2010年全国高考文科数学试题及答案(全国1卷)

合集下载

2010年高考文科数学试题(全国卷1)

2010年高考文科数学试题(全国卷1)

《机械设计》课程设计学生姓名:赵志远学号:专业班级:模具设计与制造指导教师:陈完成《机械设计基础》课程设计目录1 课程设计的目的 (2)2 任务书 (3)3 设计过程及计算说明 (7)3.1传动装置的总体设计 (7)3.2传动零件的设计 (8)3.3轴的设计计算 (13)3.4轴承的选择及校核计算 (23)3.5联轴器的选择 (25)3.6键联接的选择及校核计算 (26)3.7润滑与密封 (27)4 箱体的设计及其附件设计 (28)5 参考文献 (30)6心得体会 (30)11,课程设计的目的课程设计是机械设计课程重要的综合性与实践性教学环节。

课程设计的基本目的是:(1)综合运用机械设计课程和其它先修课程的知识,分析和解决机械设计问题,进一步巩固、加深和拓宽所学的知识。

(2)通过设计实践,逐步树立正确的设计思想,增强创新意识和竞争意识,熟悉掌握机械设计的一般规律,培养分析问题和解决问题的能力。

(3)通过设计计算、绘图以及运用技术标准、规范、设计手册等有关设计资料,进行全面的机械设计基本技能的训练。

2《机械设计基础》课程设计课程设计任务书课程名称:机械设计题目:蜗杆减速器学院:机电工程系:机械工程专业:机械设计制造及其自动化班级:09模具学号:学生姓名:赵志远起讫日期:指导教师:陈完成职称:教师系分管主任:审核日期:3说明1.课程设计任务书由指导教师填写,并经专业学科组审定,下达到学生。

2.进度表由学生填写,交指导教师签署审查意见,并作为课程设计工作检查的主要依据。

3.学生根据指导教师下达的任务书独立完成课程设计。

4.本任务书在课程设计完成后,与论文一起交指导教师,作为论文评阅和课程设计答辩的主要档案资料。

4《机械设计基础》课程设计56《机械设计基础》课程设计8《机械设计基础》课程设计9《机械设计基础》课程设计《机械设计基础》课程设计一、蜗杆的结构设计A 、已知轴上的功率1P 、转速1n 和转矩1T《机械设计基础》课程设计图(b)mm 为水平最大转矩)mm (此为竖直面最大转矩)146513.835mm ≈《机械设计基础》课程设计mm、按弯扭合成应力校核轴的强度《机械设计基础》课程设计《机械设计基础》课程设计mmmm 为水平最大转矩)(此为竖直面最大129984mmmm1.6849) 22《机械设计基础》课程设计23《机械设计基础》课程设计26《机械设计基础》课程设计2728《机械设计基础》课程设计2930。

2010年高考文科数学试题、答案-全国1

2010年高考文科数学试题、答案-全国1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5UM =,{}1,3,5N =,则()U N M ⋂={}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =AB C DA 1B 1C 1D 1 O(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯=,21122ACD S AD CD a ∆==. 所以13133ACD ACD S DD a DO a S ∆∆===,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•的最小值为(A) 4-+3-(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=,||||cos2PA PB PA PBα•=⋅=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x xx--•==+-≥【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2010年全国高考文科数学试题及答案-安徽

2010年全国高考文科数学试题及答案-安徽

绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分l50分,考试时间l20分钟。

参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个选项中、只有一项是符合题目要求的、(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)22a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分、把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户、从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户、依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是、(写出所有正确命题的编号)、①ab≤1;②a+b≤2;③a2+b2≥2;④a3+b3≥3;211≥+ba⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④,再利a+b 2易知③正确三、解答题:本大题共6小题、共75分、解答应写出文字说明、证明过程或演算步骤、解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156、(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2、∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0、直线AF 2的方程为x=2、由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

2010年高考新课标全国卷_文科数学(含答案)

2010年高考新课标全国卷_文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

2010年浙江高考数学文科试卷带详解

2010年浙江高考数学文科试卷带详解

2010年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设2{|1},{|4},P x x Q x x =<=<则P Q = ( )A.{|12}x x -<<B.{|31}x x -<<-C.{|14}x x <<-D.{|21}x x -<<【测量目标】集合的基本运算.【考查方式】考查了集合的基本运算,给出两集合,用图象法求其交集. 【参考答案】D【试题解析】2422x x ∴<⇒-<<,{}2Q x x ∴=-<<1,{}21P Q x x ∴=-<<,故选D.2.已知函数 2()log (1),f x x =+若()1,f α= α= ( )A.0B.1C.2D.3【测量目标】对数函数的性质.【考查方式】给出对数函数解析式,()f α的值,求未知数α. 【参考答案】B 【试题解析】2()log (1)f αα=+,12α∴+=,故1α=,选B.3.设i 为虚数单位,则5i1i-=+ ( ) A.23i -- B.23i -+ C.23i - D.23i +【测量目标】复数代数形式的四则运算..【考查方式】考查了复数代数形式的四则运算,给出复数,对其进行化简. 【参考答案】C 【试题解析】5i (5i)(1i)46i23i 1i (1i)(1i)2----===-++-,故选C , 4.某程序框图所示,若输出的S=57,则判断框内为 ( )A.4?k >B.5?k >C.6?k >D.7?k > 【测量目标】循环结构的程序框图.【考查方式】给出部分程序框图,输出值,利用与数列有关的简单运算求判断框内的条件. 【参考答案】A【试题解析】程序在运行过程中各变量变化如下表:k S 是否继续循环 循环前 1 1第一次 2 4 是 第二次 3 11 是 第三次 4 26 是 第四次5 57否故4k >.5.设n S 为等比数列{}n a 的前n 项和,2580a a +=则52S S = ( ) A.11- B.8- C.5 D.11 【测量目标】等比数列的通项公式与前n 项和公式. 【考查方式】给出数列中两项关系,求数列的和. 【参考答案】A【试题解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得2q =-,带入所求式可知答案选A.6.设0<x <π2,则“2sin 1x x <”是“sin 1x x <”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【测量目标】充分条件,必要条件,充分必要条件.【考查方式】考查了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力.【参考答案】B 【试题解析】π0,sin 12x x <<∴<,故2sin sin x x x x <,结合2sin x x 与sin x x 的取值范围相同,可知答案选B.7.若实数,x y 满足不等式组330,230,10,x y x y x y +-⎧⎪--⎨⎪-+⎩,则x y +的最大值为( ) A.9 B.157 C.1 D.715【测量目标】二元线性规划求目标函数的最值.【考查方式】给出线性规划条件,求最值. 【参考答案】A【试题解析】先根据约束条件画出可行域,设z x y =+,直线z x y =+过可行域内点()4,5A 时z 最大,最大值为9,故选A.8.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 ( ) A.35233cm B.3203 3cm C.22433cm D.16033cm 【测量目标】由三视图求几何体的体积.【考查方式】考查了对三视图所表示的空间几何体的识别以及几何体体积的计算. 【参考答案】B【试题解析】由三视图知该几何体是一个上面是正方体,下面为正四棱台的组合体,对应的长方体的长、宽、高分别为4、4、2,正四棱台上底边长为4,下底边长为8,高为2,那么相应的体积为:222213204422(4488)33⨯⨯+⨯⨯+++=.故选B.9.已知0x 是函数1()21x f x x=+-的一个零点.若()()10201,,,x x x x ∈∈+∞,则 ( ) A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.12()0,()0f x f x >< D.12()0,()0f x f x >>【测量目标】函数零点的应用.【考查方式】考查了数形结合的思想,以及函数零点的概念和零点的判断. 【参考答案】B【试题解析】0x 是1()21xf x x=+-的一个零点,0()0f x ∴=,又1()21x f x x=+-是单调递增函数,且()()10201,,,x x x x ∈∈+∞,102()()0()f x f x f x ∴<=<,故选B.10.设O 为坐标原点,12,F F 是双曲线22221(0,0)x y a b a b-=>>的焦点,若在双曲线上存在点P ,满足∠12F PF =60°,∣OP ∣=7a ,则该双曲线的渐近线方程为 ( ) A.x ±3y 0= B.3x ±y 0= C.x ±2y 0= D.2x ±y 0=【测量目标】双曲线的标准方程及几何性质.【考查方式】给出双曲线的标准方程形式,结合双曲线与直线的关系,求渐进线方程. 【参考答案】D【试题解析】假设1,F P x OP =为12FF P △的中线,根据三角形中线定理可知: 222222(2)2(7)(2)5x a x c a x x a c a ++=+⇒+=+,由余弦定理可知: 22222(2)(2)4(2)142x a x x a x c x x a a c ++-+=⇒+=-,,∴渐进线为20y ±=. 故选D.非选择题部分(共100分)二,填空题:本大题共7小题,每小题4分,共28分.11.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、 . 【测量目标】茎叶图及样本数据的基本的数字特征的提取.【考查方式】考查了茎叶图所表达的含义,以及从样本数据中提取数字特征的能力. 【参考答案】45;46【试题解析】由茎叶图中的样本数据可知答案为45;46.12.函数2π()sin (2)4f x x =-的最小正周期是 .【测量目标】三角函数的几何性质,二倍角.【考查方式】给出正弦函数,借助三角恒等变换降幂求周期. 【参考答案】π2【试题解析】对解析式进行降幂扩角,转化为()1π1cos 4222f x x ⎛⎫=--+ ⎪⎝⎭,可知其最小正周期为π2. 13.已知平面向量,,1,2,(2),==⊥-αβαβααβ则2+αβ的值是 .【测量目标】平面向量的数量积、加法、减法及数乘运算. 【考查方式】考查了平面向量的四则运算及其几何意义. 【参考答案】10【试题解析】10,由题意可知()20•-=ααβ,结合2214==,αβ,解得12•=αβ,所以22+=αβ22448210+•+=+=ααββ,开方可知答案为10.14.在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n 行、 第1n +列的数是 .【测量目标】等差数列的性质与通项公式.【考查方式】考查了等差数列的概念和通项公式,以及运用等差关系解决问题的能力.【参考答案】2n n +【试题解析】第n 行第一列的数为n ,观察得,第n 行的公差为n ,所以第0n 行的通项公式为()001n n n a n -+=,又因为为第1n +列,故可得答案为n n +2.15.若正实数,x y 满足26x y xy ++=, 则xy 的最小值是 .【测量目标】利用基本不等式求最值.【考查方式】考查了用基本不等式解决最值问题的能力 ,以及换元思想和简单一元二次不等式的解法.【参考答案】18【试题解析】运用基本不等式,26226xy x y xy =+++,令2t xy =,可得22260t t --,注意到t >0,解得t ≥23,故xy 的最小值为18.16. 某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x 的最小值 .【测量目标】利用不等式求最大(小)值.【考查方式】考查了用一元二次不等式解决实际问题的能力. 【参考答案】20【试题解析】由2386050012(1%)2(1%)7000x x ⎡⎤++⋅++⋅+⎣⎦可得x 的最小值为20.17.在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 、分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为 . 【测量目标】古典概型的概率.【考查方式】考查了平面向量与古典概型的综合运用. 【参考答案】34【试题解析】由题意知,G 点共有16种取法,而只有E 为P 、M 中一点,F 为Q 、N 中一点时,落在平行四边形内,故符合要求的G 的只有4个,因此概率为43. 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分)在ABC △中,角,,A B C 所对的边分别为,,.a b c 设S 为ABC △的面积,满足2223()4S a b c =+-. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.【测量目标】余弦定理、正弦函数的性质、两角差的正弦.【考查方式】根据余弦定理求角的大小,利用三角恒等变换化简,确定最大值.【试题解析】 (Ⅰ)解:由题意可知1sin 2cos 24ab C ab C =⋅.∴tan C = (步骤1)0<<πC ,∴π3C =. (步骤2) (Ⅱ)解:由已知得2πsin sin sin sin(π)sin sin()3A B A C A A A +=+--=+-1πsin sin )326A A A A =+=+. (步骤3)当ABC △为正三角形时取等号,∴sin A +sin B . (步骤4)19.(本题满分14分)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=.(Ⅰ)若55S =,求6S 及1a ;(Ⅱ)求d 的取值范围.【测量目标】等差数列的前n 项和与通项,一元二次不等式.【考查方式】由所给条件列求和公式求解,根据求和公式列一元二次不等式求解. 【试题解析】(Ⅰ)解:由题意知65153S S -==-,6658a S S =-=-, (步骤1) ∴115105,58.a d a d +=⎧⎨+=-⎩ (步骤2)解得17a =,∴613,7S a =-=. (步骤3) (Ⅱ)解:56150,S S +=11(510)(615)150,a d a d ∴+++= (步骤4)即2211291010,a da d +++=∴221(49)8,a d d +=- (步骤5)28,d ∴ (步骤6)∴d 的取值范围为22d-或2 2.d (步骤7)20.(本题满分14分)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=.E 为线段AB 的中点,将ADE △沿直线DE 翻折成'A DE △,使平面'A DE ⊥平面BCD ,F 为线段'AC的中点. (Ⅰ)求证:BF ∥平面'A DE ;(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE ‘所成角的余弦值.【测量目标】线面平行的判定,面面垂直的判定,线面角.【考查方式】借助做辅助线,由线线垂直证明线面垂直;借助做辅助线,通过线线垂直得到线面垂直,将线面角转化为三角形中一角,进而求解.【试题解析】 (Ⅰ)证明:取'A D 的中点G ,连接,GF CE ,由条件易知FG ∥CD ,12FG CD =.BE ∥CD ,12BE CD =. (步骤1)∴FG ∥,.BE FG BE = (步骤2)故四边形BEGF 为平行四边形,∴BF ∥EG , (步骤3)又EG ⊂平面'A DE ,BF ⊄平面'A DE∴BF //平面'A DE (步骤4)(Ⅱ)解:在平行四边形ABCD 中,设BC a =, 则2,,AB CD a AD AE EB a ===== (步骤5) 连接CE ,120ABC ∠=在BCE △中,可得3,CE a =(步骤6)在ADE △中,可得,DE a = (步骤7) 在CDE △中,222,CD CE DE =+CE DE ∴⊥. (步骤8)在正'A DE △中,M 为DE 中点,∴'AM DE ⊥. (步骤9)由平面'A DE ⊥平面BCD ,可知'AM ⊥平面',BCD A M CE ⊥. (步骤10)取'A E 的中点N ,连线NM 、NF ,∴',NF DE NF A M ⊥⊥. (步骤11)DE 交'AM于M ,∴NF ⊥平面'A DE , (步骤12)则FMN ∠为直线FM 与平面'A DE 所成角.在Rt FMN △中,NF a , M N =12a , FM =a , 则1cos 2FMN ∠=, (步骤13) ∴直线FM 与平面'A DE 所成角的余弦值为12. (步骤14)21.(本题满分15分)已知函数2()()f x x a =-()a b -(,R,)a b a b ∈<.(I )当1,2a b ==时,求曲线()y f x =在点(2,()f x )处的切线方程.(II )设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且31x x ≠,32x x ≠. 证明:存在实数4x ,使得1234,,,x x x x 按某种顺序排列后的等差数列,并求4x .【测量目标】函数的几何意义、导数的应用、曲线的切线方程、等差数列的等差中项.【考查方式】根据导数的几何意义求切线方程,利用导数与极值关系,求极值点,并根据等差数列的概念证明.【试题解析】(Ⅰ)解:当1,2a b ==时,'()(1)(35)f x x x =--∴'(2)1,(2)0f f ==, (步骤1)∴()f x 在点()2,0处的切线方程为2y x =-. (步骤2)(Ⅱ)证明:'2()3()(),3a bf x x a x +=--由于a b <,.故23a ba +<. ∴()f x 的两个极值点为x =a ,x =23a b+. (步骤3) 不妨设x 1=a ,x 2=23a b+, x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点,∴x 3=b . (步骤4)又23a b +-a =2(b -23a b+),x 4=12(a +23a b +)=23a b +,∴a ,23a b +,23a b +,b 依次成等差数列, (步骤5)∴存在实数x 4满足题意,且x 4=23a b+. (步骤6)22.(本题满分15分)已知m 是非零实数,抛物线2:2C y ps =(0)p >的焦点F 在直线2:02m l x my --=上. (I )若2m =,求抛物线C 的方程(II )设直线l 与抛物线C 交于A 、B ,2AA F △,1BB F △的重心 分别为,G H .求证:对任意非零实数m ,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外. 【测量目标】抛物线的简单几何性质,直线与抛物线、点与圆的位置关系. 【考查方式】根据抛物线的几何性质及直线与抛物线的位置关系求解,利用直线与抛物线的位置关系、不等式的综合应用证明. 【试题解析】(Ⅰ)解:焦点(,0)2PF 在直线l 上,∴2p m = (步骤1) 又2m =,∴4p =∴抛物线C 的方程为222y m x = ,则抛物线C 的方程为28y x =. (步骤2)(Ⅱ)设1122(,),(,)A x y B x y ,由222,22,m x my y m x ⎧=+⎪⎨⎪=⎩消去x 得23420,y m y m --=m≠,∴∆64440m m+>=,且有3412122,y y m y y m+==-,(步骤3)设12,M M分别为线段11,AA BB的中点,由于122G,2,M C F M H HF==可知112(,)33x yG,222(,)33x yH,∴2421212(),6636x x m y y m m m+++==+312222,63y y m+=(步骤4)∴GH的中点4222,363m m mM⎛⎫+⎪⎝⎭. (步骤5)设R是以线段GH为直径的圆的半径,则2222211||(4)(1)49R GH m m m==++(步骤6)设抛物线的标准线与x轴交点2(,0)2mN-,则2423222||()2363m m m mMN⎛⎫=+++⎪⎝⎭442422222221(84)91(1)(4)391(1)(4)9m m mm m m mm m m R=++⎡⎤=+++⎣⎦>++=(步骤7)∴N在以线段GH为直径的圆外. (步骤8)。

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年全国卷(1)(文科数学)

2010年全国卷(1)(文科数学)

2010年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)(适用:宁夏、河南、山西、广西、河北)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos300=oA.2-12- C.12D.2 2.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N C M =IA.{}1,3B.{}1,5C.{}3,5D.{}4,53.若变量x ,y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为A .4B .3C .2D .14.已知各项均为正数比数列{}n a 中,1235a a a =,78910a a a =,则456a a a =A.7 C.6D.5.23(1)(1x -的展开式中2x 的系数是A.6-B.3-C.0D.36.直三棱柱111ABC A B C -中,若90BAC ∠=o ,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A.30oB.45oC.60oD.90o7.已知函数()lg f x x =.若a b ≠,且()()f a f b =,则a b +的取值范围是A.(1,)+∞B.[1)+∞,C.(2,)+∞D.[2,)+∞ 8.已知1F ,2F 为双曲线C :221x y -=的左,右焦点,点P 在C 上,12F PF ∠60=o , 则1PF ⋅2PF =A.2B.4C.6D.89.正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成角的余弦值为2310.设3log 2a =,ln 2a =,125c -=,则A.a b c <<B.b c a <<C.c a b <<D.c b a <<11.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ⋅u u u r u u u r 的最小值为A.4-B.3-+C.4-+3-+12.已知在半径为2的球面上有A ,B ,C ,D 四点,若2AB CD ==,则四面体ABCD 的体积的最大值A B C .二、填空题:本大题共4小题,每小题5分,共20分.13.不等式22032x x x ->++的解集是 . 14.已知α为第一象限的角,3sin 5α=,则tan 2α= . 15.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)16.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =u u u r u u u r ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)记等差数列{}n a 的前n 项和为n S ,设312S =,且12a ,2a ,31a +成等比数列,求n S .18.(本小题满分12分)已知ABC ∆的内角A ,B 所对的边分别为a ,b 满足cot cot a b a A b B +=+,求内角C .19.(本小题满分12分)投到某杂志的稿件,先由两位专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(本小题满分12分)如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,AB ∥DC ,AD DC ⊥, 1AB AD ==,2CD SD ==,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:2SE EB =;(Ⅱ)求二面角A DE C --的大小.21.(本小题满分12分)已知函数42()32(32)4f x ax a x x =-++. (Ⅰ)当16a =时,求()f x 的极值; (Ⅱ)若()f x 在(1,1)-上是增函数,求a 的取值范围.22.(本小题满分12分)已知抛物线C :24y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A ,B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设FA FB ⋅u u u v u u u v =89,求BDK ∆的内切圆M 的方程. A E S D C B。

江苏2010年高考文科数学试题和答案

江苏2010年高考文科数学试题和答案

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____.[解析] 考查集合的运算推理。

3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.[解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。

3162p == 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

[解析]考查频率分布直方图的知识。

100×(0.001+0.001+0.004)×5=305、设函数f(x)=x(e x +ae -x )(x ∈R)是偶函数,则实数a =_______▲_________[解析]考查函数的奇偶性的知识。

g(x)=e x +ae -x 为奇函数,由g(0)=0,得a =-1。

6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______[解析]考查双曲线的定义。

422MF e d ===,d 为点M 到右准线1x =的距离,d =2,MF=4。

2010年全国1卷高考数学(含答案)

2010年全国1卷高考数学(含答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k k n n P P C k P --=)1()( 一、选择题(1)复数=-+i i 3223 (A )i (B )i - (C )i 1312-(D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21- (B )-k k 21- (C )21k k- (D )-21k k -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25 (B )7 (C )6 (D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A )30种 (B )35种 (C )42种 (D )48种(7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则 (A )c b a << (B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P 到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞ (B )[)+∞,22 (C )),3(+∞ (D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+- (B )23+- (C )224+- (D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年高考数学试题及答案(全国卷文数3套)

2010年高考数学试题及答案(全国卷文数3套)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。

2010年高考数学文科全国卷1答案

2010年高考数学文科全国卷1答案

文科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分). 1.集合A ={x -1≤x ≤2},B ={xx <1},则A ∩B =[D](A){x x <1}(B ){x-1≤x ≤2}(C) {x-1≤x ≤1}(D) {x -1≤x <1}2.复数z =1ii在复平面上对应的点位于[A](A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.函数f (x )=2sin x cos x 是 [C] (A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数4.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为s A 和s B ,则[B](A) A x >B x ,s A >s B (B) A x <B x ,s A >s B (C) A x >B x ,s A <s B (D) A x <B x ,s A <s B5.右图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为 [D](A)S =S*(n +1) (B )S =S *x n +1(C)S =S *n (D)S =S *x n(A)充分不必要条件(B )必要不充分条件 (C )充要条件 (B )既不充分也不必要条件7.下6.“a >0”是“a >0”的[A]列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是 [C] (A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A )2 (B )1(C )23(D )139.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为 [C](A )12(B )1 (C )2 (D )410.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为[B](A )y =[10x] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43= (1+2+3+4)2,…,根据上述规律,第四个等式.....为13+23+33+43+53=(1+2+3+4+5)2(或152). 12.已知向量a =(2,-1),b =(-1,m ),c =(-1,2)若(a +b )∥c ,则 m = -1 .13.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = 2 .14.设x ,y 满足约束条件24,1,20,x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则目标函数z =3x -y 的最大值为 5 .15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) A.(不等式选做题)不等式21x -<3的解集为{}12x x -<<.B.(几何证明选做题)如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3cm ,4cm ,以AC 为直径的圆与AB 交于点D ,则BD =165cm.C.(坐标系与参数方程选做题)参数方程cos ,1sin x y αα=⎧⎨=+⎩(α为参数)化成普通方程为x 2+(y -1)2=1. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分) 已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (Ⅱ)由(Ⅰ)知2ma =2n ,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.17.(本小题满分12分)在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长.解 在△ADC 中,AD=10,AC=14,DC=6,由余弦定理得cos ∠2222AD DC AC AD DC +-=10036196121062+-=-⨯⨯,∴∠ADC=120°, ∠ADB=60°在△ABD 中,AD=10, ∠B=45°, ∠ADB=60°,由正弦定理得sin sin AB ADADB B=∠,∴AB=10sin 10sin 60sin sin 45AD ADB B ⨯∠︒===︒18.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点. (Ⅰ)证明:EF ∥平面P AD ; (Ⅱ)求三棱锥E —ABC 的体积V. 解 (Ⅰ)在△PBC 中,E ,F 分别是PB ,PC 的中点,∴EF ∥BC . 又BC ∥AD ,∴EF ∥AD , 又∵AD ⊄平面P AD ,E F ⊄平面P AD , ∴EF ∥平面P AD . (Ⅱ)连接AE ,AC,EC ,过E 作EG ∥P A 交AB 于点G ,则BG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AD =AB , P AB °,BP =2,∴AP =AB ,EG =2.∴S △ABC =12AB ·BC =12×,∴V E-AB C =13S △ABC ·EG =13×2=13.19 (本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170~185cm 之间的概率;()从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。

2010高考文科数学试题答案(全国卷1)

2010高考文科数学试题答案(全国卷1)

电视连续剧《三国》精彩语录1、(司徒王允以做寿为名,宴请群臣。

席间,众臣历数董卓罪恶,悲愤痛哭。

)曹操:哈哈哈……王允:曹操为何失笑?曹操:晚辈是在笑,满座大丈夫,尽做女儿态!你们就是从天黑哭到天明,难道能把董贼哭死不成?王允:你有何能,出言竟如此轻薄?曹操:曹某不才,弹指之间便可将董贼的首级取下悬于长乐宫门!众臣:太狂妄了,狂妄之极啊!王允:来人,将大胆狂徒曹阿瞒赶下大堂,逐出府外!—《三国》第1集2、陈宫(中牟县令):当初我还以为你是英雄豪杰,所以我不惜舍生忘死、抛家弃官,跟随于你。

到今天,我真不知道你是忠义之士还是奸恶之徒?曹操:嘿嘿嘿……公台兄,自古以来,就是大奸似忠,大伪似真,忠义和奸恶,都不是从表面就能看得出来的。

也许你昨天看错了我曹操,可是今天呢,你又看错了。

但是我仍然是我。

我从来都不怕别人看错我!—《三国》第3集3、曹嵩(曹操之父):儿啊,我已将曹氏家产全部变卖,得金两万五千,你可用它招募兵勇,打造战甲旗幡。

曹操:不够,远远不够。

成大事者,不可无钱,却又不完全在于钱。

首先是人,得一英雄豪杰胜过十万金银。

—《三国》第3集4、曹仁:大哥,天子真的授予你讨贼诏书了吗?曹操:当然没有。

呵呵呵,不过,我可以替天子拟一道诏书。

曹仁:矫诏啊?曹操:对,假的!假的有时候比真的还管用。

—《三国》第3集5、曹操(对孙坚):文台兄,眼下有一个天大的功劳摆在你我二人眼前。

会盟之初,各路诸侯约定,谁先攻入京城,就启奏圣上封谁骠骑大将军。

眼下洛阳空虚,董贼败逃,你我何不兵分两路,一路集中所有的步军开进洛阳,另一路集中所有的骑兵星夜追杀董贼。

孙将军,你愿意去哪一路?孙坚:我部江东子弟大多是步军,骑兵还不到三千。

曹操:而我率领的全部都是精骑。

孙将军,可否把你的三千骑兵全部交给我,我会亲自率领他们星夜追杀董贼,你率步军开进洛阳?孙坚:当真?曹操:千真万确。

—《三国》第5集6、曹仁(对曹操):大哥,你为何把洛阳让给孙坚,自己却要追杀董卓呢?曹操:你说是一片废墟重要哪,还是一个天子重要?曹仁:那当然是天子了。

2010年安徽高考数学文科试卷带详解

2010年安徽高考数学文科试卷带详解

2010年普通高等学校招生全国统一考试(安徽卷)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.若{10}A x x =+>,{30}B x x =-<,则A B = ( ) A.(1,)-+∞ B. (,3)-∞ C. (1,3)- D.(1,3) 【测量目标】集合的基本运算.【考查方式】通过求解集合进而判断集合的大小. 【参考答案】C【试题解析】(1,),(,3)A B =+∞=-∞,(1,3)A B =- ,故选C.2.已知2i 1=-,则i(1 ( )i c.i D. 【测量目标】复数代数形式的四则运算. 【考查方式】通过计算来考查. 【参考答案】B【试题解析】i(1i =,选B. .3.设向量11=(1,0),=(,)22a b ,则下列结论中正确的是 ( )A. a =b B =a b . C. a b D -a b 与b 垂直【测量目标】平面向量的坐标运算,位置关系.【考查方式】给出向量坐标值来判断向量之间的关系. 【参考答案】D【试题解析】11(,)22--a b =,()- a b b ,所以-a b 与b 垂直.4.过点(1,0)且与直线220x y --=平行的直线方程是 ( ) A. 210x y --= B. 210x y -+= C. 2+20x y -= D.+210x y -=【测量目标】两条直线的位置关系.【考查方式】给出点和直线求平行直线的方程. 【参考答案】A【试题解析】设直线方程为20x y c -+=,又经过(1,0),故1c =-,所求方程为210x y --=.5.设数列{}n a 的前n 项和2n S n =,则8a 的值为 ( ) A.15 B. 16 C. 49 D.64 【测量目标】数列前n 项和的掌握.【考查方式】给出前n 项和的公式,求哪一项. 【参考答案】A【试题解析】887644915a S S =-=-=.6.设20,()abc f x ax bx c >=++二次函数的图像可能是 ( )A B C D 【测量目标】二次函数的图象与性质. 【考查方式】利用数行集合的方法. 【参考答案】D【试题解析】当0a >时,b 、c 同号,C ,D 两图中0c <,故0,02bb a<->,选项(D )符合.7.设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 ( )A.a c b >>B.a b c >>C. c a b >>D. b c a >> 【测量目标】幂函数与指数函数.【考查方式】将幂函数与指数函数放在一起进行比较大小从而考查对函数单调性的掌握. 【参考答案】A【试题解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >.故选A.8.设,x y 满足约束条件260260,0x y x y y +-⎧⎪+-⎨⎪⎩………则目标函数Z x y =+的最大值是 ( )A. 3B. 4C. 6D. 8【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件判断可行域,并利用可行域求出目标函数最值. 【参考答案】C【试题解析】不等式表示的区域是一个三角形,3个顶点是(3,0),(6,0),(2,2),目标函数z x y =+在(6,0)取最大值6.故选C.9.一个几何体的三视图如图,该几何体的表面积是 ( ) A. 372 B.360 C. 292D. 280【测量目标】三视图的判断.【考查方式】通过求物体的侧面积来考察对三视图的掌握情况. 【参考答案】B 【试题解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯=.故选B.10.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ( ) A.318 B.418 C.518 D.618【测量目标】排列,组合的综合应用.【考查方式】利用几何体的本身性质来考察概率. 【参考答案】C【试题解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于518. 第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置· 11.命题“存在x ∈R ,使得2250x x ++=”的否定是 .【测量目标】命题的否定.【考查方式】给出命题写出命题的否定形式. 【参考答案】任意x ∈R ,使得2250x x ++=.【试题解析】特称命题的否定是全称命题,“存在”对应“任意”. 12.抛物线28y x =的焦点坐标是 【测量目标】抛物线的几何性质.【考查方式】通过给出标准方程求焦点坐标. 【参考答案】(2,0)【试题解析】抛物线28y x =,所以4p =,所以焦点(2,0) 13.如图所示,程序框图(算法流程图)的输出值x =【测量目标】顺序结构框图,循环结构框图的执行结果. 【考查方式】给出程序框图求出目标值. 【参考答案】12【试题解析】程序运行如下:1,2,4,5,6,8,9,10,12x x x x x x x x x =========,输出1214.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .【方法总结】本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计. 【测量目标】分层抽样.【考查方式】将分层抽样应用于实际生活中. 【参考答案】5.7%.【试题解析】该地拥有3套或3套以上住房的家庭可以估计有:50709900010005700990100⨯+⨯=户,所以所占比例的合理估计是5700100000 5.7%÷=15.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab …; ; ③ 222a b +…;④333a b +…; ⑤112a b+…. 【测量目标】基本不等式求值.【考查方式】通过给出限定条件判断给出的不等式是否满足要求. 【参考答案】①③⑤.【试题解析】令1a b ==,排除②;由1a b ab +厔,命题①正确;由222()2422a b a b ab ab +=+-=-…,命题③正确;1122a b a b ab ab++==…,命题⑤正确.三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.(本小题满分12分)ABC △的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =. (Ⅰ)求AB AC;(Ⅱ)若1c b -=,求a 的值.【测量目标】向量的数量积运算和解三角形. 【考查方式】给出三角形的部分性质来解三角形. 【试题解析】(1)根据同角三角函数关系,由12cos 13A =得sin A 的值,再根据ABC △面积公式得156bc =;直接求数量积AB AC .由余弦定理2222cos a b c bc A =+-,代入已知条件1c b -=,及156bc =求a 的值.解:由12cos 13A =,得5sin 13A ==. (步骤1) 又1sin 302bc A =,∴156bc =. (步骤2) (Ⅰ)12cos 15614413AB AC bc A ⋅==⨯= . (步骤3) (Ⅱ)2222cos a b c bc A =+-212()2(1cos )12156(1)2513c b bc A =-+-=+⨯⨯-=,∴5a =. (步骤4)17.(本小题满分12分)椭圆E 经过点(2,3)A ,对称轴为坐标轴,(第17题图)焦点12,F F 在x 轴上,离心率12e =. (Ⅰ)求椭圆E 的方程;(Ⅱ)求12F AF ∠的角平分线所在直线的方程.【测量目标】椭圆的定义和几何性质.【考查方式】给出椭圆几何图像和部分信息求椭圆标准方程. 【试题解析】解:(Ⅰ)设椭圆E 的方程为22222222222222221212121.11,,3, 1.2243131,2,1.16123()(2,0),(2,0),(2),43460. 2.x y a b c x y e b a c c a c cA c c c x y E F AF x x y AF x E AF +====-=∴+=+==∴+=∏I -+-+==∠由得将(2,3)代入,有解得:椭圆的方程为由()知所以直线的方程为y=即直线的方程为由椭圆的图形知,的角平分线所在直线的斜率为正F F 121234625346510,280,x y AF x x y x x y AF -+∠=--+=-+-=∠数。

2010年湖北高考数学文科试卷(带答案)

2010年湖北高考数学文科试卷(带答案)

2010年普通高等学校招生全国统一考试(湖北卷)文科数学一、选择题:本大题共10小题,每小5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,2,4,8,|2M N x x ==是的倍数,则=MN ( )A.{2,4}B.{1,2,4}C.{2,4,8} D{1,2,8}【测量目标】集合的基本运算(交集).【考查方式】考查了集合的表示法(描述法、列举法),求集合的交集. 【参考答案】C【试题解析】因为{}|2N x x =是的倍数={…,0,2,4,6,8,…},故{}=2,4,8MN所以C 正确. 2.函数()f x=πsin(),24x x -∈R 的最小正周期为 ( )A.π2B. xC.2πD.4π【测量目标】三角函数的周期性.【考查方式】考查三角函数的基本定义,给出三角函数解析式求出最小正周期. 【参考答案】D【试题解析】由T =2π12=4π,故D 正确. 3.已知函数3log ,0()2,0x x x f x x >⎧=⎨⎩≤,则1(())9f f = ( )A.4B.14C.-4D.14-【测量目标】函数的定义域与值域.【考查方式】根据给出的分段函数解析式,求出结果. 【参考答案】B【试题解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==,所以B 正确.4.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a b ,b c ,则a c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若ay ,b y ,则a b ;④若a ⊥y ,b ⊥y ,则a b .哪些是正确的选项 ( ) A. ①② B. ②③ C. ①④ D.③④ 【测量目标】直线与直线、平面之间的位置关系.【考查方式】考查学生对线线之间、线面之间的位置关系的理解和灵活运用. 【参考答案】C【试题解析】根据平行直线的传递性可知①正确;在长方体模型中容易观察出②中a c 还可以平行或异面; ③中a 、b 还可以相交; ④是真命题,故C 正确 5.函数y =的定义域为 ( )A.(34,1)B.(34,∞) C.(1,+∞) D. (34,1)∪(1,+∞) 【测量目标】复合函数的定义域.【考查方式】根据根号内值>0,对数函数内430x ->求出定义域. 【参考答案】A【试题解析】由0.5log (43)0x ->且430x ->可解得314x <<,故A 正确.6.现有6名同学同时进行5个课外知识讲座,6名同学可自由选择其中的一个讲座,不同选法的种数是 ( ) A .65B. 56C.5654322⨯⨯⨯⨯⨯D.65432⨯⨯⨯⨯【测量目标】简单的排列组合.【考查方式】结合实际情况,求出满足条件的排列种数. 【参考答案】A【试题解析】因为每位同学均有5种讲座可选择,所以6位同学共有6555555=5⨯⨯⨯⨯⨯种,故A 正确.7.已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+( )A.1B. 1C. 3+D 3-【测量目标】等差数列、等比数列的基本性质.【考查方式】根据等差数列等差中项性质求出q ,然后代入91078a a a a ++得到结果.【参考答案】C【试题解析】依题意可得: 231231211112=+2,=+2,=+22a a a a a a a q a a q ⎛⎫⨯⎪⎝⎭即则有 (步骤1)可得2=1+2q q ,解得=1+2q 或=12q -(舍去)(步骤2)所以8923291011677811++===3+22+1+a a a q a q q q q a a a q a q q+=+,故C 正确. (步骤3) 8.已知ABC △和点M 满足MA MB MC ++=0.若存在实m 使得AM AC mAM +=成立,则m = ( ) A.2 B.3 C.4 D.5 【测量目标】向量的线性运算.【考查方式】考查考生向量的线性运算的理解和运用,给出向量间的线性关系,要求计算出其系数.【参考答案】B【试题解析】由MA MB MC ++=0知,点M 为ABC △的重心,设点D 为底边BC 的中点,则2==3AM AD 21(32⨯)AB AC +=1()3AB AC +,所以有3AB AC AM +=,故m =3,选B.9.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是 ( ) A.[122-,122+] B.[12,3]- C.[1-,122+]D.[122,3]-【测量目标】直线与圆的标准方程及位置关系.【考查方式】结合直线与圆的方程,利用点到直线距离公式求出解析式中未知参数范围. 【参考答案】D【试题解析】曲线方程可化简为22(2)(3)4(13)x y y -+-=≤≤,即表示圆心为(2,3)半径为2的半圆. (步骤1)当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y x b =+距离等于2,解得122122b b =+=-或. (步骤2)因为是下半圆故可得122b =+(舍去),当直线过(0,3)时,解得b =3,故1223,b -≤≤所以D 正确. (步骤3)10.记实数12,,x x …n x 中的最大数为max {12,,x x …n x },最小数为min{12,,x x …n x }.已知ABC △的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为max{,,}min{,,},a b c a b ct b c a b c a=•则“t=1”是“ABC △为等边三角形”的 ( )A.充分不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 【测量目标】命题之间的基本关系、充分必要条件的判断.【考查方式】以三角形三边长条件为背景,考查了命题之间的基本关系、充分必要条件的判断.【参考答案】B【试题解析】若ABC △为等边三角形,即a=b=c ,则max ,,1min ,,a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭则t =1;若△ABC 为等腰三角形,如2,2,3a b c ===时,则32max ,,,min ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时l =1仍成立但△ABC 不为等边三角形,所以B正确.二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,摸棱两可均不得分.11.在210(1)x -的展开中, 4x 的系数为______.【测量目标】二项式定理【考查方式】由二项式求其某项展开式系数. 【参考答案】45【试题解析】210(1)x -展开式即是10个21x -相乘,要得到4x ,则取2个21x -中的2x -相乘,其余选1,则系数为222410C ()45x x ⨯-=,故系数为45. 12.已知:2z x y =-式中变量,x y 满足的束条件,1,2y x x y x ⎧⎪+⎨⎪⎩≤≥≤则z 的最大值为______.【测量目标】二元线性规划求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出目标函数的最大值. 【参考答案】5【试题解析】根据不等式组,可得上图,2z x y =-,联立方程组可得(2,1)-是满足条件的点,所以max 5z =13.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答). 【测量目标】排列组合.【考查方式】给出某件事件的概率,要求求出另外一件相关事件的概率,考查了考生对排列组合和分类讨论思想的理解和运用 【参考答案】0.9477【试题解析】分情况讨论:若共有3人被治愈,则3314C (0.9)(10.9)0.2916P =⨯-=;若共有4人被治愈,则42(0.9)0.6561P ==,故至少有3人被治愈概率120.9477P P P =+=. 14.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的珠(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.【测量目标】圆柱、球的体积公式.【考查方式】考查了球体积公式的基本概念和基本运算,利用体积相等求出其半径 【参考答案】4【试题解析】设球半径为r ,则由3V V V +=球水柱可得32243ππ8π63r r r r ⨯+⨯=⨯,解得r =4. 15.已知椭圆22:12x C y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为_______,直线0012x xy y +=与椭圆C 的公共点个数_____. 【测量目标】椭圆的标准方程、直线与椭圆相交.【考查方式】根据椭圆内一点到两焦点距离之和判断公共点个数. 【参考答案】[)2,22,0【试题解析】依题意知,点P 在椭圆内部.由数形结合可得,当P 在原点处时12max (||||)2PF PF += (步骤1)当P 在椭圆顶点处时,取到12max (||||)PF PF +为(21)(21) =2 2 -++,故范围为[2,22. (步骤2)因为00(,)x y 在椭圆2212x y +=的内部,则直线0012x x y y +=上的点(x, y )均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个. (步骤3)三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数22cos sin 11(),()sin 2.224x x f x g x x -==- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?(Ⅱ)求函数()()()h x f x g x =-的最小值,并求当()h x 取得最小值时x 的集合. 【测量目标】三角函数的图象及性质,三角函数的恒等变换.【考查方式】给出三角函数解析式,通过图象平移变换得到所求三角函数;把函数()h x 化简得到最简的三角函数解析式,然后根据三角函数基本概念求出最小值和取得最小值时的x 的集合.【试题解析】解:(Ⅰ) 11π1π()cos 2sin(2)sin 2()22224f x x x x ==+=+ (步骤1) 所以要得到()f x 的图象只需把()g x 的图象向左平移π4个长度单位,再将所得的图象向上平移14个长度单位即可. (步骤2)(Ⅱ)111π1()()()cos 2sin 2cos 2224244h x f x g x x x x ⎛⎫=-=-+=++ ⎪⎝⎭ 当π22π+π()4x k k +=∈Z 时,()h x 取得最小值11244--+=. ()h x 取得最小值时,对应x 的集合为3|π+π,8x x k k ⎧⎫=∈⎨⎬⎩⎭Z . (步骤3)17.(本小题满分12分)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示) (Ⅰ)在答题卡上的表格中填写相应的频率;(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少; (Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.【测量目标】频率分布直方图、用样本数字特征估计总体数字特征.【考查方式】考查考生对频率分布直方图、频数、概率等基本概念和总体分布的估计. 概率=每一个柱形的体积. 【试题解析】解:(Ⅰ)根据频率分布可知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)
第Ⅱ卷
二填空题:本大题共4小题,每小题5分。
(13)圆心在原点上与直线 相切的圆的方程为-----------。
(14)设函数 为区间 上的图像是连续不断的一条曲线,且恒有 ,可以用随机模拟方法计算由曲线 及直线 , , 所围成部分的面积,先产生两组 每组 个,区间 上的均匀随机数 和 ,由此得到V个点 。再数出其中满足 的点数 ,那么由随机模拟方法可得S的近似值为___________
设等差数列 满足 , 。
(Ⅰ)求 的通项公式;
(Ⅱ)求 的前 项和 及使得 最大的序号 的值。
(18)(本小题满分12分)
如图,已知四棱锥 的底面为等腰梯形, ∥ , ,垂足为 , 是四棱锥的高。
(Ⅰ)证明:平面 平面 ;
(Ⅱ)若 , 60°,求四棱锥 的体积。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
K2=
(20)(本小题满分12分)
设 , 分别是椭圆E: + =1(0﹤b﹤1)的左、右焦点,过 的直线 与E相交于A、B两点,且 , , 成等差数列。
(Ⅰ)求
(Ⅱ)若直线 的斜率为1,求b的值。
2010年高校招生考试文数(新课标) 试题及答案
一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
(1)D (2) C (3) D (4) A (5) D (6) C
(7) B (8) D (9) B (10) A (11)B (12)C
二:填空题:本大题共4小题,每小题五分,共20分。
(19)(本小题满分12分)
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
您是否需要志愿者


需要
40
30Leabharlann 不需要160270
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_______(填入所有可能的几何体前的编号)
①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱
(16)在 中,D为BC边上一点, , , .若 ,则BD=_____
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
(21)本小题满分12分)
设函数
(Ⅰ)若a= ,求 的单调区间;
(Ⅱ)若当 ≥0时 ≥0,求a的取值范围
(22)(本小题满分10分)选修4—1:几何证明选讲
如图:已知圆上的弧 ,过C点的圆的切线与BA的延长线交于
E点,证明:
(Ⅰ) = 。
(Ⅱ) =BE x CD。
(23)(本小题满分10分)选修4—4:坐标系与参数方程
(13)x2+y2=2(14) (15) (16)2+
三,解答题:接答应写出文字说明,证明过程或演算步骤。
(17)解:
(1)由am= a1+(n-1)d及a1=5,aw=-9得
解得
数列{am}的通项公式为an=11-2n。……..6分
(2)由(1)知Sm=na1+ d=10n-n2。
因为Sm=-(n-5)2+25.
(A) (B)
(C) (D)
(5)中心在远点,焦点在 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为
(A) (B)
(C) (D)
(6)如图,质点 在半径为2的圆周上逆时针运动,其初始位置为 ( , ),角速度为1,那么点 到 轴距离 关于时间 的函数图像大致为
(7)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为
已知直线 :{ {t为参数}。图 :{ { 为参数}
(Ⅰ)当a= 时,求 与 的交点坐标:
(Ⅱ)过坐标原点O做 的垂线,垂足为A、P为OA的中点,当a变化时,求P点轨迹的参数方程,并指出它是什么曲线。
(24)(本小题满分10分)选修4—5:不等式选讲
设函数 = + 1。
(Ⅰ)画出函数y= 的图像:
(Ⅱ)若不等式 ≤ax的解集非空,求n的取值范围
(1)已知集合 ,则
(A)(0,2)(B)[0,2](C)|0,2|(D)|0,1,2|
(2)a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于
(A) (B) (C) (D)
(3)已知复数 ,则 =
(A) (B) (C)1(D)2
(4)曲线 在点(1,0)处的切线方程为
所以n=5时,Sm取得最大值。……12分
(18)解:
(1)因为PH是四棱锥P-ABCD的高。
所以AC PH,又AC BD,PH,BD都在平PHD内,且PH BD=H.
所以AC 平面PBD.
故平面PAC平面PBD.……..6分
(2)因为ABCD为等腰梯形,AB CD,AC BD,AB= .
(A)3 a2(B)6 a2(C)12 a2(D)24 a2(8)如果执行右面的框图,输入N=5,则输出的数等于
(A)
(B)
(C)
(D)
(9)设偶函数f(x)满足f(x)=2x-4 (x 0),则 =
(A)
(B)
(C)
(D)
(10)若 = - ,a是第一象限的角,则 =
(A)- (B) (C) (D)
2010年普通高等学校招生全国统一考试
文科数学
参考公式:
样本数据 的标准差锥体体积公式
其中 为样本平均数其中S为底面面积,h为高
柱体体积公式球的表面积,体积公式
其中S为底面面积,h为高其中R为球的半径
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(11)已知 ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在 ABCD的内部,则z=2x-5y的取值范围是
(A)(-14,16)(B)(-14,20)(C)(-12,18)(D)(-12,20)
(12)已知函数f(x)= 若a,b,c均不相等,且f(a)= f(b)= f(c),则abc的取值范围是
相关文档
最新文档