35kV系统中性点接地电阻及接地变压器设计选型

合集下载

35kV系统中性点接地分析设计

35kV系统中性点接地分析设计
的绝 缘水平 以及 系统稳 定 的要 求等 多方 面 因素 而确
定的。
1 . 2 中性点经 消弧 线 圈接 地
变压器 中性 点接 地方式 与 电网的安 全运行 有密 切关 系 , 在 系统 正 常运 行 中 , 中性 点 对 地 电位 为 零 ,
中性 点不 接地 的三相 系统在 发生单 相接 地故 障 时虽还 可 以继续 供 电 , 但在 单相接 地故 障 电流较大 ,
绝 缘 方 式 温 升 限 值
有载调压或无载调压
dl 1 y n . d l 1
油 浸
绕圈温升不超过 6 5 K, 顶层油温温升不超过 5 5 K
中性 点 不 引 出 中性 点 可 以 引 出
流接 地 系统 , 接地 就会 短路跳 闸 , 不存 在接 地运 行 。
述。
关键词 :中性点接地方式; 3 5 k V变压器 ; 农村 电网; 安全运行
中图 分 类 号 : TM7 2 6 文献 标 识 码 : B 文章编号: 1 0 0 6 -3 9 5 1 ( 2 0 1 3 ) O 5 一O 1 1 8 一O 2
D0I : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 6 -3 9 5 1 . 2 0 1 3 . O 5 一O 3 3
和负荷 侧 的 变 压 器 都 接 地 。GB / T6 4 5 1 —2 0 0 8 < < 油
般通过接地点 的电流较大 , 可能会烧坏电气设备。 发生 故障 后 , 继 电保 护会 立 即动 作 , 使开关跳闸 , 消 除故 障 。 目前 我 国 1 1 0 k V 以上 系统 大 都采 用 中性
地 引下线 共 同于一 个 接 地 装 置相 连接 , 又称 三 点 共 同接 地 。这样 可 以保 障变压 器 的安全 运行 。当遭受 雷击 时 , 避 雷 器动作 , 变 压器 外壳 上 只剩下 避雷 器 的 残压 , 减少 了接 地体 上 的部分 电压 。对 变压 器而 言 ,

35kV系统中性点接地电阻及接地变压器设计选型

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案深圳市华力特电气股份有限公司一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于√3倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

电网中性点接地方式及选择要求

电网中性点接地方式及选择要求

电网中性点接地方式及选择要求电网中性点接地方式及选择要求三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式涉及电网的安全牢靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。

一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。

因此,在变电所的规划设计时选择变压器中性点接地方式中应进行实在分析、全面考虑。

【电网中性点接地方式及选择要求】我国110kV及以上电网一般采纳大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采纳不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压上升不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能快速动作于跳闸,切除故障,系统设备承受过电压时间较短。

因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。

6~35kV配电网一般采纳小电流接地方式,即中性点非有效接地方式。

近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的加添,如不实行有效措施,将危及配电网的安全运行。

中性点非有效接地方式重要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。

1中性点不接地方式适用于单相接地故障电容电流IC10A,以架空线路为主,尤其是农村10kV配电网。

此类型电网瞬间单相接地故障率占60%~70%,希望瞬间接地故障不动作于跳闸。

其特点为:单相接地故障电容电流IC10A,故障点电弧可以自熄,熄弧后故障点绝缘自行恢复;单相接地不破坏系统对称性,可带故障运行一段时间,保证供电连续性;【电网中性点接地方式及选择要求】通讯干扰小;单相接地故障时,非故障相对地工频电压上升31/2UC,此系统中电气设备绝缘要求按线电压的设计;当IC10A时,接地点电弧难以自熄,可能产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危及网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故;系统内谐振过电压引起电压互感器熔断器熔断,烧毁TV,甚至烧坏主设备的事故时有发生。

35kV站用变兼接地变及接地电阻成套装置技术规范书

35kV站用变兼接地变及接地电阻成套装置技术规范书

光伏发电30MWp工程35kV接地变兼站变及接地电阻柜成套装置技术规范书年月目录供货需求表 (1)1 总则 (2)2项目概况 (2)3项目建设环境条件 (2)4 适用技术标准 (2)5 技术要求 (5)6 供货范围 (6)7 备品、备件及专用工具 (10)8 包装、标识、运输 (11)8.1基本要求 (11)装运标志 (11)8.2特殊要求 (11)9 技术服务 (12)9.1设计资料要求 (12)9.2制造厂工地代表要求 (13)9.3在投标方工厂的检验和监造 (14)9.4投标方负责的培训服务 (14)10 质量保证和试验.............................................................................................................. 错误!未定义书签。

附录A投标人需填写的表格 (17)1.A1 投标人需填写的主要配套部件表 (17)2.A2 技术偏离表 (17)3.A3 备品备件、专用工具表 (17)供货需求表注:外壳颜色由需方指定,与35kV开关柜颜色一致。

特别注意:1、请在接到买方"正式生产通知"后,再安排生产。

2、签协议时,需提供满足施工图设计深度的总装图和基础安装尺寸图(电子版及纸介质)。

1 总则(1)本规范书适用于光伏发电30MWp工程中站用干式变压器设备。

它提出了对该设备的功能设计、结构、安装和试验等方面的技术要求。

(2)本规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文。

投标方应提供符合本规范书、国家相关标准和IEC标准的优质产品。

(3)本规范书所使用的标准如与投标方所执行标准不一致时,应按水平较高标准执行。

(4)如果投标方没有以书面形式对规范书的条文提出异议,则认为投标方提供的产品完全符合本规范的要求。

如有任何异议,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的章节中加以详细描述。

关于某变电站低压侧中性点接地方式的选择概述

关于某变电站低压侧中性点接地方式的选择概述

关于某变电站低压侧中性点接地方式的选择概述摘要:电力系统中性点接地方式是配电网设计、规划和运行中的一个重要的综合性技术课题。

它对电力系统许多方面都有影响,不仅涉及到电网本身的安全可靠性、设备和线路的绝缘水平,而且对通讯干扰、人身安全有重要影响。

中性点接地方式的选择也是一个复杂的问题,要考虑电网结构、系统运行情况、线路的设备状况和周围自然环境等因素,还必须考虑人身安全、通信的干扰和供电可靠性的要求。

本文依托此现状就某新建变电站35千伏配电装置中性点接地方式的选择进行简要分析。

0背景根据某地电网规划,35千伏电网将逐渐退出电网,未来不新建35千伏变电站,投运的110千伏变电站和220千伏变电站将无35千伏电压等级。

但为某地北部大部分乡镇供电的35千伏变电站扔将运行十年或更久,目前为乡镇提供35千伏电源的上级变电站目前仅有两座,其站内主变长期保持重载,大负荷方式下一旦出现线路或设备故障就有可能导致某地北部大面积停电。

为暂时缓解供电压力,提高35千伏电网转供能力,同时优化35千伏网架结构,需要部分新建变电站在建设初期考虑35千伏电压等级配电设备,远期拆除。

因规划均以高压电缆通过城市综合管廊联络出线,而35千伏电网以架空线为主,此现状导致未来新建35千伏出线存在电缆线路+架空线路并存的情况。

1.1国内外现状综述对于中压配电网的中性点接地方式问题,世界各国有着不同的观点及运行经验。

因此,世界各个国家,甚至一个国家中的不同城市中,中压配电网的中性点接地方式都不尽相同,主要根据各自中压配电网的运行经验和传统来确定。

1.1.1 国外发展现状(1)前苏联及东欧前苏联规定在下列情况下采用中性点不接地方式:6kV电网单相接地电流小于30A;10kV电网单相接地电流小于20A;15~20kV电网单相接地电流小于15A;35kV电网单相接地电流小于10A。

如果单相接地电流超过上述各值,则需采用中性点消弧线圈接地方式。

(2)西欧地区德国是世界上最早使用消弧线圈的国家,白1916年发明消弧线圈、1917年在Pleidelshein电厂首次投运,至今已有90多年的历史。

风力和光伏发电站中性点接地设备选型

风力和光伏发电站中性点接地设备选型

电子产品世界风力和光伏发电站中性点接地设备选型Selection of neutral grounding equipment for wind and photovoltaic power stations肖思达,王雪娜 (广西大学电气工程学院,南宁 530000)摘 要:风力和光伏发电系统中变压器35 kV侧绕组主要采用D型接线方式,当发生单相接地故障时,容性电流过大通常会导致暂时过电压破坏设备绝缘。

工程应用中通常采取接地变压器创造一个人为的中性点,然后通过消弧线圈或小电阻接地。

小电阻接地具备能快速切除故障和抑制过电压的特点,因此在工程中得到了广泛的应用。

本文将介绍接地变的工作原理,并给出接地电阻值和接地变容量选择的依据。

关键词:接地变压器;接地电阻;过载系数0 引言风力和光伏发电系统集电线路常常采用电缆的形式汇集电能。

35kV电压等级集电线路使用电缆直埋敷设,其对地电容电流约为架空集电线路对地电容电流的30~45倍。

因此,当大量采用电缆输送电能,在发生单相对地短路时,故障点会产生暂时过电压,从而损坏电缆绝缘[1]。

若发生故障不能及时处理,将会导致事故扩大,造成更大的经济损失。

根据《交流电气装置过电压保护和绝缘配合设计规范》(GB/T50064—2014),当单相接地故障电容电流较大时,可采用中性点低电阻接地方式。

并要求中性点接地电阻在满足单相接地继电保护可靠性和过电压绝缘配合的前提下选择较大阻值。

在国家电网有限公司颁布的《防止风电大面积脱网重点措施》中要求,风电场应采取切实有效的措施,确保汇集线系统故障快速切除,防止扩大恶化。

对新建风电场,建议汇集线系统采用经电阻接地方式,并配置单相接地故障保护。

本文对接地变压器和中性点接地电阻值选择过程进行分析计算,总结出几种风力和光伏发电系统中常见的接地变和接地电阻选型结果。

1 Z型接地变工作原理在实际的工程应用中,国内大多数集中并网的风力和光伏发电站都采用35kV电压等级汇集电能至升压站主变低压侧进行升压后送出,而主变35kV侧通常为D 型接线,无中性点引出。

主变压器35kV中性点接地方式分析

主变压器35kV中性点接地方式分析

主变压器35kV中性点接地⽅式分析三相交流电⼒系统中中性点与⼤地之间的电⽓连接⽅式,称为电⽹中性点接地⽅式。

中性点接地⽅式对电⽹的安全可靠性、经济性有很⼤影响;同时直接影响系统设备绝缘⽔平的选择、过电压⽔平及继电保护⽅式、通讯⼲扰等。

⼀般来说,电⽹中性点接地⽅式也就是变电站中变压器的各级电压中性点接地⽅式。

以电缆为主的配电⽹,当发⽣单相接地故障时,其接地残流较⼤,运⾏于过补偿的条件也经常不能满⾜。

我国ll0kV及以上电⽹⼀般采⽤⼤电流接地⽅式,即中性点有效接地⽅式 (在实际运⾏中,为降低单相接地电流,可使部分变压器采⽤不接地⽅式),包括中性点直接接地和中性点经低阻接地。

这样中性点电位固定为地电位,发⽣单相接地故障时,⾮故障相电压升⾼不会超过1.4倍运⾏相电压;暂态过电压⽔平也较低;故障电流很⼤,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。

因此,⼤电流接地系统可使整个系统设备绝缘⽔平降低,从⽽⼤幅降低造价。

6~35kV配电⽹⼀般采⽤⼩电流接地⽅式,即中性点⾮有效接地⽅式。

包括中性点不接地、⾼阻接地、经消弧线圈接地⽅式等。

在⼩电流接地系统中发⽣单相接地故障时,由于中性点⾮有效接地,故障点不会产⽣⼤的短路电流,因此允许系统短时间带故障运⾏。

这对于减少⽤户停电时间,提⾼供电可靠性是⾮常有意义的。

⼀、分析35kV侧中性点接地⽅式。

根据DL/T620—1997 交流电⽓装置的过电压保护和绝缘配合》规程中3.1.2条规定:⾦属杆塔的架空线路构成的系统和所35kV、66kV系统当单相接地故障电容电流超过10A⼜需在接地故障条件下运⾏时,应采⽤消弧线圈接地⽅式。

建设容量49.5MW,35kV侧单相接地电容电流约为24A,且风电场35kV集电线路采⽤架空线为主电缆为辅的混合输电⽅案,因此5kV侧中性点采⽤经消弧线圈接地⽅式。

当35kV侧中性点通过消弧线圈接地,线路发⽣单相接地故障时,不会瞬时跳闸,⼀般允许2h持续运⾏,以便寻找和处理事故。

35KV风电电阻接地设计书示例

35KV风电电阻接地设计书示例

35KV风电电阻接地设计书示例风电场接地电阻柜设计书项目参数:根据集电线路情况,本风电场35kV集电线路采用采用YJVn型交联电缆直埋方式,电缆截面有3X50, 3X95, 3X120, 3X240四种形式,在统计电缆长度时,考虑了 1.3的系数。

35kVl段母线:各种电缆的长度分别为3X50: 27040m, 3X95: 5320m, 3X120: 4450m, 3X240: 38800m。

根据YJV22交联聚乙烯绝缘电力电缆对地电容电流常规经验值:3X50电缆的三相对地电容电流为3 A/Km3X95电缆的三相对地电容电流为4. 1A/Km3X120电缆的三相对地电容电流为4. 4 A/Km3X240电缆的三相对地电容电流为5. 9 A/Km(这里推荐的电缆电容电流为保守值,可依据电缆厂家提供数据进行精确设计)35kV I段母线三相对地总电容电流为Icl = 3X27.04+4. IX 5. 32+4. 4X4. 45+5. 9X38. 167 A由于系统输电线路为电缆直埋,此系统发生单相接地故障一般为永久性单相接地故障,系统中性点更适宜采用小电阻接地方式。

根据变压器经低阻接地规程中规定:系统注入的阻性电流MK*容性电流2WKW3由于考虑变压器本身对地电容及系统内其它设备对地电容增量,这里K值取2. 435kV I段注入的阻性电流Irl=2. 4 Icl^400A电阻值R二系统相电压/ Irl=35/ V 3/400^50. 5 Q三相接地变压器容量的理论计算值P=I2R=400X 400X50. 5=8080KVA考虑到变压器10S短时过载能力为10. 5在三相接地变不带站用变压器使用的情况下三相接地变压器的实际容量P=P理论/10. 5=8080/10. 5~800KVA最终设计参数:35kV I段系统三相接地变压器的容量为800KVA (不带二次侧)电阻阻值50. 5 Q单相接地故障额定电流400A额定通流时间10S。

中压系统中性点接地方式选用技术导则

中压系统中性点接地方式选用技术导则

Q/GDW中压系统中性点接地方式选用技术导则江苏省电力公司发布Q/GDW-10-375-2008目次前言 (II)1 适用范围 (3)2 规范性引用文件 (3)3 术语和定义 (3)4 中性点接地方式选用技术原则 (4)5 中性点接地装置选择和应用原则 (5)附录A (资料性附录)常用计算公式和方法 (9)IQ/GDW-10-375-2008II前言电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的联系。

我国中压电网中,80%以上的故障是单相接地引起的,架空线为主的电网单相故障中绝大多数为瞬时性故障,而架空线供电又是中压电网的主要形式。

合理选用中性点接地方式,可以减少线路故障跳闸次数,提高供电的可靠性。

在电网发展变化比较大的地区,合理选用中性点接地方式,可以减少设备的频繁改造和更换,减少投资。

为规范管理,统一标准,指导江苏中压电网中性点接地方式的合理选用,特制订本导则。

本导则的编写格式和规则符合GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》及DL/T 600-2001《电力行业标准编写基本规定》的要求。

本导则的附录A为资料性附录。

本导则由江苏省电力公司生产技术部提出并解释。

本导则由江苏省电力公司生产技术部归口。

本导则起草单位:江苏省电力公司生产技术部、江苏省电力试验研究院有限公司。

本导则主要起草人:李长益、付慧、张霁、黄芬、王建刚Q/GDW-10-375-2008 中压系统中性点接地方式选用技术导则1 适用范围本导则规定了10kV、20kV和35kV三个电压等级的中压系统中性点接地方式的选用技术原则,并给出了消弧线圈和小电阻装置及其配套接地变、电流互感器等设备的推荐配置原则。

本导则适用于江苏电网中压系统中性点接地方式的选用。

2 规范性引用文件本导则引用了下列标准的有关条文,当这些标准修订后,使用本导则者应引用下列标准最新版本的有关条文。

变压器中性点接地的要求

变压器中性点接地的要求

变压器中性点接地的要求●变压器低压侧中性点接地电阻应该在0.5~10欧姆之间。

保护接地电阻不能大于4欧姆。

1.要有足够的深度2.在土壤电阻率部高的地层要增加接地体支数3.在土壤电阻率较高的地方,可在每支接地体周围0.5M以下0.8M以上的底层填充化学材料4.在土壤电阻率很高的地层,应该用挖坑换土的方法●变压器中性点直接接地的接地电阻不能大于4欧姆●电力设备试验规程规定:100KV以下的变压器接地点电阻不大于10欧姆,100KV以●的变压器接地电阻不大于4欧姆●变压器接地电阻过高的原因:1.接地装置的材料不符合规格,由于接地体埋设不规范安装工艺马虎,接地体与接地线的连接头松动,大地过于干燥,均有可能造成接地电阻过高2.变压器设计安装时由于外力破坏或接地体被盗等原因也可能造成接地线断线,接地电阻过高●预防措施:1.严格按照施工工艺规范接地体埋设1).接地装置一般由钢管、角钢、带钢以及钢绞线等材料制成,埋入深度应该不小于0.5米~0.8米2)接地体装置施工应与基础施工同时进行a.接地槽的深度应符合设计要求,一般为0.5M到0.8M,可耕地应敷设在耕地深度以下,接地槽宽度一般为0.3M~0.4M与、并清除槽中一切可影响接地体与土壤接触的杂物b.钢管的规格以及打入土壤中的深度应符合设计要求,接地体应垂直打入地中且固定,以免增加接地电阻,中山区以及土壤电阻率较高的地方应尽量少用管形接地体,而采用表面埋设的方式埋设接地体,c.接地体下引线应沿电杆敷设引下,尽可能短而直,以减少冲击电抗,接地体引下线以支持件固定中杆塔上,支持件之间的距离中直线部分常采用1~1.5M,在转弯部分采用1Md.接地体引下线除了为测量接地电阻而预留的断开处以外不得有街头,接地装置的连接应保证接触可靠,接地体引下线与接地体的连接以及接地体本身的连接均采用焊接,接地体引下线与为测量接地电阻而预留的断开处采用螺钉连接。

连接螺钉应镀锌防锈。

e.接地体敷设完毕应回填土,不得将石块等影响接地体与土壤接触的杂物埋入2.在变压器的中性线上选取合适的位置重复接地,当变压器中性线中某点断开的时,由于多点接地,中性线电流仍可经过大地回到变压器中性点,中性线的电位始终为零,每相电压始终为正常电压。

35kV系统中性点接地电阻及接地变压器设计选型

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案深圳市华力特电气股份有限公司一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于√3倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

接地变及接地小电阻计算书

接地变及接地小电阻计算书

光伏发电站接地变及接地小电阻选择计算书大型光伏电站、风电场等场内集电线路较长的发电厂,中性点接地方式对电站的安全稳定运行至关重要。

场内集电线路较长的电厂,易发生单相对地短路故障,由于集电线路较长单相对地电容电流较大,如不采取合适的接地方案极易造成短路一、35kV电缆对地电容电流计算光伏电阻35kV电缆总长度约为L=16km,35Kv系统对地电容电流I c=0.1*U L*L*1.13=0.1*35*16*1.13=63.28A:二、接地电阻值计算根据IEEE Stec62.92.3–1993 IEEE Guide for theApplication of Neutral Grounding in Electrical Utility 第6.2.1 条,低电阻接地系统的接地电阻值选择原则。

限制暂态过电压到可以接受的数值;限制故障电流大小使短路危害降到最低;电阻值选取应向保护装置提供足够大的电流,使保护装置可靠、快速动作。

中性点电阻接地网络中,暂态过电压的倍数k 与系统单相接地电流I R 和单相接地电容电流I C的比值关系。

当I R = I C时,可将健全相的过电压限制在2.5 倍的相电压以下;当I R= 1.5I C时,可将健全相的过电压限制在2.26倍相电压以下;当I R = 2I C时,可将健全相的过电压限制在2.2 倍。

根据大量运行实践表明当I R>3I C 时,从限制过电压效果来看,已变化不大。

一般I R = (2 - 3) I C。

但是考虑到电阻性电流大于100 A 可以保证接地保护的灵敏度和可靠性,当然应加大一点接地电流,由于是瞬动跳闸,对设备危害不大,又可以减少保护的死区,但不必加大到1000 A,以避免使故障点损害加重和接地变容量选择得过大。

故建议电阻性电流值为I R = K I C,式中K 为配合系数,当I C≥100 A 时,K = 1 ~ 2 ;当I C<100 A 时,K = 2 -6。

风电场35kV集电系统低电阻接地方式的工程算法

风电场35kV集电系统低电阻接地方式的工程算法

1 引言国家电网在“风电并网运行反事故措施要点”中,明确指出风电场汇集线系统(以下统称集电系统)单相故障应快速切除。

目前各地的已建风电场正逐步进入集电系统的整改阶段,集电系统采用经低电阻接地方式居多。

如何进行设计,保证经低电阻接地的集电系统,发生单相接地故障时,能通过相应保护快速切除。

我国现在还没有针对风电场中性点接地电阻如何选择的规程、规范,本文介绍一种简便的工程算法,主要是针对电缆线路和架空线路混合的集电线路。

2.单相接地回路故障的特点风电场的一段35kV母线中包含如下回路:集电回路的进线、场用变回路、无功补偿装置回路、接地变压器等回路,这些回路都应安装零序电流互感器,都属于低电阻接地的集电系统。

这些回路的电缆长度,有的短至几十米,有的长达20多公里,参差不一。

采取低电阻接地方式后,当某个回路发生单相接地故障时,该回路短路电流是∑IC-IC L(所有集电线路电容电流扣除故障回路自身的电容电流)与IR0(流过接地变压器及接地电阻的电流)的电流矢量和,详见图1。

图1 回路2发生单相接地时,各回路电容电流及电阻电流流向示意图及矢量图3.工程计算法3.1工程计算法的假设这是一种工程计算,对电缆线路和架空线路混合的集电线路,由于35kV 的架空线路每公里电容电流与电缆线路每公里电容电流相比小得很多。

电缆线路的电容电流估算公式:Ic=0.1UeL;架空线路的电容电流估算公式:Ic =(2.7~3.3)UeL×10-3。

因此本计算可略去架空线路电容电流的计算。

3.2接地变压器的等效回路由于35kV接地变压器的零序阻抗≤100Ω,这样使接地电阻中流过的零序电流是一个具有电感、电阻性质的电流(其大小取决于电感和电阻的复阻抗),风电场35kV系统的接地变回路接线图和计算阻抗图如下:图2 接地变回路接线图、计算阻抗图以及矢量图表1和表2中的接地变压器分别为零序阻抗90Ω和60Ω,一般情况下使用表1即可,只有在风电场的一段35kV母线连接较多的回路(电缆长度近百公里左右)才可用表2,这样做的目的是保证接地变提供的电流基本是电阻性。

风电场主变压器35kV侧中性点接地方式分析

风电场主变压器35kV侧中性点接地方式分析

风电场主变压器35kV侧中性点接地方式分析[摘要]近几年随着风力发电厂投入运行时间的增长,有些现场问题逐步显露出来,其中中性点接地方式的选择对电网的安全运行、经济性有很大影响。

该文对风电场35kV侧中性点接地方式的选择及出现事故的原因进行了相关比较和分析,可为今后风电场的设计提供部分参考和借荐。

【关键词】中性点接地方式;消弧线圈;中性点电阻柜1、概述三相交流电力系统中中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式对电网的安全可靠性、经济性有很大影响;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。

一般来说,电网中性点接地方式也就是变电站中变压器的各级电压中性点接地方式。

以电缆为主的配电网,当发生单相接地故障时,其接地残流较大,运行于过补偿的条件也经常不能满足。

我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),包括中性点直接接地和中性点经低阻接地。

这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。

因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。

6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。

包括中性点不接地、高阻接地、经消弧线圈接地方式等。

在小电流接地系统中发生单相接地故障时,由于中性点非有效接地,故障点不会产生大的短路电流,因此允许系统短时间带故障运行。

这对于减少用户停电时间,提高供电可靠性是非常有意义的。

2、典型实例中性点接地方式分析本文以扎鲁特某风电场(以下简称扎鲁特风电场)为例,分析35kV侧中性点接地方式。

根据DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规程中3.1.2条规定:金属杆塔的架空线路构成的系统和所有35kV、66kV系统当单相接地故障电容电流超过10A又需在接地故障条件下运行时,应采用消弧线圈接地方式。

浅谈35kV系统接地变压器

浅谈35kV系统接地变压器

浅谈35kV系统接地变压器作者:徐念云张绮来源:《华中电力》2013年第12期摘要:超高压系统中,为了限制单相对地短路电流抑制电弧过电压,需采用中性点经消弧线圈或小电阻接地的方式人为设置中性点,解决方法就是在35kV侧接入一个Z形接地变。

在近几年新投运的220kV变电站中,35kV系统直接采用小电阻接地。

本文介绍了目前35kV系统接地变压器的结构及保护配置,并结合实际工作对接地变压器的极性验证展开讨论。

关键字:接地变压器、零差保护、保护范围1. Z形接地变压器简介1.1 接地变的结构特点从图1可见,接地变由六个绕组组成,每一铁心柱上有两个绕组,然后反极性串联成星形绕组。

即绕组的末端与绕组的末端相连。

同样,绕组末端与绕组末端相连,绕组末端与绕组末端相连,、、的首端相连则形成接地变的中性点再与小电阻相连接地。

1.2 相量分析接地变压器每一铁芯柱上产生的磁势是两相绕组磁势的向量和。

三个铁芯柱上的合成磁势相差120°,是一组三相平衡量。

三相磁通可在三个铁芯柱上互相形成磁通路,磁阻小、磁通量大、感应电势大,呈现很大的励磁阻抗。

接地变每个铁芯柱上的两个绕组产生的磁势大小相等,方向相反,合成的磁势为零,三相铁芯柱上没有零序磁通,所以零序阻抗也很小。

表-1综上可知,接地变压器对正序、负序电流呈现高阻抗相当于励磁阻抗,对零序电流呈现低阻抗相当于漏抗。

因此,Z形接地变压器具有正、负序阻抗大,零序阻抗小的特点。

2. 典型接地故障的零序电流分布分析2.1 35kV接地变接于35kV母线以下三图示出了接地变装于35kV母线上,假设分别在出线、35kV母线、主变35kV侧发生单相接地故障。

图2-1为出线单相接地,零序电流回路为:线路故障点→大地→接地电阻R→接地变中性点→接地变→母线→线路故障点。

此时,故障线路的电流互感器和接地变的电流互感器均能反应零序电流。

图2-2为35kV母线单相接地,零序电流回路为:母线故障点→大地→接地电阻R→接地变中性点→接地变→母线故障点。

大型发电机中性点配电变压器电阻接地选型设计

大型发电机中性点配电变压器电阻接地选型设计

农业机械化与电气化大型发电机中性点配电变压器电阻接地选型设计张健(南京汽轮电机(集团)有限责任公司,江苏南京210000)摘要:目前,我国投入使用的大型发电机多采用中性O经配电变压器电阻接地的方式。

大型发电机的定子绕组对地电容较大,在出现定子单相接地故障时电容的电流也十分庞大,通过中性o经配电变压器的方式可以实现对故障电流的有效限制。

本文将对大型发电机中性o配变电压器电阻接地的选型设计进行探讨研究。

关键词:大型发电机;配电变压器;电阻;接地1大型发电机中性点配电变压器电阻接地选型设计应遵循的原则11负载电阻设计应遵循的原则对于采用经配电变压器电阻接地这种方法的大型发电机而言,为了有效抑制可能出现的间歇性单相接地故障重燃弧引发的尖峰过电压现象,只有在负载电阻折算到一次侧后的阻值与发电机定子侧系统对地电容的容抗保持基本相等时,才能将该电压值控制在2.6倍的相电压峰值范围内。

但在一切特殊的情况下,电阻值的选择会突破这一范围的限制。

上文中提到的电容主要指的是发电机定子绕组和定子绕组直接相连的设备对地电容,其中有发电机出口至其他连接设备之间连线的对地电容、发电机定子绕组的对地电容、励磁变高压侧绕组的对地电容、断路器对地电容等%1.2接地变压器电压变比的设计原则当大型发电机出现金属性接地故障之后,其中性点电压将在短时间内被抬高到相电压,为了应对这一情况,接地变压器高压侧的电压通常设定为发电机的额定相电压或是线电压。

此外,针对可能出现的电压波动现象,还需要留出一定的余裕,这样可以有效地避免接地变压器出现饱和。

除此之外,为了保障二次设备的安全性,发电机端出现金属性接地故障之后,必须要将接地变压器低压侧的电压控制在100〜500V范围内,因此最好选择低压侧的额定电压%需要特别注意的是,在发电机装设了外加低频电源式定子接地保护的情况下,也应对接地变压器低压侧额定电压进行适当的协调,实现二者的相互配合。

1.3负载电阻容量、接地变压器的设计原则接地变压器以及负载电阻容量的设计需要按照发电机额定运行时机端发生短时金属性接地故障的情况进行设计。

国家电网公司输变电工程典型设计35kV变电站分册-方案

国家电网公司输变电工程典型设计35kV变电站分册-方案

总的部分本典型设计为国家电网公司35kV变电站典型设计户内站设计部分,方案编号为B-3。

变电站为全户内无人值班变电站,电缆进出线。

35kV选用金属铠装移开式开关柜,户内单列布置;主变压器采用2台容量为20MVA三相双绕组自冷式有载调压变压器,户内布置;10kV 配电装置选用金属铠装中置式开关柜,户内单列布置;每台主变压器配置一组容量为3MVA无功补偿并联电容器组,户内布置组合成的方案。

37.1.1本典型设计的适用场合(1)规划为末端负荷变电站,远景进线2回,且无穿越功率。

(2)进出线均为电缆且电缆出线多的项目。

(3)负荷密度高、用地紧张、环境要求高的城市地区。

37.1.2对设计方案组合的说明35kV变电站典型设计户内站方案B-3技术组合一览表见表37 -1。

37.1.3主要技术指标主要技术指标见表37-2。

37.2电力系统部分37.2.1 电力系统本典型设计按照给定的主变压器及线路规模进行设计,在实际工程中,需要根据变电站所处系统情况具体设计。

各电压等级的设备短路电流按如下水平选择:(1) 35kV电压等级为25kA。

(2) lOkV电压等级为16kA或25kA。

37.2.2 系统继电保护及安全自动装置系统继电保护采用微机保护,本典型设计不涉及系统继电保护具体配置,只根据工程规模,推荐组屏方案,配合土建专业进行二次设备室的布置。

在实际工程中,需要根据变电站系统情况具体设计。

37.2.3 系统通信及站内通信本典型设计不涉及系统通信专业的具体内容,在实际工程中,需要根据变电站系统情况具体设计。

37.2.4系统调度自动化本典型设计不涉及系统远动专业的具体内容,只根据自动化典型硬件配置原则,配合土建专业进行二次设备室的布置。

在实际工程中,需要根据实际情况确定调度关系、远动信息内容和通道要求,并进行远动设备选型。

37.3电气一次部分37. 3.1电气主接线37.3.1.1变电站设计规模(1)主变压器容量:变电站本期容量为1×20MVA.远景容量为2*20MVA,电压等级为35/10. 5kV。

关于35 kV电阻接地系统的接地变压器保护配置原则的规定

关于35 kV电阻接地系统的接地变压器保护配置原则的规定
流, 另序电流差动保护动作按既接地变开关, 又跳主变开关设计 ( 具体使用以后再定 ) ,中性点带时 限另流动作既跳接地变开关又跳主变开关。 二、 装于主变压器 3k 5V侧、 无专用开关的接地变压器, 配置瓦斯保护、电流速断 、 带时限过流
( 流变接成三角形, 使过流中 不反应另序电流) 性点带时限另流。 和中 保护动作时跳主 变压器开关。 自 发文之日 起, 未设计审查的工程必须按本配置原则执行。
上海市电力工业局 一九九六年二月二 日
主题词 :输变 电保护配置 Nhomakorabea规定
市电 力
沪电力调字 ( 96 第 09 号 19 ) 09

关于3k 5V电阻接地系统的接地
变压器保护配置原则的规定
市区、市东 、市南供电局, 超高压输变电公司,上海电力设计院:
现对我局3k 5V电阻接地系统的接地变压器保护配置原则作如下规定, 请各单位遵照执行。 一、 装于3k 母线上有专用开关的接地变压器, 5V 配置瓦斯保护、 电流速断、 带时限过流 ( 包括 、 经另序电流反闭锁的和不经闭锁的)另序电流差动和中性点带时限另流。 、 瓦斯、 电流速断带时限过

浅谈太阳能光伏电站接地变压器容量的选择

浅谈太阳能光伏电站接地变压器容量的选择

浅谈太阳能光伏电站接地变压器容量的选择发表时间:2019-04-15T12:53:54.813Z 来源:《防护工程》2018年第36期作者:周振宇[导读] 文章讨论了接地变压器容量选择时应注意的情况、常用的工程计算方法,最后结合工程实际进行了实例阐述。

龙源(北京)太阳能技术有限公司摘要:接地变压器是太阳能光伏电站内的重要电气设备,文章讨论了接地变压器容量选择时应注意的情况、常用的工程计算方法,最后结合工程实际进行了实例阐述。

关键词:光伏电站;接地形式;变压器容量一、概述光伏发电作为一种重要的太阳能利用方式,具有太阳能利用率高、无需储能设备、发电能力强等优点,目前我国太阳能发电已经具备成为战略能源的技术、成本和环境条件,2050年后可能成为主要电力供应来源之一。

我国太阳能光资源丰富,光伏资源开发利用的前景非常广阔。

目前,发改委能源局已决定将光伏发电作为一种重要的能源利用方式进行开发,太阳能光伏的装机容量不断扩大。

中性点的接地形式直接影响了电气设备的绝缘水平,以及光伏电站的安全性、可靠性和供电连续性。

太阳能光伏发电站根据装机规模、并网电压等级、单相接地故障电流、保护装置灵敏度以及过电压水平的不同,中性点采用了不同的接地形式。

本文比较了不同中性点接地形式在光伏发电站中的应用场景,并通过某光伏电站的案例,探讨了太阳能光伏发电站中接地变压器容量计算的方法,为未来并网光伏电站计算提供一定的参考。

二、不同规模光伏电站中性点接地形式的选择中性点有效接地包括直接接地和经小电阻接地,非有效接地主要包括中性点不接地和经消弧线圈接地两种。

1、中性点直接接地中性点直接接地系统单相接地电流很大,继电保护必然动作,其优点是过电压水平低,对电气设备的绝缘性能要求不高。

50MW及以上级的大型太阳能光伏电站,由于装机容量大,并网电压水平高,通常都为110kV及以上电压等级,因此升压变压器高压侧一般选择直接接地形式,并在变压器中性点设置隔离开关及避雷器保护,以便于调度灵活选择接地点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中性点接地电阻及接地变压器选型方案一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

变电站35KV配电网中性点接地电阻选择33.7Ω,即发生单相接地故障时流过电阻的额定电①从降低配电网过电压水平考虑:中性点经电阻接地方式可以降低配电系统的弧光接地过电压水平,从而保证配电系统电气设备的安全运行。

根据国内有关机构做的EMTP程序计算、过电压模拟装置的实际模拟及各地区局运行经验表明,弧光接地过电压水平随着电阻的额定通流 I R增加而降低,I C为系统电容电流。

即:当I R≈I C时,过电压水平可降到2.5PU以下;当I R≈2I C时,过电压水平可降到2.2PU以下;当I R≈4I C时,过电压水平可降到2.0 PU以下;但当IR>4I C时,降低过电压的作用已不明显。

中性点经电阻接地系统中的内部过电压,主要指健全相的工频过电压。

其电弧接地过电压,通常由于R N的存在而被限制在较低水平。

这是因为电弧燃熄过程中系统的多余电荷,在从电弧熄灭到重燃的半个工频周期内被R N泄放掉。

当R N<(1~2)/3ω时,过电压一般不大于相电压的2.1倍。

经推导可得健全相电压升高值与故障相电压U a的比值K b、K c如下:K b=U b/ U a=(3/2)* (1)K c=U c/ U a=(3/2)* (2)给出不同的β=I R/ I C值,即可算出相应的U b/U a或U c/U a的比值。

针对此变电站项目,β=I R/ I C=600A/180A=3.33,代入上式可得:K b= K c=1.58PU综述,当I R=4 I C时,可以将系统的间歇性弧光接地过电压水平限制在2.0倍的相电压以内,同时能够将系统的工频过电压水平限制在1.58倍的相电压以内。

②从保护整定考虑:当35kV配电网某一条线路发生单相接地故障时,接地故障电流按如下公式计算I jd=,I0为故障电缆本身的电容电流,与整个系统总的电容电流(I C)相比计算时可以忽略不计。

故I jd===626.4A从保证继电保护灵敏度考虑,电阻值越小即流过电阻的电流越大越好。

目前的微机保护一般都有零序保护功能,且启动的电流值相当小,单相接地故障电流远大于每条线路的对地电容电流,一般都能满足零序保护的灵敏度要求。

按照①所选的电阻值,当过渡电阻不是很大时,保护灵敏度完全能够满足要求。

③对通信影响从降低对通信的干扰考虑,流过电阻的电流不宜选的过大。

我国四部协议规定,如通信电缆与大地间未装放电器时,危险影响电压不得大于430V,对高可靠线路,不大于630V。

目前35kV选用电阻电流中,深圳地铁、广州地铁及沈阳地铁一号线沿线取600A等,产品投运后均未发现对通信线路造成任何影响。

同时上海供电局在对35kV电阻接地系统做的单相接地模拟试验中,即使电阻电流达到1000A,对通信线路的危险影响电压也在四部协议规定的范围之内。

参考以上地区的选型和应用经验,我们认为选择电阻电流600A是完全能够避免对通信线路的干扰。

④从人身安全考虑从人身安全考虑,中性点接地电阻的通流越小越好。

因为中性点经低电阻接地在发生单相接地故障时,通过故障点的接地短路电流比较大,引起故障点地电位升高,有可能造成跨步电压,接触电势超过允许值。

因此在选择电阻值时,应根据地网接地电阻,保护动作时间,接地短路电流核算跨步电压和接触电势是否超过规程。

根据北京、天津、上海、南京、无锡、广州、深圳等大中城市运行经验,并未发现因采用电阻接地方式而造成跨步电压和接触电势过高引起人身伤亡事故。

因此选择电阻额定通流600A是比较合适的。

四、接地变压器的原理、特点和容量选择4.1 接地变压器的接线原理当主变压器配电电压侧为三角形接线或为星型接线而中性点不能引出时,必须用一个Z型接线的接地变压器人为地制造一个中性点,中性点接地电阻接入接地变地中性点,如附图所示:Z型接地变压器地特点如下:将三相铁心的每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。

Z型接地变压器的电磁特性是:对正序、负序电流呈现高阻抗(相当于激磁阻抗),绕组中只流过很小的激磁电流;由于每个铁心柱上两段绕组绕向相反,同芯柱上两绕组流过相等的零序电流时,两绕组产生的磁通互相抵消,所以对零序电流呈现低阻抗(相当于漏抗),零序电流在绕组上的压降很小。

4.2 接地变压器的容量选择接地变容量的选择依据IEEE-C62.92.3标准,该标准规定接地变压器10秒过载系数为额定容量的10.5倍,因此可首先计算出10秒情况下接地变的容量,然后按10秒允许过载倍数折算为连续运行的额定容量。

计算过程●已知条件:系统额定电压: U N=35kV系统额定相电压:UФ=20.2kV电阻器短时允许通流:I 10秒=600A标称电阻值: R N=33.7Ω短时通流时间:10秒●接地变的10秒短时运行容量S10秒=3*UФ*I10秒/3=3*20.2*600/3=12120kVA●将10S N=S10秒/10.5=12120/10.5=1154kVA取1200kVA● 容量选择此种方法是根据变压器的允许过载倍数进行选择的,已考虑了变压器的可靠系数,这里无需再重复考虑可靠系数,所以选择额定容量为1200KVA 的接地变压器是完全可以接地安全可靠运行的。

因此,接地变型号:DKSC-1200KVA/35KV五、零序CT 的配置及零序保护整定的原则5.1概述采用定时限零序过电流保护或单相接地方向保护,零序保护方式可以准确判断出故障线路,实现有选择性的断开故障线路。

5.2零序电流互感器的配置采用专用的零序电流互感器;5.3单相接地故障零序保护的配置每条馈线首端配置限时零序电流保护;主变低压侧进线间隔装设反映单相接地故障的零序保护,作为母线单相接地故障的主保护和馈线单相接地的后备保护;5.4零序电流保护的一次动作电流5.4.1馈电线路单相接地保护的一次动作电流均按躲过被保护线路本身的单相接地电容电流进行整定:I dz1=K K *I c1I dz1K K ――可靠系数; I c1变电站35kV 系统各条馈线的电容电流均在7.14A 左右(假设21条出线),因此建议各馈线接地保护动作电流按:I dz1= K K * I c1=60A (该值选取应考虑:a 、要躲过电容电流最大的馈电线路的电流;b、保护动作的灵敏性;c 、躲过中性点偏移电流防止误动操作)建议采用零序过电流保护,保护的动作时限采用0.5秒。

零序电流互感器参数:300/5A ,10P10, 20VA 。

六、FM160-1A 智能型中性点接地电阻监测装置FM160-1A 智能型监测装置是应用于中性点电阻柜运行实时监测的辅助装置,可实时监测电阻柜正常工作时额定通流、阻值、柜内环境的温度;当发生单相接地故障时,可迅速记录接地故障电流大小、电阻阻值、接地时间、柜内温度变化等;同时预留通讯接口,可将检测、记录的信息传递至主控室或微机单元,实现远程监控。

它集数据采集、控制、告警功能于一身,具有中性点电阻电流监测、电压监测、铂电阻输入温度,红外输入温度监测、3 路继电器输出,提供通讯接口与计算机监控系统连接,支持RS485接口,MODBUS 通讯协议。

建议在条件适宜的情况下采用,更好的监测中性点电阻柜的运行状态。

七、设备选型此变电站采用经中性点经电阻接地方式,完全能够达到降低系统过电压水平和快速准确选线的要求,每套配置如下:。

相关文档
最新文档