北师大版必修5高中数学第一章等差数列第二课时word教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 等差数列(二)
教学目标
1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问
题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概
念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 教学难点:等差数列与一次函数之间的联系
教学过程:
一、等差数列的通项公式
特征:
1︒ 等差数列的通项公式是关于n 的一次函数,n 是自变量,+∈N n n a 是函数 2︒ 如果通项公式是关于n 的一次函数,则该数列成等差数列;
证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=
它是以B A +为首项,A 为公差的等差数列。
3︒ 图象是直线)(1d a dx y -+=上一些等间隔的点,公差d 是该直线的斜率.
4︒ 公式中若 0>d 则数列递增,0 等差数列与一次函数的异同: 例1:已知(1,1),(3,5)是等差数列{an}图像上的两点. (1)求这个数列的通项公式; (2)画出这个数列的图像; (3)判断这个数列的单调性. 解:(1)略. (2)图像是直线y=2x-1上一些等间隔的点. (3)因为一次函数y=2x-1是增函数, 所以数列{an}是递增数列. 二、等差中项的概念 如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 若A 是a 与b 的等差中项,则2 b a A += 或b a A +=2 证明:设公差为d ,则d a A += d a b 2+= ∴A d a d a a b a =+=++=+222 例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行 木条连接各对应点,构成梯形架的各级。试计算梯形架中间各级的宽度。 解: 记梯形架自上而下各级宽度所构成的数列为{an},则由梯形中位 线的性质,易知每相邻三项均成等差数列,从而{an}成等差数列。 依题意有cm a 331= cm a 757= 现要求65432,,,a a a a a ,即中间5层的宽度。 )(76 33751717cm a a d =-=--=cm a 407332=+=, cm a 477403=+=,cm a 544=, cm a 615=,cm a 686= 答:梯形架中间各级的宽度自上而下依次是40cm,47cm,54cm,61cm,68cm. 例3:在-1与7之间顺次插入三个数c b a ,,使这五个数成等差数列,求此数列。 解:∵成等差数列7,,,,1c b a - ∴b 是-1与7 的等差中项 ∴ 3271=+-= b a 又是-1与3的等差中项 ∴12 31=+-=a c 又是1与7的等差中项 ∴52 73=+=c 7533 解:设11-=a 75=a ∴d )15(17-+-= 2=⇒d ∴所求的数列为-1,1,3,5,7 小结: ❖ 这节课你学习了哪些知识? ❖ 体会到了哪些数学思想方法? ❖ 你最大的收获是什么? 思考题:1、证明你刚才关于等差数列特征的猜想。 2、总结归纳:证明一个数列为等差数列的方法有哪些? 作业: P 19 习题1-2 第9、11、13题