《分布列的基本性质型概率题》参考答案
高三数学随机变量的分布列试题
高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。
分布列
2
;⑵
的分布列.
1 1
可得
1
2 的取值为0、1、4、9
P ( 2 0 ) P ( 0 ) ; P ( 2 1) P ( 1) P ( 1) 4 12 3 3
1
P ( 2 4 ) P ( 2 ) P ( 2 )
解: 随机变量ξ的可取值为 1,2,3. 当ξ=1时,即取出的三只球中的最小号码为1,则其它 两只球只能在编号为2,3,4,5的四只球中任取两只,故 有P(ξ=1)= C 42 / C 53 =3/5;
同理可得 P(ξ=2)=3/10;P(ξ=3)=1/10.
因此,ξ的分布列如下表所示
ξ p 1 2 3/5 3/10 3 1/10
1
1
1
P ( 2 9 ) P ( 3 )
2
1 12
4
1 4
12
6
4
∴ 2 的分布列为:
9
1 12
0
1 3
1
1 3
P
课堂练习: 1.设随机变量 的分布列如下:
P
1
1 6
2
1 3
3
1 6
4
1
p
则 p 的值为
i
3
.
2.设随机变量 的分布列为
27
1 P ( i ) a , 3
6
6
6
列成 表的 形式
1
1 6
2
1 6
3
1 6
4
1 6
5
1 6
6
1 6
P
特点:该表不仅列出了随机变量 的所有取值,
概率知识归纳与题型分类 带答案(印)
概率的知识归纳与题型总结一、概率知识点框架图二、考试内容分析概率重点考查的内容是利用等可能性事件、互斥事件和相互独立事件等概率的计算求某些简单的离散型随机变量的分布列、期望与方差,及根据分布列求事件的概率;。
应用概率知识要解决的题型主要是应用随机变量的概念,特别是离散型随机变量分布列及期望与方差的基础知识,讨论随机变量的取值范围,取相应值得概率及期望、方差的求解计算;三、题型分类、考点1 考查等可能...事件概率计算在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。
如果事件A包含的结果有m个,那么()mP An=。
这就是等可能事件的判断方法及其概率的计算公式。
求解等可能性事件的概率时,先确定本事件包含的有利事件数和本试验的基本事件总数,然后代入概率公式即可. 常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例1:(北京市东城区2009年3月高中示范校高三质量检测理)某次演唱比赛,需要加试综合素质测试,每位参赛选手需回答三个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目。
测试时,每位选手从给定的10道题中不放回地随机抽取三次,每次抽取一道题,回答完该题后,再抽取下一道题目作答. (I )求某选手在三次抽取中,只有第一次抽到的是艺术类题目的概率;(110P =) (II )求某选手抽到体育类题目数ξ的分布列和数学期望ξE . (35E ξ=) 解:(1)从10道不同的题目中不放回的随机抽取三次,每次只抽取1道题,抽法总数为1819110C C C ,只有第一次抽到艺术类题目的抽法总数为131416C C C1011819110131416==∴C C C C C C P …………………………………………………………………(4分)(2)抽到体育类题目数的可能取值为0,1,2则157)0(1819110161718===C C C C C C P ξ157)1(181911017181213===C C C C C C C P ξ151)2(1819110121318===C C C C C C P ξ……………………………………………………………(8分)所以ξ的分布列为:……………………………………………………………………(10分)从而有5152151150=⨯+⨯+⨯=ξE …………………………………………(12分)练习:A 、B 两点之间有6条网线并联,他们能通过的信息量分别为1,1,2,2,3,3。
01离散型随机变量及其分布列(检测+答案)
离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η …表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2, …x i ,…,x n ,X 取每一个值x i (i =1,2, … ,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,1.i P ≥0,i =1,2,…,n ; 211n i i p ==∑.四、常见离散型随机变量的分布列p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N M n C C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列例1:设随机变量X A.1 B.1 C.23 D.12X ,那么X =4表示的随机试验结果是( )A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i 2a(i =1、2、3),则P (x =2)= ( ) A.1 B.1 C.1 D.1 =0.3,那么n =________.2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布解:P (X =0)=1C 25=110,P (X =1)=C 3C 2C 25=35,P (X =2)=C 3C 25=310. 1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此, 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X则q 等于 A .1 B .1±2 C .1-2 D .1+2则k 的值为 A.12B .1C .2D .3若P (ξ2<x )=1112,则实数x 的取值范围是__________.i i =1,2…. 2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率. 例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 4(i =0,1,2,3,4),即例10:1个红球每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η 3 2 1 0P 542 1021 514 121例13:第:31组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm): 若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710. (2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为 ξ 0 1 2 3P 1455 2855 1255 155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立, 因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得 P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0 1 2 3 P 0.1 0.35 0.4 0.15 因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.。
高二数学随机变量的分布列试题答案及解析
高二数学随机变量的分布列试题答案及解析1.设随机变量ξ的概率分布列为(k=0,1,2,3),则.【答案】【解析】随机变量ξ的概率分布列为(k=0,1,2,3),且,,即.【考点】随机变量的分布列.2.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是________.【答案】3×0.44【解析】E(X)=n×0.6=3,∴n=5,∴P(X=1)=C1(0.6)1×0.44=3×0.44.53.为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考体育专业学生的总人数n;(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设表示体重超过60千克的学生人数,求的分布列和数学期望.【答案】(Ⅰ).(Ⅱ)0123(或).【解析】(Ⅰ)设从左至右前3小组的频率分别为由题意得 3分∴ 5分∴ 6分(Ⅱ)由(Ⅰ)得一个报考体育专业学生的体重超过60公斤的概率为8分由题意可知∴, 10分即∴(或) 12分【考点】频率分布直方图,随机变量的分布列及数学期望。
点评:中档题,作为数学应用问题,实际背景学生熟悉,易于理解题意,关键是细心计算。
4.甲、乙两人玩猜数字游戏,规则如下:①连续竞猜次,每次相互独立;②每次竟猜时,先由甲写出一个数字,记为,再由乙猜测甲写的数字,记为,已知,若,则本次竞猜成功;③在次竞猜中,至少有次竞猜成功,则两人获奖.(Ⅰ) 求甲乙两人玩此游戏获奖的概率;(Ⅱ)现从人组成的代表队中选人参加此游戏,这人中有且仅有对双胞胎,记选出的人中含有双胞胎的对数为,求的分布列和期望.【答案】(1)(2)分布列为∴【解析】解:(Ⅰ)记事件为甲乙两人一次竞猜成功,则则甲乙两人获奖的概率为(Ⅱ)由题意可知6人中选取4人,双胞胎的对数取值为0,1,2则,∴分布列为∴【考点】古典概型概率和分布列点评:主要是考查了古典概型概率和分布列的求解,属于基础题。
概率和分布列,期望,大题附答案
马留康概率高考题1、(本小题满分12分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率;(Ⅱ)平均有多少家煤矿必须整改;(Ⅲ)至少关闭一家煤矿的概率.2.Q Q先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).(1)求这7条鱼中至少有5条被Q Q先生吃掉的概率.(2)以ξ表示这7条鱼中被Q Q先生吃掉的鱼的条数,求Eξ.发3、(本小题满分12分)现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ。
(Ⅰ)求该运动员两次都命中7环的概率:(Ⅱ)求ξ的分布列:(Ⅲ)求ξ的数学期望Eξ6、一条生产线上生产的产品按质量情况分为三类:A类、B类、C类. 检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整. 已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(Ⅰ)求在一次抽检后,设备不需要调整的概率;(Ⅱ)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列和数学期望.7、某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、乙两人摸球后获得的奖金总额.求(1)ξ的分布列; (2)ξ的数学期望.12、某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率。
第二章 2.1.2 离散型随机变量的分布列(一)
2.1.2 离散型随机变量的分布列(一)学习目标 1.在对具体问题的分析中,理解取有限个值的离散型随机变量及其分布列的概念;认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少?你能用表格表示x 与p 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)1.离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的分布列. 2.离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ; (2)∑i =1np i =1.类型一 离散型随机变量的分布列的性质的应用例1 设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3}); (2)P ⎝⎛⎭⎫12<X <52.解 题中所给的分布列为由离散型随机变量分布列的性质得a +2a +3a +4a =1,解得a =110.(1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25. (2)P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =110+210=310. 反思与感悟 1.本例利用方程的思想求出常数a 的值. 2.利用分布列及其性质解题时要注意以下两个问题: (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1(1)下面是某同学求得的离散型随机变量X 的分布列.试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0).解 (1)因为P (X =-1)+P (X =0)+P (X =1)=12+14+16=1112,不满足概率之和为1的性质,因而该同学的计算结果不正确.(2)①由分布列的性质得,1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1, ∴q =1-22. ②P (ξ<0)=P (ξ=-1)=12,P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2⎝⎛⎭⎫1-22=2-12. 类型二 求离散型随机变量的分布列例2 一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.解 随机变量X 的可能取值为3,4,5,6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 11C 22,事件“X =4”包含的基本事件总数为C 11C 23,事件“X =5”包含的基本事件总数为C 11C 24,事件“X =6”包含的基本事件总数为C 11C 25, 从而有P (X =3)=C 11C 22C 36=120,P (X =4)=C 11C 23C 36=320,P (X =5)=C 11C 24C 36=310,P (X =6)=C 11C 25C 36=12,所以随机变量X 的分布列为:反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练2 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=4×15×4=15,第3次取到白球的概率为P (X =3)=4×3×15×4×3=15,第4次取到白球的概率为P (X =4)=4×3×2×15×4×3×2=15,第5次取到白球的概率为P (X =5)=4×3×2×1×15×4×3×2×1=15,所以X 的分布列为类型三 离散型随机变量的分布列的综合应用例3 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数. (2)求随机变量ξ的分布列. (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6.可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率.(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列.解 (1)选取的5只恰好组成完整“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139 D.1310 答案 C解析 P (X =10)=1-23-…-239=139.2.设随机变量ξ的分布列为P (ξ=k )=k15(k =1,2,3,4,5),则P ⎝⎛⎭⎫12<ξ<52等于( ) A.12 B.19 C.16 D.15 答案 D解析 由12<ξ<52知ξ=1,2.P (ξ=1)=115,P (ξ=2)=215,∴P ⎝⎛⎭⎫12<ξ<52=P (ξ=1)+P (ξ=2)=15. 3.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.4.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列. 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P (ξ=2)=3C 16C 16=336=112;P (ξ=3)=5C 16C 16=536;P (ξ=4)=7C 16C 16=736;P (ξ=5)=9C 16C 16=936=14;P (ξ=6)=11C 16C 16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 的值为( )A.1110B.155 C.110 D.55 答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.2.若随机变量X 的概率分布列为:P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A.x ≤1 B.1≤x ≤2 C.1<x ≤2 D.1≤x <2答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得:ξ=1, ∴P (ξ=1)=13.5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C.[-3,3] D.[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( )A.16B.13C.12D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2), 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.二、填空题7.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 答案 47解析 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为72k 个.∴分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 8.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 答案 0.6解析 由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.9.甲、乙两队在一次对抗赛的某一轮中有3道题,比赛规则:对于每道题,没有抢到题的队伍得0分,抢到题,并回答正确的得1分,抢到题目但回答错误的扣1分(即-1分),若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能值为________. 答案 -1,0,1,2,3解析 X =-1表示甲抢到1题但答错了, 若乙两题都答错,则甲获胜; 甲获胜还有以下可能:X =0,甲没抢到题,或甲抢到2题,但答时1对1错. X =1时,甲抢到1题,且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对.10.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________. 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题11.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .求这名运动员投中3分的概率.解 由题中条件知,2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16.12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列.解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以事件A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为。
分布列
抚顺四中高三数学总复习讲义——分布列高考要求:据实际问题用随机变量正确表示某些随机试验的结果与随机事件;熟练应用分布列的两个基本性质; 考点回顾:1、随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量通常用希腊字母ξ,η等表示2、离散型随机变量:如果随机变量可能取的值可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量。
3、离散型随机变量的分布列:从函数的观点来看,离散型随机变量是其相应概率的函数,这个函数可以用列表法表示。
这个函数表叫做离散型随机变量的分布列。
4、离散型随机变量分布列的性质1)所有变量对应的概率值(函数值)均为非负数,即0,1,2,3,,.i P i n ≥= 2)所有这些概率值的总和为1 即 123 1.P P P +++=3)根据互斥事件的概率公式,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和5、二项分布:如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率()()1,0,1,2,,.n kk kn P kC PP k n ξ-==-= 有了这个函数,就能写出它的分布列,由于()1kk k n C P P -是二项式展开式()1nP P ⎡+-⎤⎣⎦的通项,所以称这个分布为二项分布列,记作()~,.B n P ξ考点解析:考点:随机变量、分布列EG1:(1)某机场候机室中一天的游客数量为ξ(2)某寻呼台一天内收到的寻呼的次数为ξ (3)某水文站观察到一天中长江的水位为ξ (4)某立交桥一天经过的车辆的数为ξ, 则不是离散型随机变量的为?( )解:(3)中的ξ可以取某一区间内的一切值,无法一一列出。
故选CEG2: 一袋中装有5只球, 编号为1,2,3,4,5.今在袋中同时取3只, 以ξ表示取出的三只球中的最小号码, 写出随机变量ξ的分布列.解: ξ的可能取值为1,2,3.且53)1(3524===CC P ξ; 103)2(3523===CC P ξ;101)3(==ξP ,故所求分布列为抚顺四中高三数学总复习讲义——分布列B2-1.一袋中有1个白球和4个黑球,每次从中取出一个球,直到取道白球为止(1)若每次取出不放回(2)若每次取出放回,分别求出取球次数的概率分布。
高中数学离散型随机变量的分布列综合测试题(附答案)
高中数学离散型随机变量的分布列综合测试题(附答案)第二课时离散型随机变量的分布列2一、选择题1.下列表中可以作为离散型随机变量的分布列是()A.1 0 1P 141214B.0 1 2P -143412C.0 1 2P 152535D.-1 0 1P 141412[答案] D[解析] 本题考查分布列的概念与性质.即的取值应互不相同且P(0,i=1,2,…,n,i=1nP(i)=1.A中的取值出现了重复性;B中P(=0)=-140,C中i=13P(i)=15+25+35=651.2.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为,则下列概率中等于C18C16+C14C16C112C112的是()A.P(=0) B.P(2)C.P(=1) D.P(=2)[答案] C[解析] 即取出白球个数为1的概率.3.已知随机变量X的分布列为:P(X=k)=12k,k=1、2、…,则P(2<X4)=()A.316B.14C.116D.516[答案] A[解析] P(2<X4)=P(X=3)+P(X=4)=123+124=316.4.随机变量的概率分布列为P(=k)=ck(k+1),k=1,2,3,4,其中c是常数,则P12<<52则值为()A.23B.34C.45D.56[答案] D[解析] c12+c23+c34+c45=c1-12+12-13+13-14+14-15=45c=1.c=54.P12<<52=P(=1)+P(=2)=54112+123=56.5.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,表示取出的4个球的总得分;④表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④[答案] B[解析] 依据超几何分布的数学模型及计算公式,或用排除法.6.(2019东营)已知随机变量的分布列为P(=i)=i2a(i=1,2,3),则P(=2)=()A.19B.16C.13D.14[答案] C[解析] 由离散型随机变量分布列的性质知12a+22a+32a =1,62a=1,即a=3,P(=2)=1a=13.7.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是()A.1120B.724C.710D.37[答案] B[解析] P=C37C03C310=724.8.用1、2、3、4、5组成无重复数字的五位数,这些数能被2整除的概率是()A.15B.14C.25D.35[答案] C[解析] P=2A44A55=25.二、填空题9.从装有3个红球、3个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为:0 1 2P[答案] 15 35 1510.随机变量的分布列为:0 1 2 3 4 5P 192157458451529则为奇数的概率为________.[答案] 81511.(2019常州)从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 5612.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量,则P(>1)=________.[答案] 12[解析] 依题意,P(=1)=2P(=2),P(=3)=12P(=2),P(=3)=P(=4),由分布列性质得1=P(=1)+P(=2)+P(=3)+P(=4)4P(=2)=1,P(=2)=14.P(=3)=18.P(>1)=P(=2)+P(=3)+P(=4)=12.三、解答题13.箱中装有50个苹果,其中有40个合格品,10个是次品,从箱子中任意抽取10个苹果,其中的次品数为随机变量,求的分布列.[解析] 可能取的值为0、1、2、...、10.由题意知P(=m) =Cm10C10-m40C1050(m=0、1、2、...、10),的分布列为0 1 ... k (10)P C010C1040C1050C110C940C1050… Ck10C10-k40C1050… C1010C040C105014.设随机变量X的分布列PX=k5=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)35;(3)求P110<X<710.[分析] 分布列有两条重要的性质:Pi0,i=1、2、…;P1+P2+…+Pn=1利用这两条性质可求a的值.(2)(3)由于X的可能取值为15、25、35、45、1.所以满足X35或110710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次试验中相互独立,只要求得满足条件的各概率之和即可.[解析] (1)由a1+a2+a3+a4+a5=1,得a=115. (2)因为分布列为PX=k5=115k (k=1、2、3、4、5)解法一:PX35=PX=35+PX=45+P(X=1)=315+415+515=45;解法二:PX35=1-PX=15+PX=25=1-115+215=45.(3)因为110<X<710,只有X=15、25、35时满足,故P110<X<710=PX=15+PX=25+PX=35=115+215+315=25.15.(2009福建)盒子中装着标有数字1,2,3,4,5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A,则P(A)=C35C12C12C12C310=23.(2)由题意可能的取值为2,3,4,5,P(=2)=C22C12+C12C22C310=130,P(=3)=C24C12+C14C22C310=215,P(=4)=C26C12+C16C22C310=310,P(=5)=C28C12+C18C22C310=815.所以随机变量的概率分布为:2 3 4 5P 13021531081516.(2019福建理,16)设S是不等式x2-x-60的解集,整数m,nS.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设=m2,求的分布列.[解析] 本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.解题思路是先解一元二次不等式,再在此条件下求出所有的整数解.解的组数即为基本事件个数,按照古典概型求概率分布列,注意随机变量的转换.(1)由x2-x-60得-23,即S={x|-23}.由于m,nZ,m,nS且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以=m2的所有不同取值为0,1,4,9.且有P(=0)=16,P(=1)=26=13,P(=4)=26=13,P(=9)=16.故的分布列为:0 1 4 9P 161313。
高中数学精品讲义第十章第六节离散型随机变量及其分布列Word版含答案
第六节离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,ξ,η,…表示❶.(2)离散型随机变量:所有取值可以一一列出的随机变量.2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n❷.有时也用等式P(X=x i)=p i,i=1,2,…,n表示X的分布列.(2)分布列的性质①p i ≥0,i =1,2,3,…,n ;②∑i =1np i =1.3.常见的离散型随机变量的分布列 (1)两点分布列若随机变量X 的分布列具有左表的形式,则称X 服从两点分布❸,并称p =P (X =1)为成功概率.(2)超几何分布列❹在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *❺..若X 是随机变量,则Y =aX +b (a ,b 为常数)也是随机变量.表中第一行表示随机变量的取值;第二行对应变量的概率.两点分布的试验结果只有两个可能性,其概率之和为1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.m=min{M,n}的理解m为k的最大取值,当抽取的产品件数不大于总体中次品件数,即n≤M时,k(抽取的样本中次品的件数)的最大值为m=n;当抽取的产品件数大于总体中次品件数,即n>M时,k 的最大值为m=M.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)随机试验的结果与随机变量是一种映射关系,即每一个试验结果都有唯一的随机变量的值与之对应.()(2)离散型随机变量的分布列中,各个概率之和可以小于1.()(3)离散型随机变量的所有取值有时无法一一列出.()(4)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) 答案:(1)√ (2)× (3)× (4)√ 二、选填题1.抛掷甲、乙两颗骰子,所得点数之和为X ,那么X =4表示的基本事件是( ) A.一颗是3点,一颗是1点 B.两颗都是2点C.一颗是3点,一颗是1点或两颗都是2点D.甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点解析:选D 甲是3点,乙是1点与甲是1点,乙是3点是试验的两个不同结果,故选D.2.设随机变量X 的分布列如下:则p 为( )A.16 B.13 C.14D.112解析:选C 由分布列的性质知,112+16+13+16+p =1,∴p =1-34=14.3.某射手射击所得环数X 的分布列为则此射手“射击一次命中环数大于7”的概率为( ) A.0.28 B.0.88 C.0.79D.0.51解析:选C P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 4.已知随机变量X 的分布规律为P (X =i )=i2a (i =1,2,3),则P (X =2)=________.解析:由分布列的性质知12a +22a +32a =1,∴a =3,∴P (X =2)=22a =13.答案:135.在含有3件次品的10件产品中,任取4件,X 表示取到的次品数,则P (X =2)=________.解析:由题意,X 服从超几何分布,其中N =10,M =3,n =4,故P (X =2)=C 23C 27C 410=310.答案:310考点一 离散型随机变量的分布列的性质[基础自学过关][题组练透]1.设X 是一个离散型随机变量,其分布列为则q 的值为( ) A.1 B.32±336 C.32-336D.32+336解析:选C 由分布列的性质知 ⎩⎪⎨⎪⎧2-3q ≥0,q 2≥0,13+2-3q +q 2=1,解得q =32-336.2.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23B.34C.45D.56解析:选D 由⎝⎛⎭⎫11×2+12×3+13×4+14×5×a =1,知45a =1,得a =54.故P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=12×54+16×54=56. 3.设离散型随机变量X 的分布列为(1)求随机变量Y =2(2)求随机变量η=|X -1|的分布列; (3)求随机变量ξ=X 2的分布列. 解:(1)由分布列的性质知,0.2+0.1+0.1+0.3+m =1,得m =0.3. 首先列表为:从而Y =2X +1的分布列为(2)列表为∴P (η=0)=P (X =1)=P (η=1)=P (X =0)+P (X =2)=0.2+0.1=0.3, P (η=2)=P (X =3)=0.3, P (η=3)=P (X =4)=0.3. 故η=|X -1|的分布列为(3)首先列表为从而ξ=X2的分布列为[名师微点]离散型随机变量的分布列的性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.考点二超几何分布[师生共研过关][典例精析]在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.[解](1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M =C48C510=518.(2)由题意知X可取的值为0,1,2,3,4,则P(X=0)=C56C510=142,P(X=1)=C46C14C510=521,P(X=2)=C36C24C510=1021,P(X=3)=C26C34C510=521,P(X=4)=C16C44C510=142.因此X的分布列为[解题技法] 1.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.2.求超几何分布的分布列的步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列.[过关训练]某项大型赛事,需要从高校选拔青年志愿者,某大学学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列.解:因为8名学生会干部中有5名男生,3名女生,所以X的分布列服从参数N=8,M =3,n=3的超几何分布.X的所有可能取值为0,1,2,3,其中P(X=i)=C i3C3-i5C38(i=0,1,2,3),则P(X=0)=C03C35C38=528,P(X=1)=C13C25C38=1528,P(X=2)=C23C15C38=1556,P(X=3)=C33C05C38=156.所以X的分布列为考点三求离散型随机变量的分布列[师生共研过关][典例精析]已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.[解](1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)=A12A13 A25=3 10.(2)X的可能取值为200,300,400,则P(X=200)=A22A25=110,P(X=300)=A33+C12C13A22A35=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=35.故X的分布列为X 200300400P 11031035 [解题技法]离散型随机变量分布列的求解步骤[过关训练]有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的分布列.解:(1)因为当X=2时,有C2n种坐法,所以C2n=6,即n(n-1)2=6,n2-n-12=0,解得n=4或n=-3(舍去),所以n=4. (2)因为学生所坐的座位号与该生的编号不同的学生人数为X,由题意知X的可能取值是0,2,3,4,所以P(X=0)=1A44=124,P(X=2)=C24×1A44=624=14,P(X=3)=C34×2A44=824=13,P(X=4)=9A44=38,所以随机变量X的分布列为X 023 4P 124141338。
高中数学--离散型随机变量及其分布列..
【思路点拨】
(1)总取法为 C3 10,关键是求出三个小球
上的数字各不相同有多少取法;(2)先确定 X 的求值,再确定 X 取每个值的概率;(3)由计分范围确定 X 的范围,利用的结 论求概率.
【尝试解答】 (1)法一:“一次取出的 3 个小球上的数
1 1 1 C3 C 5 2C2C2 2 字互不相同”的事件记为 A,则 P(A)= = . C3 3 10
ξ P
1 5 31
2 10 31
3 10 31
4 5 31
5 1 31
5 10 10 5 1 80 从而 E(ξ)=1× +2× +3× +4× +5× = . 31 31 31 31 31 31
∴共有 8C2 3对相交棱.
2 8×3 4 8C3 ∴P(ξ=0)= 2 = = . C12 66 11 4 【答案】 11
• 1.离散型随机变量 • (1)随机变量:将随机现象中试验(或观 数 测)的每一个可能的结果都对应于一个 , 这种对应称为一个随机变量,通常用大写 X Y 的英文字母如 、 来表示. • (2)离散型随机变量 一一列出 • 所有取值可以 的随机变乓球, 其中9个新的,3个旧的,从盒中任取3个球 来用,用完后装回盒中,此时盒中旧球个 数X是一个随机变量,其分布列为P(X),则 P(X1 =4)的值为( ) 27
A. 220 B. 55 27 C. 220
1 C2 27 3C9 故 P(X=4)= 3 = . C12 220
•
袋中装着标有数字1,2,3,4,5 的小球各2个,从袋中任取3个小球,按3个 小球上最大数字的9倍计分,每个小球被取 出的可能性都相等,用X表示取出的3个小 球上的最大数字,求: • (1)取出的3个小球上的数字互不相同的概 率; • (2)随相变量X的分布列; • (3)计分介于20分到40分之间的概率.
概率与分布列归类(解析版)--2024年高考数学大题突破
概率与分布列归类目录【题型一】 超几何分布型分布列【题型二】二项分布型分布列【题型三】正态分布型【题型四】分布列均值与方差【题型五】竞技比赛型分布列【题型六】多人比赛竞技型分布列【题型七】递推数列型【题型八】三人传球递推数列型【题型九】导数计算型分布列最值【题型十】机器人跳棋模式求分布列【题型一】超几何分布型分布列总数为N的两类物品,其中一类为M件,从N中取n件恰含M中的m件,m=0,1,2⋯,k,其中k为M与n的较小者,Pξ=m=C m M C n-mN-MC n N,称ξ服从参数为N,M,n的超几何分布,记作ξ~H N,M,n,此时有公式Eξ=nM N。
一般地,假设一批产品共有N件,其中有M件次品. 从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-kN-MC n N,k=m,m+1,m+2,⋯,r. 其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}. 如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布_.E(X)=np.1(2023·湖北·模拟预测)某区域中的物种P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉100个物种P ,统计其中A 种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i (i =1,2,⋯,20).设该区域中A 种的数目为M ,B 种的数目为N ,每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E (X i +X j )=E (X i )+E (X j ),D (X i +X j )=D (X i )+D (X j );(ⅰ)证明:E (X )=E (X 1),D (X )=120D (X 1);(ⅱ)该小组完成所有试验后,得到X i 的实际取值分别为x i (i =1,2,⋯,20).数据x i (i =1,2,⋯,20)的平均值x=40,方差s 2=1.176.采用x和s 2分别代替E (X )和D (X ),给出M ,N 的估计值.【答案】(1)分布列见解析(2)(ⅰ)证明见解析;(ⅱ)M =1980,N =2971【分析】(1)根据条件,判断X i 服从超几何分布,再利用超几何分布的分布列即可求出结果;(2)(ⅰ)直接利用均值和方差的性质即可证明结果;(ⅱ)先利用第(ⅰ)中的结论,求出E (X )=100M M +N ,D (X )=5MN (M +N -100)(M +N )2(M +N -1),再结合条件建立方程组,从而求出结果.【详解】(1)依题意,X i (i =1,2,⋯,20)均服从完全相同的超几何分布,故X 1的分布列为P (X 1=k )=C k M C 100-kN C 100M +Nk ∈N ∗,max 0,100-N ≤k ≤min 100,M .(2)(ⅰ)由题可知E (X)=E12020i =1X i =120E 20i =1X i=12020i =1E (X i ) =120×20E (X 1)=E (X 1),D (X )=D 12020i =1X i=1202D 20i =1X i=120220i =1D (X i ) =1202×20D (X 1)=120D (X 1),故E (X )=E (X 1),D (X )=120D (X 1)(ⅱ)由(ⅰ)可知X 的均值E (X )=E (X 1)=100MM +N .先计算X 1的方差D (X 1)=kk 2P (X 1=k ) -E 2(X 1)=k k (k -1)C k M C 100-k N C 100M +N +k k C k M C 100-k N C 100M +N -E 2(X 1)=M (M -1)k C k -2M -2C 100-k N C 100M +N +M kC k -1M -1C 100-kN C 100M +N -E 2(X 1)=M (M -1)C 100M +N C 100-2M +N -2+M C 100M +NC 100-1M +N -1-E 2(X 1)=100MN (M +N -100)(M +N )2(M +N -1),所以D (X )=5MN (M +N -100)(M +N )2(M +N -1).依题意有100MM +N=40,5MN M +N -100M +N 2M +N -1=1.176,解得M =1980.4,N =2970.6.所以可以估计M =1980,N =2971.2(23·24高三上·江苏南通·阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有X个红球,则分得X个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.【答案】(1)1556(2)分布列见解析,数学期望为98【分析】(1)由题意分析可知有两种可能:“2个红球1个黄球”和“1个黑球,1个红球,1个黄球”,进而结合组合数运算求解;(2)由题意可知X的可能取值为:0,1,2,3,结合超几何分布求分布列和期望.【详解】(1)记“一学生既分得月饼又要表演节目”为事件A,可知有两种可能:“2个红球1个黄球”和“1个黑球,1个红球,1个黄球”,所以P A=C23C11+C14C13C11C38=1556.(2)由题意可知X的可能取值为:0,1,2,3,则有:P X=0=C35C03C38=528,P X=1=C25C13C38=1528,P X=2=C15C23C38=1556,P X=3=C05C33C38=156,可得X的分布列为X0123P 52815281556156所以E X=0×528+1×1528+2×1556+3×156=98.3(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据x i,y i(i=1,2,⋯,20),其中x i,和y i,分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得∑20i=1x i-x2=80,∑20i=1y i-y2=9000,∑20i=1x i-xy i-y=800.(1)求样本x i,y i(i=1,2,⋯,20)的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.附:相关系数r=∑ni=1x i-xy i-y∑ni=1x i-x2∑ni=1y i-y2,2≈1.414【答案】(1)0.94,相关性较强.(2)见解析【分析】(1)根据相关系数的计算公式即可代入求解,(2)根据超几何概率的概率公式求解概率,即可得分布列.【详解】(1)样本(x i,y i)(i=1,2,⋯,20)的相关系数为r=∑20i=1x i-xy i-y∑20i=1x i-x2∑20i=1y i-y2=80080×9000=223≈0.94.由于相关系数|r|∈[0.75,1],则相关性很强,|r|的值越大,相关性越强.故r=0.94∈0.75,1,故相关性越强.(2)由题意得:X的可能取值为0,1,2,20个样区中有8个样区的这种野生动物数量低于样本平均数,有12个样区的这种野生动物数量不低于样本平均数,所以P(X=0)=C212C220=66190=3395,P(X=1)=C18C112C220=96190=4895,P(X=2)=C28C220=28190=1495,所以X的分布列为:X012P 339548951495【题型二】二项分布型分布列若在一次实验中事件发生的概率为p0<p<1,则在n次独立重复实验中恰好发生k次概率pξ=k=C k n p k1-pn-k k=0,1,2,⋯,n,称ξ服从参数为n,p的二项分布,记作ξ~B n,p,Eξ=np,D i= npq.1(2024·云南昆明·一模)聊天机器人(chatterbot)是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.(1)求一个问题的应答被采纳的概率;(2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为X,事件X=k(k=0,1,⋯,8)的概率为P(X=k),求当P(X=k)最大时k的值.【答案】(1)0.75(2)6【分析】(1)根据全概率公式即可求解,(2)根据二项分布的概率公式,利用不等式即可求解最值.【详解】(1)记“输入的问题没有语法错误”为事件A ,“一次应答被采纳”为事件B ,由题意P (A )=0.1,P B A =0.8,P B A=0.3,则P (A )=1-P (A)=0.9,P B =P AB +P A B =P A P B A +P A P B A=0.9×0.8+0.1×0.3=0.75.(2)依题意,X ∼B 8,34,P (X =k )=C k 834 k148-k,当P (X =k )最大时,有P X =k ≥P X =k +1 ,P X =k ≥P X =k -1 ,即C k834 k148-k≥C k +1834k +114 7-k ,C k 834 k 14 8-k ≥C k -1834 k -1149-k ,解得:234≤k ≤274,k ∈N ,故当P (X =k )最大时,k =6.2(2024·全国·模拟预测)某地文旅部门为了增强游客对本地旅游景区的了解,提高旅游景区的知名度和吸引力,促进旅游业的发展,在2023年中秋国庆双节之际举办“十佳旅游景区”评选活动,在坚持“公平、公正公开”的前提下,经过景区介绍、景区参观、评选投票、结果发布、颁发奖牌等环节,当地的6个“自然景观类景区”和4个“人文景观类景区”荣获“十佳旅游景区”的称号.评选活动结束后,文旅部门为了进一步提升“十佳旅游景区”的影响力和美誉度,拟从这10个景区中选取部分景区进行重点推介.(1)若文旅部门从这10个景区中先随机选取1个景区面向本地的大学生群体进行重点推介、再选取另一个景区面向本地的中学生群体进行重点推介,记面向大学生群体重点推介的景区是“自然景观类景区”为事件A ,面向中学生群体重点推介的景区是“人文景观类景区”为事件B ,求P B A ,P B ;(2)现需要从“十佳旅游景区”中选4个景区,且每次选1个景区(可以重复),分别向北京、上海、广州、深圳这四个一线城市进行重点推介,记选取的景区中“人文景观类景区”的个数为X ,求X 的分布列和数学期望.【答案】(1)P (B ∣A )=49,P (B )=25(2)分布列见解析;期望为85【分析】(1)利用条件概率的公式P (B ∣A )=P (AB )P (A )及全概率公式求解即可;(2)随机变量X 符合二项分布的两个特点“独立性”和“重复性”,故可建立二项分布模型,按二项分布求解即可.【详解】(1)由古典概型的计算公式可得,P (A )=610=35,P (AB )=6×410×9=415,由条件概率的计算公式得:P (B ∣A )=P (AB )P (A )=41535=49,同理P (A B )=4×310×9=215,则P (B )=P (AB )+P (A B )=415+215=25.(2)由题意知X 的所有可能取值为0,1,2,3,4,且X ∼B 4,25,P(X=0)=C0435425 0=81625;P(X=1)=C1435 325 1=216625;P(X=2)=C2435225 2=216625;P(X=3)=C3435 125 3=96625;P(X=4)=C4435025 4=16625.所以X的分布列为X01234P 816252166252166259662516625X的数学期望E(X)=4×25=85.3(2023·广东肇庆·二模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X.(1)当n=6时,求P X≤2(2)已知切比雪夫不等式:对于任一随机变量Y,若其数学期望E Y 和方差D Y 均存在,则对任意正实数a,有P Y-E Y<a≥1-D Ya2.根据该不等式可以对事件“Y-E Y<a”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n的最小值.【答案】(1)1132(2)1250【分析】(1)根据二项分布公式计算;(2)运用二项分布公式算出E X 和D X ,再根据题意求出X-E X<a中a的表达式,最后利用切比雪夫不等式求解.【详解】(1)由已知X∼B6,1 2,所以P X≤2=P X=0+P X=1+P X=2=C06126+C1612⋅12 5+C2612 2⋅12 4=164+664+1564=1132;(2)由已知X∼B n,12,所以E X =0.5n,D X =0.25n,若0.4≤Xn≤0.6,则0.4n≤X≤0.6n,即-0.1n≤X-0.5n≤0.1n,即X-0.5n≤0.1n.由切比雪夫不等式P X-0.5n≤0.1n≥1-0.25n (0.1n)2,要使得至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,则1-0.25n(0.1n)2≥0.98,解得n≥1250,所以估计信号发射次数n的最小值为1250;综上,P X≤2=1132,估计信号发射次数n的最小值为1250.【题型三】正态分布型(1)若X 是正态随机变量,其概率密度曲线的函数表达式为f x =12π⋅σe -x -μ22σ2,x ∈R (其中μ,σ是参数,且σ>0,-∞<μ<+∞)。
随机变量及其分布列
第三节课:随机变量及其分布列典型例题一、教学目标这是一堂复习课,通过本节课的学习,希望学员达到以下三个目标: 1、学员能够深刻理解随机变量的概念,会计算随机变量的期望和方差2、学生熟练掌握随机变量的分布列、分布模型及相应解题方法,并能够熟练运用这些方法来解题3、学员能系统地理解和掌握随机变量与概率之间的联系二、考纲解读随机变量及其分布列是高考必考的内容之一,在每年的理科高考卷中,一般都以解答题的形式出现(少数时候也会以填空、选择的形式出现)。
题目难度不是很大,分值12分左右。
主要以借助分布列考查概率计算、期望、方差的计算为主。
故在高二的学习中,需要真正理解掌握好这一章的内容。
三、教学过程(一)检查上周的作业,抽查上节课所学的内容,若有问题,当场解决掉 (二)带领学生回顾知识结构图及重要知识点 结构图:重要知识点:(1)离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量。
分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ 1x 2x … i x …P 1p 2p … i p …有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. (2)期望:][)(22111n n i i ni ii P x P x P x P x Px X E +⋅⋅⋅++⋅⋅⋅++==∑=b X aE b aX E +=+)()( 方差:∑=-=ni i i P X E x X D 12))(()(随机变量 离散型随机变量分布列 方差均值 两点分布 二项分布超几何分布 条件概率两事件独立正态分布正态分布密度曲线 3σ原则)()(2X D a b aX D =+(3)两点分布:如果随机变量的分布列具有下列列表的形式:X 0 1p k1-p p则称,X 服从参数为p 的0-1分布(也叫两点分布或伯努利分布)。
高一数学概率试题
高一数学概率试题1.已知随机变量X的分布列如图:(1)求;(2)求和【答案】(1);(2),【解析】(1)离散型随机变量的分布列具有如下性质:一是,二是;(2)欲写出的分布列,要先求出的所有取值,以及取每一个值时的概率,在写出的分布列之后,要及时检查所有的概率之和是否为1,用来判断所求概率是否正确;(3)掌握两点分布和超几何分布的分布列试题解析:解:(1)由概率和为1求得;(2),【考点】离散型随机变量及其分布列的应用2.甲乙两人各有个材质、大小、形状完全相同的小球,甲的小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.(1)写出基本事件空间;(2)你认为“规定”对甲、乙二人公平吗?说出你的理由.【答案】(1)基本事件空间:(2)规定是不公平的(理由见解析).【解析】(1)由题意易求得基本事件空间.(2)分别求出甲、乙各自获胜的概率,若概率相等,则“规定”对甲乙二人公平;若概率不相等,则“规定”对甲乙二人不公平.试题解析:(1)用表示发生的事件,其中甲摸出的小球上的数字为,乙摸出的小球上的数字为.则基本事件空间:(2)由(1)可知,基本事件总数个,设甲获胜的事件为,它包括的基本事件有,共含基本事件个数个.所以.因此乙获胜的概率为,即乙获胜的概率大,这个规定是不公平的.【考点】随机事件的概率及其应用.3.某射手一次射击中,击中环、环、环的概率分别是,则这位射手在一次射击中不够环的概率是( )A.B.C.D.【答案】A【解析】由已知某射手一次射击中,击中环、环、环的事件是互斥的,而事件:“这位射手在一次射击中不够环”的对立事件为:“这位射手在一次射击中环或10环”,故所求概率P=1-(0.28+0.24)=0.48.故选A.【考点】互斥事件的概率和公式与对立事件.4.袋中有1个白球,2个黄球,先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率为.【答案】【解析】第一次摸出黄球的概率等于,第二次也摸出黄球的概率等于,故两次都是黄球的概率为×=,故答案为.【考点】等可能事件的概率.5.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【答案】(1) P==.(2)满足条件n<m+2的事件的概率为.【解析】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个.=.所以满足条件n≥m+2的事件的概率为P1故满足条件n<m+2的事件的概率为1-P=1-=.1【考点】古典概型概率的计算点评:中档题,古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解。
高中理科数学各类型 概率统计、分布列解答题
高中理科数学概率统计、各类分布列解答题类型以随机事件概率为背景离散型随机变量的分布列、均值【背一背重点知识】1.随机变量所取的值分别对应的事件是两两互斥的,各事件概率之和为1.2.求随机事件概率为背景的离散型随机变量的均值与方差公式3.注意事件中所包含关键词,如至少,至多,恰好,都是,不都是,都不是等的含义.【讲一讲提高技能】1、必备技能:分类讨论要保证不重不漏,且相互互斥.灵活运用排列组合相应方法进行计数.等可能性是正确解题的关键,在计数及求概率过程中严格保证事件的等可能性.【练一练提升能力】1.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(1)求选出的3名同学来自不同班级的概率;(2)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.2.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为,求的分布列和数学期望;(2)求恰好得到分的概率.3、某厂有台大型机器,在一个月中,一台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于?(2)已知一名工人每月只有维修台机器的能力,每月需支付给每位工人万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生万元的利润,否则将不产生利润.若该厂现有名工人.求该厂每月获利的均值.以二项分布为背景离散型随机变量的分布列、均值【背一背重点知识】1.若随机变量服从二项分布,则对应的事件是两两独立重复的,概率为事件成功的概率.2.求二项分布为背景的离散型随机变量的均值与方差公式:若,则【讲一讲提高技能】1.必备技能:利用离散型随机变量的均值与方差的定义,也可求出二项分布为背景的离散型随机变量的均值与方差,但计算较繁.因此判断随机变量是否服从二项分布是解决问题的关键.判断方法有两个,一是从字面上理解是否符合独立重复条件,二是通过计算,归纳其概率规律是否满足二项分布.【练一练提升能力】1.为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为23 .(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.2.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次. (Ⅰ) 根据已知条件完成下面的 列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量 ,求 的分布列和数学期望 . 附:(其中为样本容量)3.(12分)某网站用“10分制”调查一社区人们的幸福度. 现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度 分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.以正态分布为背景离散型随机变量的分布列、均值1、正态分布概念:若连续型随机变量的概率密度函数为,其中为常数,且,则称服从正态分布,简记为~。
专题十一 概率与统计 第三十五讲离散型随机变量的分布列、期望与方差答案
专题十一 概率与统计第三十五讲离散型随机变量的分布列、期望与方差答案部分1.B 【解析】由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以10(1) 2.4DX p p =-=,所以0.6p =或0.4p =.由(4)(6)P X P X =<=,得4466641010C (1)C (1)p p p p -<-,即22(1)p p -<,所以0.5p >,所以0.6p =.故选B .2.D 【解析】由题可得1()2E p ξ=+,所以22111()()422D p p p ξ=-++=--+,所以当p 在(0,1)内增大时,()D ξ先增大后减小.故选D .3.A 【解析】由题意可得由两点分布11()E p ξ=,22()E p ξ=;111()(1)D p p ξ=-,222()(1)D p p ξ=-,∵222122112121()()(1)(1)()()D D p p p p p p p p ξξ-=---=---2121()(1)p p p p =---∵12102p p <<<,∴210p p ->,2110p p --> ∴1()E ξ<2()E ξ,1()D ξ<2()D ξ,选A .4.A 【解析】解法一(特值法)取m n ==3进行计算、比较即可.解法二 从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则1(0)(1)n P P m n ξξ====+,1(1)(2)mP P m nξξ====+, 所以111()1(1)2(2)1mE P P m n ξξξ=⋅=+==++,所以11()222()E m np m n ξ+==+;从乙盒中取2个球时,取出的红球的个数记为η,则 η的所有可能的取值为0,1,2,则222C (0)(1)C n m n P P ηξ+====,1122C C (1)(2)C n mm nP P ηξ+====,222C (2)(3)C m m nP P ηξ+====∴22222()1(=1)2(=2)3(=3)1mE P P P m nξξξξ=⋅+⋅+⋅=++, ∴22()333()E m np m n ξ+==+,所以12p p >,()()12E E ξξ<,故选A . 5.1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.6.32【解析】实验成功的概率34p =,故3(2,)4X B :,所以33()242E X =⨯=.7.25【解析】由题意设(1),P p ξξ==的分布列如下由()1E ξ=,可得35p =,所以()5D ξ=. 8.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为()()()P AB AB P AB P AB +=+ =()(1())(1())()P A P B P A P B -+-.由题意知:()P A 估计为0.25,()P B 估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.9.【解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B :,20225X Y =⨯+,即4025X Y =+. 所以(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.10.【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)(i )随机变量X 的所有可能取值为0,1,2,3.34337C C ()C k kP X k -⋅==(k =0,1,2,3).所以,随机变量X 的分布列为随机变量X 的数学期望()0123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A B C =U ,且B 与C 互斥, 由(i )知,()(2)P B p X ==,()(1)P C P X ==, 故6()()(2)(1)7P A P B C P X P X ===+==U . 所以,事件A 发生的概率为67. 11.【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===, ()25745000.490P X ++===.因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200, 因此只需考虑200500n ≤≤ 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(200)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此20.4(12002)0.4(8002)0.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此2(0.40.4)(8002)0.2160 1.2EY n n n =⨯++-⨯=+. 所以300n =时,Y 的数学期望达到最大值,最大值为520元.12.【解析】(1)编号为2的抽屉内放的是黑球的概率p 为: 11C C n m n n m n n p m n-+-+==+. (2)随机变量X 的概率分布为:随机变量X 的期望为:11C 111(1)!()C C (1)!()!n m nm nk n nk n k nm nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++-L12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++-L 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++-L 12221(C C )(1)C n n m n m n nm nn --+-+-+==+-L 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+- ()()(1)nE X m n n <+-.13.【解析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=, 1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=. 所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=.(Ⅱ)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)P Y Z P Y Z P Y Z +====+==(0)(1)(1)(0)P Y P Z P Y P Z ===+== 1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. 14.【解析】(Ⅰ)记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则485105().18C P M C ==(Ⅱ)由题意知X 可取的值为:0,1,2,3,4.则565101(0),42C P X C ===41645105(1),21C C P X C ===326451010(2),21C C P X C ===23645105(3),21C C P X C ===14645101(4),42C C P X C ===因此X 的分布列为X 的数学期望是0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==510510+1+2+3+421212142⨯⨯⨯⨯=2. 15.【解析】(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C6C 3C 6P P P ξξξ=========.所以ξ的分布列为故ξ的期望1()0121636E ξ=⨯+⨯+⨯=. (Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.16.【解析】(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ; 16.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P .所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=.可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 17.【解析】(Ⅰ)设“当天小王的该银行卡被锁定”的事件为A ,则5431()=6542P A =⨯⨯ (Ⅱ)依题意得,X 所有可能的取值是1,2,3 又1511542(=1),(=2),(=3)1=6656653P X P X P X ==⨯==⨯⨯. 所以X 的分布列为所以1125()1236632E X =⨯+⨯+⨯=. 18.【解析】(Ⅰ)个位数是5的“三位递增数”有125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为8439=C ,随机变量X 是取值为:0,-1,1,因此32)0(3938===C C X P ,141)1(3924==-=C C X P ,4211321411)1(=--==X P ,所以X 的分布列为则 21421141)1(320=⨯+-+⨯=EX . 19.【解析】(1)由题意,参加集训的男、女生各有6名,参赛学生全从B 中抽取(等价于A 中学没有学生入选代表队)的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=. (2)根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===,3133461(3)5C C P X C ===, 所以X 的分布列为:因此,X 的期望为()()()1(1)2233E X P X P X P X =⨯=+⨯=+⨯=,131()1232555E X =⨯+⨯+⨯=. 20.【解析】(I )抽取产品的质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.33x =⨯+⨯+⨯+⨯2100.242200.082300.02+⨯+⨯+⨯=2002222(30)0.02(20)0.09(10)0.22s =-⨯+-⨯+-⨯22200.33100.24200.08300.02150.+⨯+⨯+⨯+⨯=(II )(i )由(I )知,~(200,150)Z N ,从而(187.8212.2=(20012.220012.2)0.6826.P Z P Z <<-<<+=)(ii )由(i )知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6, 依题意知X-B(100,0.682 6),所以1000.682668.26.EX =⨯=21.【解析】(Ⅰ)记i A 为事件“小明对落点在A 上的来球回球的得分为i 分”(0,1,3i =).则31()2P A =,11()3P A =,0111()1236P A =--=; 记i B 为事件“小明对落点在B 上的来球回球的得分为i 分”(0,1,3i =)。
概率分布列答案
P( =2)=0.38
P( =3)=0.12------------------6分
所以 的分布列为
0
1
2
3
P
0.12
0.38
0.38
0.12
-----------------------------9分
(2)解:因为数列 ( )是严格单调的数列,
所以数列 ,
即 < -------------------------------------------------------------------12分
( )( )4
( )2( )3
( )3( )2
( )4( )
( )5
E=
6.(12分)根据渭水汛期水量指数 (为整数),可将水量分级如下表
0~100
100~200
200~300
300~400
400~500
500
级别
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
Ⅵ
状况
枯期
弱期
次期
常期
满期
汛期
对渭水7~10月的100天的渭水水量指数 进行检测,获取 的数据依照区间 . . . . 进行分组,得频率分布直方图如图
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记 表示抽到“好视力”学生的人数,求 的分布列及数学期望.¥高#考#资%源*网
P(ξ=2)= P(ξ=3)= ……………………8分
ξ
《分布列的基本性质型概率题》参考答案
【湖南省历年高考试题】(2011湖南18试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.解析:(1)记当天商店销售i 件该商品为事件i A ,0,1,2,3i =.当天商店不进货为事件B ,则01153()()().202010P B P A P A =+=+= (2)由题意知, X 的可能取值为2,3.151(2)();204P X P A ====0231953(3)()()().2020204P X P A P A P A ==++=++=故X 的数学期望为31123.444EX =⨯+⨯=【备考点津】该题型注重考查与生活生产有关的实际问题的理解能力,在运算能力方面的考查比超几何分布型、二项分布型及独立事件型概率题要求要低. 【高考仿真试题】1.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率) 解析:(1)由已知得251055,3045,y x ++=+=所以15,20.x y ==则153(1),10020P X ===303( 1.5),10010P X ===251(2),1004P X === 201101( 2.5),(3).100510010P X P X ======X 的数学期望331111 1.52 2.53 1.920204510EX =⨯+⨯+⨯+⨯+⨯= (2)记A 为事件“该顾客结算前得等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客得结算时间,则121212()(1)(1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ===+==+=== 3333339.20202010102080⨯+⨯+⨯=故该顾客结算时间不超过2.5分钟得概率为9.80 2.受轿车在保修期间维修费用等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(3)该厂预计今后这两辆轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解析:(1)110;(2)略;(3)12() 2.86,() 2.79.E X E X ==应该生产甲品牌轿车. 3.小波以游戏方式决定是参加学校合唱团团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X =就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列与数学期望. 解析:(1)从8个点中任取两个点为向量终点的不同取法共有28C 28=种. 0X =时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为82(0).287P X === (2)两向量的数量积X 的所有可能取值为2,1,0,1.--2X =-时,有2种情形; 1X =时,有8种情形; 1X =-时,有故(2)(1)1.1414714EX =-⨯+-⨯+⨯=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【湖南省历年高考试题】
(2011湖南18试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(1)求当天商店不进货的概率;
(2)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.
解析:(1)记当天商店销售i 件该商品为事件i A ,0,1,2,3i =.当天商店不进货为事件B ,
则01153
()()().202010
P B P A P A =+=
+= (2)由题意知, X 的可能取值为2,3.
151(2)();204P X P A ====0231953
(3)()()().2020204
P X P A P A P A ==++=++=
故X 的数学期望为311
23.444
EX =⨯+⨯=
【备考点津】该题型注重考查与生活生产有关的实际问题的理解能力,在运算能力方面的考
查比超几何分布型、二项分布型及独立事件型概率题要求要低. 【高考仿真试题】
1.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过
2.5分钟的概率.(注:将频率视为概率) 解析:(1)由已知得251055,3045,y x ++=+=所以15,20.x y ==则
153(1),10020P X ==
=303( 1.5),10010P X ===251
(2),1004P X === 201101
( 2.5),(3).100510010
P X P X ======
X 的数学期望33111
1 1.5
2 2.5
3 1.920204510
EX =⨯
+⨯+⨯+⨯+⨯= (2)记A 为事件“该顾客结算前得等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客得结算时间,则
121212()(1)(1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ===+==+=== 3333339.20202010102080⨯+⨯+⨯=故该顾客结算时间不超过2.5分钟得概率为9.80 2.受轿车在保修期间维修费用等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;
(3)该厂预计今后这两辆轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
解析:(1)
1
10
;(2)略;(3)12() 2.86,() 2.79.E X E X ==应该生产甲品牌轿车. 3.小波以游戏方式决定是参加学校合唱团团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X =就参加学校合唱团,否则就参加学校排球队.
(1)求小波参加学校合唱团的概率; (2)求X 的分布列与数学期望. 解析:(1)从8个点中任取两个点为向量终点的不同取法共有
2
8
C 28=种. 0X =时
,两向量夹角为直角共有8种情形,所以
小波参加学校合唱团的概率为82(0).287
P X ==
= (2)两向量的数量积X 的所有可能取值为2,1,0,1.--
2X =-时,有2种情形; 1X =时,有8种情形; 1X =-时,有
故(2)(1)1.1414714
EX =-⨯+-⨯+⨯=-。