MAAB非线性规划及非线性约束条件求解

合集下载

应用MATLAB工具箱求解规划问题

应用MATLAB工具箱求解规划问题

应用MATLAB 优化工具箱求解规划问题如今,规划类问题是常见的数学建模问题,离散系统的优化问题一般都可以通过规划模型来求解。

用MATLAB 求解规划问题,可以避免手工的烦琐计算,大大提高工作效率和结果的准确性。

MA TLAB 是一种应用于数学计算及计算结果可视化处理的面向对象的高性能计算机语言,它以矩阵和向量为基本数据单位,从而提高程序的向量化程度,提高计算效率,尤其适合于线性规划、整数规划、多元规划、二元规划类问题的算法编写,以及数据拟合、参数估计、插值等数据处理法。

利用MA TLAB 提供的强大的规划模型求解命令,可以简单快速地得到所要的结果。

本文主要对线性规划、非线性规划、整数规划、单目标约束规划以及多目标规划等规划问题在MATLAB 中的实现做比较详细的讲解.线性规划问题线性规划是一种优化方法,MA TLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。

线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB 中线性规划的标准型为:Min f ’x..A x b s t Aeq x beq lb x ub ⋅≤⎧⎪⋅=⎨⎪≤≤⎩其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。

其他形式的线性规划问题都可经过适当变化化为以上标准型。

线性规划是一种优化方法,MATLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。

在MATLAB 指令窗口运行help linprog 可以看到所有的函数调用形式,如下:x = linprog(f,A,b) %求min f’x ;s.t. b x A ≤⋅线性规划的最优解x = linprog(f,A,b,Aeq,beq) %等式约束beq x Aeq =⋅,若没有不等式约束,则A=[],b=[]。

若没有等式约束,则Aeq=[],beq=[]x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x 的范围ub x lb ≤≤x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参数进行最小化[x,fval] = linprog(...) %返回目标函数最优值,即fval= f’x[x,lambda,exitflag] = linprog(...) % lambda 为解x 的Lagrange 乘子[x,lambda,exitflag,output] = linprog(...) % exitflag 为终止迭代的条件[x,fval,exitflag,output,lambda] = linprog(...) % output 为输出优化信息exitflag 描述函数计算的退出条件:若exitflag>0表示函数收敛于解x ,exitflag=0表示目标达到函数估值或迭代的最大次数,exitflag<0表示函数不收敛于解x ;lambda 返回x 处的拉个朗日乘子:lambda.lower 表示下界lb ,lambda.upper 表示上界ub ,lambda.ineqlin 表示线性不等式约束,lambda.eqlin 表示线性等式约束,lambda 中的非0元素表示对应的约束是有效约束;output 返回优化信息:output.iterations 表示迭代次数,output.algorithm 表示使用的运算规则,output.cgiterations 表示PCG 迭代次数。

非线性规划的MATLAB解法及其应用

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划是20世纪50年代才开始形成的一门新兴学科。

70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。

例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。

对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

本实验就是用matlab 软件来解决非线性规划问题。

(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。

题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。

约束优化问题是在目标函数中加入了一些约束条件的优化问题。

解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。

一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。

该方法适用于目标函数单峰且连续的情况。

2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。

该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。

3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。

拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。

4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。

全局优化方法包括遗传算法、粒子群优化等。

二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。

通过求解无约束优化问题的驻点,求得原始约束优化问题的解。

2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。

罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。

3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。

该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。

4. 内点法:内点法是一种有效的求解约束优化问题的方法。

该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。

非线性规划问题的Matlab实现求解

非线性规划问题的Matlab实现求解

本科毕业论文(设计)论文题目:非线性规划问题的建模与Matlab求解实现的案例分析学生:许富豪学号:1204180137专业:信息与计算科学班级:计科1201指导教师:王培勋完成日期:2015年6月25日非线性规划问题的建模与Matlab求解实现的案例分析容摘要非线性规划问题通常极其抽象,并且求解计算极其复杂,本文举个别非线性规划问题案例,通过对抽象的非线性规划问题先建立数学模型,再利用Matlab软件高效快捷的实现非线性规划问题的求解,最后分析利用Matlab软件得出的案例结果。

关键词:非线性规划建立数学模型Matlab目录(三号黑体居中)空一行空一行一、※※※※※※ (1)(一)※※※※※※ (1)1.※※※※※※※※※※※※※ (1)2.※※※※※※※ (4)(二)※※※※ (7)(三)※※※※※※※※ (12)二、※※※※ (16)(一)※※※※※ (16)(二)※※※※※ (24)1.※※※※ (24)2.※※※※※ (30)3.※※※※ (31)(三)※※※※ (33)三、※※※※ (36)(一)※※※※※ (38)(二)※※※※ (43)四、※※※※ (45)参考文献 (48)附录 (50)(标题顺序号、容及其开始页码均为四号宋体,一级标题为黑体四号)序 言非线性规划问题通常难以用人力计算,所以我们一般利用Matlab 软件代替人去计算抽象的非线性规划问题,解决了耗费时间、耗费精力的问题,快速准确的得出计算结果。

因此,善于利用Matlab 实现非线性规划问题的求解非常重要,而求解非线性规划问题之前必须先对问题进行建立数学模型,才能准确的理解题意并快速的运用Matlab 求解。

一、非现性规划的基本概念(一)定义如果目标函数或约束条件中至少有一个是非线性函数,则最优化问题就叫做非线性规划问题,简记为NP 。

(二)一般形式min (),n f x x E ∈,()=0(=1,2,..()0(j=1,2i jh x j m s t g x l ⋯≤⎩⋯⎧⎨),,)其中:1,2,n =()Tx x x x ⋯称为模型(NP )的决策变量,f 称为目标函数,(=1,...,)i h i m 和(=1,...,)j g j l 称为约束函数;()=0(=1,...,)i h x i m 称为等式约束;()0(=1,...,)j g x j l ≤称为不等式约束。

matlab非线性方程的解法(含牛拉解法)

matlab非线性方程的解法(含牛拉解法)

非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。

若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。

设函数)(x f 在],[b a 内连续,且0)()(<b f a f 。

根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。

即使能表示成解析式的,往往也很复杂,不便计算。

所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止。

如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f 。

我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。

若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。

这种方法通常称为“定步长搜索法”。

另外,还是图解法、近似方程法和解析法。

2 迭代法2.1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1.1),在区间],[b a 内,可改写成为:)(x x ϕ= (2.1) 取],[0b a x ∈,用递推公式:)(1k k x x ϕ=+, ,2,1,0=k (2.2) 可得到序列:∞==0210}{,,,,k k k x x x x x (2.3)当∞→k 时,序列∞=0}{k k x 有极限x ~,且)(x ϕ在x ~附近连续,则在式(2.2)两边极限,得, )~(~x x ϕ= 即,x ~为方程(2.1)的根。

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧介绍:非线性优化在工程、金融、科学等领域广泛应用,它涉及到求解一个目标函数的最小值或最大值,并且满足一系列约束条件。

Matlab是一个功能强大的数值计算软件,提供了许多用于求解非线性优化问题的工具和函数。

本文将介绍一些使用Matlab进行非线性优化问题求解的技巧,帮助读者更有效地应用这些工具。

一、定义目标函数和约束条件在使用Matlab求解非线性优化问题之前,首先要明确问题的数学模型。

假设我们要最小化一个目标函数F(x),并且存在一系列约束条件g(x) <= 0和h(x) = 0。

在Matlab中,可以使用函数形式或者符号形式来定义目标函数和约束条件。

例如,使用函数形式可以这样定义目标函数和约束条件:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2;endfunction [c, ceq] = constraints(x)c = [x(1) + x(2) - 1; x(1)^2 + x(2)^2 - 2];ceq = [];end```其中,objective函数定义了目标函数,constraints函数定义了约束条件。

在constraints函数中,c表示不等式约束条件g(x) <= 0,ceq表示等式约束条件h(x) = 0。

二、使用fmincon函数求解非线性优化问题Matlab提供了fmincon函数来求解非线性优化问题。

该函数的基本语法如下:```matlab[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)```其中,fun表示目标函数,x0表示初始解,A表示不等式约束条件的线性部分,b表示不等式约束条件的右侧常数,Aeq表示等式约束条件的线性部分,beq表示等式约束条件的右侧常数,lb表示变量的下界,ub表示变量的上界,nonlcon表示非线性约束条件,options表示优化选项。

MATLAB非线性规划问题

MATLAB非线性规划问题

MATLAB⾮线性规划问题⼀.⾮线性规划课题实例1 表⾯积为36平⽅⽶的最⼤长⽅体体积。

建⽴数学模型:设x、y、z分别为长⽅体的三个棱长,f为长⽅体体积。

max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备⽤5000万元⽤于A、B两个项⽬的投资,设x1、x2分别表⽰配给项⽬A、B的投资。

预计项⽬A、B的年收益分别为20%和16%。

同时,投资后总的风险损失将随着总投资和单位投资的增加⽽增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资⾦,才能使期望的收益最⼤,同时使风险损失为最⼩。

建⽴数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0⽬标函数中的λ≥0是权重系数。

由以上实例去掉实际背景,其⽬标函数与约束条件⾄少有⼀处是⾮线性的,称其为⾮线性问题。

⾮线性规划问题可分为⽆约束问题和有约束问题。

实例1为⽆约束问题,实例2为有约束问题。

⼆.⽆约束⾮线性规划问题:求解⽆约束最优化问题的⽅法主要有两类:直接搜索法(Search method)和梯度法(Gradient method),单变量⽤fminbnd,fminsearch,fminunc;多变量⽤fminsearch,fminnuc 1.fminunc函数调⽤格式:x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…)[x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明:fun为需最⼩化的⽬标函数,x0为给定的搜索的初始点。

MATLAB求解非线性规划

MATLAB求解非线性规划
MATLAB基础及求解非线性规划
经济管理学院:李继红
1 Matlab简介及操作环境
1.1 Matlab简介
由美国 DOCTORCLEVER MOLER 于 1980 年 开始研制并于1984年推出正式版本。以后陆续推 出了4.0,4.2和5.0版本,1999年初推出了功能更 为强大的5.3版本,2001年推出6.1版本,2003年 推出了6.5版本。2004年6月正式推出7.0版本。 MATLAB是建立在 C 语言基础上的高级语言, 并建立了自已独特的语言环境。
plot3(x,y,z,’s’)
plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,·· ·) plot3例命:令t将=绘0制:二pi维/5图0形:1的0函*p数i;plot的特性扩展到三维空间。函 数格式除p了lo包t括3(第s三in维(t的),信co息s((t)比,t如);Z方向)之外,与二维函数
1、for循环
li1_6_1.m
• For循环可以按指定的次数重复执行一系列语 句。For循环的常见结构:
• for 变量 =表达式 循环语句
end
这里循环语句可以是一条或 多条,并且可以是变量的函 数
• 如:for k=初值: 增值: 终值
例:
% mzmfor.m
clear all
N=input('请输入矩阵的维数 N:');
6.4 switch-case语句
一般switch-case语句格式为: switch num case n1 command case n2 command case n3 command . . .otherwise Command
li1_6_4.m
7 数据的可视化

MATLAB非线性规划教程

MATLAB非线性规划教程

3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格 式如下:
(1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
3. 运算结果为: x = -1.2250 1.2250 fval = 1.8951
MATLAB(youh3)
例4miBiblioteka f X 2x1 x2s.t. g1X 25 x12 x22 0
g2 X 7 x12 x22 0
0 x1 5, 0 x2 10
1.先建立M-文件fun.m定义目标函数:
[x,fval,exitflag,output] =fmincon('fun',x0,[],[],[],[],VLB,VUB,'mycon2')
1. 首先建立M文件fun.m,定义目标函数F(X): function f=fun(X);
f=F(X);
2. 若约束条件中有非线性约束:G(X) 0 或Ceq(X)=0, 则建立M文件nonlcon.m定义函数G(X)与Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=...
输出极值点 M文件 迭代的初值 变量上下限 参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)

MATLAB求解非线性规划

MATLAB求解非线性规划

10
1 2 1 2 例2 min f x 2 x x x 1 2 1 2 2 2
2x1+3x2 6 s.t x1+4x2 5 x1,x2 0
1、写成标准形式:
1 2 1 2 min f x 2 x x x 1 2 1 2 2 2
s.t.
x 3 x 6 2 0 1 2 4 x 5 0 x 1 2 0 x1 0 x2
12
s.t.
T
2、 输入命令:
1 1 0 0
1 x1 2 x 2 x1 x 2
2 2
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
11
2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2
3、再建立主程序youh2.m: x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 4、运算结果为: x = 0.7647 1.0588 fval = -2.0294
一般非线性规划
8
3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)

Matlab求解线性和非线性,凸函数

Matlab求解线性和非线性,凸函数

Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
z 7 x 5 x 问题2 max 1 2 解答
3 x 1 2 x 2 90 4 x 6 x 200 2 s .t . 1 7 x 2 210 x1 0 , x 2 0
位 工 件 所 需 加 工 台 时 数 单 位 工 件 的 加 工 费 用 可 车 床单 用 台 类 型 数 工 件 1 工 件 2 工 件 3 工 件 1 工 件 2 工 件 3 时 甲 0 . 4 乙 0 . 5 1 . 1 1 . 2 1 . 0 1 . 3 1 3 1 1 9 1 2 1 0 8 8 0 0 9 0 0
第8章 最优化方法
线性规划 无约束规划 非线性规划
实验目的
1、了解线性规划的基本内容。 2、掌握用数学软件包求解线性规划问题。
实验内容
1、两个引例。 2、用数学软件包求解线性规划问题。 3、实验作业。
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件。假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用三种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表。问怎样分配车床的加工任务,才能既满足加工工件的 要求,又使加工费用最低?
3、模型:min z=cX s . t . AX b Aeq Xbeq VLB≤X≤VUB
命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq , 则令Aeq=[ ], Xbeq beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档