必修5课件 1.1.1 正弦定理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处,发现敌舰正由岛沿北 10西的方向以10nmile/h的速度航行,问:我舰需要以多大速度, 沿什么方向航行才能用2小时追上敌舰? 即追击速度为14mile/h
AC BC 又:∵△ABC中,由正弦定理: sin B sin A
AC
2.找 j 与 AB 、AC 、 的夹角 CB
3。利用等式
AC + CB = AB ,与 j 作内积
比值的意义:三角形外接圆的直径2R
注意: (1)正弦定理适合于任何三角形。
a b c (2)可以证明 = = =2R(R为△ABC外接圆半径) sin A sin B sin C
(3)每个等式可视为一个方程:知三求一
ABC中,c 10, A 45 0 , C 30 0 , 求a, b和B 例1、已知在
例2、在 ABC中,b
3, B 60 0 , c 1, 求a和A, C
例3、ABC中,c
6 , A 45 0 , a 2, 求b和B, C
ቤተ መጻሕፍቲ ባይዱ
解三角形时,注意大边对大角
小结:1。正弦定理可以用于解决已知两角和一边求另两边和一角的 问题。 2。正弦定理也可用于解决已知两边及一边的对角,求其他边 和角的问题。 3。正弦定理及应用于解决两类问题,注意多解情况。 注意: ABC中,已知a, b和A时解三角形的情况: 在
人教版 必修五
第一章
解三角形
1.1.1 正弦定理
正弦定理 证明一(传统证法)在任意斜△ABC当中:
1 1 1 ab sin C ac sin B bc sin A S△ABC= 2 2 2 1 b a c abc 两边同除以 即得: = = 2 sin C , sin A sin B
用向量证明:1.过A作单位向量 j 垂直于
∴ sin B
AC sin A 5 3 BC 14
B 我舰航行方向为北东 arcsin
5 3 5 3 (50 arcsin ) 14 14