概率论与数理统计 (1)
概率论与数理统计 第一章1.1随机事件
![概率论与数理统计 第一章1.1随机事件](https://img.taocdn.com/s3/m/a4fd8165a98271fe900ef900.png)
事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:
完
随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象
考研数学一-概率论与数理统计(一)
![考研数学一-概率论与数理统计(一)](https://img.taocdn.com/s3/m/cdb95330bdd126fff705cc1755270722192e5919.png)
考研数学⼀-概率论与数理统计(⼀)考研数学⼀-概率论与数理统计(⼀)(总分:100.00,做题时间:90分钟)⼀、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,⽽可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2⼤⼩关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成⽴;利⽤区间可加性得结合上⾯的等式,于是得应选B.4.设⼆维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a⽆关,且B.p的值与a⽆关,且C.p的值随a值的增⼤⽽增⼤.D.p的值随a值的增⼤⽽减⼩.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.⼜Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协⽅差的性质有故选D.6.已知总体X的期望E(X)=0,⽅差D(X)=σ2.X 1,…,X n是来⾃总体X的简单随机样本,其均值为,则下⾯可以作为σ2⽆偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的⽆偏估计量.7.设随机变量序列X 1,…,X n,…相互独⽴,则根据⾟钦⼤数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满⾜______(分数:4.00)A.有相同的数学期望.B.服从同⼀离散型分布.C.服从同⼀泊松分布.√D.服从同⼀连续型分布.解析:[解析] ⾟钦⼤数定律的应⽤条件为:“独⽴同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同⼀分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来⾃总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来⾃X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来⾃X的简单随机样本,故独⽴同分布于N(0,σ2 )因此,则有⼜与相互独⽴,故故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第⼆类错误是指______(分数:4.00)A.H0成⽴,接受H0.B.H0不成⽴,接受H0.√C.H0成⽴,拒绝H0.D.H0不成⽴,拒绝H0.解析:[解析] 直接应⽤“犯第⼆类错误”=“取伪”=“H 0不成⽴,接受H 0”的定义,选择B.⼆、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取⼀个数,且取后放回,⽤b i表⽰第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶⽅阵,求线性⽅程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增⼴矩阵作初等⾏变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独⽴,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、⼄两个⼈投球,甲先投,当有任⼀⼈投进之后便获胜,⽐赛结束.设甲、⼄命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、⼄投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独⽴的与其他⼏次⽆关.事件X 1 =n表⽰“甲投了n次”,即“甲、⼄各⾃在前n-1次没有投进,在第n次时甲投进或⼄投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表⽰“⼄投了m次”,即“甲、⼄前m-1次均没有投进,甲在第m次也没有投进,⼄在第m 次投进”,或“甲、⼄前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表⽰甲第⼀次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、⼄两⼈赢得⽐赛的概率相同,则p 1,p 2满⾜什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表⽰“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、⼄前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、⼄两⼈赢得⽐赛的概率相同,则12.设随机变量X在区间(0,1)上服从均匀分布,⼜求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法⼀:应⽤单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.⼜因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法⼆:⽤分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后⼀步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,如下图所⽰,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所⽰,φ(x)在[0,+∞)内最⼩值为-1,⽆最⼤值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独⽴;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为⽽变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度⼜所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独⽴.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独⽴,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独⽴,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从⽽F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设⼆维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独⽴.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从⽽可知,U与V不独⽴.设⼆维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从⼆维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独⽴性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;⼜因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独⽴.。
概率论与数理统计(经管类)复习要点 第1章 随机事件与概率
![概率论与数理统计(经管类)复习要点 第1章 随机事件与概率](https://img.taocdn.com/s3/m/3d21a80ea417866fb84a8e8d.png)
第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。
随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。
统计规律性:在大量重复试验或观察中所呈现的固有规律性。
概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。
(1)概率论:从数量上研究随机现象的统计规律性的科学。
(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。
在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。
样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。
样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。
3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。
事件发生:在一次试验中,当这一子集中的一个样本点出现时。
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。
空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。
4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。
①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。
事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。
(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。
《概率论与数理统计》第一章习题
![《概率论与数理统计》第一章习题](https://img.taocdn.com/s3/m/58fbf8decfc789eb162dc8f5.png)
第1章 概率论的基本概念---随机事件与样本空间、概率、古典概型和几何概型系 班姓名 学号1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和 Ω=(2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω=(3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停止,或检查4个产品就停止检查,记录检查的结果。
用“0”表示次品,用“1”表示正品。
Ω=(4)在单位圆内任意取一点,记录它的坐标 Ω=(5)将一尺长的木棍折成三段,观察各段的长度 Ω=2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系(1)δ<-||a x 与δ≥-||a x (2)20>x 与20≤x (3)20>x 与18<x (4)20>x 与22≤x (5)20个产品全是合格品与20个产品中只有一个废品 (6)20个产品全是合格品与20个产品中至少有一个废品3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件(1)A 发生,B 与C 不发生 (2)A 与B 都发生,而C 不发生 (3)A,B,C 中至少有一个发生 (4)A,B,C 都发生(5)A,B,C 都不发生 (6)A,B,C 中不多于一个发生 (7)A,B,C 中不多于两个发生 (8)A,B,C 中至少有两个发生4、盒内装有10个球,分别编有1- 10的号码,现从中任取一球,设事件A 表示“取 到的球的号码为偶数”,事件B 表示“取到的球的号码为奇数”,事件C 表示“取 到的球的号码小于5”,试说明下列运算分别表示什么事件.(1)B A (2)AB (3)C (4)C A (5)AC (6) AC(7)C B (8)BC 5、指出下列命题中哪些成立,哪些不成立.(1)B B A B A =(2)AB AB =(3)C B A C B A =(4)φ=))((B A AB(5)若B A ⊂,则AB A = (6)若φ=AB ,且A C ⊂,则φ=BC(7)若B A ⊂,则A B ⊂(8)若A B ⊂,则A B A =6、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品” (1,2,3,4)i =,用1234,,,A A A A 的运算关系表达下列事件.(1)没有一个产品是次品;(2)至少有一个产品是次品; (3)只有一个产品是次品; (4)至少有三个产品不是次品7、 设,,E F G 是三个随机事件,试利用事件的运算性质化简下列各式: (1) ()()E F E F (2) ()()()E F E F E F (3)()()EF F G解 :(1) (2) (3)8、 设事件,,A B C 分别表示开关,,a b c 闭合,D 表示灯亮,则可用事件,,A B C 表示: (1) D = (2) D =9、 (1)设事件,A B 的概率分别为51与41,且A 与B 互斥,则()P AB = . (2)一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只 球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 .(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率 等于 .(4) 设123,,A A A 是随机试验E 的三个相互独立的事件,已知12(),(),P A P A αβ==3()P A γ=,则123,,A A A 至少有一个发生的概率是(5) 一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3 只球,则摸到的没有一只是白球的事件的概率等于 . (6)设,,A B C 是随机事件,,A C 互不相容,11(),(),23P AB P C ==则()P AB C = . (7)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 . (8)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 10、若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB11、设,A B 是两事件且()0.6,()0.7P A P B ==,问(1)在什么条件下()P AB 取到最大值,最大值是多少?(2)在什么条件下()P AB 取到最小值,最小值是多少?12、设,,A B C 是三事件,且11()()(),()()0,()48P A P B P C P AB P BC P AC ======, 求,,A B C 至少有一个发生的概率.13、在1500个产品中有400个次品,1100个正品,任取200个,求(1)恰有90个次品的概率; (2)至少有2个次品的概率.14、两射手同时射击同一目标,甲击中的概率为0.9,乙击中的概率为0.8,两射手同时击中的概率为0.72,二人各击一枪,只要有一人击中即认为“中”的,求“中”的概率.15、8封信随机地投入8个信箱(有的信箱可能没有信),问每个信箱恰有一封信的概率是多少?16、房间里有4个人,问至少有两个人的生日在同一个月的概率是多少?17、将3个球随机地放入4个杯子中去,问杯子中球的最大个数分别为1,2,3的概率各是多少?18、设一个质点等可能地落在xoy平面上的三角形域D内 ( 其中D是由==+=所围成的 ) , 设事件A为:质点落在直线1y=的下x y x y0,0,2P A侧,求().第1章 概率论的基本概念---条件概率、事件的独立性系 班姓名 学号1、一批产品共100个,其中有次品5个,每次从中任取一个,取后不放回, 设(1,2,3.)i A i =表示第i 次抽到的是次品,求:()21P A A = ()21P A A = ()21P A A =()21P A A =()312P A A A =()312P A A A =2、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率为95%,乙厂的合格率是80%。
高等数学 概率论与数理统计课件(一)
![高等数学 概率论与数理统计课件(一)](https://img.taocdn.com/s3/m/6ef998dd80c758f5f61fb7360b4c2e3f57272535.png)
高等数学概率论与数理统计课件(一)高等数学概率论与数理统计课件1. 课程简介•高等数学概率论与数理统计是大学数学专业的一门重要课程。
•它是数学学科的基础,也是应用数学的重要工具。
•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。
2. 概率论部分2.1 概率的基本概念•概率的定义和性质•随机事件的概率计算方法•条件概率与独立事件2.2 随机变量和概率分布•随机变量的定义和性质•离散型随机变量和连续型随机变量•常见概率分布:离散型和连续型2.3 随机变量的数字特征•期望、方差、标准差的定义和计算•切比雪夫不等式•大数定律和中心极限定理3. 数理统计部分3.1 统计基础•总体和样本的统计特征•参数估计和区间估计•假设检验的基本思想3.2 参数估计•点估计和区间估计的概念•常见的参数估计方法:极大似然估计、矩估计等•置信区间的计算和解释3.3 假设检验•假设检验的基本原理•假设检验的步骤和流程•常见的假设检验方法:单样本、两样本和多样本检验4. 课程学习方法•注重理论和实践相结合,理论指导实践、实践检验理论。
•多做习题,通过刷题巩固知识点。
•参考相关教材和参考书,拓宽知识广度和深度。
•加强课后讨论和交流,与同学共同解决问题。
•关注概率论与数理统计的应用领域,扩展应用实践。
5. 课程考核方式•平时成绩:课堂参与、作业完成情况等。
•期中考试:对课程前半部分的知识进行考核。
•期末考试:对整个课程的知识进行考核。
•课程项目:根据实际情况进行论文、实验等形式进行综合评估。
6. 学习资源推荐•《高等数学》教材,北京大学出版社。
•《概率论与数理统计教程》教材,清华大学出版社。
•《概率论与数理统计习题集》辅导书,高等教育出版社。
•在线学习资源:Coursera、edX、网易云课堂等平台提供的相关课程。
7. 小结•高等数学概率论与数理统计课程是数学专业学生不可或缺的重要课程。
•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。
概率论与数理统计(1)
![概率论与数理统计(1)](https://img.taocdn.com/s3/m/533f581608a1284ac95043bc.png)
设事件 A 、B 满足 P (A B ) =o.2 , P ( B ) =o.6 ,贝U P (AB )=(x设随机变量 X 的分布函数为F(x)= — -1 ,2乞x :::4;则E (X )I 21, x —4;1. 、单项选择题 从标号为1, 2,… 5o ioi C .5oioo概率复习题101的ioi 个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( AB .邑ioi D .旦 ioo2. A . C .3. A . C .4.o.12 B . o.4 o.6 D . o.8设随机变量X~N (1 , 4), Y=2X+1 ,则Y 所服从的分布为(CN (3, 4) N (3 , 16) 设每次试验成功的概率为 p(o<p<1),则在B . N (3, 8) D . N (3, 17)3次独立重复试验中至少成功一次的概率为(A1- (1-p ) 3B . p(1-p)2C . 1 2。
3卩(1 一23D . p+p +P5 .设二维随机变量(X , Y )的分布律为o1 oo.i o.2 1o.3o.4设 P j =P{X=i,Y=j}i,j=0,1 的是(DA . p oo <p oi C . p oo <p iiB . p io <p ii D . p io <p oi6.设随机变量X~ x 2(2), Y~ x 2( 3),且 X ,Y 相互独立,则空所服从的分布为(2YC . 7. (2, 2)(3, 2)X , Y 是任意随机变量,C .(X+Y ) =D (X ) +D (Y ) (X-Y ) =D (X ) -D (Y )B . F (2, D . F ( 3,C 为常数,贝U 下列各式中正确的是(B . D (X+C ) =D D . D (X-C ) =D(X) (X)D ) +C0,x ::2; ,则下列各式中错误A.-3 C . 32B.- 2D . 3 9•设随机变量X 与Y 相互独立,且X~B (36, 1),丫~B ( 12,丄),则D(X-Y+1 )=(6 一4 A.- 3 C .空3 B . D . 7 326 3 210.设总体 X~N ( , d ), X 1, X 2,… S 2为样本方差.对假设检验问题:H 。
《概率论与数理统计 第一章》答案
![《概率论与数理统计 第一章》答案](https://img.taocdn.com/s3/m/e9e3255076a20029bd642de1.png)
第1章 事件与概率2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ⊂;(4)BC A ⊂.3、试把n A A A 21表示成n 个两两互不相容事件的和.6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C ;(2)0)1(321321=-+-+--n n n n n n nC C C C ;(3)∑-=-++=r a k r a b a k b r k a C C C0.9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
14、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
16、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤118、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少?19、从n 双不同的鞋子中任取2r(2r<n)只,求下列事件发生的概率:(1)没有成对的鞋子;(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。
概率论与数理统计期末复习题(1)
![概率论与数理统计期末复习题(1)](https://img.taocdn.com/s3/m/87c2cfb6f121dd36a32d82ea.png)
期末复习题一、填空题1. 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。
2.设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 .3.设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。
4. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5. 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。
6. 设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. B A ,事件,则=⋃B A AB 。
8. 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X ,12--=Y X Z 则的相关系数为与Z Y9.随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ . 11. B A ,事件,则=⋃B A AB 。
12. 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .13. 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .14. 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______ .15. 设随机变量X 服从二项分布),(p n B ,则=+)83(X D . .二、选择题1. 设离散型随机变量X 的分布列为其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.8 2. 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6; (C) 0.5; (D) 0.42.3. 矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计 4. 甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。
人工智能必备数学基础:概率论与数理统计(1)
![人工智能必备数学基础:概率论与数理统计(1)](https://img.taocdn.com/s3/m/0865cad5ba4cf7ec4afe04a1b0717fd5360cb239.png)
⼈⼯智能必备数学基础:概率论与数理统计(1)如果需要⼩编其他数学基础博客,请移步⼩编的GitHub地址 传送门: 这⾥我打算再补充⼀下关于概率论与数理统计的基础。
(注意:⽬前⾃⼰补充到的所有知识点,均按照⾃⼰⽹课视频中⽼师课程知识点⾛的,同时⼀些公式是⽹友⾟⾟苦苦敲的,这⾥⽤到那个博客均在⽂末补充地址,不过这⾥⾸先表⽰感谢!!)1,基本概念1.1 随机试验的概念 在⾃然界的现象中,分为必然现象和随机现象。
随机现象在相同的条件下,⼤量重复试验中呈现出的规律性称为统计规律性。
随机试验:对随机现象所作的观察,测量等试验统称为随机试验,简称试验,⽤E表⽰。
随机试验有如下特点:1,可以在相同条件下重复进⾏2,所有可能结果不⽌⼀个,且事先已知3,每次试验总是出现可能结果之⼀,但出现哪⼀个,试验前还不能确定1.2 样本点,样本空间,随机事件的概念 基本事件(⼜称样本点):指随机试验的每⼀个可能结果,⽤ e 表⽰。
样本空间:基本事件或样本点的全体构成的集合,⽤ S 表⽰。
样本点与样本空间的关系: 这⾥需要注意的是,条件概率的样本空间: 随机事件:样本空间 S 的某个⼦集A,称为随机事件,简称事件 A。
当且仅当 A 中某个样本点出现,称为 A 发⽣。
事件 A 可以⽤语⾔表⽰,也可以⽤集合表⽰。
必然事件:样本空间 S 包含所有的基本事件,故在每次试验中都发⽣,因此称为必然事件。
不可能事件:Ø 不包含任何基本事件,故在每次试验中不发⽣因此称为不可能事件。
下⾯举个例⼦1.3 概率与频率 概率论中,频率和概率的概念是很重要的,两者既有联系也有本质的不同,有必要专门区分⼀下。
对于⼀个不确定事件发⽣的可能性⼤⼩,我们希望找到⼀个合适的数来表征它。
⽽为了引出这个表⽰不确定事件可能性⼤⼩的数,我们引⼊频率来给概念。
简单来说就是引⼊频率来引出概率。
频率:描述的是事件发⽣的频繁程度。
严格的定义是:在相同的条件下,进⾏ n 次试验,事件 A 发⽣的次数Na 称为事件 A 的频数,⽐值 Na/n 称为事件 A 发⽣的频率。
概率论与数理统计第一章答案
![概率论与数理统计第一章答案](https://img.taocdn.com/s3/m/b4c50b2411661ed9ad51f01dc281e53a580251ac.png)
概率论与数理统计第⼀章答案习题1-21. 选择题(1) 设随机事件A ,B 满⾜关系A B ?,则下列表述正确的是( ). (A) 若A 发⽣, 则B 必发⽣. (B) A , B 同时发⽣.(C) 若A 发⽣, 则B 必不发⽣. (D) 若A 不发⽣,则B ⼀定不发⽣.解根据事件的包含关系, 考虑对⽴事件, 本题应选(D).(2) 设A 表⽰“甲种商品畅销, ⼄种商品滞销”, 其对⽴事件A 表⽰( ). (A) 甲种商品滞销, ⼄种商品畅销. (B) 甲种商品畅销, ⼄种商品畅销. (C) 甲种商品滞销, ⼄种商品滞销.(D) 甲种商品滞销, 或者⼄种商品畅销.解设B 表⽰“甲种商品畅销”,C 表⽰“⼄种商品滞销”,根据公式B C B C = , 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) ⼀袋中有5只球, 其中有3只⽩球和2只⿊球, 从袋中任意取⼀球, 观察其颜⾊; (2) 从(1)的袋中不放回任意取两次球, 每次取出⼀个, 观察其颜⾊; (3) 从(1)的袋中不放回任意取3只球, 记录取到的⿊球个数; (4) ⽣产产品直到有10件正品为⽌, 记录⽣产产品的总件数. 解 (1) {⿊球,⽩球}; (2) {⿊⿊,⿊⽩,⽩⿊,⽩⽩}; (3) {0,1,2};(4) 设在⽣产第10件正品前共⽣产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表⽰下列各事件: (1) 仅有A 发⽣;(2) A , B , C 中⾄少有⼀个发⽣; (3) A , B , C 中恰有⼀个发⽣; (4) A , B , C 中最多有⼀个发⽣; (5) A , B , C 都不发⽣;(6) A 不发⽣, B , C 中⾄少有⼀个发⽣. 解 (1) ABC ; (2)A B C ; (3) ABC ABC ABC ;(4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表⽰某射⼿第i 次(i =1, 2, 3)击中⽬标, 试⽤⽂字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3; (4) A 2-A 3;(5)23A A ; (6)12A A .解 (1) 射⼿第⼀次或第⼆次击中⽬标;(2) 射⼿三次射击中⾄少击中⽬标;(3) 射⼿第三次没有击中⽬标;(4) 射⼿第⼆次击中⽬标,但是第三次没有击中⽬标;(5) 射⼿第⼆次和第三次都没有击中⽬标;(6) 射⼿第⼀次或第⼆次没有击中⽬标.习题1-31. 选择题 (1) 设A, B 为任⼆事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解由⽂⽒图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解因()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最⼤值, 最⼤值是多少? (2) 在什么条件下()P AB 取到最⼩值, 最⼩值是多少?解 ()()()()P AB P A P B P A B =+- =1.3()P A B - .(1) 如果A B B = , 即当A B ?时, P B A P =)( ()B =0.7, 则()P AB 有最⼤值是0.6 .(2) 如果)(B A P =1,或者A B S = 时, ()P AB 有最⼩值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发⽣的概率.解因为ABCAB ?,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率⼀般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对⽴事件的概率性质知A ,B , C 全不发⽣的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件⼀等品和2件⼆等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是⼀等品. (B) 恰有1件⼀等品. (C) ⾄少有1件⼀等品. (D) ⾄多有1件⼀等品.解⾄多有⼀件⼀等品包括恰有⼀件⼀等品和没有⼀等品, 其中只含有⼀件⼀等品的113225C C C ?, 没有⼀等品的概率为023225C C C ?, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) ⾄少有1件次品的概率; (4) ⾄多有1件次品的概率; (5) ⾄少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )⾄少有1件次品的概率是1-03545350C C C ; (4) ⾄多有1件次品的概率是03545350C C C +12545350C C C ; (5) ⾄少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个⽩球和5个⿊球. 现从中任取两个球. 求:(1) 两个球均为⽩球的概率;(2) 两个球中⼀个是⽩的, 另⼀个是⿊的概率; (3)⾄少有⼀个⿊球的概率.解从9个球中取出2个球的取法有29C 种,两个球都是⽩球的取法有24C 种,⼀⿊⼀⽩的取法有1154C C 种,由古典概率的公式知道(1) 两球都是⽩球的概率是2924C C ;(2)两球中⼀⿊⼀⽩的概率是115429C C C ;(3)⾄少有⼀个⿊球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和⼩于6 5;(2) 两数之积⼩于14;(3) 以上两个条件同时满⾜;(4) 两数之差的绝对值⼩于12的概率.解设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0(1) P {X +Y <65}=1441172550.68125-??=≈;(2) P {XY <14}=11411111ln 40.64444dx x+=+≈?;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ?+-++-≈0.593.(4) 解设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|012}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-===, 其中 S A , S Ω分别表⽰A 与Ω的⾯积.习题1-51. 选择题(1) 设随机事件A , B 满⾜P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =. (C) 若()()1P AB P AB +=, 则A , B 为对⽴事件. (D) 若(|)1P B A =, 则B 为必然事件.解由条件概率的定义知选(B ).2. 从1,2,3,4中任取⼀个数, 记为X , 再从1,2,…,X 中任取⼀个数, 记为Y ,求P {Y =2}. 解解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813.3. ⼝袋中有b 个⿊球、r 个红球, 从中任取⼀个, 放回后再放⼊同颜⾊的球a 个. 设B i ={第i 次取到⿊球}, 求1234()P B B B B .解⽤乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++?++?+++?+=注意, a = 1和a = 0分别对应有放回和⽆放回抽样.4. 甲、⼄、丙三⼈同时对某飞机进⾏射击, 三⼈击中的概率分别为0.4, 0.5, 0.7. 飞机被⼀⼈击中⽽被击落的概率为0.2, 被两⼈击中⽽被击落的概率为0.6, 若三⼈都击中, 飞机必定被击落. 求该飞机被击落的概率.解⽬标被击落是由于三⼈射击的结果, 但它显然不能看作三⼈射击的和事件. 因此这属于全概率类型. 设A 表⽰“飞机在⼀次三⼈射击中被击落”, 则(0,1,2,3)i B i =表⽰“恰有i 发击中⽬标”.i B 为互斥的完备事件组. 于是没有击中⽬标概率为0()0.60.50.30.09P B =??=, 恰有⼀发击中⽬标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =??+??+??=,恰有两发击中⽬标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =??+??+??=,恰有三发击中⽬标概率为3()0.40.50.70.14P B =??=.⼜已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===?+?+?=∑5. 在三个箱⼦中, 第⼀箱装有4个⿊球, 1个⽩球; 第⼆箱装有3个⿊球, 3个⽩球; 第三箱装有3个⿊球, 5个⽩球. 现任取⼀箱, 再从该箱中任取⼀球.(1) 求取出的球是⽩球的概率;(2) 若取出的为⽩球, 求该球属于第⼆箱的概率.解 (1)以A 表⽰“取得球是⽩球”,i H 表⽰“取得球来⾄第i 个箱⼦”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某⼚甲、⼄、丙三个车间⽣产同⼀种产品, 其产量分别占全⼚总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取⼀件进⾏检查.(1) 求这件产品是次品的概率;(2) 已知抽得的⼀件是次品, 问此产品来⾃甲、⼄、丙各车间的概率分别是多少?解设A 表⽰“取到的是⼀件次品”, i B (i =1, 2, 3)分别表⽰“所取到的产品来⾃甲、⼄、丙⼯⼚”. 易知,123,,B B B 是样本空间S 的⼀个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.0384.=?+?+?=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ?===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ?===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ?===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成⽴的是( ).(A) A , B 相互独⽴. (B) A , B 不相互独⽴.(C) A , B 互为对⽴事件. (D) A , B 不互为对⽴事件. 解⽤反证法, 本题应选(B).(2) 设事件A 与B 独⽴, 则下⾯的说法中错误的是( ).(A) A 与B 独⽴. (B) A 与B 独⽴. (C)()()()P AB P A P B =. (D) A 与B ⼀定互斥.解因事件A 与B 独⽴, 故A B 与,A 与B 及A 与B 也相互独⽴. 因此本题应选(D).(3) 设事件A 与 B 相互独⽴, 且0(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B ⼀定互斥. (D)()()()()()P A B P A P B P A P B =+- .解因事件A 与B 独⽴, 故A B 与也相互独⽴, 于是(B)是正确的. 再由条件概率及⼀般加法概率公式可知(A)和(D)也是正确的. 从⽽本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明 P (B |A )=)(A BP 是事件A 与B 独⽴的充分必要条件.证由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独⽴, 知事件A 与B 也独⽴, 因此()(),()()P B A P B P B A P B ==,从⽽()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对⽴事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独⽴.3. 设三事件A , B 和C 两两独⽴, 满⾜条件:,ABC =?1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解根据⼀般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ .由题设可知 A , B 和C 两两相互独⽴, ,ABC =?1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====?=从⽽29()3()3[()]16P A B C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4.某⼈向同⼀⽬标独⽴重复射击, 每次射击命中⽬标的概率为p (0解 “第4次射击恰好第2次命中” 表⽰4次射击中第4次命中⽬标, 前3次射击中有⼀次命中⽬标. 由独⽴重复性知所求概率为1223(1)C p p -.5. 甲、⼄两⼈各⾃向同⼀⽬标射击, 已知甲命中⽬标的概率为 0.7, ⼄命中⽬标的概率为0.8. 求:(1) 甲、⼄两⼈同时命中⽬标的概率;(2) 恰有⼀⼈命中⽬标的概率; (3) ⽬标被命中的概率.解甲、⼄两⼈各⾃向同⼀⽬标射击应看作相互独⽴事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==?=(2)()()0.70.20.30.80.38;P AB P AB +=?+?=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总习题⼀1. 选择题:设,,A B C 是三个相互独⽴的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独⽴的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解由于A , B , C 是三个相互独⽴的随机事件, 故其中任意两个事件的和、差、交、并与另⼀个事件或其逆是相互独⽴的, 根据这⼀性质知(A), (C), (D)三项中的两事件是相互独⽴的, 因⽽均为⼲扰项, 只有选项(B)正确..2. ⼀批产品由95件正品和5件次品组成, 先后从中抽取两件, 第⼀次取出后不再放回.求: (1) 第⼀次抽得正品且第⼆次抽得次品的概率; (2) 抽得⼀件为正品, ⼀件为次品的概率.解 (1) 第⼀次抽得正品且第⼆次抽得次品的概率为9551910099396?=.(1) 抽得⼀件为正品,⼀件为次品的概率为95559519.10099198+= 3. 设有⼀箱同类型的产品是由三家⼯⼚⽣产的. 已知其中有21的产品是第⼀家⼯⼚⽣产的, 其它⼆⼚各⽣产41. ⼜知第⼀、第⼆家⼯⼚⽣产的产品中有2%是次品, 第三家⼯⼚⽣产的产品中有4%是次品. 现从此箱中任取⼀件产品, 求取到的是次品的概率.解从此箱中任取⼀件产品, 必然是这三个⼚中某⼀家⼯⼚的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家⼯⼚⽣产}, i =1, 2, 3. 由于B i B j =?(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的⼀个划分. ⼜ P (B 1)=21, P (B 2) =41, P (B 3)=41,P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221?+?+?=0.025. 4. 某⼚⾃动⽣产设备在⽣产前须进⾏调整. 假定调整良好时, 合格品为90%; 如果调整不成功,则合格品有30%. 若调整成功的概率为75%, 某⽇调整后试⽣产, 发现第⼀个产品合格. 问设备被调整好的概率是多少?解设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=?+?=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ?====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解以D 表⽰事件“将信息A 传递出去”,以D 表⽰事件“将信息B 传递出去”,以R 表⽰事件“接收到信息A ”,以R 表⽰事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率论与数理统计——第一章练习题
![概率论与数理统计——第一章练习题](https://img.taocdn.com/s3/m/0c24541d6fdb6f1aff00bed5b9f3f90f76c64d74.png)
第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。
事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。
A 中的某个样本点出现了,事件A 发生,否则,A 不发生。
因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。
样本空间S 有两个特殊的子集;S 自身和空集φ。
S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。
在一定条件下,每次试验一定发生的事情,称为必然事件。
每次试验一定不发生的事情,称为不可能事件。
必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。
此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。
样本点的个数超过一个的事件,称为复合事件。
2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。
其运算规律也同集合间的运算规律。
(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。
若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。
(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。
同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。
可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。
(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。
概率论与数理统计(Ⅰ)分类题集
![概率论与数理统计(Ⅰ)分类题集](https://img.taocdn.com/s3/m/57c4f21d866fb84ae45c8dbe.png)
概率论与数理统计(Ⅰ)分类题集一、事件的关系及运算1、写出下列随机试验的样本空间及下列事件中的样本点。
(1) 掷一颗骰子,出现奇数点。
(2) 将一枚均匀硬币抛二次,A :第一次出现正面,B :两次出现同一面,C :至少有一次出现正面,(3) 一个口袋中有五只外形完全相同的球,编号分别为1、2、3、4、5,从中同时取3只球,球的最小号码为1。
参考答案:(1)S={1,2,3,4,5,6},A={1,3,5};(2)S ={OO ,O⊗,⊗O ,⊗⊗}, ⊗ − 正面,O − 反面。
A={⊗O ,⊗⊗},B={OO ,⊗⊗},C={O⊗,⊗O ,⊗⊗};(3)S={123,124,125,134,135,145,234,235,245,345},A={123,124,125,134,135,145} 2、靶子由10个同心圆组成,半径分别为r 1、r 2、…、r 10,且r 1< r 2<、…、< r 10,以事件A k 表示命中半径为r k 的圆内,叙述下列事件的意义。
(1)kk A 61= (2)kk A 81= (3)21A A参考答案:(1)命中半径为r 6的圆内,(2)命中半径为r 1的圆内,(3)命中点在半径为r 1的圆外,半径为r 2的圆内 3、将下列事件用A 、B 、C 表示出来(1) A 发生,(2) A 与B 都发生而C 不发生, (3) 三个事件都发生,(4) 三个事件中至少有一个发生, (5) 三个事件中恰好有一个发生, (6) 三个事件中至少有两个发生, (7) 三个事件中恰好有两个发生, 参考答案:1) A (5) C B A C B A C B A(2) C AB (6) ABC BC A C B A C AB(3) ABC (7)BC A C B A C AB(4) A ∪B ∪C4、把A 1⋂A 2 ⋂…⋂A n 表示为互不相容事件的和。
参考答案:A 1⋂A 2 ⋂…⋂A n =A 1⋂( A 2- A 1) ⋂( A 3- A 1⋂A 2) ⋂…⋂(A n - A 1⋂A 2 ⋂…⋂A n-1)。
概率论与数理统计1完整(完整版)ppt课件
![概率论与数理统计1完整(完整版)ppt课件](https://img.taocdn.com/s3/m/f479cfa8dd36a32d7275814a.png)
.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
P(A) m(A)
m()
(其中 m()是样本空间,m 的 (A)度 是量 构成事 A 件 的子区域的 )这度样量借助于几量 何来 上合 的理 度 规定的概率 几称 何为 概 . 率
对偶律: A B A B;
A B AB.
证明 对偶律.
.
13
例.事件 A、B、C两两互不相 则容 有,
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
.
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
A-BAAB
显然: A-A=, A- =A, A-S=
s
A B
(4)AB
.
10
5.事件的互不相容(互斥):
若 AB,则A 称 与 B 是 互 不 ,或 相 互 容 ,即 斥
A 与 B 不能同 . 时发生
B
A B
A
.
11
6. 对立事件(逆事件): 若ABS且A B,则A称 与B互为逆事件
概率论与数理统计第一章习题参考解答
![概率论与数理统计第一章习题参考解答](https://img.taocdn.com/s3/m/cf3542e94afe04a1b071de7a.png)
P( A) = P( A | B3)P(B3) + P( A | B3)P(B3) 其中 P( A | B3) = P((B1 ∪ B4 )(B2 ∪ B5 ))
= P(B1 ∪ B4 )P(B2 ∪ B5 )
= [1 − P(B1)P(B4 )][1 − P(B2 )P(B5 )] = [1 − (1 − p)2 ]2 = p2 (2 − p)2
片”。验证
P(AB) = P(A)P(B),P( AC) = P( A)P(C),P(BC) = P(B)P(C)
P(A)P(B)P(C) ≠ P(ABC)
解:显然 P( A) = P(B) = P(C) = 1 , P( AB) = 1 , P(BC) = 1 , P( ABC) = 1 ,
2
4
4
首位偶 : A41 A41 A82
A140
10 ⋅9 ⋅8⋅ 7 90
解法二 分末位 0 和末位不为 0 两种,组成一个偶数四位数有 C41C81A82 + A93 种
∴ P( A) = C41C21 A82 + A93 = 41
A140
90
错误:认为样本空间也为四位数,实际只要求是一列.
10、求 10 人中至少有两人出生于同一月份的概率。
里选三个,所求概率为 C53 C130
1
=
12
9、在 0,1,2,3,…..,9 共 10 个数字中,任取 4 个不同数字排成一列,求这 4 个数字能 组成一个偶数四位数的概率。
解:设事件“组成一个偶数四位数”为 A
任取 4 个不同数字排成一列共有: A140 种 解法一 组成一个偶数四位数有
李贤平-《概率论与数理统计-第一章》答案
![李贤平-《概率论与数理统计-第一章》答案](https://img.taocdn.com/s3/m/86dba39aa98271fe900ef9c1.png)
.
因为袋中有a个白球, 个黑球,若一开始总是取到黑球,直到把黑球取完为止,则至迟到第 次一定会取到白球;也就是说,第一次或第二次…或至迟到第 次取得白球事件是必然事件,其概率为1。所以
等式两边同乘以 得
.
46、证:记F={ 的一切子集}
21、袋中装有 号的球各一只,采用(1)有放回;(1)不放回方式摸球,试求在第k次摸球时首次摸到1号球的概率。
24、从52张扑克牌中任意抽取13张来,问有5张黑桃,3张红心,3张方块,2张草花的概率。
25、桥牌游戏中(四人各从52张纸牌中分得13张),求4张A集中在一个人手中的概率。
26、在扑克牌游戏中(从52张牌中任取5张),求下列事件的概率:(1)以A打头的同花顺次五张牌;(2)其它同花是非曲直次五比重牌;(3)有四张牌同点数;(4)三张同点数且另两张也同点数;(5)五张同花;(6)异花顺次五张牌;(7)三张同点数;(8)五比重中有两对;(9)五张中有一对;(10)其它情况。
33、证:当 时, , 与 两者不相容,所以
.
此即当 时原式成立。
设对 原式成立,现证对 原式也成立。
对前后两项分别应用归纳假设得
.
至此,原式得证。
36、解:设考签编号为 ,记事件 ,则
, ,
;
诸 相容,利用第33题公式计算得
P={至少有一张考签未被抽到}
.
37、解:这些比赛的可能结果,可以用下面方法表示:
3、试把 表示成n个两两互不相容事件的和.
6、若A,B,C,D是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A,B都发生而C,D都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
概率论与数理统计第一章习题参考答案
![概率论与数理统计第一章习题参考答案](https://img.taocdn.com/s3/m/f2ddd814df80d4d8d15abe23482fb4daa58d1df2.png)
1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。
《概率论与数理统计》第一章知识点
![《概率论与数理统计》第一章知识点](https://img.taocdn.com/s3/m/2f92bea3a1116c175f0e7cd184254b35eefd1a27.png)
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
概率论与数理统计第一章——随机事件及概率
![概率论与数理统计第一章——随机事件及概率](https://img.taocdn.com/s3/m/b8c5cd169b89680202d82548.png)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
概率论与数理统计试题
![概率论与数理统计试题](https://img.taocdn.com/s3/m/bf45d1e2f9c75fbfc77da26925c52cc58bd69037.png)
《概率论与数理统计》期末试题(1)一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为____________4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 ( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. 3.设随机变量X 和Y 不相关,则下列结论中正确的是 () (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =. 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为 ()(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是()(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量.三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)(1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B 至少发生一个的概率为___()()()() 1.10.20.9P AB P A P B P AB =+-=-=______.(2) 设X 服从泊松分布,若26EX =,则P(X>1) =__________(3) 设随机变量X 的概率密度函数为1(1),02,()40,x x f x ⎧+<<⎪=⎨⎪⎩其他. 今对X 进行8次独立观测,以Y 表示观测值大于1的观测次数,则53158888DY =⨯⨯=(4) 元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为(5) 设测量零件的长度产生的误差X 服从正态分布2(,)N μσ,今随机地测量16个零件,得1618ii X==∑,162134i i X ==∑. 在置信度0.95下,μ的置信区0.050.025((15) 1.7531,(15) 2.1315)t t ==二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入( ) 中,每小题3分,共15分)(1),,A B C 是任意事件,在下列各式中,不成立的是( ) (A )()A B B A B -=.(B )()AB A B -=.(C )()A B AB ABAB -=.(D )()()()AB C A C B C =--.(2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值( )中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==.(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =( ) (A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --.(4)设随机变量12,X X 的概率分布为101111424iX P- 1,2i =.且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ= ( )(A )0. (B )14. (C )12. (D )1-. (5)设随机变量1~[0,6],~(12,)4X U Y B 且,X Y 相互独立,根据切比雪夫不等式有(33)P X Y X -<<+( ) (A )0.25≤. (B )512≤. (C )0.75≥. (D )512≥. 三、(8分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的,求一天中恰有k 个顾客购买A 种商品的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东工商学院成人高等教育201 年第 学期
《概率论与数理统计》课程考试试题
姓名 年级 层次 专业 学号
5小题,每小题4分,总计20分)
1、设A 、B 为两随机事件,且B A ⊂,则下列式子正确的是( ).
()A ()()P A B P A +=; ()B ()()P AB P A = ; ()C ()()P B A P B =; ()D ()()()P B A P B P A -=-.
2、将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为( ).
()A 1; ()B 12; ()C 1
2-; ()D 1-.
3、掷一枚不均匀硬币,正面朝上的概率为2
3
,将此硬币连掷4次,则恰好
3次正面朝上的概率为( ).
()A 881; ()B 827; ()C 3281; ()D 34 . 4、设随机变量)1,(~u N X ,)
(~2n Y χ,又X 与Y 独立,令T =
则下列结论正确的是( ).
()A )1(~-n t T ; ()B )(~n t T ; ()C )1,0(~N T ; ()D ),1(~n F T .
5. 设总体ξ
(, 1)N μ,n ξξξ.,21 为来自总体ξ的一个样本,记2113
2
31ˆξξμ
+=, 2124341ˆξξμ
+=,2132121ˆξξμ+=,2115352ˆξξμ+=,在这四个μ的无偏估计量中, 最有效的是( ).
()A 1ˆμ
; ()B 2ˆμ; ()C 3ˆμ; ()D 4ˆ
μ. 5小题,每小题4分,总计20分)
1. 若41)()()(===C P B P A P ,0)()(==BC P AB P , 1
()8
P AC =, 则事件
A 、
B 、
C 至少有一个发生的概率为 ; 2. 设二维离散型随机变量(),X Y 的联合分布律为
若随机变量X 与Y 相互独立,则常数α= ; β= ;
3. 设连续型随机变量X 的概率密度为:sin , 0()0, x x a f x ≤≤⎧=⎨⎩其它
则常数
a =__________; 6P X π⎧
⎫>=⎨⎬⎩
⎭__________;
4. 设总体(,0.09)X N μ~,测得一组样本观测值为:12.613.412.813.2 ,
则总体均值μ的置信度为0.95的置信区间为__________;(参考数据 1.960.025U =) 5. 设随机变量X 的方差为2,则根据切比雪夫不等式估计{}2P X EX -≥≤____. 15分)
设连续型随机变量X 的概率密度曲线()f x 如下图所示. 试求:(1)t 的值;
(2)X 的概率密度;
(3){}22P X -<≤; (4)求X 的分布函数()F x .
()f x
1 O
t
3
2 x
0.5
分)
设二维随机变量(),X Y 的密度为
6,01;
(,)0, x x y f x y <<<⎧=⎨⎩其它
,
(1)求边缘概率密度()X f x ,()Y f y ; (2)求{}1P X Y +≤.
分)
设二维随机变量(,)X Y 具有分布律:
验证, X Y 的相关性及相互独立性. 分)
设总体X 具有分布律:
X 1 2 3 P 2θ 2(1)θθ- 2)1(θ-
其中θ)10(<<θ为未知参数.若1, 2, 1, 3, 1是X 的一个样本值,试求
θ的矩估计值和最大似然估计值.。