高考物理热点:平抛运动中的临界问题
平抛运动临界问题典型例题
平抛运动临界问题平抛运动是指一个物体在不受外力影响下,沿着一个水平方向进行抛掷的运动。
在平抛运动中,物体受到重力的作用而向下做加速运动,而在水平方向上则保持匀速直线运动。
当物体的初速度和抛掷角度确定时,我们可以通过解析的方法来求解物体的最大高度、最大飞行距离以及落地处的速度等问题。
问题描述一个足球运动员以θ的角度用力将足球从地面上以v0的初速度抛出。
为了使足球能够在某一距离d处接触地面,求抛出足球时的最小速度v0。
解题思路根据平抛运动的基本公式,可以得到足球在竖直方向的运动方程为:ℎ=v0sinθt−gt2 2其中,ℎ是足球抛出后的最大高度,g是重力加速度,t是足球从抛出到落地所需的时间。
当足球接触地面时,ℎ的值为0,即:0=v0sinθt−gt22 ⇒ v0sinθt=gt22将t表示为:t=2v0sinθg代入求解接触地面的位置d与时间t的关系:d=v0cosθ⋅t ⇒ d=v0cosθ⋅2v0sinθg化简得到:d=2v02sinθ⋅cosθg将上述方程转化为关于v0的二次方程形式:v02sin2θ−gd2=0解二次方程,并根据物理意义得到一个物理解:v 0=√gd 2sin2θ该解即为足球抛出时的最小速度。
示例计算假设 d =50 m ,θ=45∘,g =9.8 m/s²,代入上述公式可得:v 0=√9.8×502sin90∘≈22.142≈11.07 m/s 因此,足球抛出时的最小速度为约 11.07 m/s 。
总结本文使用物理学中的平抛运动公式,通过计算和代数运算的方法,解决了一个关于平抛运动临界问题的例题。
通过该例题,我们了解到通过解析方法可以推导出平抛运动的高度和水平距离与初速度和抛射角度之间的关系,并使用这个关系来解决实际问题。
平抛运动、圆周运动的临界问题 Word版含解析
[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
平抛运动临界问题典型例题
平抛运动临界问题典型例题平抛运动是指一个物体在水平方向上以一定的初速度抛出后,在重力作用下在竖直方向上做自由落体运动的过程。
临界问题是指当物体以一定的初速度抛出时,求解它的最大高度、飞行时间以及最大水平距离等相关参数的问题。
下面是一个典型的平抛运动临界问题例题,我将从多个角度进行全面解答。
例题:一个物体以初速度v0 = 20 m/s沿着水平方向抛出,求解它的最大高度、飞行时间以及最大水平距离。
解答:1. 最大高度:在平抛运动中,物体的竖直运动与水平运动是独立的。
在竖直方向上,物体受到重力的作用,在水平方向上,物体的速度保持不变。
因此,最大高度发生在物体竖直速度为零的时刻。
首先,我们需要知道物体的竖直初速度和竖直加速度。
竖直初速度为0,竖直加速度为重力加速度g ≈ 9.8 m/s^2。
使用竖直运动的运动学公式,v = u + at,其中v为最终速度,u为初速度,a为加速度,t为时间。
将v取为0,u取为20 m/s,a取为-9.8 m/s^2,代入公式,解得t = 2.04 s。
再使用竖直运动的位移公式,s = ut + 1/2at^2,其中s为位移。
将u取为20 m/s,t取为2.04 s,a取为-9.8 m/s^2,代入公式,解得s = 20.4 m。
所以,最大高度为20.4 m。
2. 飞行时间:飞行时间是指物体从抛出到落地所经过的时间。
在平抛运动中,物体的水平速度保持不变,所以飞行时间等于物体竖直运动的时间。
根据上面的计算结果,飞行时间为2.04 s。
3. 最大水平距离:最大水平距离是指物体从抛出到落地时在水平方向上的位移。
在平抛运动中,水平方向上的速度保持不变,所以最大水平距离等于水平速度乘以飞行时间。
水平速度为20 m/s,飞行时间为2.04 s,所以最大水平距离为40.8 m。
综上所述,当一个物体以初速度v0 = 20 m/s沿着水平方向抛出时,它的最大高度为20.4 m,飞行时间为2.04 s,最大水平距离为40.8 m。
专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。
高一物理:平抛运动规律(两个推论、临界问题、类平抛运动)
必考点16平抛运动规律(两个推论、临界问题、类平抛运动)题型一平抛运动的规律及应用如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点。
若不计空气阻力,下列关系式中正确的是()A .v a >v bB .t a >t bC .v a =v bD .t a <t b【解题技巧提炼】如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.1.飞行时间由t =2h g知,时间取决于下落高度h ,与初速度v 0无关。
2.水平射程x =v 0t =v 02h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
3.落地速度v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与水平正方向间的夹角,有tan θ=v y v x =2gh v 0,落地速度与初速度v 0和下落高度h 有关。
题型二平抛运动规律(两个推论)如图所示,xOy 是平面直角坐标系,Ox 水平、Oy 竖直,一质点从O 点开始做平抛运动,P 点是轨迹上的一点.质点在P 点的速度大小为v ,方向沿该点所在轨迹的切线.M 点为P 点在Ox 轴上的投影,P 点速度方向的反向延长线与Ox 轴相交于Q 点.已知平抛的初速度为20m/s ,MP =20m ,重力加速度g 取10m/s 2,则下列说法正确的是A .QM 的长度为10mB .质点从O 到P 的运动时间为1sC .质点在P 点的速度v 大小为40m/sD .质点在P 点的速度与水平方向的夹角为45°【解题技巧提炼】1.平抛运动物体的速度变化量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图2所示.2.两个重要推论(1)做平抛运动的物体在任意时刻(任意位置)处,有tan θ=2tan α.推导:tan θ=v y v 0=gt v 0tan α=y x =gt 2v 0θ=2tan α(2)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过水平位移的中点,如图所示,即x B =x A 2.推导:tan θ=y A x A -x B tan θ=v y v 0=2y A xAx B =x A 2题型三平抛运动的临界、极值问题如图所示为足球球门,球门宽为L ,一个球员在球门中心正前方距离球门线s 处高高跃起,将足球顶入球门的左下方死角(图中P 点)。
高三-平抛运动、圆周运动的临界问题(学)
学科教师辅导讲义前情回顾体系搭建突破一平抛运动中的临界问题1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。
2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。
3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。
【例1】 (2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。
水平台面的长和宽分别为L 1和L 2,中间球网高度为h 。
发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h 。
不计空气的作用,重力加速度大小为g 。
若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 21+L 22)g6hC.L 12g 6h <v <12(4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h规律总结处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件。
(2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。
【变式训练】1.(多选)如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,小球离开屋顶时的速度v 0的大小的可能值为(g 取10 m/s 2)( )A.6 m/sB.12 m/sC.4 m/sD.2 m/s突破二 匀速圆周运动的临界问题水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题。
1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =mv 2r,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)
尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
微专题Ⅰ平抛运动的临界问题类平抛运动
微专题Ⅰ平抛运动的临界问题、类平抛运动知识点一平抛运动的临界问题1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.[例题1](2023春•昌乐县期中)“套圈游戏”深受大家的喜爱,游戏者要站到区域线外将圆圈水平抛出,落地时套中的物体即为“胜利品”。
某同学在一次“套圈”游戏中,从P点以某一速度水平抛出的圆圈落到了物体左边,如图。
为了套中该物体,该同学做了如下调整,则下列方式中一定套不中的是(忽略空气阻力)()A.从P点正上方以原速度水平抛出B.从P点正前方以原速度水平抛出C.从P点增大速度水平抛出D.从P点正下方减小速度水平抛出【解答】解:A、设圆圈平抛运动下落的高度为h,水平位移为x,初速度为v0,竖直方向为自由落体运动,有ℎ=12gt2,解得下落时间为t=√2ℎg,水平为匀速直线运动,所以水平位移为x=v0t=v0√2ℎg,圆圈落到了物体左边,说明圆圈的水平位移偏小,若从P点正上方以原速度水平抛出,h增大,由t=√2ℎg可知时间增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故A不符合题意;B、若P点正前方以原速度水平抛出,则高度不变,运动时间不变,根据x=v0t=v0√2ℎg,水平位移不变,落地点右移,可能套住物体,故B不符合题意;C、若P点位置不变,增大速度水平抛出,v0增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故C 不符合题意;D 、若P 点正下方,减小速度水平抛出,h 和v 0都减小,由t =√2ℎg ,x =v 0t =v 0√2ℎg知,水平位移减小,圆圈还落到物体左边,故D 符合题意。
平抛运动的临界和极值问题
平抛运动的临界和极值问题平抛运动是物理学中一个重要的运动形式,涉及到许多临界和极值问题。
平抛运动是指一个物体在水平方向上以一定的速度进行抛射,同时在竖直方向上受到重力的作用。
根据初始速度和发射角度的不同,我们可以分析出平抛运动的临界和极值问题。
首先,我们来讨论平抛运动的临界问题。
临界问题指的是物体抛射时的最大或最小条件。
在平抛运动中,当物体抛射的角度与速度达到一定数值时,可以达到最远的水平距离。
这个临界角度被称为最大射程角,对应的速度称为最大射程速度。
根据物理学的公式推导,我们可以得到最大射程角的正切值等于加速度由竖直向下变为零时的时间(即物体上抛到最高点的时间)。
而最大射程速度则由最大射程角与重力加速度确定。
通过计算和实验,我们可以得到最大射程角和最大射程速度的具体数值。
然后,我们转向讨论平抛运动的极值问题。
极值问题指的是物体在平抛运动过程中出现的最高点和最远点。
对于最高点问题,我们称为极大值,物体上抛到达最高点时速度为零,此时只受重力加速度的作用,该高度被称为最大抛高。
通过应用基本物理公式,我们可以计算出物体抛高与初始速度、发射角度和重力加速度的关系。
对于最远点问题,我们称为极小值,物体水平运动距离的极小值点就是物体的最远点。
通过计算最远点的水平距离,我们可以得到相应的极小值。
总结来说,平抛运动的临界和极值问题是通过运动学公式和物理原理来解决的。
通过计算和实验,我们可以得到平抛运动中最远距离、最大抛高以及相关极大值和极小值的具体数值。
这些问题的解决在理论上和实际应用中都有重要的意义,对于设计抛射物体的轨迹和优化射击等问题都有深远影响。
平抛运动典型问题讲解
(2)当两个质点位移相互垂直时,它们之间的距离
解:(1)在相等时间内下落的高度相同, 画出运动示意图
v1y= v2y= g t1 = vy
v1
v2
v1y / v1x=tgα v2x / v2y =tgα vy2 = v1 v2=12
v1x
2h (L s) g
g 2h
h
H
vmin s /
2(h H ) s g
g 2(h H )
s
L
H s L2 hmin LL 2s
典型问题2 遵从反射定律的问题
2.如图所示,平行竖直的两块钢板高为H,相距S,从左上角A 点垂直于板水平抛出一小球,球在B、C两处与板做弹性碰撞 (碰撞前后速率大小不变,方向改变)后落在两块钢板的正中
7.光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速 度v0抛出,如图,求小球滑到底端时,水平方向位移s有多大?
解析:沿斜面向下
L 1 at2 1 (g sin )t 2
22
水平方向 s v0t
s v0
2L
g sin
• 8.(2004·西安)如右图所示,光滑斜面长为a’, 宽为b’, 倾角为θ,一物块沿斜面左上方顶点P 水平射入,而从右下方顶点Q离开斜面,求入 射初速度.
v0
tg 2tg37 0
t vy g
法3
t
2v0
sin 370
gy
g y g cos370
370
v0
t 2v0tg37 0 g
v
v0 370
370
vy v0 sin 37 0
高中物理专题复习---平抛运动的临界问题
微专题19 平抛运动的临界问题【核心方法点拨】涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。
【微专题训练】(2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( )A .R B.R 2 C.3R 4 D.R 4【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。
小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20=Rg2,v 2y =3Rg 2。
设平抛运动的竖直位移为y ,v 2y=2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。
【答案】D(2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2)【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H -h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m.【答案】0.8 0.8 m≤x ≤1 m(2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6h B.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h【解析】发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确. 【答案】D(河北省衡水中学2014届高三上学期三调)“套圈”是一项老少皆宜的体育运动项目.如图所示,水平地面上固定着3根直杆1、2、3,直杆的粗细不计,高度均为0.1 m ,相邻两直杆之间的距离为0.3 m.比赛时,运动员将内圆直径为0.2 m的环沿水平方向抛出,刚抛出时环平面距地面的高度为1.35 m,环的中心与直杆1的水平距离为1 m.假设直杆与环的中心位于同一竖直面,且运动中环心始终在该平面上,环面在空中保持水平,忽略空气阻力的影响,g取10 m/s2.以下说法正确的是()A.如果能够套中直杆,环抛出时的水平初速度不能小于1.8 m/sB.如果能够套中第2根直杆,环抛出时的水平初速度范围在2.4 m/s到2.8 m/s之间C.如以2.3 m/s的水平初速度将环抛出,就可以套中第1根直杆D.如环抛出的水平速度大于3.3 m/s,就不能套中第3根直杆【解析】由平抛运动可得h=12gt2、L-r=vt,解得v=1.8 m/s,故选项A正确;如果能够套中第2根直杆,水平位移在1.2~1.4 m之间,水平初速度范围在2.4 m/s到2.8 m/s之间,故选项B正确;如果能够套中第1根直杆,水平位移在0.9~1.1 m之间,水平初速度范围在1.8 m/s到2.2 m/s之间,故选项C错误;如果能够套中第3根直杆,水平位移在1.5~1.7 m 之间,水平初速度范围在3 m/s到3.4 m/s之间,故选项D错误.【答案】AB(多选)如图所示,在水平地面上的A点以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,下列说法正确的是(不计空气阻力)()A.在B点以与v2大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点B.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点C.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的左侧D.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的右侧【解析】以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,说明弹丸在B点的竖直速度为零,v2=v1cos θ,根据“逆向”思维:在B点以与v2大小相等方向相反的速度射出弹丸,它必落在地面上的A点,A正确;在B点以与v1大小相等的速度,与v2方向相反射出弹丸,由于v1>v2,弹丸在空中运动的时间不变,所以它必定落在地面上A点的左侧,C正确,B、D错误.【答案】AC(2016·江西八校联考)某电视台娱乐节目进行了一项抛球入筐游戏,如图所示,该游戏球筐(筐壁厚度忽略不计)紧靠竖直墙壁放在水平地面上,球筐高度和球筐左侧壁离墙壁的距离均为L 。
专题十二 平抛运动、圆周运动的临界问题
专题十二 平抛运动、圆周运动的临界问题1.如图1所示,在光滑水平面上,钉有两个钉子A 和B ,一根长细绳的一端系一个小球,另一端固定在钉子A 上,开始时小球与钉子A 、B 均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v 0在水平面上沿俯视逆时针方向做圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )A .小球的线速度变大B .小球的角速度变大C .小球的加速度变大D .细绳对小球的拉力变小2.荡秋千一直是小朋友们喜爱的运动,秋千上端吊环之间不断磨损,能承受的拉力逐渐减小。
如图2所示,一质量为m 的小朋友在吊绳长为l 的秋千上,如果小朋友从与吊环水平位置开始下落,运动到最低点时,吊绳突然断裂,小朋友最后落在地板上。
如果吊绳的长度l 可以改变,则( )A .吊绳越长,小朋友在最低点越容易断裂B .吊绳越短,小朋友在最低点越容易断裂C .吊绳越长,小朋友落地点越远D .吊绳长度是吊绳悬挂点高度的一半时,小朋友落地点最远3.(2015·湖北黄冈二模)如图3所示,在投球游戏中,某人将小球从P 点以速度v 水平抛向固定在水平地面上的塑料筐,小球恰好沿着筐的上沿入筐并打在筐的底角,若要让小球进入筐中并直接击中筐底正中间,下列说法可行的是( )A .在P 点将小球以小于v 的速度水平抛出B .在P 点将小球以大于v 的速度水平抛出C .在P 点正上方某位置将小球以小于v 的速度水平抛出D .在P 点正下方某位置将小球以小于v 的速度水平抛出4.一水平放置的圆盘可以绕中心O 点旋转,盘上放一个质量为m 的铁块(可视为质点),轻质弹簧一端连接铁块,另一端系于O 点,铁块与圆盘间的动摩擦因数为μ,如图4所示。
铁块随圆盘一起匀速转动,铁块距中心O 点的距离为r ,这时弹簧的拉力大小为F ,重力加速度为g ,已知铁块受到的最大静摩擦力等于滑动摩擦力,则圆盘的角速度可能是( )A .ω≥F +μmg mrB .ω≤F -μmg mrC.F -μmg mr <ω<F +μmg mrD.F -μmg mr ≤ω≤F +μmg mr二、多项选择题5.(2016·东城区模拟)长为L 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v ,下列说法中正确的是( )A .当v 的值为gL 时,杆对小球的弹力为零B .当v 由gL 逐渐增大时,杆对小球的拉力逐渐增大C .当v 由gL 逐渐减小时,杆对小球的支持力逐渐减小D .当v 由零逐渐增大时,向心力也逐渐增大6.质量为m 的小球由轻绳a 、b 分别系于一轻质木架上的A 和C 点,绳长分别为l a 、l b ,如图5所示,当木架绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断,同时木架停止转动,则( )A .小球仍在水平面内做匀速圆周运动B .在绳b 被烧断瞬间,绳a 中张力突然增大C .若角速度ω较小,小球可能在垂直于平面ABC 的竖直平面内摆动D .绳b 未被烧断时,绳a 的拉力大于mg ,绳b 的拉力为mω2l b7.(2016·山西吕梁模拟)如图6所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力8.如图7所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时圆盘的角速度为2μg rC .此时A 所受摩擦力方向沿半径指向圆外D .此时烧断绳子,A 仍相对盘静止,B 将做离心运动三、非选择题9.为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,长为L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道D ,如图8所示。
高中物理平抛运动临界问题、相遇问题、类平抛运和斜抛运动及参考答案
平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标导练内容目标1平抛运动临界问题目标2平抛运动中的相遇问题目标3类平抛运动目标4斜抛运动【知识导学与典例导练】一、平抛运动临界问题擦网压线既擦网又压线由H−h=12gt2=12gx1v12得:v1=x1g2H−h由H=12gt2=12gx1+x2v22得:v2=x1+x2g2H由H−h=12gt2=12gx1v02和H=12gt2=12gx1+x2v02得:H−hH=x21x1+x221某天,小陈同学放学经过一座石拱桥,他在桥顶A处无意中把一颗小石子水平沿桥面向前踢出,他惊讶地发现小石子竟然几乎贴着桥面一直飞到桥的底端D处,但是又始终没有与桥面接触。
他一下子来了兴趣,跑上跑下量出了桥顶高OA=3.2m,桥顶到桥底的水平距离OD=6.4m。
这时小陈起一颗小石,在A 处,试着水平抛出小石头,欲击中桥面上两块石板的接缝B处(B点的正下方B′是OD的中点),小陈目测小石头抛出点离A点高度为1.65m,下列说法正确的是()A.石拱桥为圆弧形石拱桥B.小陈踢出的小石头速度约为6.4m/sC.小陈抛出的小石头速度约为4.6m/sD.先后两颗小石子在空中的运动时间之比为2:1二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:t<2hg平抛与平抛相遇(1)若等高(h1=h2),两球同时抛;(2)若不等高(h1>h2)两球不同时抛,甲球先抛;(3)位移关系:x1+x2=L(1)A球先抛;(2)t A>t B;(3)v0A<v0B(1)A、B两球同时抛;(2)t A=t B;(3)v0A>v0B平抛与竖直上抛相遇(1)L=v1t;(2)12gt2+v2t−12gt2=h⇒t=hv2;(3)若在S2球上升时两球相遇,临界条件:t<v2g,即:hv2<v2g,解得:v2>gh;(4)若在S2球下降时两球相遇,临界条件:v2g<t< 2v2g,即v2g<hv2<2v2g,解得:gh2<v2<gh平抛与斜上抛相遇(1)v1t+v2cosθ⋅t=L;(2)12gt2+v2sinθt−12gt2=h⇒t=hv2sinθ;(3)若在S2球上升时两球相遇,临界条件:t<v 2sin θg ,即:hv 2sin θ<v 2sin θg ,解得:v 2>ghsin θ;(4)若在S 2球下降时两球相遇,临界条件:v 2sin θg <t <2v 2sin θg,即v 2sin θg <h v 2sin θ<2v 2sin θg ,解得:gh2sin θ<v 2<gh sin θ1如图所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值)。
抛体运动的规律——平抛临界问题 物理人教版(2019)必修第二册
不计空气阻力,则( ABC)
首先要突出说明的是选题的现实价值,
每一个研究的目的都是为了指导现实
生活,一定要讲清本选题的研究有什
么实际作用、解决什么问题;其次再
A.小球a比小球b先抛出
写课题的理论和学术价值。
B.初速度Va小于Vb
C.小球a、b抛出点距地面高度之比为 vb2 : va2
生活,一定要讲清本选题的研究有什
A.初速度V1<V2
么实际作用、解决什么问题;其次再
写课题的理论和学术价值。
B.若两球同时抛出,则两球一定相遇
C.若A先抛出,B后抛出,则两球可能相遇
D.若两球能相遇,则从抛出到相遇的过程中
两球的速度变化相同
Part 03
随 堂 检 测
1.如图,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度Va和Vb
例 4.一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为 L1 和 L2,中间球网高
度为 h。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点
距台面高度为 3h。不计空气的作用,重力加速度大小为 g。若乒乓球的发射速率 v 在某范围内,通过
选择合适的方向,就能使乒乓球落到球网右侧台面上,则 v 的最大取值范围是(
6ℎ
(41 2 +2 2 )g
6ℎ
写课题的理论和学术价值。
例5.如下图所示,自足够高的同一水平直线上A、B两点相向水平抛出两个小球,
两球的初速度分别为V1、V2,运动轨迹如图所示,AO>BO,不计空气阻力。则下
列说法正确的是( BD )
平抛运动的临界问题
平抛运动的临界问题平抛运动的临界问题,解决这类问题有三点: 1.是明确运动平抛运动的基本性质公式; 基本规律及公式:① 速度:0v v x =,gt v y =合速度 22y x v v v +=方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =xy2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
2.是确定临界状态;3.是确定临界轨迹——在轨迹示意图寻找出几何关系。
模型讲解:(排球不触网且不越界问题)模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。
问题:标准排球场场总长为l 1=18m ,宽l 2=9m 女排网高h=如上图所示。
若运动员在3m 线上方水平击球,则认为排球做类平抛运动。
分析方法:设击球高度为H ,击球后球的速度水平为v 0。
当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。
当击球点高度为h 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。
如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+〈 由于时,不越界。
因此,m gHv l gt H t v l 12221020〈===结论:① 若H 一定时,则v 0越大越易越界,要不越界,需H ggHv 2122120=<② 若v 0一定时,则H 越大越易越界,越不越界,需00022722144212v gv g v g H ==< 如图(c )要不触网,则需 竖直高度:221gt h H >- 水平距离:m t v 30=以上二式联立得:0229v t h H >-结论:1) 若H 一定(()一定h H -)时,则v 0越小,越易触网。
专题 平抛运动中的临界问题与斜面问题
高一物理导学案平抛运动中的临界问题与斜面问题【学习目标】1、能够利用平抛运动特点分析解决临界问题2、能够分析三种斜面问题,针对不同斜面问题,关键是弄清楚需要分解速度还是分解位移知识点一平抛运动中的临界问题【问题导入】例1 在2016年里约奥运会女排比赛中,中国女排时隔12年再次获得奥运会冠军,这是值得中国人骄傲的一刻。
在排球比赛中,扣球时的状态可以简化为如图所示的模型。
若运动员从距离球网某一高度处竖直跃起扣球时。
当她将排球水平扣出,使排球获得水平方向的初速度v0。
(g =10 m/s2)问题1排球水平扣出后,排球做什么运动?有什么运动特点?问题2若C点为击球的位置,距地面高度为3.2 m,排球需要多长时间落地?若此时击球速度为10 m/s,排球落地点距击球点C的水平距离是多少?(假设排球一定能过网)问题3若图中B点为球网位置,球网高度为AB =2.4 m,击球点C距离球网的水平距离为3 m,要想使球过网,击球的速度v0至少是多少?问题4若图中D点为排球场边界线,排球场半场的长度BD=9 m,若要使排球既过网又不能出界,那么击球速度v0的取值范围是多少?【巩固练习】刀削面是西北人喜欢的面食之一,全凭刀削得名。
如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅的上沿的竖直距离为,面团离锅上沿最近的水平距离为,锅的直径为。
若削出的面片落入锅中,则面片的水平初速度不可能是(g =10 m/s2)A.B.C.D.知识点二平抛运动中的斜面问题【问题导入】例2如图所示,以v0的速度水平抛出的物体飞行一段时间后,垂直撞在倾角θ的斜面上问题1当物体与斜面垂直碰撞时,物体的瞬时速度方向与斜面方向之间有什么关系?问题2此时合速度v方向与竖直分速度v y方向之间的夹角与斜面的倾角有什么关系?问题3以v0=10 m/s的速度水平抛出的物体飞行一段时间后,垂直撞在倾角θ=30°的斜面上,这段飞行的时间t是多少?求撞击时的速度v大小是多少?例3如图所示,以v0的速度水平抛出的物体飞行一段时间后,恰好无碰撞的开始沿斜面滑下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案 (1)
3h g
(2)L
4gh≤v≤L
g 2h
(3)L=2
2h
转到解析 目录
3.规律方法
1.处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件; (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 2.平抛运动临界极值问题的分析方法 (1)确定研究对象的运动性质; (2)根据题意确定临界状态; (3)确定临界轨迹,画出轨迹示意图; (4)应用平抛运动的规律结合临界条件列方程求解。
的初速度分别从 A、B 两点相差 1 s 先后水 平相向抛出,a 小球从 A 点抛出后,经过 时间 t,a、b 两小球恰好在空中相遇,且 速度方向相互垂直,不计空气阻力,取 g=10m/s2,则抛出点 A、B 间的水平距离是( )
A.80 5 m B.100 m C.200 m D.180 5 m
转到解析
6gh<v<L1
g 6h
B.L41
hg<v<
(4L12+L22)g 6h
C.L21 D.L41
6gh<v<12 hg<v<12
(4L21+L22)g 6h
(4L21+L22)g 6h
提示:球速最小时, 射程最小;球速最大
时,射程最大。
转到解析
目录
4.(2017·江西重点中学联考)如图 15
所示,将 a、b 两小球以大小为 20 5 m/s
目录
D.若石子不能落入水中,则v0越大,落 到斜面上时速度方向与斜面的夹角越大
转到解析 目录
4.备选训练
平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞
镖、射击、飞机投弹模型等。这些模型经常受到边界条件的制约,如网
球是否触网或越界、飞镖是否能击中靶心、飞机投弹是否能命中目标等。 解题的关键是能准确地运用平抛运动规律分析对应的运动特征。
目录页
Contents Page
热点突破: 平抛运动中的临界问题
1.热点透析
2.典例剖析
3.规律方法
4.备选训练 5.高考模拟演练
基础课
目录
1.热点透析
平抛运动中的临界问题 1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明 题述的过程中存在着临界点。 2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语 ,表明题述的过程中存在着“起止点”,而这些起止点往往就是临 界点。 3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼, 表明题述的过程中存在着极值,这些极值点也往往是临界点。
水平台面的长和宽分别为L1和L2,中间球网高度为h。发射机安装于台 面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,
发射点距台面高度为3h。不计空气的作用,重力加速度大小为g。若乒
乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到
球网右侧台面上,则v的最大取值范围是( )
A.L21
A.足球位移的大小 x= L2+s2 4
B.足球初速度的大小 v0=
g (L2+s2) 2h 4
C.足球末速度的大小 v= g (L2+s2)+4gh 2h 4
D.足球初速度的方向与球门线夹角的正切值 tan θ= L
2s
转到解析
目录
5.高考模拟演练
3 (2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图示。
【思维训练1】如图11所示,球网高出桌面H,网到桌边的距离为L,某人
在乒乓球训练中,从左侧处,将球沿垂直于网的方向水平击出,球恰好
通过网的上沿落到右侧边缘,设乒乓球的运动为平抛运动,下列判断正
确的是( )
A.击球点的高度与网高度之比为2∶1
B.乒乓球在网左右两侧运动时间之比为2∶1
C.乒乓球过网时与落到右侧
目录
2.典例剖析
典例 (2016·浙江理综,23)在真空环境内探测微粒 在重力场中能量的简化装置如图8所示。P是一个微粒
源,能持续水平向右发射质量相同、初速度不同的微 粒。高度为h的探测屏AB竖直放置,离P点的水平距离 为L,上端A与P点的高度差也为h。
(1)若微粒打在探测屏AB的中点,求微粒在空中飞行 的时间;
解析显隐 目录
2.[平抛运动与斜面有关的临界问题]如图为湖边一倾角为30°的大 坝横截面示意图,水面与大坝的交点为O。一人站在A点以速度v0沿水 平方向扔一小石子,已知AO=40 m,不计空气阻力,g取10 m/s2。下 列说法中正确的是( )
A.若v0>18 m/s,则石子可以落入水中 B.若v0<20 m/s,则石子不能落入水中 C.若石子能落入水中,则v0越大, 落水时速度方向与水平面的夹角越大
目录
1.解[生析活中小的物临件界做问平题抛][2运01动6·,广可东广根州据综平合抛运
动测规试律(一解)]题如。图若9,小窗物子件上恰、好下经沿窗间子的上高沿度,H=则有
h1L=.=6 121mg.4,t21,m墙、L的=距厚v窗度1t子1d,=上得0沿.4hvm=1=,0.某27 人mm在/处s,离的若墙P小点壁,距物离将块恰 好可物经件视窗直为子接质下穿点沿过的窗小,则口物并件有落以h+在v的水H速=平度12地g水t面22平,上抛L,+出取d,=g小=v2t2, 得10Avm.2=/sv2>。3 m7则m/vs/的,s 取所值以范3围m是B/s.( <v<v2<).37mm/s/s,故只有 C 项C.正3确m/。s<答v<案7 m/Cs D.2.3 m/s<v<3 m/s
桌边缘时速率之比为1∶2
D.乒乓球在左、右两侧运动
速度变化量之比为1∶2
转到解析
目录
【思维训练2】 (2015·浙江理综)如图 12 所示为足球球门,球门宽为足球顶入球门的左下方死 角(图中 P 点)。球员顶球点的高度为 h,足球做平抛运动(足球可看成质点,忽 略空气阻力),则( )