△AEF和△DFC中,{∠A=∠D∠AFE=∠DCF EF=FC,∴△AEF≌△DFC(AAS);(2)解:∵△AEF≌△DFC,∴CD=AF=3,AE=DF=2,∵四边形ABCD是矩形,∴BC=AD=5,AB=CD=3,∴BE=1,∴tan∠BCE=BEBC =15.【解析】(1)由“AAS”可证△AEF≌△DFC;(2)由全等三角形的性质可得CD=AF=3,AE=DF=2,可求BC=AD=5,BE=1,即可求解.本题考查了矩形的性质,全等三角形的判定和性质,直角三角形的性质,锐角三角函数,证明△AEF≌△DFC是解题的关键.19.【答案】解:(1)如图,△CDE,△CDE′,△CDE″即为所求作.(2)如图,△BDF,△BDF′即为所求作.【解析】(1)根据相似三角形的判定画出图形即可.(2)利用等腰三角形的性质画出图形即可.本题考查作图−位似变换,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:(1)设“有害垃圾”卡片有x张,由题意得2030+22+20+x =15,∴x=28答:“有害垃圾”卡片有28张;(2)画树状图如图:共有12个等可能的结果,小聪和小明取到的卡片恰好都是“可回收物”卡片的结果有2个,∴小聪和小明两人取到的卡片恰好都是“可回收物”卡片的概率为212=16.【解析】(1)设“有害垃圾”卡片有x张,由概率公式得出方程,解方程即可;(2)画树状图,共有12个等可能的结果,小聪和小明取到的卡片恰好都是“可回收物”卡片的结果有2个,再由概率公式求解即可.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)由抛物线的表达式得C(1,4),∵CD⊥y轴,∴CD=1,∵四边形AOCD是平行四边形,∴OA=CD=1,∴A(−1,0),把(−1,0)代入y=a(x−1)2+4,∴a=−1;(2)由(1)得(1)y=−(x−1)2+4,令x=0,得y=3,∴B(0,3),∵抛物线的对称轴x=1,BE//x轴,∴BE=2,由△OBF∽△ODC,得BFCD =OBOD=34,∴BF=34CD=34,∴EF=54.【解析】(1)首先确定顶点坐标C(1,4),再根据CD⊥y轴得到CD=1,进一步利用四边形AOCD是平行四边形得到OA=CD=1,从而确定A(−1,0),最后把(−1,0)代入y= a(x−1)2+4求得a=−1;(2)根据(1)求得的解析式确定与y轴交于B(0,3),根据抛物线的对称轴x=1,BE//x轴,BE=2,最后由△OBF∽△ODC求得EF的长.考查了二次函数的性质、相似三角形的判定与性质及平行四边形的知识,解题的关键是能够将平面直角坐标系和平面图形有机的结合起来,难度不大.22.【答案】(1)证明:连接BD.∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC,∵AD垂直平分BE,∴BD=DE,∴∠ADB=∠ADE,∵∠ADB=∠ACB,∴∠ABC=∠ACB,∴AB=AC.(2)连接AE,作AF⊥BC点F,CH⊥AE点H,∴∠AFC=∠AHC=90°,∵AE//BC,∴∠FAE=90°,∴四边形AFCH为矩形,∴AH=CF,CH=AF,∵AB=AC=3,BC=2,∴AH=CF=1,∴CH=AF=√32−12=2√2,∵AD垂直平分BE,∴AE=AB=3,∴HE=AE−AH=3−1=2,∴CE=√22+(2√2)2=2√3.【解析】(1)欲证明AB=AC,只要证明∠ABC=∠ACB即可.(2)连接AE,作AF⊥BC点F,CH⊥AE点H,求出EH,CH,利用勾股定理求出EC即可.本题考查圆周角定理,线段垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.23.【答案】解:(1)由题意得:y=600+50(100−x)=−50x+5600(82≤x≤100);(2)W=(−50x+5600)(x−70)=−50(x−91)2+22050,∵a=−50<0,82≤x≤100,∴当x=91时,W最大,最大值为22050元,答:该灯具的销售单价定为91元时,该照明公司获得的日销售利润W最大,最大利润为22050元;(3)W=(−50x+5600)(x−70−m)=−50x2+(9100+50m)x−392000−5600m,对称轴为直线x=−9100+50m2×(−50)=91+m2,∵m>0,∴对称轴x=91+m2>91,又∵a=−50<0,82≤x≤100,∴当x=82时,W最小,为15000元,将x=82代入得:(−50×82+5600)(82−70−m)=15000,∴m=2.【解析】(1)根据当销售单价为100元/套时,日均销量为600套;销售单价每降低1元,则日均销量增加50套,直接写出函数关系式;(2)由总利润=销售量⋅每件纯赚利润,得W=(−50x+5600)(x−70),把函数转化成顶点坐标式,根据二次函数的性质以及自变量的取值范围求出最大利润;(3)由总利润=销售量⋅每件纯赚利润W=(−50x+5600)(x−70−m),然后求出对称轴,根据二次函数的性质求自变量在给定范围内的函数最值.本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解.24.【答案】解:(1)∵AC⊥x轴,BD⊥x轴,∴AC//BD,∵CD//EB,∴四边形BDCE是平行四边形,∴DB =AE ,∴AE =CE ,∵OA =2,∴A(2,0),当x =2时,y =−x 2+4x =−22+4×2=4,∴C(2,4),∴AC =4,AE =2,DB =AE =2,令y =2,得−x 2+4x =2,解得:x 1=2−√2(舍去),x 2=2+√2, ∴D(2+√2,2),B(2+√2,0), ∴AB =2+√2−2=√2;(2)设OA =t ,则OB =2t ,∴C(t,−t 2+4t),D(2t,−4t 2+8t),∵DB =AE =CE ,∴−t 2+4t =2(−4t 2+8t),∴t 1=127,t 2=0(不符合题意,舍去),∴−4t 2+8t =−4×(127)2+8×127=9649,∴E(127,9649);(3)如图,连接OD ,PD ,过点P 作PQ ⊥OD 于点Q ,在(2)的条件下:C(127,19249),D(247,9649),①若△PQD∽△DEC ,则PQ QD =DE CE =127:9649=78,而tan∠DOB =PQ OQ =BD OB =9649:247=47,∴OQ QD =PQ QD :PQ OQ =78:47=4932;②若△PQD∽△CED ,则PQ QD =CE ED =9649:127=87,而PQ OQ =47,∴OQ QD =PQ QD :PQ OQ =87:47=2,综上所述,OQ QD 的值为4932或2.【解析】(1)先证明四边形BDCE 是平行四边形,得出A(2,0),将x =2代入y =−x 2+4x ,得C(2,4),根据DB =AE =2,建立方程求解即可;(2)设OA =t ,则OB =2t ,可得C(t,−t 2+4t),D(2t,−4t 2+8t),由DB =AE =CE ,建立方程求解,可得出答案;(3)如图,连接OD ,PD ,过点P 作PQ ⊥OD 于点Q ,分两种情况进行讨论:①若△PQD∽△DEC ,②若△PQD∽△CED ,即可得出答案.本题是二次函数综合题,考查了中点定义,平行四边形的判定与性质,相似三角形的判定和性质等,熟练掌握相似三角形的判定和性质,解一元二次方程等相关知识,运用方程思想和分类讨论思想是解题关键.。
浙江省温州市2020年九年级上学期期末数学试卷(I)卷
浙江省温州市2020年九年级上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2012·徐州) 2011年徐州市接待国内外旅游人数约为24 800 000人次,该数据用科学记数法表示为()A . 2.48×107B . 2.48×106C . 0.248×108D . 248×1052. (2分)给出四个数0,,,﹣1,其中最小的是()A . 0B .C .D . -13. (2分)设是三个互不相同的正数,如果,那么()A .B .C .D .4. (2分) 1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是()A . 80米B . 85米C . 120米D . 125米5. (2分)如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果, AC=6,那么AE的长为()A . 3B . 4C . 9D . 126. (2分)“下滑数”是一个数中右边数字比左边数字小的自然数(如:32,641,8531等),任取一个两位数,是“下滑数”的概率是()A .B .C .D .7. (2分) (2016九上·萧山月考) 已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y3<y18. (2分)(2012·海南) 如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A . 1B .C .D .9. (2分) (2019·天府新模拟) 二次函数()的图象如图所示,对称轴为,给出下列结论:① ;② ;③ ;④ .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个10. (2分) (2016七上·南京期末) 一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:()会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A . 购买A类会员年卡B . 购买B类会员年卡C . 购买C类会员年卡D . 不购买会员年卡二、填空题 (共6题;共7分)11. (1分)(2017·南开模拟) 分解因式:ab3﹣4ab=________.12. (1分)在二次函数y=ax2+bx+c的图象如图所示,下列说法中:①b2﹣4ac<0;②>0;③abc>0;④a﹣b﹣c>0,说法正确的是________ (填序号).13. (2分)在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研究恰好抽到的数字小于5的牌的概率,若用计算机模拟实验,则要在________的范围中产生随机数,若产生的随机数是________,则代表“出现小于5”,否则就不是.14. (1分) (2015九上·临沭竞赛) 如图,⊙O的半径为4,OA=8,AB切⊙O于B,弦BC∥OA,连接AC,则图中阴影部分的面积为________.15. (1分)如图,为测量小区内池塘最宽处A、B两点间的距离,在池塘边定一点C,使∠BAC=90°,并测得AC的长18m,BC的长为30m,则最宽处AB的距离为________.16. (1分)(2018·广水模拟) 如图所示,线段AB与CD都是⊙O中的弦,其中弧AB=108°,AB=a,弧CD =36°,CD=b,则⊙O的半径R=________三、解答题 (共13题;共119分)17. (5分) (2019八上·惠来期中) 计算:18. (10分) (2019八上·同安月考)(1)先化简,再求值:,其中,;(2)若,求的值.19. (5分) (2017九上·河东开学考) 如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.20. (10分)梅沙海滨公园沙滩的某一段可近似看成是一条直线段。
【精选3份合集】2019-2020学年温州市九年级统考数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小. 22,A B s s > 数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125°,则∠DBC 的度数为( )A .125°B .75°C .65°D .55°【答案】D 【解析】延长CB ,根据平行线的性质求得∠1的度数,则∠DBC 即可求得.【详解】延长CB ,延长CB ,∵AD ∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A.3:4 B.9:16 C.9:1 D.3:1【答案】B【解析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.4.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③【答案】B【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.5.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【答案】D【解析】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-【答案】B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC【答案】D【解析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=CDBC,故A正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )A.3或B.3或C.或1D.1或【答案】C【解析】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:或(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:或(舍).综上,h的值为或,故选C.点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.9.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.2 【答案】A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.10.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C【答案】C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.二、填空题(本题包括8个小题)11.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n层有a n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有a n个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴a n=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n=2n﹣2”是解题的关键.CE=,F为DE的12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5∆的周长为18,则OF的长为________.中点.若CEF【答案】72【解析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD 是正方形,∴BO DO =,BC CD =,90BCD ︒∠=.在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =,∴18513CF EF +=-=,∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得12DC ==,∴12BC =,∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点,又∵OF 为BDE ∆的中位线, ∴1722OF BE ==. 故答案为:72. 【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.13.函数y=13x -x 的取值范围是_____. 【答案】x≥1且x≠3【解析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.14.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.【答案】-2【解析】试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.考点:一次函数图象与系数的关系.15.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.【答案】﹣1【解析】根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.计算:﹣1﹣2=_____.【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.17.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB 的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.【答案】π﹣1【解析】根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC2=2,∴CD=OD=1,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=24522360π()﹣12×11=π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.18.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.三、解答题(本题包括8个小题)19.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【答案】 (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 20.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息: 型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A 型号客车x 辆,租车总费用为y 元.求y 与x 的函数解析式,请直接写出x 的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?【答案】 (1) 21≤x≤62且x 为整数;(2)共有25种租车方案,当租用A 型号客车21辆,B 型号客车41辆时,租金最少,为19460元.【解析】(1)根据租车总费用=A 、B 两种车的费用之和,列出函数关系式,再根据AB 两种车至少要能坐1441人即可得取x 的取值范围;(2)由总费用不超过21940元可得关于x 的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y =380x +280(62-x)=100x +17360,∵30x +20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x 为整数;(2)由题意得100x +17360≤21940,解得x≤45.8,∴21≤x≤45且x 为整数,∴共有25种租车方案,∵k =100>0,∴y 随x 的增大而增大,当x =21时,y 有最小值, y 最小=100×21+17360=19460,故共有25种租车方案,当租用A 型号客车21辆,B 型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.21.先化简,再计算: 22444332x x x x x x x ++--÷++-其中3x =-+.【答案】23x -+;2- 【解析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可. 【详解】解:22444332x x x x x x x ++--÷++- =2(2)(2)(2)332x x x x x x x ++--÷++- =2(2)233(2)(2)x x x x x x x +--⋅+++- =233x x x x +-++ =23x -+当3x =-+时,原式=2=-. 【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.22.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣12x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.【答案】(3)3,2,C(﹣2,4);(2)y=﹣18m2+12m ,PQ与OQ的比值的最大值为12;(3)S△PBA=3.【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到PQ ED OQ OD=,设点P坐标为(m,-12m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用PE QDOE OD=即可求解.(3)求得P点坐标,利用图形割补法求解即可.【详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣12×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣12x2+x+2.令﹣12x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣12m2+m+2),Q(n,﹣n+2),则PE=﹣1 2 m2+m+2,QD=﹣n+2.又∵PQ m nOQ n-==y.∴n=1my+.又∵PE OEQD OD=,即24124mmnmn=-+++把n=1my+代入上式得,2412411mm mym my++=++-+整理得,2y=﹣12m2+2m.∴y=﹣12m2+12m.y max=210()121248-=⎛⎫⨯ ⎪⎝⎭.即PQ与OQ的比值的最大值为12.(3)如图2,∵∠OBA =∠OBP+∠PBA =25°∠PBA+∠CBO =25°∴∠OBP =∠CBO此时PB 过点(2,4).设直线PB 解析式为,y =kx+2.把点(2,4)代入上式得,4=2k+2.解得,k =﹣2∴直线PB 解析式为,y =﹣2x+2.令﹣2x+2=﹣12x 2+x+2 整理得,12x 2﹣3x =4. 解得,x =4(舍去)或x =5. 当x =5时,﹣2x+2=﹣2×5+2=﹣7∴P (5,﹣7).过P 作PH ⊥cy 轴于点H .则S 四边形OHPA =12(OA+PH )•OH =12(2+5)×7=24. S △OAB =12OA•OB =12×2×2=7. S △BHP =12PH•BH =12×5×3=35. ∴S △PBA =S 四边形OHPA +S △OAB ﹣S △BHP =24+7﹣35=3.【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.23.如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).【答案】(1)135BAD ∠=︒;(2)21ABC ADC ABCD S S S ∆∆+=+=四边形【解析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.【详解】解:(1)连接AC,如图所示:∵AB=BC=1,∠B=90°∴AC=22112+=,又∵AD=1,DC=3,∴ AD2+AC2=3 CD2=(3)2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×12+1×2×12=122+.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.【答案】见解析【解析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.25.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣mx>0的解集.【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140 k bk b+=⎧⎨+=⎩,解得:10100 kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵为了让顾客得到更大的实惠,∴x=9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm【答案】D 【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,22224845BE EC +=+= ∵OF ⊥BC ,∴∠OFC=∠CEB=90°. ∵∠C=∠C ,∴△OFC ∽△BEC , ∴OF OC BE BC=,即445OF = 解得:5故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.2.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小【答案】B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.3.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个【答案】B【解析】先解每一个不等式,求出不等式组的解集,再求整数解即可.【详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.4.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6 【答案】B【解析】作BD⊥x轴于D,CE⊥x轴于E,。
浙江省温州市2020年九年级上学期数学期末考试试卷(I)卷
浙江省温州市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一元二次方程(x+6)2=16可化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A . x-6=4B . x-6=-4C . x+6=4D . x+6=-42. (2分) (2019九上·伊通期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ax >0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正确的个数是()A . 2个B . 3个C . 4个D . 5个3. (2分)(2019·巴中) 在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A . (﹣4,﹣3)B . (4,3)C . (4,﹣3)D . (﹣4,3)4. (2分) (2016九上·温州期末) 如图,在等边△ABC中,BC=2,⊙A与BC相切于点D,且与AB,AC分别交于点E,F,则的长是()A .B .C .D . π5. (2分) (2019九下·佛山模拟) 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A .B .C .D .6. (2分)在同一直线坐标系中,若正比例函数y=k1x的图像与反比例函数y=的图像没有公共点,则()A . k1+k2<0B . k1+k2>0C . k1k2<0D . k1k2>07. (2分) (2018九上·义乌期中) 如图,要使△ACD∽△ABC,需要补充的一个条件是()A .B .C .D .8. (2分)(2017·绍兴) 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()A . 0.7米B . 1.5米C . 2.2米D . 2.4米9. (2分) (2018八上·河口期中) 如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG= GC;③BE+DF=EF;④S△CEF=2S△ABE ,其中正确的个数为()A . 1B . 2C . 3D . 410. (2分) (2019九上·灌阳期中) 如图,点B是反比例函数图象上的一点,矩形OABC的周长是20,正方形OCDF与正方形BCGH的面积之和为68,则的值为()A . 8B . -8C . 16D . -16二、填空题 (共5题;共5分)11. (1分) (2018九上·广州期中) 已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12. (1分)下列函数(其中n为常数,且n>1)① y=(x>0);② y=(n﹣1)x;③ y=(x>0);④ y=(1﹣n)x+1;⑤ y=﹣x2+2nx(x<0)中,y 的值随 x 的值增大而增大的函数有________个.13. (1分)(2019·曲靖模拟) 如图,反比例函数图象经过点A,过点A作AB⊥x轴,垂足为B,若△OAB的面积为3,则该反比例函数的解析式是________.14. (1分)(2018·淅川模拟) 如图,在扇形OAB中,C是OA的中点,,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若,,则图中阴影部分的面积为________ 结果保留15. (1分)(2017·哈尔滨) 如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为________.三、解答题 (共8题;共76分)16. (20分)先化简,再求值:,其中a是方程x2+x=6的一个根.17. (6分)(2018·滨州模拟) 如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.18. (10分) (2015九上·房山期末) 如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣ x+n同时经过A(0,3)、B(4,0).(1)求m,n的值.(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.19. (2分) (2017八下·邗江期中) 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.20. (2分)荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车载鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.21. (10分)(2017·莒县模拟) 如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)22. (11分) (2018九上·安定期末) 如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.23. (15分) (2019九下·东台月考) 已知抛物线与x轴交于A、B两点点A在点B 的左侧 .(1)当时,抛物线与y轴交于点C.直接写出点A、B、C的坐标;如图1,连接AC,在x轴上方的抛物线上有一点D,若,求点D的坐标;如图2,点P为抛物线位于第一象限图象上一动点,过P作,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作轴,垂足为N,直线MN上有一点H,满足与互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共76分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-2、。
浙江省温州市2020届九年级上学期数学期末模拟试卷及参考答案
浙江省温州市2020届九年级上学期数学期末模拟试卷一、单选题1. 已知 = ,则下列结论一定正确的是( ) A . x=2,y=3 B . 2x=3y C .D . 2. 已知⊙O 的半径为6,点P 到圆心O 的距离为4,则点P 在( )A . ⊙O 内B . ⊙O 外C . ⊙O 上D . 无法确定3. 二次函数y=x ﹣2x ﹣3图象与y 轴的交点坐标是( )A . (0,1)B . (1,0)C . (-3,0)D . (0,-3)4. 如图,某人从点A 出发,前进8m 后向右转60°,再前进8m 后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A 时,共走了( )A . 24mB . 32mC . 40mD . 48m5. 在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球400次,其中100次摸到黑球,请估计盒子中白球的个数是( )A . 10个B . 15个C . 20个 D . 25个6. 已知二次函数,当 时,函数 的最小值为( )A . 3B . 2.4C . 1D . 197. 如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A . 35°B . 45°C . 55°D . 75°8. 如图,一电线杆AB 的影子分别落在地上和墙上,某一时刻,小明竖起1m高的直杆,量得其影长为0.5m ,此时,他又量得电线杆AB 落在地上的影子BD 长3m ,落在墙上的影子CD 的高为2m ,小明用这些数据很快算出了电线杆AB 的高,请你计算,电线杆AB 的高为( )A . 5mB . 6mC . 7mD . 8m9. 对于二次函数y=(x-1)+2的图象,下列说法正确的是( )A . 开口向下B . 对称轴是x=-1C . 顶点坐标是(1,2) D . 与x 轴有两个交点10. 如图,AB 是⊙o 直径,M ,N 是 上两点,C 是 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )22A .B .C .D .二、填空题11. 一个不透明的袋子中有2个白球和3个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是________.12. 已知扇形的圆心角为120°,面积为12π,则扇形的半径是________.13. 如图,已知AB ∥CD∥EF ,AD ∶AF =3∶5,BE =12,那么CE 的长等于________.14. 将抛物线 向上平移 个单位,得到的抛物线的解析式为________.15. 如图,A 是⊙O 上一点,BC 是直径,AC =2,AB =4,点D 在⊙O 上且平分 ,则DC 的长为________.16. 如图,直线y =kx +b 交坐标轴于A 、B 两点,交抛物线y =ax 于点C(4,3),且C 是线段AB 的中点,抛物线上另有位于第一象限内的一点P ,过P 的直线y =k′x +b′交坐标轴于D 、E 两点,且P 恰好是线段DE 的中点,若△AOB ∽△DOE ,则P 点的坐标是________.三、综合题17. 如图所示,△ABC 的各顶点都在8×8的网格中的格点(即各个小正方形的顶点)上.(1) 将线段BC 绕图中F 、G 、H 、M 、N 五个格点中的其中一个点可旋转到线段B C (点B 的对应点为B ).则旋转中心是点.(2) 将△ABC 绕点A 顺时针旋转90°得后到的△AB C .在图中画出△AB C .18. 已知二次函数y =ax +bx +c 中,函数值y 与自变量x 的部分对应值如下表:x...-101234...y (10)52125 (222211112)(1) 求该二次函数的表达式;(2) 当x 为何值时,y 有最小值,最小值是多少?19. 如图,已知△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,连结BD ,BC 平分∠ABD.(1) 求证:∠CAD =∠ABC ;(2) 若AD =6,求 的长.20. 在△ABC 中,AB=AC ,在BC 上取点E ,连结AE 并延长至点D ,使得∠D=∠C .(1) 求证:△ABE ∽△ADB .(2) 若DE=1,AE=5,求AC 的长.21. 已知,如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是 上一点,AG 与DC 的延长线交于点F .(1) 如CD=8,BE=2,求⊙O 的半径长;(2) 求证:∠FGC=∠AGD .22. 网络销售已经成为一种热门的销售方式为了减少农产品的库存,某市长亲自在某网络平台上进行直播销售板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg , 每日销售量y (kg )与销售单价x (元/kg )满足关系式:y =﹣100x +5000.经销售发现,销售单价不低于成本价格且不高于30元/kg . 当每日销售量不低于4000kg 时,每千克成本将降低1元.设板栗公司销售该板栗的日获利为W (元).(1) 请求出日获利W 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?23. 如图,在平面直角坐标系中,二次函数y=x +bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C(0,-3),A 点的坐标为(-1,0)。
┃精选3套试卷┃2020届温州市九年级上学期数学期末统考试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知2a =3b (b≠0),则下列比例式成立的是( )A .2a =3bB .32a b =C .23a b =D .32a b= 【答案】B【分析】根据等式的性质,可得答案.【详解】解:A 、等式的左边除以4,右边除以9,故A 错误;B 、等式的两边都除以6,故B 正确;C 、等式的左边除以2b ,右边除以92b ,故C 错误; D 、等式的左边除以4,右边除以b 2,故D 错误;故选:B .【点睛】本题考查了比例的性质,利用了等式的性质2:等式的两边都乘以或除以同一个不为零的数或整式,结果不变.2.在平面直角坐标系中,将抛物线253y x =-+向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为( )A .()2514y x =-++B .()2512y x =-++C .()2512y x =--+D .()2514y x =--+ 【答案】B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【详解】将抛物线253y x =-+向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为: ()2513-1=y x =-++()2512x -++故选:B【点睛】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函数平移时必须化成顶点式. 3.如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的度数为( )A .40°B .50°C .80°D .100°【答案】B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC =2∠A ,进而可得答案.【详解】解:∵⊙O 是△ABC 的外接圆,∠BOC =100°,∴∠A =12∠BOC =50°. 故选:B .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.给出下列一组数:227,0.3••010010001, 3.14π-,其中无理数的个数为( ) A .0B .1C .2D .3 【答案】C【分析】直接利用无理数的定义分析得出答案.【详解】解:227,•0.3•010010001, 3.14π-,其中无理数为•010010001, 3.14π-,共2个数.故选C .【点睛】此题考查无理数,正确把握无理数的定义是解题关键. 5.若35a b =,则a b b-的值是( ) A .25 B .25- C .85 D .85- 【答案】B 【分析】解法一:将a b b-变形为1-a b ,代入数据即可得出答案. 解法二:设3a k =,5b k =,带入式子约分即可得出答案. 【详解】解法一:32=155--=-=-a b a b b b b 解法二:设3a k =,5b k = 则352=55--=-a b k k b k 故选B.【点睛】本题考查比例的性质,将比例式变形,或者设比例参数是解题的关键.6.在平面直角坐标系中,函数()()35y x x =+-的图象经过变换后得到()()53y x x =+-的图象,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位 【答案】A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】()()()2235215116y x x x x x =+-=--=--,顶点坐标为1,16,()()()2253215116y x x x x x =+-=+-=+-,顶点坐标为1,16,所以函数()()35y x x =+-的图象向左平移2个单位后得到()()53y x x =+-的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.7.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( ) A .24B .36C .40D .90 【答案】D【分析】设袋中有黑球x 个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x 个,由题意得:60x x+=0.6,解得:x=90, 经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D .【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.8.如图,四边形ABCD 是⊙O 的内接四边形,AB=AD ,若∠C=70º,则∠ABD 的度数是( )A .35ºB .55ºC .70ºD .110º【答案】A 【分析】由圆内接四边形的性质,得到∠BAD=110°,然后由等腰三角形的性质,即可求出∠ABD 的度数.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=70°,∴∠BAD=110°,∵AB=AD,∴1(180110)352ABD∠=⨯︒-︒=︒.故选:A.【点睛】本题考查了圆内接四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键是熟练掌握所学的性质,正确得到∠BAD=110°.9.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( ) A.B.C.D.【答案】D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.10.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B (0,3),对称轴是直线x= -1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>0【答案】D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x= -1,∴当x= -1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x= -1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.11.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.4【答案】C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,3,x ,1,1,2.已知这组数据的平均数是3, ∴x=3×2-4-4-3-1-1-2=3,∴这一组数从小到大排列为:3,4,4,3,1,1,2,∴这组数据的中位数是:3.故选:C .【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.12.如图,//DE BC ,则下列比例式错误的是( )A .AD DE BD BC =B .AD AE BD EC = C .AB AC BD EC = D .AD AE AB AC= 【答案】A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE ∥BC , ∴AD AE BD EC =,AB AC BD EC=,AD AE AB AC =, ∴A 错误;故选:A .【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.二、填空题(本题包括8个小题)13.二次函数2(12)12y x m x =-+-+,当2x >时,y 随x 的增大而减小,则m 的取值范围是__________.【答案】8m ≥【分析】先根据二次函数的解析式判断出函数的开口方向,再由当2x >时,函数值y 随x 的增大而减小可知二次函数的对称轴22b x a=-≤,故可得出关于m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数2(12)12y x m x =-+-+,a=−1<0,∴抛物线开口向下,∵当2x >时,函数值y 随x 的增大而减小, ∴二次函数的对称轴22b x a=-≤,即1222-≤m , 解得8m ≥,故答案为:8m ≥.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.14.一个半径为5cm 的球形容器内装有水,若水面所在圆的直径为8cm ,则容器内水的高度为_____cm .【答案】2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O 作OC ⊥AB 于C ,∴AC=BC=12AB=4cm . 在Rt △OCA 中,∵OA=5cm ,则OC 222254OA AC =-=-=3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC 交⊙O 于D ,容器内水的高度为CD=OD ﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO 交⊙O 于D ,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm 或1cm .故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.注意分类思想的应用.15.如图所示,点P 为MON ∠平分线OC 上一点,以点P 为顶点的APB ∠两边分别与射线OM ,ON 相交于点A ,B ,如果APB ∠在绕点P 旋转时始终满足2OA OB OP ⋅=,我们就把APB ∠叫做MON ∠的关联角.如果50MON ∠=︒,APB ∠是MON ∠的关联角,那么APB ∠的度数为______.【答案】155︒ 【分析】由已知条件得到=OB OP OP OA ,结合∠AOP=∠BOP ,可判定△AOP ∽△POB ,再根据相似三角形的性质得到∠OPA=∠OBP ,利用三角形内角和180°与等量代换即可求出∠APB 的度数.【详解】∵2OA OB OP ⋅=∴=OB OP OP OA∵OP 平分∠MON∴∠AOP=∠BOP∴△AOP ∽△POB∴∠OPA=∠OBP在△OBP 中,∠BOP=12∠MON=25° ∴∠OBP+∠OPB=18025=155︒-︒︒∴∠OPA+∠OPB=155°即∠APB=155°故答案为:155°.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解题的关键.16.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC 的长为______.【答案】2【分析】连接OC ,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB 是等边三角形,从而得结论.【详解】连接OC ,∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCP=90°,∵3OC=2,∴22OC PC +222(23)+=4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB 是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.若1x 、2x 为关于x 的方程220x mx m ++=(m≠0)的两个实数根,则1211+x x 的值为________. 【答案】-2 【分析】根据根与系数的关系12b x x a +=-,12c x x a=,代入化简后的式子计算即可. 【详解】∵122x x m +=-,12x x m =, ∴1212121122x x m x x x x m+-+===-, 故答案为:2-【点睛】本题主要考查一元二次方程ax 2+bx+c=0的根与系数关系,熟记:两根之和是b a -,两根之积是c a,是解题的关键.18.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.【答案】20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.三、解答题(本题包括8个小题)19.小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).【答案】1838-.【分析】连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N,将实际问题中的已知量转化为直角三角形中的有关量,设PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.【详解】解:连结PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N则∠APM=45°,∠BPM=60°,NM=10米设PM=x在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(-10)tan60°=(-10)3(米^由AM+BN=46米,得x+(x-346解得,10313+1838∴点P到AD的距离为1838 米【点睛】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.20.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图法或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【答案】(1)P(小颖去)=14;(2)不公平,见解析.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P (小颖)=,P (小亮)=.∴P (和小于4)≠P (和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.21.如图,直线AB 与x 轴交于点(2,0)A -,与反比例函数第一象限内的图象交于点(2,)B m ,连接OB ,若4ABO S ∆=.(1)求直线AB 的表达式和反比例函数的表达式;(2)若直线AB 与y 轴的交点为C ,求OCB ∆的面积.【答案】(1)2y x =+,8y x=;(1)1 【分析】(1)先由S △AOB =4,求得点B 的坐标是(1,4),把点B (1,4)代入反比例函数的解析式为k y x =,可得反比例函数的解析式为:8y x =;再把A (-1,0)、B (1,4)代入直线AB 的解析式为y=ax+b 可得直线AB 的解析式为y=x+1.(1)把x=0代入直线AB 的解析式y=x+1得y=1,即OC=1,可得S △OCB =12OC×1=12×1×1=1. 【详解】解:(1)由A (-1,0),得OA=1;∵点B (1,m )在第一象限内,S △AOB =4, ∴12OA•m=4; ∴m=4;∴点B 的坐标是(1,4); 设该反比例函数的解析式为k y x =(k≠0), 将点B 的坐标代入,得42k =, ∴k=8;∴反比例函数的解析式为:8y x =; 设直线AB 的解析式为y=ax+b (k≠0),将点A ,B 的坐标分别代入,得2024a b a b -+=⎧⎨+=⎩, 解得:12a b =⎧⎨=⎩; ∴直线AB 的表达式是2y x =+;(1)在y=x+1中,令x=0,得y=1.∴点C 的坐标是(0,1),∴OC=1;∴S △OCB =12OC×1=12×1×1=1. 【点睛】本题考查反比例函数和一次函数解析式的确定、图形的面积求法等知识及综合应用知识、解决问题的能力.此题有点难度.22.如图,在等腰Rt △ABC 中,∠ACB =90°,AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接PA ,以P 为旋转中心,将线段PA 顺时针旋转90°,得到线段PD ,连接DB .(1)请在图中补全图形;(2)∠DBA 的度数.【答案】(1)见解析;(2)90°【分析】(1)依题意画出图形,如图所示;(2)先判断出∠BPD =∠EPA ,从而得出△PDB ≌△PAE ,简单计算即可.【详解】解:(1)依题意补全图形,如图所示,(2)过点P 作PE ∥AC ,∴∠PEB =∠CAB ,∵AB =BC ,∴∠CBA =∠CAB ,∴∠PEB =∠PBE ,∴PB =PE ,∵∠BPD+∠DPE =∠EPA+∠DPE =90°,∴∠BPD =∠EPA ,∵PA =PD ,∴△PDB ≌△PAE (SAS ),∵∠PBA =∠PEB =12(180°﹣90°)=45°, ∴∠PBD =∠PEA =180°﹣∠PEB =135°,∴∠DBA =∠PBD ﹣∠PBA =90°.【点睛】本题考查了作图-旋转变换,全等三角形的性质和判定,判断PDB PAE ∆≅∆是解本题的关键,也是难点. 23.在平面直角坐标系中,抛物线y =﹣4x 2﹣8mx ﹣m 2+2m 的顶点p .(1)点p 的坐标为 (含m 的式子表示)(2)当﹣1≤x≤1时,y 的最大值为5,则m 的值为多少;(3)若抛物线与x 轴(不包括x 轴上的点)所围成的封闭区域只含有1个整数点,求m 的取值范围. 【答案】(1)()2,32-+m m m ;(2)m =1或9或﹣3;(3)331-+≤≤-m 或525519-<m 【分析】(1)函数的对称为:x =﹣m ,顶点p 的坐标为:(﹣m ,3m 2+2m ),即可求解;(2)分m ≤﹣1、m ≥1、﹣1<m <1,三种情况,分别求解即可;(3)由题意得:3m 2+2m ≤1,即可求解.【详解】解:(1)函数的对称为:x =﹣m ,顶点p 的坐标为:(﹣m ,3m 2+2m ),故答案为:(﹣m ,3m 2+2m );(2)①当m≤﹣1时,x =1时,y =5,即5=﹣4﹣8m ﹣m 2+2m ,解得:m =﹣3;②当m≥1时,x =﹣1,y =5,解得:m =1或9;③﹣1<m <1时,同理可得:m =1或﹣53(舍去); 故m =1或9或﹣3;(3)函数的表达式为:y =﹣4x 2﹣8mx ﹣m 2+2m ,当x =1时,y =﹣m 2﹣6m ﹣4,则1≤y <2,且函数对称轴在y 轴右侧,则1≤﹣m 2﹣6m ﹣4<2,解得:﹣3+3≤m≤﹣1;当对称轴在y轴左侧时,1≤y<2,当x=﹣1时,y=﹣m2+10m﹣4,则1≤y<2,即1≤﹣m2+10m﹣4<2,解得:5﹣25≤m<5﹣19;综上,﹣3+3≤m≤﹣1或5﹣25≤m<5﹣19.【点睛】本题考查二次函数的性质,熟练掌握性质是解题的关键,分情况讨论,注意不要漏掉.24.在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.【答案】(1)见解析,两数和共有12种等可能结果;(2)游戏对双方公平,见解析【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况数,再根据概率公式分别求出阳光和乐观获胜的概率,然后进行比较即可得出答案.【详解】解:(1)根据题意列表如下:6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 14可见,两数和共有12种等可能结果;(2)∵两数和共有12种等可能的情况,其中和小于12的情况有6种,∴阳光获胜的概率为61 122∴乐观获胜的概率是12, ∵12=12, ∴游戏对双方公平.【点睛】解决游戏公平问题的关键在于分析事件发生的可能性,即比较游戏双方获胜的概率是否相等,若概率相等,则游戏公平,否则不公平.25.如图,AD 与BC 交于点O ,EF 过点O ,交AB 与点E ,交CD 与点F ,1BO =,3CO =,32AO =,92DO =.(1)求证:.A D ∠=∠(2)若AE BE =,求证:.CF DF =【答案】(1)见解析;(2)见解析【分析】(1)根据两边对应成比例且夹角相等的两个三角形相似可证△AOB ∽△COD,从而可证∠A=∠D ; (2)证明△AOE ∽△DOF, △BOE ∽△COF,然后根据相似三角形的对应边成比例解答即可.【详解】证明:(1)∵1BO =,3CO =,32AO =,92DO =, ∴13BO AO CO OD ==, ∵∠AOB=∠COD,∴△AOB ∽△COD,∴∠A=∠D ;(2)∵∠A=∠D ,∴AB ∥CD,∴△AOE ∽△DOF, △BOE ∽△COF,∴AE OE DF OF =,BE OE CF OF=, ∴AE BE DF CF =, ∵AE BE =,∴.CF DF =【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,灵活运用相似三角形的性质进行几何证明.26.在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.【答案】(1)甲同学的方案不公平.理由见解析;(2)公平,理由见解析.【解析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.(2)解题思路同上.【详解】(1)甲同学的方案不公平.理由如下:列表法,所有结果有12种,数字之和为奇数的有:8种,故小丽获胜的概率为:82 123=,则小芳获胜的概率为:13,故此游戏两人获胜的概率不相同,即游戏规则不公平;(2)公平,理由如下:所有结果有12种,其中数字之和为奇数的有:6种,故小丽获胜的概率为:61122=,则小芳获胜的概率为:61122=,故此游戏两人获胜的概率相同,即他们的游戏规则公平.【点睛】本题考查树状图或列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上的完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.27.正比例函数y=2x与反比例函数y=mx的图象有一个交点的纵坐标为1.(1)求m的值;(2)请结合图象求关于x的不等式2x≤mx的解集.【答案】(1)8;(2)x≤﹣2或0<x≤2【分析】(1)先利用正比例函数解析式确定一个交点坐标,然后把交点坐标代入y=mx中可求出m的值;(2)利用正比例函数和反比例函数的性质得到正比例函数y=2x与反比例函数y=mx的图的另一个交点坐标为(﹣2,﹣1),然后几何图像写出正比例函数图像不在反比例函数图像上方所对应的自变量的范围即可.【详解】解:(1)当y=1时,2x=1,解得x=2,则正比例函数y=2x与反比例函数y=mx的图像的一个交点坐标为(2,1),把(2,1)代入y=mx得m=2×1=8;(2)∵正比例函数y=2x与反比例函数y=mx的图像有一个交点坐标为(2,1),∴正比例函数y=2x与反比例函数y=mx的图的另一个交点坐标为(﹣2,﹣1),如图,当x≤﹣2或0<x≤2时,2x≤mx,∴关于x的不等式2x≤mx的解集为x≤﹣2或0<x≤2.【点睛】本题主要考查的是正比例函数与反比例函数的基本性质以及两个函数交点坐标,掌握这几点是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题是真命题的个数是( ).①64的平方根是8±;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题; ④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键. 2.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( ) A .相离B .相切C .相交D .相交或相切 【答案】D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm. 圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.3.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( ) A .不能构成三角形B .这个三角形是等腰三角形C .这个三角形是直角三角形D .这个三角形是钝角三角形 【答案】C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,问题得解.【详解】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=2;如图3,∵OA=2,∴OD=2×cos303则该三角形的三边分别为:123∵122)232,∴该三角形是直角三角形,故选:C.【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.4.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA=ACABB.sinA=BCABC.sinA=ACBCD.sinA=BCAC【答案】B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=BC AB . 故选B .点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.5.如图,抛物线2y ax bx c =++与x 轴交于点()1,0A -,顶点坐标为()1,n ,与y 轴的交点在()0,2、()0,3之间(包含端点).有下列结论:①当3x =时,0y =;②30a b +>;③213a -≤≤-;④843n ≤≤. 其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A 的坐标,可得出点B 的坐标,由点B 的坐标即可断定①正确;②由抛物线的开口向下可得出a <1,结合抛物线对称轴为x=-2ab =1,可得出b=-2a ,将b=-2a 代入2a+b 中,结合a <1即可得出②不正确;③由抛物线与y 轴的交点的范围可得出c 的取值范围,将(-1,1)代入抛物线解析式中,再结合b=-2a 即可得出a 的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为244ac b a -,结合a 的取值范围以及c 的取值范围即可得出n 的范围,从而断定④正确.综上所述,即可得出结论.【详解】解:①由抛物线的对称性可知:抛物线与x 轴的另一交点横坐标为1×2-(-1)=2,即点B 的坐标为(2,1),∴当x=2时,y=1,①正确;②∵抛物线开口向下,∴a <1.∵抛物线的顶点坐标为(1,n ),∴抛物线的对称轴为x=-2b a=1, ∴b=-2a ,2a+b=a <1,②不正确;③∵抛物线与y 轴的交点在(1,2)、(1,2)之间(包含端点),∴2≤c≤2.令x=-1,则有a-b+c=1,又∵b=-2a ,∴2a=-c ,即-2≤2a≤-2,解得:-1≤a≤-23,③正确; ④∵抛物线的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭, , ∴n=244ac b a -=c-2b 4a, 又∵b=-2a ,2≤c≤2,-1≤a≤-23, ∴n=c-a ,83≤n≤4,④正确. 综上可知:正确的结论为①③④.故选C .【点睛】本题考查了二次函数图象与系数的关系,解决该题型题目时,利用二次函数的系数表示出来抛物线的顶点坐标是关键.6.如图,已知A(-3,3),B(-1,1.5),将线段AB 向右平移5个单位长度后,点A 、B 恰好同时落在反比例函数k y x=(x >0)的图象上,则k 等于( )A .3B .4C .5D .6【答案】D 【分析】根据点平移规律,得到点A 平移后的点的坐标为(2,3),由此计算k 值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB 向右平移5个单位长度后,∴点A 平移后的点坐标为(2,3),∵点A 、B 恰好同时落在反比例函数k y x=(x >0)的图象上,∴236k =⨯=,故选:D.【点睛】此题考查点平移的规律,点沿着x 轴左右平移的规律是:左减右加;点沿着y 轴上下平移的规律是:上加下减,熟记规律是解题的关键.7.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =2,CD =1,则△ABC 的边长为( )A .3B .4C .5D .6【答案】B 【分析】根据等边三角形性质求出AB =BC =AC ,∠B =∠C =60°,推出∠BAP =∠DPC ,即可证得△ABP ∽△PCD ,据此解答即可,.【详解】∵△ABC 是等边三角形,∴AB =BC =AC ,∠B =∠C =60°,∴∠BAP+∠APB =180°﹣60°=120°,∵∠APD =60°,∴∠APB+∠DPC =180°﹣60°=120°,∴∠BAP =∠DPC ,即∠B =∠C ,∠BAP =∠DPC ,∴△ABP ∽△PCD ; ∴=,B A PC P CDB ∵BP =2,CD =1, ∴221=-,AB AB ∴AB =1,∴△ABC 的边长为1.故选:B .【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ∽△PCD ,主要考查了学生的推理能力和计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省温州市七校2019-2020学年九年级(上)期末联考数学试卷一.选择题(共10小题)1.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定2.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”3.抛物线y=﹣(x﹣)2﹣2的顶点坐标是()A.(,2)B.(﹣,2)C.(﹣,﹣2)D.(,﹣2)4.一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有()个.A.4 B.5 C.6 D.105.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35°B.70°C.110°D.120°6.抛物线y=x2+6x+9与x轴交点的个数是()A.0 B.1 C.2 D.37.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.4D.28.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是()A.abc>0 B.2a﹣b<0 C.b2﹣4ac<0 D.a﹣b+c>﹣1 9.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°10.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣C.2 D.﹣2二.填空题(共6小题)11.若正多边形的每一个内角为135°,则这个正多边形的边数是.12.已知一扇形,半径为6,圆心角为120°,则所对的弧长为.13.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是(用“<”连接)14.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为.15.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是.16.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是cm.三.解答题(共6小题)17.如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.18.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:=.19.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为x;再在剩下的3个小球中随机摸出一个小球,记下数字为y,得到点P的坐标(x,y).(1)请用“列表”或“画树状图”等方法表示出点P(x,y)所有可能的结果;(2)求出点P(x,y)在第一象限或第三象限的概率.20.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)求证:BD=CD;(2)连结OD若四边形AODE为菱形,BC=8,求DH的长.21.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?22.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.参考答案与试题解析一.选择题(共10小题)1.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定【分析】直接根据点与圆的位置关系进行判断.【解答】解:∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.2.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.3.抛物线y=﹣(x﹣)2﹣2的顶点坐标是()A.(,2)B.(﹣,2)C.(﹣,﹣2)D.(,﹣2)【分析】直接利用顶点式的特点可求顶点坐标.【解答】解:因为y=﹣(x﹣)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(,﹣2).故选:D.4.一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有()个.A.4 B.5 C.6 D.10【分析】设黄球有x个,根据=黄球的频率,列出算式,求出x的之即可.【解答】解:设黄球有x个,根据题意得:=0.5,解得:x=5,答:黄球有5个;故选:B.5.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35°B.70°C.110°D.120°【分析】根据圆内接四边形的对角互补列式计算,得到答案.【解答】解:∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠A=110°,故选:C.6.抛物线y=x2+6x+9与x轴交点的个数是()A.0 B.1 C.2 D.3【分析】根据b2﹣4ac与零的关系即可判断出二次函数y=x2+6x+9的图象与x轴交点的个数.【解答】解:∵b2﹣4ac=36﹣4×1×9=0∴二次函数y=x2+6x+9的图象与x轴有一个交点.故选:B.7.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.4D.2【分析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则可判断△AOB为等腰直角三角形,然后根据等腰直角三角形的性质得到AB的长.【解答】解:连接OA、OB,如图,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB为等腰直角三角形,∴AB=OA=2.故选:D.8.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是()A.abc>0 B.2a﹣b<0 C.b2﹣4ac<0 D.a﹣b+c>﹣1 【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【解答】解:A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意;B、如图所示,对称轴在直线x=﹣1的左边,则﹣<﹣1,又a>0,所以2a﹣b<0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意;D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故不符合题意.故选:B.9.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°【分析】根据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【解答】解:由图象可得,该函数的对称轴x>且x<54,∴36<x<54,故选:C.10.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣C.2 D.﹣2【分析】利用二次函数图象上点的坐标特征可得出点A1的坐标,结合旋转的性质可得出点A2的坐标,观察图形可知:图象上点以6(横坐标)为周期变化,结合2020=336×6+4可知点P的纵坐标和当x=4时的纵坐标相等,由旋转的性质结合二次函数图象上点的坐标特征,即可求出m的值,此题得解.【解答】解:当y=0时,x2﹣3x=0,解得:x1=0,x2=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A2的坐标为(6,0).∵2020=336×6+4,∴当x=4时,y=m.由图象可知:当x=2时的y值与当x=4时的y值互为相反数,∴m=﹣(2×2﹣3×2)=2.故选:C.二.填空题(共6小题)11.若正多边形的每一个内角为135°,则这个正多边形的边数是8 .【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.12.已知一扇形,半径为6,圆心角为120°,则所对的弧长为4π.【分析】把已知数据代入弧长公式计算即可.【解答】解:此扇形的弧长==4π,故答案为:4π.13.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是y3<y1=y2(用“<”连接)【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣,根据x >﹣时,y随x的增大而增大,即可得出答案.【解答】解:∵y=x2+x+1=(x+)2+,∴图象的开口向上,对称轴是直线x=﹣,A(﹣3,y1)关于直线x=﹣的对称点是(2,y1),∵<2,∴y3<y1=y2,故答案为y3<y1=y2.14.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为10 .【分析】直角三角形外接圆的直径是斜边的长.【解答】解:如图,已知:AC=8,BC=6,由勾股定理得:AB===10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;故答案为:10.15.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是.【分析】确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小狗停在黑色方格中的概率.【解答】解:图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.16.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是cm.【分析】连接OB,根据垂径定理求出BE,根据勾股定理求出OB,再根据勾股定理计算即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得,OB=,则EC=AC﹣AE=9,BC===3,∵OF⊥BC,∴CF=BC=,∴OF===(cm),故答案为.三.解答题(共6小题)17.如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.【分析】(1)依据旋转中心、旋转方向和旋转角度,即可得到△ABO绕着原点O按顺时针方向旋转90°后的图形;(2)利用扇形面积计算公式,即可得到线段AO旋转时扫过的面积.【解答】解:(1)如图所示,△A1B1O即为所求;(2)线段AO旋转时扫过的面积为:=.18.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE ,求证:=.【分析】由于AC平分∠BAD则∠BAC=∠DAC,再利用平行线的性质得∠BAC=∠ACE,所以∠DAC=∠ACE,然后根据圆周角定理得到结论.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴=.19.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为x;再在剩下的3个小球中随机摸出一个小球,记下数字为y,得到点P的坐标(x,y).(1)请用“列表”或“画树状图”等方法表示出点P(x,y)所有可能的结果;(2)求出点P(x,y)在第一象限或第三象限的概率.【分析】(1)通过列表展示即可得到所有可能的结果;(2)找出在第一象限或第三象限的结果数,然后根据概率公式计即可.【解答】解:(1)列表如下:﹣1 ﹣2 3 4﹣1 (﹣1,﹣2)(﹣1,3)(﹣1,4)﹣2 (﹣2,﹣1)(﹣2,3)(﹣2,4)3 (3,﹣1)(3,﹣2)(3,4)4 (4,﹣1)(4,﹣2)(4,3)(2)从上面的表格可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,所以其的概率==.20.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)求证:BD=CD;(2)连结OD若四边形AODE为菱形,BC=8,求DH的长.【分析】(1)如图,连接AD.利用圆周角定理以及等腰三角形的性质即可解决问题.(2)证明△ECD是等边三角形即可解决问题.【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∴∠A=60°,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2.21.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料x吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?【分析】(1)根据题意列式计算即可;(2)根据y=销售数量×[1600﹣降低的价格]﹣生产原料的费用,化简即可得到结论;(3)计算当y=38400时对应x的值,根据二次函数的性质确定购进化工原料的吨数应该控制在什么范围.【解答】解:(1)x÷0.8=x吨,故答案为:x;故答案为:x;(2)根据题意得,y=x[1600﹣4(x﹣50)]﹣x•800=﹣4x2+800x,则y关于x的函数关系式为:y=﹣4x2+800x;(3)当y=38400时,﹣4x2+800x=38400,x2﹣200x+9600=0,(x﹣120)(x﹣80)=0,x=120或80,∵﹣4<0,∴当y≥38400时,80≤x≤120,∴100≤x≤150,∴如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.22.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.【分析】(1)令y=0,得到﹣x2+2x+6=0,解得x=﹣2或6,则A(6,0),由对称轴公式计算即可;(2)求出直线AC的解析式,求出F(2,4),则S可求出答案;(3)分三种情况,当AC,CD和AD分别为底边时,画出图形,可由等腰三角形的性质求出顶点P的坐标即可.【解答】解:(1)对于抛物线y=﹣x2+2x+6令y=0,得到﹣x2+2x+6=0,解得x=﹣2或6,∴B(﹣2,0),A(6,0),令x=0,得到y=6,∴C(0,6),∴抛物线的对称轴x=﹣=2,A(6,0).(2)∵y=﹣x2+2x+6=,∴抛物线的顶点坐标D(2,8),设直线AC的解析式为y=kx+6,∴0=6k+6,∴k=﹣1,∴直线AC的解析式为y=﹣x+6,∴F(2,4),∴DF=4,∴==12;(3)如图1,过点O作OM⊥AC交DE于点P,交AC于点M,∵A(6,0),C(0,6),∴OA=OC=6,∴CM=AM,∴CP=AP,此时AC为等腰三角形ACP的底边,∴OE=PE=2.∴P(2,2),如图2,过点C作CP⊥DE于点P,∵OC=6,DE=8,∴PD=DE﹣PE=2,∴PD=PC,此时△PCD是以CD为底边的等腰直角三角形,∴P(2,6),如图3,作AD的垂直平分线交DE于点P,则PD=PA,设PD=x,则PE=8﹣x,在Rt△PAE中,PE2+AE2=PA2,∴(8﹣x)2+62=x2,解得x=,∴PE=8﹣,∴P(2,),综合以上可得点P的坐标为(2,2)或(2,6)或(2,).。