晶闸管二极管主要参数及其含义
晶体二极管的主要参数:
电容储存的能量与损耗的能量之比值为该电容器的品质因数Q 。 变容而后跟具有内部电容,同样具有一定的Q值。并且大多数变容二极管具有很高的Q值。由于变容管的电容量与反偏压成反向变化,Q值就随着反向偏置电压的增加二增加。
4发光二极管
发光二极管的内部结构为一个PN结,而且具有晶体管的通性,即单向导电性。当发光二极管的PN结上加上正向电压时,由于外加电压产生电场的方向与PN结内电场方向相反,使PN结势垒(内总电场)减弱,则载流子的扩散作用占了优势。于是P区的空穴很容易扩散到N区,N区的电子也很容易扩散到P区,相互注入的电子和空穴相遇后会产生复合。复合时产生的能量大部分以光的形式出现,会使二极管发光。
2CP系列管壳用于小电流整流。
⑴最大整流电流
是指整流二极管长时间工作所允许通过的最大电流值。
⑵最高反向工作电压
它是指整流二极管两端的反向电压不能超过规定的电压所允许的值。如超过这个允许值,整流管就可能击穿。
⑶
它是指整流二极管在最高反向工作电压下工作时,允许通过整流管的反向电流。反向电流越小,说明整流二极管的单向导电性能越好。
常用开关二极管可分为小功率和大功率管形。小功率开关二极管主要使用于电视机、收录机及其他电子设备的开关电路、检波电路高频高速脉冲整流电路等。主要型号有2AK系列(用于中速开关电路)、2CK系列(硅平面开关,适用于高速开关电路)等。合资生产的小功率开关管有1N4148、1N4152、1N4151等型号。打功率开关二极管主要用于各类大功率电源作续流、高频整流、桥式整流及其它开关电路。主要型号有2CK27系列、2CK29系列及FR系列开关二极管(采用国外标准生产的、型号相同)等。
型号 正向电流 反向电流 结电容 反向恢复时间 UFM(V) IF(mA) IRM(uA) UR(V) Cj(pF) UR(V) F(MHz) trr(ns) UR(V)/[IR(mA)] IF(mA) 1N4148 1.0 10 0.5 75 <=4 0 1
可控硅的主要参数
可控硅的主要参数可控硅(SCR)是一种常见的半导体器件,也被称为双向可控整流二极管(thyristor)或晶闸管。
它是一种电子开关,可控硅具有多种主要参数,这些参数对于合理选用和应用可控硅是非常重要的。
本文将介绍可控硅的主要参数,包括阈值电压、额定电流、最大可承受电压、触发电流和反向触发电压。
1.阈值电压(VBO):阈值电压是指在可控硅关闭状态下,当施加的压差超过该电压时,可控硅将开始导通。
阈值电压是可控硅能否实现可控的重要参数。
2.额定电流(IT):额定电流是指可控硅能够长时间承受的最大电流。
超过额定电流的电流将会引起可控硅的过热和损坏,因此在使用可控硅时应确保电流不超过额定电流。
3.最大可承受电压(VDRM):最大可承受电压是指在关闭状态下,可控硅可以承受的最高电压。
当施加的电压超过最大可承受电压时,可控硅可能损坏。
4.触发电流(IGT):触发电流是指在可控硅导通之前需要施加的触发电流。
触发电流是可控硅实现可控的重要参数。
5.反向触发电压(VDRM):反向触发电压是指可控硅在关闭状态下能承受的最高反向电压。
超过该电压,可控硅可能开始导通,导致不可预计的行为。
除了上述主要参数外,可控硅还有一些其他的重要参数,如触发时间(tQ)、关断时间(tQ)、导通压降(VF)和静态工作点等。
这些参数需要根据具体的应用需求来选择和考虑。
总之,可控硅的主要参数包括阈值电压、额定电流、最大可承受电压、触发电流和反向触发电压等。
掌握这些参数对于正确选择和应用可控硅至关重要。
通过详细了解可控硅的参数,可以更好地设计和使用可控硅,以满足各种不同的电气控制需求。
晶闸管的主要参数
晶闸管的主要参数一、额定电压(VDRM/VRRM)额定电压是指晶闸管能够承受的最大正向/反向电压。
在电力控制中,晶闸管通常用于控制交流电压,因此额定电压是一个重要的参数。
当晶闸管的电压超过额定电压时,可能会发生击穿现象,导致器件损坏。
二、额定电流(IDRM/IRRM)额定电流是指晶闸管能够承受的最大正向/反向电流。
晶闸管通常用于控制大电流,因此额定电流是一个关键参数。
当晶闸管的电流超过额定电流时,可能会导致器件过热甚至烧毁。
三、触发电流(IT)触发电流是指晶闸管正向电流达到一定数值时,晶闸管开始导通。
触发电流的大小决定了晶闸管的触发灵敏度和可靠性。
如果触发电流过高,会增加控制电路的复杂度和成本;如果触发电流过低,可能会导致误触发。
四、保持电流(IH)保持电流是指晶闸管在导通状态下需要供给的最小电流。
保持电流的大小决定了晶闸管的稳态工作能力。
过低的保持电流可能导致晶闸管无法稳定导通,而过高的保持电流会增加功耗和热损失。
五、封装类型晶闸管的封装类型决定了其外形和安装方式。
常见的封装类型有TO-220、TO-247等。
不同的封装类型适用于不同的应用场景,例如TO-220适用于小功率应用,而TO-247适用于大功率应用。
六、工作温度范围工作温度范围是指晶闸管能够正常工作的温度范围。
晶闸管在高温环境下工作时,可能会出现性能降低甚至失效的情况。
因此,工作温度范围是一个重要的参数。
七、开关速度开关速度是指晶闸管在从关断到导通或从导通到关断的切换速度。
开关速度的快慢影响着晶闸管的响应速度和效率。
较快的开关速度可以提高系统的响应速度,但也会增加开关损耗。
八、导通压降(VCE)导通压降是指晶闸管在导通状态下的正向电压降。
导通压降的大小直接影响着晶闸管的导通损耗和功率损耗。
较低的导通压降可以提高系统的效率。
九、关断电流(ICRM)关断电流是指晶闸管在关断状态下的漏电流。
关断电流的大小决定了晶闸管的关断能力和可靠性。
较小的关断电流可以减小系统的功耗。
二极管的两个主要参数
二极管的两个主要参数二极管是一种电子元件,由P型半导体和N型半导体组成,具有两个主要参数:导通电压和截止电压。
1. 导通电压(Forward voltage):导通电压是指在二极管的正向工作条件下,从P区到N区施加足够的正电压,使得二极管开始导电的最小电压。
一般以VF表示。
当外加的正向电压大于导通电压时,二极管进入导通状态,电流开始流动;当外加的正向电压小于导通电压时,二极管处于截止状态,不导电。
导通电压的大小取决于二极管的材料性质和制造工艺。
对于硅(Silicon)材料的二极管,导通电压一般为0.6V到0.7V;对于砷化镓(Gallium Arsenide)材料的二极管,导通电压一般为0.2V到0.3V。
导通电压的具体数值指导了二极管在电路中的应用范围,过小或过大的导通电压都可能会导致电路的不稳定性或无法正常工作。
2. 截止电压(Reverse voltage):截止电压是指在二极管的反向工作条件下,施加的反向电压达到一定程度时,二极管开始截止导电的最大电压。
一般以VR表示。
当反向电压小于截止电压时,二极管处于正向偏置条件,开始导通;当反向电压大于等于截止电压时,二极管进入截止状态,不导电。
截止电压的大小取决于二极管的材料性质,是通过制造工艺和外部保护结构来确定的。
对于硅材料的二极管,截止电压一般为50V到100V;对于砷化镓材料的二极管,截止电压一般为5V到10V。
截止电压的高低决定了二极管在反向电压下能承受的最大值,过高或过低的截止电压都可能会导致二极管烧毁或不稳定。
总结:二极管的导通电压和截止电压是两个重要的电性能参数。
导通电压决定了二极管在正向电压下能否导通,截止电压决定了二极管在反向电压下能否截止导电。
这两个参数的合理选择和设计,对于保证二极管在电路中的正常工作和保护二极管不被损坏起着至关重要的作用。
晶闸管的主要参数
晶闸管的主要参数作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。
(一)正向转折电压VBO晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。
(二)断态重复峰值电压VDRM断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。
此电压约为正向转折电压减去100V后的电压值。
(三)通态平均电流IT通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。
(四)反向击穿电压VBR反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。
(五)反向重复峰值电压VRRM反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。
此电压约为反向击穿电压减去100V后的峰值电压。
(六)正向平均电压降VF正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。
(七)门极触发电压VGT门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。
(八)门极触发电流IGT门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。
二极管的主要参数
二极管的主要参数二极管是一种主要由两个电极(即正极和负极)组成的电子器件。
它是半导体器件的一种,具有一些重要的参数,下面将详细介绍这些参数。
1.额定峰值反向电压(VR):指二极管所能承受的最大反向电压。
当反向电压高于额定峰值时,会导致二极管击穿,失去正常功能。
2.额定直流正向电流(IF):指在正向电压下,二极管所能承受的最大电流。
当超过额定直流正向电流时,二极管可能会过载损坏。
3.最大导通电流(IFM):指二极管在导通状态下所能承受的最大电流。
超过该电流,二极管可能会由于过热而损坏。
4.静态电阻(RS):指二极管正向导通时的电阻。
该参数影响二极管的电压降和功耗。
5.正向压降(VF):指二极管正向导通时的电压降。
不同类型的二极管具有不同的正向压降,这个参数会影响电路的设计和功耗。
6. 动态电阻(rd):指在二极管正向导通时,电压变化与电流变化之比。
动态电阻决定了二极管的响应速度和频率特性。
7.反向漏电流(IR):指二极管在反向电压下的漏电流。
该参数影响二极管的反向恢复速度和反向漏电功耗。
8. 反向恢复时间(trr):指二极管由正向导通到反向截止状态的时间。
这个时间决定了二极管在高频应用中的性能。
9. 反向恢复电荷(Qrr):指正向导通状态下,当二极管截止时,由于载流子的复合和电荷移动而产生的额外电荷。
这个参数决定了二极管的反向恢复能力。
10. 热阻(Rth):指二极管在正常工作温度下的散热能力。
较低的热阻可以帮助降低二极管的温度,提高其可靠性和寿命。
除了以上提到的参数,还有一些其他参数也很重要,例如温度系数、漂移电流、噪声系数等。
这些参数在不同应用场合下扮演着不同的角色,并且通过适当的选择和优化可以使二极管在电路中发挥出最佳的性能。
总结起来,二极管的主要参数可以分为电流参数、电压参数、速度参数和热参数等几个方面。
在实际应用中,选择合适的二极管必须综合考虑这些参数,并与具体的电路需求相匹配,以确保电路的稳定和可靠性。
晶闸管的定义及主要参数和使用详解
晶闸管的定义及主要参数和使用详解晶闸管的发明在当今高科技时代,电力控制技术的发展对于现代社会的可持续运行至关重要。
而晶闸管作为一种重要的电力控制元件,正发挥着不可或缺的作用。
本文将深入介绍晶闸管的基本原理、控制使用、重要参数以及其应用领域。
晶闸管的发明随着电力系统的扩展和电气设备的广泛应用,对电力控制的需求日益增加。
传统的机械式开关和控制方法存在效率低下、寿命短等问题。
因此,寻找更高效、可靠的电力控制方法成为了一个迫切的需求。
1956年,苏联的科学家Oleg Losev首次提出了PNPN结构的概念。
尽管他没有将其实际制造成可用器件,但这个概念为晶闸管的开发铺平了道路。
他的想法激发了后来研究者们对PNPN结构的探索。
1957年,美国物理学家Robert Noyce和Gordon Moore在贝尔实验室工作时,设计并制造了第一个可实际使用的PNPN结构的器件,被称为“Silicon Controlled Switch”(SCS)。
尽管在当时尚未广泛应用,但这是晶闸管发展的重要里程碑。
1958年,Gerald Pearson、Dawon Kahng和John Moll从贝尔实验室获得了专利,描述了一个在电流触发下能控制电流的器件。
他们将这个器件命名为“晶闸管”,即Thyristor,这个名称在随后的发展中被广泛使用。
晶闸管的重要参数触发电流门限(I_GT):触发电流门限是指需要在栅极施加的最小电流,以使晶闸管从关断状态切换到导通状态。
这个参数决定了触发晶闸管的最小控制电流。
保持电流(I_H):保持电流是指在晶闸管导通状态下,需要流过晶闸管的最小电流,以保持其导通。
如果电流降至保持电流以下,晶闸管将自动关断。
最大额定电压(V_RRM):最大额定电压是晶闸管可以承受的最大反向重复电压。
这个参数与晶闸管的电压耐受能力相关,决定了它适用的电路电压范围。
最大额定电流(I_TAV):最大额定电流是指晶闸管可以承受的最大平均电流。
晶闸管的主要电参数
晶闸管的主要电参数晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压VDRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。
(一)晶闸管正向转折电压VBO晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。
(二)晶闸管断态重复峰值电压VDRM断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。
此电压约为正向转折电压减去100V后的电压值。
(三)晶闸管通态平均电流IT通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。
(四)反向击穿电压VBR反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。
(五)晶闸管反向重复峰值电压VRRM反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。
此电压约为反向击穿电压减去100V后的峰值电压。
(六)晶闸管正向平均电压降VF正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。
(七)晶闸管门极触发电压VGT门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V 左右。
(八)晶闸管门极触发电流IGT门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。
晶闸管的特性分析及主要参数
晶闸管的特性分析及主要参数晶闸管的动态特性主要有开通特性、通态电流临界上升率、反向恢复特性、关断特性、断态电压临界上升率等五个方面,其中开通和关断特性是其最重要的动态特性指标。
晶闸管的动态特性如图3-2所示:1.开通特性开通时间&是延迟时间G和上升时间~之和,&是将门极触发脉冲加到未开通的晶闸管上,到阳极电流达到其额定电流值的90%所需的时间,开通时间会随工作电压、阳极电流、门极电流和结温而变化。
开通损耗取决于开通期间负载电流的上升时间。
2.通态电流临界上升率晶闸管开通期间,其导电面积是由门极向四周逐渐展开的,过快的开通会使电流集中于门极区,导致器件局部过热损坏。
因此,在设计时考虑到晶闸管的电流上升率di/dt应低于器件允许的通态电流临界上升率。
强触发可以提高器件承受di/dt的能力。
3.关断特性当给处于正向导通状态的晶闸管外加反向电压时,阳极电流逐步衰减到零,并反向流动达到最大值/心,然后衰减到零,晶闸管经过时间I后恢复其反向阻断能力。
由于载流子复合过程较慢,晶闸管要再经过正向阻断恢复时间L之后才能安全的承受正向阻断电压。
普通晶闸管的关断时间约为几百微妙。
关断时间取决于结温、阳极电流、阳极电流上升率di/dt,反向电压和阳极电压,阳压上升率du/dt。
4.断态电压临界上升率du/dt当在阻断的晶闸管阳极一阴极间施加的电压具有正向的上升率,则由于结电容C的存在,会产生位移电流i = Cdu/dt而引起晶闸管的误触发导通。
因此,在设计时采用吸收电路的措施,使加于晶闸管上的断态电压临界上升率应该小于器件允许的断态电压临界上升率值。
门极正向伏安特性如图3-3所示,可以分为可靠触发区、不可靠触发区和不触发区等三个区域,门极特性中的最大和最小两条曲线反映该器件在整个工作范围内可能出现的最大阻抗和最小阻抗,门极阻抗随门极电流上升率的增大而增大。
利用门极特性曲线设计晶闸管触发器时,使其两个稳定输出状态落入不可靠触发区和可靠触发区内,触发器输出负载线与特性曲线的交点(A, B, C, D, E, J, K、I点)确定了在晶闸管开通延迟时间内流入门极所需的最小电流(E,J 点)和在运行中触发器可能输出的最大电流(1、K点)。
二极管的主要参数
二极管的主要参数一、导言:二极管(Diode)是一种最简单的半导体器件,具有只允许电流在一个特定方向流动的特性。
由于其简单的结构和广泛的应用,掌握二极管的主要参数对于电子工程师和电子爱好者来说是非常重要的。
本文将对二极管的主要参数进行详细的介绍,包括正向导通压降、反向击穿电压、最大正向电流、最大反向电流、反向恢复时间以及温度特性等。
二、二极管的主要参数:1. 正向导通压降(Forward Voltage Drop):二极管在正向导通时的电压降,一般用VF表示,单位为伏特(V)。
正向导通压降是由于电子和空穴在P-N结中的扩散和复合所引起的,正常情况下,硅二极管的正向导通压降约为0.6V,而锗二极管的正向导通压降约为0.2V。
正向导通压降的大小与电流的大小有关,一般来说,随着电流的增大,正向导通压降会略微下降。
2. 反向击穿电压(Reverse Breakdown Voltage):二极管在反向电压超过一定值时,P-N结中的耐压能力不足,发生击穿现象。
反向击穿电压一般用VR表示,单位为伏特(V)。
击穿电压的大小与二极管的材料和结构有关,不同类型的二极管击穿电压有所不同。
例如,普通的硅二极管的击穿电压通常在50-100V左右。
当二极管的反向电压超过击穿电压时,电流会大幅度增加,这可能会损坏二极管。
3. 最大正向电流(Maximum Forward Current):二极管允许通过的最大正向电流,一般用IFM表示,单位为安培(A)。
正常情况下,二极管的最大正向电流由材料和结构决定,一般在几十毫安到几安之间。
超过最大正向电流时,二极管可能会过热损坏。
4. 最大反向电流(Maximum Reverse Current):二极管在反向电压下允许通过的最大反向电流,一般用IRM表示,单位为安培(A)。
反向电流是由于P-N结中存在少量的载流子而引起的,一般来说,反向电流很小,可以忽略不计。
超过最大反向电流时,二极管可能会损坏。
晶体二极管的主要技术参数
反向电流是在给定的反向电压下,通过二极管的直流电流。理想情况下的二极管具有单向导电的性能,但实际上反向电压下总有一点微弱的电流,这一电流在反向击穿之前大致不变,故又称反向饱和电流。通常硅管为1μA或更小,锗管为几百微安。反向电流的大小,反映了晶体二极管单向导电性能的好坏,反向电流的数值越小越好。
晶体二极管的主要技术参数
晶体二极管的主要电气参数,有最大整流电流、反向击穿电压、反向饱和电流、最高工作频率等。稳压二极管还有稳压电压、稳压电流和温度系数。其他二极管还有各自特殊的参数。 1.最大整流 Nhomakorabea流IM
它是指二极管长期在正常工作条件下,能通过的最大正向电流值。因为电流流过时晶体二极管发热,电流过大时,二极管就会发热过度而烧毁,所以应用二极管时要特别注意最大电流不得超过IM值。应用大电流整流二极管时要加散热片。
4.最高工作频率fM
晶体二极管的材料、制造工艺和结构不同,其使用频率也不同。有的可以工作在高频电路中,如2AP系列、2AK系列等;有的只能在低频电路中使用,如2CP系列、2CZ系列等。晶体二极管保持原来良好工作特性的最高频率。有时手册中标出的不是“最高工作频率(fM)”,而是标出“频率(f)”,意义是一样的。典型的2AP系列二极管fM<150MHz,而2CP系列fM<50KHz。
5.稳定电压UZ
稳压管在正常工作时,管子两端保持电压值不变。不同型号的稳压管,具有不同的稳压值。对同一型号的稳压管,由于工艺的离散性,会使其稳定数值不完全相同,具有一个电压范围。例如,2CW1稳压管的稳定电压7~8.5V。稳定电压的数值会随温度变化而有微小的改变。
6.稳定电压IZ及最大稳定电流IZM
3.最大反向工作电压URM
二极管的主要参数
二极管的主要参数二极管是一种电子器件,用来控制电流的方向,并能实现整流和检波等功能。
它有许多重要的参数,下面将详细介绍主要参数。
1.电流电压特性:二极管的电流电压特性是其最基本的参数之一、正向电压时,二极管导通,流过的电流与电压之间的关系遵循指数规律,即指数型电压-电流特性;反向电压时,二极管截止,此时通过二极管的电流非常小。
2.最大反向电压(VRRM):最大反向电压是指在截止状态下允许施加在二极管两极之间的最大反向电压。
超过最大反向电压,会导致二极管击穿烧坏。
3.最大正向电流(IF):最大正向电流是指在导通状态下允许通过二极管的最大电流。
4.峰值逆向电压(PRV):峰值逆向电压是指在震荡或脉冲工作条件下,二极管能够承受的最大峰值逆向电压。
5.导通压降(VF):导通电压是指在正向电压下,二极管的电压降。
6. 动态电阻(rs):动态电阻是指在正向电压下,二极管的电压和电流之间的关系,即二极管的微分电阻。
动态电阻越小,表示二极管的指数特性越好。
7.开关时间(tON,tOFF):开关时间是指二极管从导通到截止或从截止到导通的时间。
较短的开关时间有助于提高开关速度和工作频率。
8. 瞬态响应时间(trr):瞬态响应时间是指二极管从导通状态到截止状态的转换过程中的响应时间。
瞬态响应时间越短,表示二极管响应快,适用于高频或高速开关应用。
9.热阻(θj-c):热阻是指从二极管结到环境之间的热阻,表示二极管在工作过程中产生的热量与环境散热之间的关系。
较小的热阻可以提高二极管的工作稳定性。
10. 最大工作温度(Tj max):最大工作温度是指二极管能够工作的最高温度。
超过最大工作温度,会导致二极管损坏或工作不稳定。
以上是二极管的主要参数,不同类型和用途的二极管可能还有其他特定参数,如二极管的截止电流、串扰等。
不同参数的选择和匹配可以根据具体的应用需求来进行。
二极管与晶闸管
2)在P型半导体中:
空穴——为多数载流子 自由电子——为少数载流子
结论: • 半导体的热敏性;
• 半导体的掺杂特性;
• 半导体的光敏性特性 • 三点特性是可人为控制的
3、PN结的形成及其单向导电性
• 载流子要从浓度大域向浓度小的区域扩散,称载流子的扩散的运
动
• 两种半导体结合后,由于浓度差产生载流子的扩散运动 结果产 生空间电荷区耗尽层(多子运动)。
二极管与晶闸管
§4-1 二极管
• 了解半导体的导电特性,掌握二极管的单
向导电性
• 理解普通二极管的伏安特性和主要参数
• 用万用表判别二极管的极性和好坏
半导体二极管简称二极管,是电子电路中最常
用的元件,在汽车电路中广泛应用。二极管的核心
就是PN结 一、半导体的导电特性 (1) 导体:导电性能良好的物质。导电率为 105s.cm-1量级,如:金、银、铜、铝。
• 空间电荷区产生建立了内电场产生载流子定向运动(漂移运
动) • 当扩散运动↑内电场↑漂移运动↑扩散运动↓动态平衡。 • 扩散运动产生扩散电流;漂移运动产生漂移电流。 • 动态平衡时:扩散电流=漂移电流。 形成PN内总电流=0。P 区
与 N 区的交界面就形成了的结称为PN结
二、二极管的的结构和符号
§4-2二极管整流电路
• 掌握单相半波整流电路和桥式整流电路的组成及 工作原理 • 掌握三相桥式整流电路的组成及工作原理 • 了解硅整流堆器件的应用 • 了解电容滤波和电感滤波的基本形式和工作原理
汽车蓄电池是直流电源。若是交流电源,就必须
先将其转换为直流电源才可对汽车直流蓄电池进行充
电。 将交流电转换为直流电称为整流。具有单向导电性 的二极管是最常用的整流元件。 一、单相半波整流电路 1、电路组成
二极管的主要参数及含义
二极管的主要参数及含义二极管是一种特殊的半导体器件,它能够在特定的电压和电流下,以非常高的可靠性来实现电路中电信号的控制和调整。
二极管的主要参数影响着电路的功能和性能,了解二极管的主要参数及其含义,对于我们避免设计失误、完成合理的电路设计至关重要。
一、结构参数结构参数主要包括封装类型、电极极性、绝缘材料等。
封装类型是指二极管的外表结构,比如常用的TO-18管、SOT-23管等,不同的封装类型具有不同的特性,选取不当容易导致电路失效。
电极极性是指正极和负极,负极一般为针座,正极一般为面。
另外,绝缘材料也是影响电路安全性和可靠性的重要参数,常用的有橡胶绝缘套管、泡沫塑料等。
二、电性参数电性参数是指二极管的特性,主要有直流阻抗、互联电压、最大功率等。
直流阻抗(或称输出电阻)是电路中的一种静态抗阻,受温度和频率的影响,它可以衡量一个二极管在额定电压下的静态阻性;互联电压也叫做饱和电压,它是指一个二极管工作在最小直流电流下,接受外部电压后,二极管输出电流达到所需要最大值时的电压值;最大功率是指二极管能够承受的最大功率,可以用来衡量二极管的品质和耐受能力。
三、温度参数温度参数是指二极管在不同温度下的电性参数,主要包括工作温度范围、最小耗散功率等。
工作温度范围是指给定电压和电流上,二极管可以正常工作的温度范围;最小耗散功率是指在给定的温度范围内,二极管可以在正常工作时,承受最小功率耗散。
四、其他参数还有一些其他参数,如漏电流、信噪比等,它们关系到电路的噪声抑制能力、安全性等。
漏电流也叫内阻,其值越小,内部电阻越小,漏电流越小,安全性越好;信噪比是指某个信号在传输过程中,信号强度与噪音强度的比值,它衡量了信号的可用性、抗干扰性。
以上就是关于二极管的主要参数及含义简介总结,其中,电性参数是影响电路功能性能的重要因素;温度参数则直接关系到电路的稳定性;而其他参数则关系到电路的噪声抑制能力和安全性。
在选取和使用二极管时,应当根据不同的电路需求,综合考虑各个参数,以保证电路的安全性和可靠性。
晶闸管的主要参数
精心整理
晶闸管的主要参数
(1)断态不重复峰值电压U DSM
门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM。
RRM
晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。
每秒50次每次持续时间不大于10ms。
规定U RRM为U RSM的90%。
(5)额定电压UR
断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R。
在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M的2~3倍,以作为安全裕量。
正弦半波电流有效值为:
有效值与通态平均电流比值为:
则有效值为:
根据有效值相等原则来计算晶闸管的额定电流。
若电路中实际流过晶闸管的电流有效值为I ,平均值I d ,
定义波形系数:
则
由于晶闸管的热容量小,过载能力低,因此在实际选择时,一般取
1.5~2倍的安全系数,
f d I K I。
晶闸管参数
晶闸管参数晶闸管是一种常用的电子器件,广泛应用于各种电路中。
了解晶闸管的参数对于正确选择和使用晶闸管至关重要。
本文将介绍晶闸管的几个重要参数,并对其进行详细解析。
1. 电压参数晶闸管的电压参数包括最大可承受电压和触发电压。
最大可承受电压是指晶闸管能够承受的最大电压,超过该电压会导致晶闸管失效。
触发电压是指使晶闸管进入导通状态所需的最小电压值。
2. 电流参数晶闸管的电流参数包括最大可承受电流和触发电流。
最大可承受电流是指晶闸管能够承受的最大电流值,超过该电流会导致晶闸管损坏。
触发电流是指使晶闸管进入导通状态所需的最小电流值。
3. 功率参数晶闸管的功率参数包括最大可承受功率和触发功率。
最大可承受功率是指晶闸管能够承受的最大功率值,超过该功率会导致晶闸管损坏。
触发功率是指使晶闸管进入导通状态所需的最小功率值。
4. 开关特性晶闸管的开关特性包括导通电压降和关断电压降。
导通电压降是指晶闸管在导通状态下的电压降,关断电压降是指晶闸管在关断状态下的电压降。
这两个参数会影响晶闸管的能效和发热情况。
5. 响应时间晶闸管的响应时间是指从触发信号到晶闸管完全进入导通状态所需的时间。
响应时间越短,晶闸管的响应速度就越快,适用于高频开关电路。
6. 温度特性晶闸管的温度特性包括温度系数和工作温度范围。
温度系数是指晶闸管参数随温度变化的程度,工作温度范围是指晶闸管正常工作的温度范围。
了解晶闸管的温度特性有助于正确选择和使用晶闸管。
7. 封装形式晶闸管的封装形式包括直插式封装、表面贴装封装等。
不同的封装形式适用于不同的应用场景,需要根据实际需求选择合适的封装形式。
晶闸管的参数对于正确选择和使用晶闸管至关重要。
通过了解晶闸管的电压参数、电流参数、功率参数、开关特性、响应时间、温度特性和封装形式等参数,可以更好地应用晶闸管于各种电路中,提高电路的稳定性和可靠性。
在实际应用中,还需注意晶闸管的工作条件,避免超过其最大可承受电压、电流和功率,以免损坏晶闸管。
晶闸管二极管主要参数及其含义
晶闸管二极管主要参数及其含义IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍1、正向平均电流IF(AV)(整流管)通态平均电流IT(AV)(晶闸管)是指在规定的散热器温度T HS或管壳温度 TC时,允许流过器件的最大正弦半波电流平均值此时器件的结温已达到其最高允许温度T j m仪元公司产品手册中均给出了相应通态电流对应的散热器温度T H S或管壳温度 TC值用户使用中应根据实际通态电流和散热条件来选择合适型号的器件2、正向方均根电流IFRMS(整流管)通态方均根电流ITRMS(晶闸管)是指在规定的散热器温度T HS或管壳温度 TC时,允许流过器件的最大有效电流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值3、浪涌电流IFSM (整流管)ITSM(晶闸管)表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下施加80% VRRM条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象4、断态不重复峰值电压VDSM反向不重复峰值电压VRSM指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件5、断态重复峰值电压VDRM反向重复峰值电压VRRM是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压6、断态重复峰值漏电流IDRM反向重复峰值漏电流IRRM元为晶闸管在阻断状态下承受断态重复峰值电压V D RM和反向重复峰值电压VRR M时流过件的正反向峰值漏电流该参数在器件允许工作的最高结温T jm下测出(晶闸管)7、通态峰值电压VTM(整流管)正向峰值电压VFM指器件通过规定正向峰值电流IF(整流管)或通态峰值电流ITM(晶闸管)时M的峰值电压也称峰值压降该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力点图进入相册点图进入相册点图进入相册点图进入相册点图进入相册。
晶体二极管主要参数
晶体二极管主要参数
1.最大整流电流IOM
指二极管长期工作时准许通过的最大正向平均电流。
它是由PN 结的面积和散热条件决定,若工作电流超过IOM,可能导致结温过高而烧毁PN结。
2.最高反向工作电流Vrm
指二极管在反向工作状态下安全使用时的最高反向电压。
通常Vrm的值规定为反向击穿电压Vb的一半。
3.反向电流Ir
指二极管未击穿时的反向电流。
Ir越小二极管单向导电特性越好。
4.直流电阻Rd
指二极管两端所加的直流电压V与通过的直流电流I之比,既
Rd=V/I
该直流电阻可通过二极管伏安特性曲线求得。
由于伏安特性的非线性,不同工作点的直流电阻是不相同的,工作点位置低的直流电阻大,反之直流电阻小。
5.交流电阻Rd
又称动态电阻或微变等效电阻,他指的是二极管工作点Q附近电压的微变量Dv与相对应电流为变量Di之比,既:
Rd=DV/DI
6.最高工作频率Fom
取决于二极管的势垒电容和扩散电容的大小,二极管在工作时,若工作频率超过这个数值单向导电性将被破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管二极管主要参数及其含义
IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍
1、正向平均电流I
F(AV)
(整流
管)
通态平均电流I
T(AV)
(晶闸管)
是指在规定的散热器温度T
HS 或管壳温度 T
C
时,允许流过器件的最大正弦半
波电流平均值此时器件的结温已达到其最高允许温度T
jm
仪元公司产品手册中均
给出了相应通态电流对应的散热器温度T
HS 或管壳温度 T
C
值用户使用中应根据实
际通态电流和散热条件来选择合适型号的器件
2、正向方均根电流I
FRMS
(整流管)
通态方均根电流I
TRMS
(晶闸管)
是指在规定的散热器温度T
HS 或管壳温度 T
C
时,允许流过器件的最大有效电
流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值
3、浪涌电流I
FSM (整流管)I
TSM
(晶闸管)
表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最
高允许结温下施加80% V
RRM
条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象
4、断态不重复峰值电压V
DSM
反向不重复峰值电压V
RSM
指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件
5、断态重复峰值电压V
DRM
反向重复峰值电压V
RRM
是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压
6、断态重复峰值漏电流I
DRM
反向重复峰值漏电流I
RRM
为晶闸管在阻断状态下承受断态重复峰值电压V
DRM 和反向重复峰值电压V
RRM
时流过
元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出
7、通态峰值电压V
TM
(晶闸管)
正向峰值电压V
FM
(整流管)
指器件通过规定正向峰值电流I
FM (整流管)或通态峰值电流I
TM
(晶闸管)时的
峰值电压也称峰值压降该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力
点图进入相册
点图进入相册点图进入相册
点图进入相册点图进入相册。