工程材料及热处理.

合集下载

工程材料及热处理pdf

工程材料及热处理pdf

工程材料及热处理一、引言工程材料是现代工业和科技领域中不可或缺的一部分,广泛应用于建筑、机械、电子、航空航天、交通运输等领域。

热处理是工程材料加工过程中的重要环节,通过改变材料的内部结构,提高其力学性能、物理性能和化学性能。

本文将详细介绍工程材料的分类、性能与特点、热处理原理、常见热处理工艺、材料选用原则、材料检测与评估、热处理设备与工艺优化以及工程材料应用领域。

二、工程材料分类工程材料可分为金属材料和非金属材料两大类。

金属材料包括钢铁材料、有色金属材料和合金等;非金属材料包括塑料、橡胶、陶瓷、玻璃等。

这些材料在性能上各有特点,适用于不同的工程领域。

三、材料性能与特点1.金属材料:具有较高的强度、塑性和韧性,具有良好的导电性和导热性。

不同的金属材料在耐磨性、耐腐蚀性等方面也表现出不同的特点。

2.非金属材料:具有轻质、高强、耐腐蚀等特点,且具有良好的绝缘性能。

非金属材料在加工过程中具有较好的可塑性和可加工性。

四、热处理原理热处理是通过加热、保温和冷却等工艺手段,改变材料的内部结构,从而提高其力学性能和物理性能。

热处理过程中,材料的内部原子或离子重新排列,形成新的晶体结构,从而改变材料的性质。

五、常见热处理工艺1.退火:将材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。

退火可以消除材料的内应力,改善其组织和性能。

2.淬火:将材料加热到一定温度后迅速冷却,使材料表面硬化而内部保持韧性。

淬火可以提高材料的硬度和耐磨性。

3.回火:将淬火后的材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。

回火可以消除材料的内应力,改善其组织和性能。

4.表面处理:通过化学或电化学方法对材料表面进行处理,提高其耐磨性、耐腐蚀性和抗氧化性等性能。

六、材料选用原则1.根据工程要求选择合适的材料类型和牌号;2.考虑材料的性能参数,如强度、硬度、韧性等;3.考虑材料的耐腐蚀性、耐磨性等特殊要求;4.考虑材料的加工工艺和经济性等因素。

工程材料及金属热处理知识

工程材料及金属热处理知识

工程材料及金属热处理知识工程材料是指用于机械、建筑、电气等领域的材料。

它们通常需要具有高强度、耐腐蚀、耐磨损等特性。

工程材料可以分为金属材料、非金属材料和复合材料。

金属材料是最常见的工程材料,包括铁、钢、铜、铝、镁等金属以及它们的合金。

金属材料具有良好的导电性、导热性、高强度和塑性。

常见的金属材料处理方法有退火、淬火、回火、冷作等。

其中,淬火是加热金属到一定温度后迅速冷却,目的是增加材料的硬度和强度;回火则是通过再次加热金属来减轻淬火后的内应力,使得金属具有更好的韧性。

非金属材料包括塑料、橡胶、陶瓷等。

它们通常具有较低的密度、化学稳定性、耐腐蚀和绝缘性。

热处理方法主要包括退火、烧结和化学处理。

复合材料是将不同材料组合在一起形成的新材料,如碳纤维增强塑料、玻璃纤维增强塑料等。

这种材料结合了各种材料的优点,因此在许多领域都有广泛的应用。

金属的热处理是一种改变金属结构和性质的方法。

经过热处理,金属可以获得更高的硬度、强度和耐蚀性。

以下是一些金属热处理方法的描述:退火:将金属加热到适当温度,保持一段时间后缓慢冷却。

该方法可使金属软化、去除内部应力,并提高延展性和冲击性能。

淬火:将金属加热到一定温度,然后迅速冷却。

这会使金属的组织产生变化,从而提高硬度和强度。

回火:通过在较低的温度下将金属加热一段时间,以达到减轻淬火后产生的内部应力的目的。

正火:将金属加热到适当的温度,然后在空气中自然冷却。

这样的过程可以增加材料的硬度和强度。

淬化:使用醇类或水溶液使淬火后的金属变脆,然后在热水中浸泡一段时间来恢复其硬度和强度。

热处理对于工程材料的重要性不言而喻。

能够正确选择和使用热处理方法将有助于确保材料能够耐用、稳定地运行,并具有所需的物理和化学性质。

工程材料及热处理复习资料

工程材料及热处理复习资料

一.名词解释题间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。

再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。

淬透性:钢淬火时获得马氏体的能力。

枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。

时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。

同素异构性:同一金属在不同温度下具有不同晶格类型的现象。

临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。

热硬性:指金属材料在高温下保持高硬度的能力。

二次硬化:淬火钢在回火时硬度提高的现象。

共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。

比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。

置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。

变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。

晶体的各向异性:晶体在不同方向具有不同性能的现象。

固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。

形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。

残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。

调质处理:指淬火及高温回火的热处理工艺。

淬硬性:钢淬火时的硬化能力。

过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。

本质晶粒度:指奥氏体晶粒的长大倾向。

C曲线:过冷奥氏体的等温冷却转变曲线。

CCT曲线:过冷奥氏体的连续冷却转变曲线。

马氏体:含碳过饱和的α固溶体。

热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。

热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。

回火稳定性:钢在回火时抵抗硬度下降的能力。

可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。

过冷度:金属的理论结晶温度与实际结晶温度之差。

工程材料及热处理——材料的力学性能和工艺性能

工程材料及热处理——材料的力学性能和工艺性能

第三节 材料的工艺性能
材料的成型 铸造、拉、拔、挤、压、锻 车、钳、铣、刨、磨
材 料 加 工
材料的切削
材料的改性
材料的联接
合金化、热处理
焊接、粘接
工程材料的工艺性能主要有铸造性能、锻压性能、 焊接性能、切削加工性能、热处理性能。
具体实验条件及应用范围参见表1-2
优点:操作简便,直接读数,压痕小,应用范围最广。 缺点:需在试样不同部位测定,取平均值。
3.维氏硬度 (HV)
维氏硬度计
顶角为136°的金刚石正四棱锥压头 压痕两条对角线的平均长度d
维氏硬度值不需要计算,一般是根据d查表得出。
优点:压痕浅,轮廓清晰,数值准确,硬度范围广,广泛 应用于测量金属镀层、薄片材料、化学热处理后的 表面硬度和显微硬度。 缺点:不适合成批生产的检验,测量效率低于洛氏硬度。
Titanic号钢板和近代船用钢板的冲击试验结果比较
Titanic
近代船用钢板
六、疲劳极限
1.疲劳现象
材料在交变载荷作用下,尽管零件所受的应力低于屈服点, 但经过较长时间的工作后,在一处或几处产生局部永久性累积损 伤,经一定循环次数后产生裂纹或突然发生完全断裂,这种现象 称为疲劳。
2.疲劳极限σ-1
四、硬度(Hardness)
材料的软硬程度,表征抵抗局部变形或破坏的能力。 压入法测量硬度常用的方法有: 压入法 弹性回跳法
肖氏 布氏、洛氏、维氏
划痕法
莫氏
1.布氏硬度 (HBS/HBW)
布氏硬度计
数值一般不需计算,而用带有刻度盘的 放大镜测量出压痕的直径,直接由表查得硬 度值大小,一般只标大小而不标单位。
摆锤式冲击试验
AK mgH mgh mg( H h)

工程材料及热处理(完整版)

工程材料及热处理(完整版)

工程材料及热处理一、名词解释(20分)8个名词解释1.过冷度:金属实际结晶温度T和理论结晶温度、Tm之差称为过冷度△T,△T=Tm-T。

2.固溶体:溶质原子溶入金属溶剂中形成的合金相称为固溶体。

3.固溶强化:固溶体的强度、硬度随溶质原子浓度升高而明显增加,而塑、韧性稍有下降,这种现象称为固溶强化。

4.匀晶转变:从液相中结晶出单相的固溶体的结晶过程称匀晶转变。

5.共晶转变:从一个液相中同时结晶出两种不同的固相6.包晶转变:由一种液相和固相相互作用生成另一种固相的转变过程,称为包晶转变。

7.高温铁素体:碳溶于δ-Fe的间隙固溶体,体心立方晶格,用符号δ表示。

铁素体:碳溶于α-Fe的间隙固溶体,体心立方晶格,用符号α或F表示。

奥氏体:碳溶于γ-Fe的间隙固溶体,面心立方晶格,用符号γ或F表示。

8.热脆(红脆):含有硫化物共晶的钢材进行热压力加工,分布在晶界处的共晶体处于熔融状态,一经轧制或锻打,钢材就会沿晶界开裂。

这种现象称为钢的热脆。

冷脆:较高的含磷量,使钢显著提高强度、硬度的同时,剧烈地降低钢的塑、韧性并且还提高了钢的脆性转化温度,使得低温工作的零件冲击韧性很低,脆性很大,这种现象称为冷脆。

氢脆:氢在钢中含量尽管很少,但溶解于固态钢中时,剧烈地降低钢的塑韧性增大钢的脆性,这种现象称为氢脆。

9.再结晶:将变形金属继续加热到足够高的温度,就会在金属中发生新晶粒的形核和长大,最终无应变的新等轴晶粒全部取代了旧的变形晶粒,这个过程就称为再结晶。

10.马氏体:马氏体转变是指钢从奥氏体状态快速冷却,来不及发生扩散分解而产生的无扩散型的相变,转变产物称为马氏体。

含碳量低于0.2%,板条状马氏体;含碳量高于1.0%,针片状马氏体;含碳量介于0.2%-1.0%之间,马氏体为板条状和针片状的混合组织。

11.退火:钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织提高加工性能的一种热处理工艺。

12.正火:将钢加热到3c A或ccmA以上30-50℃,保温一定时间,然后在空气中冷却以获得珠光体类组织的一种热处理工艺。

工程材料及热处理

工程材料及热处理
工程材料及热处理
目 录
• 工程材料概述 • 金属材料 • 非金属材料 • 材料的选择与加工工艺 • 材料性能的检测与评价
工程材料概述
01
定义与分类
定义
工程材料是指在工业生产和工程建设 中使用的各种金属、非金属和复合材 料。
分类
根据材料的组成、结构和性能特点, 工程材料可分为金属材料、非金属材 料和复合材料等。
材料的物理与机械性能
物理性能
包括密度、热膨胀系数、热导率、电导 率等,这些性能决定了材料在不同环境 下的表现。
VS
机械性能
包括硬度、强度、韧性、耐磨性等,这些 性能决定了材料在受力或受冲击时的表现 。
材料的应用领域
航空航天
需要高强度、轻质、耐 高温的材料,如钛合金
和铝合金。
汽车制造
需要高强度、耐腐蚀、 轻质的材料,如高强度
国家标准
行业标准
根据国家制定的相关标准,对材料的性能 进行评估和比较。
根据行业制定的相关标准,对材料的性能 进行评估和比较。
企业标准
客户要求
根据企业制定的相关标准,对材料的性能 进行评估和比较。
根据客户提出的具体要求,对材料的性能 进行评估和比较。
材料性能的优化与改进
材料成分优化
通过调整材料的化学成分,改善其性能, 如提高强度、韧性、耐腐蚀性等。
钢和铝合金。
建筑领域
需要耐久性、防火性能 好的材料,如混凝土和
钢材。
电子产品
需要导电、导热性能好 的材料,如铜和铝。
金属材料
02
钢铁材料
碳钢
碳钢是一种以铁为主要元素,碳 含量一般在2.0%以下的铁碳合金。
根据碳含量的不同,碳钢的性能 和用途也有所不同。

工程材料及热处理

工程材料及热处理

工程材料及热处理工程材料是指在工程设计和制造中所使用的材料,其性能和特性直接影响着工程产品的质量和使用寿命。

而热处理则是指通过加热、保温和冷却等工艺,改变材料的组织结构和性能,以达到提高材料硬度、强度、耐磨性和耐腐蚀性的目的。

本文将对工程材料及其热处理进行介绍和分析。

首先,工程材料包括金属材料、非金属材料和复合材料。

金属材料是工程中使用最广泛的材料,包括钢、铝、铜、镍等,具有优良的导热性、导电性和机械性能,常用于制造结构件、零部件和工具。

非金属材料包括塑料、橡胶、陶瓷等,具有轻质、绝缘、耐腐蚀等特点,常用于制造绝缘材料、密封件和化工设备。

复合材料是由两种或两种以上的材料组成,具有综合性能优异的特点,如碳纤维复合材料、玻璃钢复合材料等,广泛应用于航空航天、汽车、船舶等领域。

其次,热处理是对金属材料进行加热、保温和冷却等工艺处理,以改变其组织结构和性能。

常见的热处理工艺包括退火、正火、淬火、回火等。

退火是将金属材料加热至一定温度,然后缓慢冷却,以减少内部应力、改善塑性和韧性。

正火是将金属材料加热至一定温度,然后在油或水中急冷,以提高硬度和强度。

淬火是将金属材料加热至一定温度,然后在油或水中急冷,使其获得高硬度和强度。

回火是将经过淬火处理的金属材料加热至一定温度,然后冷却,以降低脆性和提高韧性。

最后,工程材料的选择和热处理工艺的应用是工程设计和制造中至关重要的环节。

在选择工程材料时,需要考虑其力学性能、耐磨性、耐腐蚀性、导热性、导电性等因素,以满足工程产品的使用要求。

在应用热处理工艺时,需要根据材料的种类和要求,选择合适的加热温度、保温时间和冷却方法,以获得理想的组织结构和性能。

同时,还需要注意控制热处理过程中的各项参数,以确保产品质量和稳定性。

综上所述,工程材料及热处理是工程设计和制造中不可或缺的重要内容,对工程产品的质量和性能有着直接的影响。

因此,工程技术人员需要对工程材料的性能和特性有深入的了解,熟悉各种热处理工艺和方法,以保证工程产品的质量和可靠性。

工程材料及热处理计划方案

工程材料及热处理计划方案

工程材料及热处理计划方案一、引言工程材料的选择和热处理方案的制定是工程设计中非常重要的一环,直接影响着工程产品的质量、性能和寿命。

在实际工程中,我们常常面对着众多材料选型和热处理方案选择的困难,而且这其中涉及到了许多复杂的技术问题。

因此,本文将结合实际工程案例,阐述工程材料及热处理计划方案的重要性,以及在实际工程中应该如何进行选择和制定。

二、工程材料的选择1. 材料选型的影响因素在工程设计中,对于材料的选择往往是一个非常复杂的过程,需要综合考虑许多因素。

其中,最主要的影响因素包括:工程产品的使用环境、使用要求和要求的性能指标。

例如,对于需要承受高温、高压的零部件,应选择具有较高耐热、抗压和耐腐蚀性能的材料;对于需要有较高强度、硬度和耐磨性的部件,应选择具有这些性能的材料。

此外,材料的可加工性、可焊接性、成本等也是影响材料选型的重要因素。

在选择材料时,必须综合考虑这些因素,使得所选材料既能够满足工程产品的使用要求,又能够满足生产加工的要求,并且成本合理。

2. 材料种类及特点根据不同的使用要求和要求的性能指标,工程材料可以分为金属材料、塑料材料、陶瓷材料、复合材料等几种。

其中,金属材料是应用最广泛的一类工程材料,主要包括铁、钢、铜、铝、镁、钛、镍、锌、锡等金属及其合金。

金属材料的特点是:具有良好的导电、导热和强度性能;可塑性、可焊性和可加工性强;一般具有较高的强度、硬度和耐磨性;易于回收再利用;但也存在一定的腐蚀、磨损和高温变形等问题。

另外,金属材料的选择和使用需要根据不同的要求,选择不同种类、牌号和热处理状态的材料。

比如,对于需要高强度、硬度和耐磨性的零部件,应选择高强度钢、合金钢、特种钢等材料,并通过热处理提高其性能。

三、热处理的基本概念1. 热处理的定义热处理是通过对金属材料进行加热、保温和冷却等一系列工艺过程,改善其组织结构和性能的工艺。

热处理工艺可以改变金属材料的组织组成、提高其强度、硬度、耐磨性、耐腐蚀性和韧性等性能。

工程材料-普通热处理与表面热处理)

工程材料-普通热处理与表面热处理)

螺杆表面的 淬火裂纹
一、回火的目的
1、减少或消除淬火内 应力, 防止变形或开裂。
2、获得所需要的力学性能。淬火钢一般硬度高,脆 性大,回火可调整硬度、韧性。
3、稳定尺寸。淬火M和A’都是非平衡组织,有自发 向平衡组织转变的倾向。回火可使M与A’转变为平 衡或接近平衡的组织,防止使用时变形。
熔盐作为淬火介质称盐浴,冷却能力在水和油之间, 用于形状复杂件的分级淬火和等温淬火。
聚乙烯醇、硝盐水溶液等也是工业常用的淬火介质.
三、淬火方法
1、单液淬火法 加热工件在一种介质
中连续冷却到室温的 淬火方法。 操作简单,易实现自 动化。 采用不同的淬火方法 可弥补介质的不足。
1—单液淬火法 2—双液淬火法 3—分级淬火法 4—等温淬火法
淬成半马氏体的最大直径,用D0表示。 D0与介质有关,如45钢D0水=16mm,D0油=8mm。 只有冷却条件相同时,才能进行不同材料淬透性比
较,如45钢D0油=8mm,40Cr D0油=20mm。
马氏体
马氏体 索氏体
五、淬透性的应用
1、利用淬透性曲线及圆棒冷速与端淬距离的关系 曲线可以预测零件淬火后的硬度分布。下图为预 测50mm直径40MnB钢轴淬火后断面的硬度分布.
2、利用淬透性曲线进行选材。如要求厚60mm汽 车转向节淬火后表面硬度超过HRC50,3/4半径处 为HRC45。可按下图箭头所示程序进行选材分析.
3、利用淬透性可控制淬硬 层深度。
– 对于截面承载均匀的重要件, 要全部淬透。如螺栓、连杆、 模具等。对于承受弯曲、扭转 的零件可不必淬透(淬硬层深 度一般为半径的1/2~1/3),如 轴类、齿轮等。
火焰加热 感
应 加 热
表面淬火目的: ① 使表面具有高的硬度、耐磨性和疲劳极限; ② 心部在保持一定的强度、硬度的条件下,具有

工程材料及热处理

工程材料及热处理

工程材料及热处理
工程材料是指用于各种工程和制造领域的材料,包括金属材料、聚合物材料、
复合材料等。

而热处理是指通过加热和冷却过程来改变材料的性能和结构。

工程材料的选择和热处理工艺对于产品的质量和性能具有至关重要的影响。

首先,工程材料的选择是工程设计中的重要环节。

不同的工程应用需要不同的
材料,比如在机械制造领域,需要具有良好机械性能和耐磨性的金属材料;在建筑领域,需要具有良好耐候性和耐腐蚀性的材料。

因此,工程师需要根据不同的工程要求选择合适的材料,以确保产品的性能和可靠性。

其次,热处理是改善材料性能的重要手段。

热处理可以通过改变材料的晶粒结构、组织形态和化学成分来提高材料的硬度、强度、韧性和耐磨性。

常见的热处理工艺包括退火、正火、淬火、回火等,每种工艺都有其特定的应用领域和效果。

通过合理的热处理工艺,可以使材料达到最佳的性能状态,满足工程设计的要求。

此外,工程材料的热处理还可以改善材料的加工性能。

在金属加工过程中,材
料的硬度和韧性对于加工工艺和工具的选择具有重要影响。

通过热处理可以调节材料的硬度和韧性,提高其加工性能,降低加工难度,提高加工效率。

总的来说,工程材料及热处理是工程设计和制造过程中不可或缺的环节。

工程
师需要充分了解不同材料的性能和特点,选择合适的材料,并通过合理的热处理工艺来改善材料的性能,以确保产品的质量和可靠性。

只有在工程材料的选择和热处理工艺的合理应用下,才能生产出性能优良的工程产品,满足不同工程领域的需求。

工程材料热处理

工程材料热处理

1、热处理的定义:主要有三点要注意,一是热处理是在固态范围内进行的,二是有三个过程(加热、保温和冷却),三是热处理是通过改变钢的组织结构来改善其性能的;2、热处理的实质3、热处理的目的:不改变材料的形状的尺寸,改善其性能,包括使用性能和工艺性能,可以充分发挥材料的潜力,提高零件的内在质量;4、热处理的应用:十分广泛;5、热处理的分类:普通热处理,表面热处理,化学热处理6、热处理的三要素:加热温度、保温时间、冷却速度;第一节钢在加热时的转变目的是使原始组织转变为奥氏体,所以也称奥氏体化过程。

然后以奥氏体为母相进行转变。

一、钢的奥氏体化过程2、要使原始组织变为奥氏体,应将钢加热到A1(727℃)温度以上;具体的,亚共析钢应加热到Ac3线以上;共析钢加热到Ac1线以上;过共析钢如果进行完全奥氏体化应加热到Accm线以上。

3、转变过程:1)奥氏体的形核和长大;2)残余渗碳体的溶解;3)奥氏体成分的均匀化;二、奥氏体晶粒度及其控制1、奥氏体晶粒大小对热处理的影响细小的组织力学性能高(塑性变形和再结晶一章中已学过);另外,如果奥氏体的晶粒细小,那么由其转变的产物也就细小;否则转变产物就比较粗大,或出现缺陷组织,还容易引起变形和开裂,所以要对奥氏体的晶粒大小进行控制。

2、奥氏体晶粒大小的表示方法1)用晶粒的直径d表示;2)用单位面积内的晶粒数目n表示;3、奥氏体晶粒度的控制1)正确制订和执行加热规范;2)选用长大倾向小的钢种,如用Al脱氧的钢,以及含Nb、TI、V等元素的钢;第二节钢在冷却时的转变冷却是热处理的最后一个工序,也是最关键的工序,它决定了钢热处理后的组织和性能。

同一种钢,加热温度和保温时间相同,冷却方法不同,热处理后的性能截然不同。

这是因为过冷奥氏体在冷却过程中转变成了不同的产物。

那么奥氏体在冷却时转变成什么产物?有什么规律呢?这就是本次课的主要内容。

碳钢热处理时的冷却速度一般较大,大多都偏离了平衡状态(除退火外),所以热处理后的组织为非平衡组织。

工程材料及热处理实验报告册

工程材料及热处理实验报告册

工程材料及热处理试验
报告
专业:
班级:
姓名:
学号:
时间:
实验一、金相显微镜的使用和金相试样的制备及观察实验报告
一、试验目的
二、实验原理
三、主要仪器设备及材料
(1)金相显微镜的结构
请写出图中各数字代表的金相显微镜上的零部件
(2)设备及材料
四、制备金相试样和观察试样微观结构的主要过程。

(1)金相试样的制备过程
(2)金相试样的观察(请在下图中画出所观察到的金相组织)五、实验后的收获
实验二热处理后钢的硬度及显微组织观察实验报告一、实验目的
二、实验设备材料
三、实验原理
四、实验内容
1、绘制45#钢淬火的热处理工艺曲线
2、样品的制备过程
3、45#钢热处理前后硬度
金相经不同冷却速度的硬度
淬火前硬度(HRC ) 淬火后硬度(HRC ) 水冷
空冷 4观察热处理后的显微组织
在下图圆圈内画出所观察到的金相显微组织示意图
五、实验收获

度 冷 却 方 式。

工程材料及热处理

工程材料及热处理

工程材料及热处理工程材料及热处理是现代工程领域中极其重要的一部分。

随着工程发展的日益迅速,对材料的要求也日益提高。

在此背景下,工程材料及热处理的研究变得尤为关键。

本篇文档将探讨工程材料及热处理的定义、分类、特性、热处理方法以及其在实际应用中的重要性和限制。

1. 工程材料的定义与分类工程材料是指设计、制造和使用机器、结构、设备和其他物品所必需的材料。

包括金属、塑料、丝绸、琉璃、橡胶、陶瓷等一系列材料。

而从材料的特性来看,工程材料基本上可归为六大类:① 金属材料:如钢、铁、铝、铜等;② 非金属无机材料:如玻璃、陶瓷、水泥等;③ 硅酸盐纤维及纺织品:如玻璃纤维、石棉、铬绿石等;④ 聚合物材料:如塑料、橡胶、纤维素等;⑤ 复合材料:如碳纤维复合材料、铝基复合材料、玻璃钢等;⑥ 其他材料:如木材、纸张等。

2. 工程材料特性工程材料的特性包括机械特性、物理特性、化学特性、热特性、电特性及防腐蚀特性等。

其中,机械特性是指材料的强度、韧性、硬度、弹性模量、屈服点等方面的特性。

而物理特性则是指材料的密度、热膨胀系数、热导率、热容等方面的特性。

化学特性是指材料的化学成分组成、耐腐蚀性、易溶性等方面的特性。

热特性是指材料的热膨胀系数、热导率、热容等方面的特性。

电特性则是指材料的电阻率、导电率等方面的特性。

防腐蚀特性是材料的长期使用时所表现出的耐腐蚀性能。

3. 热处理方法热处理是通过控制工程材料的加热、冷却、温度保持等过程来改善或调整其力学性能和硬度等特性的方法。

常见的热处理方法包括:① 硬化:将工程材料加热到高温,再通过淬火、油淬、水淬等方式进行快速冷却,使工程材料获得更高的硬度和强度;② 回火:对硬化处理过的工程材料进行低温加热处理,通过缓慢冷却来降低材料的硬度,增加其韧性;③ 退火:将工程材料加热至一定温度并保持一定时间,然后缓慢冷却,从而降低材料的硬度和强度,并达到改善材料塑性和加工性能的目的;④ 淬火:将工程材料加热至一定温度,并在保持一定时间后迅速冷却,以增加材料的硬度和强度;⑤ 等温淬火:将工程材料加热到一定温度,然后在该温度下保持一定时间,再通过快速冷却获得更为均匀的组织结构和高强度。

工程材料及热处理实验指导书

工程材料及热处理实验指导书

《工程材料及热处理》实验指导书机械与电子工程系2011年目录实验1 金属材料的硬度试验 (3)实验2 铁碳合金平衡状态的显微组织分析 (7)实验3 碳钢的热处理 (10)实验1 金属材料的硬度试验一、实验目的1、了解布氏、洛氏和维氏硬度试验机的使用方法和试验原理。

2、初步掌握布氏、洛氏硬度的测定方法和应用范围。

二、实验原理硬度是指金属材料抵抗比它硬的物体压入其表面的能力。

硬度越高,表明金属抵抗塑性变形的能力越大。

它是重要的力学性能指标之一,它与强度、塑性指标之间有着内在的联系。

硬度试验简单易行,又不会损坏零件,因此在生产和科研中应用广泛。

常用的硬度试验方法有:布氏硬度试验——主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。

所用设备为布氏硬度计。

洛氏硬度试验——主要用于金属材料热处理后的产品性能检测。

所用设备为洛氏硬度计。

维氏硬度试验——主要用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。

所用设备为维氏硬度计。

显微硬度试验——主要用于测定金属材料的组织组成物或相的硬度。

所用设备为显微硬度计。

1、布氏硬度试验原理布氏硬度试验是将一直径为D 的淬火钢球或硬质合金球,在规定的试验力P 作用下压入被测金属表面,保持一定时间t 后卸除试验力,并测量出试样表面的压痕直径d ,根据所选择的试验力P 、球体直径D 及所测得的压痕直径d 的数值,求出被测金属的布氏硬度值HBS 或HBW ,布氏硬度的测试原理如图6-1所示。

布氏硬度值的大小就是压痕单位面积上所承受的压力。

单位为kg/mm 2或N/mm 2,但一般不标出。

硬度值越高,表示材料越硬。

在实验测量时,可由测出的压痕直径d 直接查压痕直径与布氏硬度对照表而得到所测的布氏硬度值。

设压痕深度为h 则压痕球面积为2(22d D D D Dh F --==ππ)试样硬度值为:)(222d D D D P F P HB --==π式中 P ——施加的载荷,kg 或N ;D ——压头(钢球)直径,mm ; d ——压痕直径,mm ;F ——压痕面积,mm 2。

工程材料及热处理答案.doc

工程材料及热处理答案.doc

工程材料及热处理练习题—、简答题8.写出Fe-Fe:i C状态图上共品和共析反应式。

答案.L-*A+FesC (共晶)A->F+Fe3C (共析)9.选用工程材料的一般原则是什么?答案.①使用性能足够的原则②工艺性能&好的原则③经济性合理的原则④结构、材料、成形工敢相适应的原则。

10.金属结品的一般过程归纳为几个阶段?答案.一种是&发形核;另一种是非&发形核11.简述普通热处理的基本过程。

答案.退火、正火、淬火、回火12.何谓加工硬化?加工硬化:金属经过冷态下的塑性变形后其性能发生很大的变化,最明显的特点是强度随变形程度的增加而大为提髙,其槊性却随之冇较人的降低。

15.试述金属结品吋品粒度的控制方法。

①增加过冷度②变质处量③热处理16.什么是同索异构转变?并举例说明。

同素异构转变:就是原子重新排列的过程,它也遵循生核勾忪大的基本规律。

17.铁碳合金中基本相足哪些?其机械性能如何?基本相:铁素体、奥氏体、渗碳体;机械性能:铁素体溶碳能力差,奥氏体溶液碳能力较强,渗碳体溶碳能力最强;18.简述化学热处理的基本过程。

过程:活性原了•的产生、活性原了•的吸收、活性原子的扩散二、问答题3.试比较金属材料、陶瓷材料、髙分子材料和复合材料在结合键上的差别及其主要性能特点。

T答案:4.用冷却曲线表示45钢的平衡结晶过程;写出该过程中相及组织转变反应式;图P48LL+A-* AA+F-* P+F5.工厂生产一批小齿轮,耍求齿面硬度大于HKC55,心部冇&好的塑性和韧性,现冇以下材料:65Mn、45钢、16Mn、9SiCr、己知:试回答以下问题:(1)•选择一种合适的材料,并说明理由;45,采用表而淬火,45钢屈于,调质钢,渗碳+淬火+低温W火,具有高强度和足够的韧性.(2)•编制其•工艺流程;下料毛坯成形预备热处理粗加终热处理一精加工一装配(3)•制订其热处理工艺(用工艺曲线表示,要求标出加热温度、冷却介质);(4)-说明各热处理工序的主要目的,并指岀最终热处理记齿轮表凼和心部的组织。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章材料的结构与性能第一节材料的性能使用性能:材料在使用过程中所表现的性能。

包括力学性能、物理性能和化学性能。

工艺性能:材料在加工过程中所表现的性能。

包括铸造、锻压、焊接、热处理和切削性能等。

一、金属材料的使用性能(一)金属材料的力学性能1、弹性和刚度弹性:指标为弹性极限σe,即材料承受最大弹性变形时的应力。

刚度:材料受力时抵抗弹性变形的能力。

指标为弹性模量E。

2、强度与塑性强度:材料在外力作用下抵抗变形和破坏的能力。

屈服强度σs:材料发生微量塑性变形时的应力值。

抗拉强度σb:材料断裂前所承受的最大应力值。

塑性:材料受力破坏前可承受最大塑性变形的能力。

伸长率:δ断面收缩率ψ2、硬度材料抵抗表面局部塑性变形的能力。

(1)布氏硬度HB布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度。

(2)洛氏硬度洛氏硬度用符号HR表示常用的标尺为A、B、C。

HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广。

缺点:测量结果分散度大。

(3)维氏硬度维氏硬度用符号HV表示4、韧性(1)、冲击韧性是指材料抵抗冲击载荷作用而不破坏的能力。

指标为冲击韧性值ak(通过冲击实验测得)。

(2)断裂韧性断裂韧性:材料抵抗内部裂纹失稳扩展的能力。

5、疲劳材料在低于σs的重复交变应力作用下发生断裂的现象。

(1)疲劳曲线和疲劳强度材料在规定次数应力循环后仍不发生断裂时的最大应力称为疲劳强度。

用σr 表示。

二、金属材料的工艺性能1 铸造性能2 锻造性能3 切削加工性能4 焊接性能5 热处理性能二(二)、常见金属的晶格类型一.1. 体心立方晶格体心立方结构(b.c.c)属于该类晶格的常见金属有α-Fe2面心立方结构(f.c.c)常见金属:r-Fe、3密排六方结构(h.c.p)二.晶体缺陷1. 点缺陷空间三维尺寸都很小的缺陷。

2. 线缺陷—晶体中的位错二维尺度小,三维尺度大分为刃型位错和螺型位错3.面缺陷—晶界与亚晶界三一.1.液态金属在理论结晶温度以下开始结晶的现象称过冷。

理论结晶温度与实际结晶温度的差称过冷度过冷度大小与冷却速度有关,冷速越大,过冷度越大。

2.晶核的长大方式有两种,即均匀长大和树枝状长大。

3.同素异构转变物质在固态下晶体结构随温度变化的现象称同素异构转变—固态相变。

铁在固态冷却过程中有两次晶体结构变化,其变化为:1394℃912℃-Fe ⇄-Fe ⇄-Fe4.细化金属晶粒的措施⑴增大过冷度:随过冷度增加,N/G值增加,晶粒变细。

⑵变质处理:又称孕育处理。

即有意向液态金属内加入非均匀形核物质⑶振动、搅拌1.塑性变形五种形式轧制挤压拉拔锻造冲压2.塑性变形对金属性能的影响(1)产生加工硬化现象随冷塑性变形量增加,金属的强度、硬度提高,塑性、韧性下降的现象称加工硬化㈠回复回复是指在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶内某些变化。

㈡再结晶1. 再结晶冷变形组织在加热时重新彻底改变组织结构的过程称再结晶。

㈢晶粒长大再结晶完成后,若继续升高加热温度或延长保温时间,将发生晶粒长大。

这是一个自发的过程。

3.金属冷热加工冷加工与热加工的区别在金属学中,冷热加工的界限是以再结晶温度来划分的。

低于再结晶温度的加工称为冷加工,而高于再结晶温度的加工称为热加工。

四1.热处理:是指将钢在固态下加热、保温和冷却,以改变钢的组织结构,获得所需要性能的一种工艺.铁素体:纯铁在912℃以下为具有体心立方晶格的а-Fe。

碳溶于а-Fe中形成的间隙固溶体称为铁素体(F或а)。

奥氏体:碳溶于γ-Fe中的间隙固溶体称为奥氏体(A或γ)。

渗碳体:是一种具有复杂晶格结构的间隙化合物。

(Fe3C)珠光体:是铁素体和渗碳体组成的两相机械混合物。

(P)铁碳合金的分类1.工业纯铁(<0.0218%C)2碳钢(0.0218~2.11%C)3. 白口铸铁(2.11~6.69%C)铸造性能好, 硬而脆一、钢在加热时的组织转变加热是热处理的第一道工序。

加热分两种:一种是在A1以下加热,不发生相变;另一种是在临界点以上加热,目的是获得均匀的奥氏体组织,称奥氏体化。

(二) 奥氏体晶粒长大的控制⑴加热温度和保温时间: 加热温度高、保温时间长, 晶粒粗大.⑵加热速度: 加热速度越快,过热度越大, 形核率越高, 晶粒越细二、钢在冷却时的组织转变过冷奥氏体的转变方式有等温转变和连续冷却转变两种。

三珠光体转变1、珠光体的组织形态过冷奥氏体在 A1到 550℃间将转变为珠光体类型组织,它是铁素体与渗碳体片层相间的机械混合物,根据片层厚薄不同,又细分为珠光体、索氏体和托氏体.⑴珠光体:形成温度为A1-650℃,片层较厚,500倍光镜下可辨,用符号P表示.⑵索氏体形成温度为650-600℃,片层较薄,800-1000倍光镜下可辨,用符号S 表示。

⑶托氏体形成温度为600-550℃,片层极薄,电镜下可辨,用符号T 表示。

(四) 贝氏体转变1、贝氏体的组织形态过冷奥氏体在550℃- 230℃ (Ms)间将转变为贝氏体类型组织,贝氏体用符号B表示。

根据其组织形态不同,贝氏体又分为上贝氏体(B上)和下贝氏体(B下).⑴上贝氏体形成温度为550-350℃。

在光镜下呈羽毛状.⑵下贝氏体形成温度为350℃-Ms。

在光镜下呈竹叶状。

2. 贝氏体的力学性能上贝氏体强度与塑性都较低,无实用价值。

下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良好的综合力学性能,四.马氏体转变当奥氏体过冷到Ms以下将转变为马氏体类型组织。

马氏体的组织形态马氏体的形态分板条和针状两类。

3. 马氏体转变的主要特点⑴无扩散性(2) 在一个温度范围内进行的(3) 转变不完全(4) 马氏体转变的可逆性4.过冷奥氏体连续冷却转变图又称CCT。

Vk 为CCT曲线的临界冷却速度,即获得全部马氏体组织时的最小冷却速度.四、钢的退火与正火1. 退火将钢加热至适当温度保温,然后缓慢冷却 (炉冷) 的热处理工艺叫做退火。

退火目的⑴调整硬度,便于切削加工(2)消除内应力,防止加工中变形(3)细化晶粒退火工艺完全退火、等温退火、球化退火、扩散退火、去应力退火、再结晶退火⑴完全退火将工件加热到Ac3+30~50℃保温后缓冷的退火工艺,主要用于亚共析钢 .⑵等温退火亚共析钢加热到Ac3+30~50℃, 共析、过共析钢加热到Ac1+30~50℃,保温后快冷到Ar1以下的某一温度下停留,待相变完成后出炉空冷⑶球化退火球化退火是将钢中渗碳体球状化的退火工艺。

它是将工件加热到Ac1+ 30-50℃保温后缓冷,或者加热后冷却到略低于 Ar1 的温度下保温,使珠光体中的渗碳体球化后出炉空冷。

主要用于共析、过共析钢。

(4)扩散退火(均匀化退火)铸件在凝固过程中不可避免的要产生枝晶偏析等化学成分不均匀现象,为达到化学成分的均匀化,必须对其进行扩散退火。

特点:加热温度高(一般在Ac3或Acm以上150~300℃),保温时间长(5)去应力退火用来消除因变形加工及铸造、焊接过程中引起的残余内应力,以提高工件的尺寸稳定性,防止变形和开裂。

(6)再结晶退火冷变形后的金属加热到再结晶温度以上,保持适当的时间,使变形晶粒重新转变为均匀的等轴晶粒。

目的:消除加工硬化、提高塑性、改善切削加工及成形性能。

2. 正火正火是将亚共析钢加热到Ac3+30~ 50℃,共析钢加热到Ac1+30~50℃,过共析钢加热到Accm+30~ 50℃保温后空冷的工艺。

正火比退火冷却速度大。

正火的目的:目的与退火的相同。

(二)淬火淬火是将钢加热到Ac1或Ac3以上,保温后以大于Vk速度冷却,使奥氏体转变为马氏体的热处理工艺.淬火目的:是为获得马氏体组织,提高钢的性能.1. 淬火加热温度亚共析钢淬火温度为Ac3+30-50℃。

共析钢淬火温度为Ac1+30-50℃;淬火组织为M+A’。

过共析钢淬火温度: Ac1+30-50℃.淬火组织: M+Fe3C颗粒+A’。

2. 淬火冷却介质常用淬火介质是水和油.水的冷却能力强,但低温l冷却能力太大,只使用于形状简单的碳钢件。

油在低温区冷却能力较理想,但高温区冷却能力太小,适用于合金钢和小尺寸的碳钢件。

熔盐作为淬火介质称盐浴,冷却能力在水和油之间,用于形状复杂件的3. 淬火方法1、单液淬火法加热工件在一种介质中连续冷却到室温的淬火方法。

操作简单,易实现自动化。

2、双液淬火法工件先在一种冷却能力强的介质中冷,却躲过鼻尖后,再在另一种冷却能力较弱的介质中发生马氏体转变的方法。

如水淬油冷,油淬空冷.优点是冷却理想,缺点是不易掌握。

3、分级淬火法在Ms附近的盐浴或碱浴中淬火,待内外温度均匀后再取出缓冷可减少内应力4、等温淬火法将工件在稍高于 Ms 的盐浴或碱浴中保温足够长时间,从而获得下贝氏体组织的淬火方法。

经等温淬火零件具有良好的综合力学性能,淬火应力小.(三)回火1.回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺。

2.回火的目的减少或消除淬火内应力, 防止变形或开裂.获得所需要的力学性能。

3.未经淬火的钢回火无意义。

钢经淬火后应立即进行回火。

提高e及s,同时使工件具有一定韧性。

适用于弹簧热处理5.淬火加高温回火的热处理称作调质处理,简称调质.五、钢的表面热处理(一)钢的表面淬火表面淬火是指在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。

表面淬火常用加热方法:(1)感应加热感应加热分为:①高频感应加热淬硬层深度0.5-2mm②中频感应加热淬硬层深度2-10mm。

③工频感应加热淬硬层深度10-15 mm⑵火焰加热: 利用乙炔火焰直接加热工件表面的方法⑶激光热处理: 利用高能量密度的激光对工件表面进行加热的方法。

(二)钢的化学热处理化学热处理是将工件置于特定介质中加热保温使介质中活性原子渗入工件表层从而改变工件表层化学成分和组织,进而改变其性能的热处理工艺。

1. 钢的渗碳钢的渗碳是指向钢的表面渗入碳原子的过程。

渗碳目的提高工件表面硬度、耐磨性及疲劳强度,同时保持心部良好的韧性。

渗碳方法气体渗碳法,固体渗碳法,液体渗碳法2. 钢的渗氮氮化是指向钢的表面渗入氮原子的过程。

常用氮化方法气体氮化法与离子氮化法。

3. 钢的碳氮共渗同时向钢的表面渗入碳和氮原子的化学热处理工艺,俗称氰化。

中温(700~800℃),碳氮共渗和低温(500~600 ℃),气体碳氮共渗的应用较为广泛。

共渗件常选用低碳或中碳钢。

渗层组织:细片(针)回火马氏体加少量粒状碳氮化合物和残余奥氏体。

相关文档
最新文档