材料力学习题应力状态和强度理论

合集下载

08第八章 材料力学习题解答(应力状态分析和强度理论)

08第八章 材料力学习题解答(应力状态分析和强度理论)
=
σ x +σ y
2 +
+
σ x −σ y
2
cos 2α − τ xy sin 2α
80 + σ y
80 − σ y
2 2 ∴σ y = 40 MPa
(3) 主应力
cos(120o ) − 0
σ 1 = σ x = 80 MPa
8.6. 图示矩形截面梁某截面上的弯矩和剪力分别为 M=10 kN.m, Q=120 kN。 试绘出截面上 1、 2、3、4 各点的应力状态单元体,并求其主应力。
y 50 1 2 100 z 3 4 50
M
25
x
Q 解:(1) 截面上 1 点的应力:
σ (1) = −
M 1 2 bh 6
=−
10 × 103 1 × 0.05 × 0.12 6
27MPa 60MPa
4
2 σ max ⎫ 60 ⎧70.4 MPa ⎛ 60 ⎞ ± ⎜ ⎟ + 27 2 = ⎨ ⎬= σ min ⎭ 2 ⎝ 2 ⎠ ⎩ −10.4 MPa σ 1 = 70.4 MPa σ 2 = 0 σ 3 = −10.4 MPa
(4) 截面上 4 点的应力:
σ (4) = −σ (1) = 120 MPa
δ
T P 解:(1) A 点的应力状态 T
30 A
o
d
P
τxy σx
属二向应力状态,应力分量是
P 20000 = = 63.7 × 106 Pa = 63.7 MPa A π × 50 × 2 × 10−6 σy =0
σx =
τ xy = −
T 600 =− = −70.6 × 106 Pa = −70.6 MPa 2 2π r t 2π × 262 × 2 × 10−9

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论

max
2、空间应力状态的概念
B
max
D
三向应力圆
A
主应力
O
最大剪应力
max
1
3
2
3 2
3、应力应变关系
1
(1)、广义胡克定律
1 2
3
1
E 1
E 1
E
1 2 2 1 3 1
3 3 2
4、空间应力状态下的应变能密度
v
1 2E
2 1
22
2 3
2 1 2
45o
测试值
2E
1
200 109
-2 10-4
40106 0.7 =52.3(MPa)
1
1.3
1 3
x
y
2
( x
y
2
)2
2 x
40 65.84
105.84 MPa
25.84
MPa
eq3 1 3 131.7 MPa 150 MPa
f300
D2
f500
D1
例: 图示传动轴,传递功率PK=7 kW ,转速n=200 r/min。皮带轮重量 W=1.8 kN。左端齿轮上啮合力F与 齿轮节圆切线的夹角(压力角)为20º
W
eq4
M 2 0.75T 2 [ ]
W
统一形式:
eq
M eq W
[ ]
M eq3
M
2 z
M
2 y
T
2
M eq4
M
2 z
M
2 y
0.75T
2
例1 求图示单元体的主应力及主平面的位置。(
单位:MPa)
解:主应力坐标系如图

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

材料力学B试题7应力状态_强度理论.docx

材料力学B试题7应力状态_强度理论.docx

40 MPa.word 可编辑 .应力状态强度理论1. 图示单元体,试求60100 MPa(1)指定斜截面上的应力;(2)主应力大小及主平面位置,并将主平面标在单元体上。

解: (1)x y xy cos 2x sin 276.6 MPa22xy sin 2x cos232.7 MPa231 (2)max xy( x y) 2xy281.98MPa39.35min22121.98181.98MPa,2,3121.98MPa12xy12000arctan()arctan39.352x y24020060602. 某点应力状态如图示。

试求该点的主应力。

129.9129.9解:取合适坐标轴令x25 MPa,x由120xy sin 2xy cos20 得y2所以m axx y( xy ) 2xy 2m in 22129.9 MPa2525(MPa)125MPa50752( 129.9)250 150100 MPa2001 100MPa,20 ,3200MPa3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。

解:y150 MPa,x120 MPa.word 可编辑 .由得45xy sin 2xy cos 2x 15080 22x10MPa所以max xy(x y)2222xy min yx454545214.22 MPa 74.221214.22 MPa,20 ,45374.22MPa4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。

求靠圆筒内壁任一点处的主应力。

0.19210 3解:xπ(0.10440.14)0.05 5.75MPat32x y pd MPa504tpd MPa1002tM e p M emax x y(x y ) 2xy2min22100.7 MPa 49.351100.7MPa,249.35 MPa,3 4 MPa5.受力体某点平面上的应力如图示,求其主应力大小。

材料力学应力状态和强度理论

材料力学应力状态和强度理论
σy 0 τ y 64.6
τy
σx
a
τx
τy
σx τx
x 122.5MPa x 64.6MPa
σy 0
τ y 64.6

(122.5 , 64.6)
D1
B2

o
C
B1
(0 , - 64.6)
由 x , x 定出 D1 点 由 y , y 定出 D2 点 以 D1D2 为直径作应力圆。
12 3
平面应力状态可定义为两个主应力不等于零的应力状态。
3、平面应力状态下主应力的计算
} 1
2
x y
2
(
x

2
y
2
)


2 x
上式中将两个主应力标为 1 ,2 只是作为示意,在每一个 具体情况下应根据它们以及数值为零的那个主应力按代数值 来表示。
} 1
2
y
a
x
y
τy
b
x
x
x
d
c
y
平面应力状态的普遍形式如图 所示 。单元体上有 x ,x 和 y , y。
a
x
y
y
τy
b
x x
d
c
y
y
a τy
b
x x
x
d
c
一、斜截面上的应力
y
a τy
e
b
x x
d
f
c
e x x
d


f
y y
n x
1、截面法:假想地沿斜截面 ef 将单元体截分为二,留下左边
D1
A2 B2
o

材料力学习题参考答案2011年7月-第22章应力状态和强度理论

材料力学习题参考答案2011年7月-第22章应力状态和强度理论

22-6 图示受力板件,试证明A 点处各截面的正应力、剪应力均为零证明:若在尖点A 处沿自由边界取三角形单元体如图所示,设单元体 、面上的应力分量为、和、,自由边界上的应力分量为,则有由于、,因此,必有、、。

这时,代表A 点应力状态的应力圆缩为 坐标的原点,所以A 点为零应力状态。

22-7 图示槽形刚体,在槽内放置一边长为10mm 、的立方钢块,钢块顶面受到合力为P=8kN 的均布压力作用,试求钢块的三个主应力和最大剪应力。

已知材料的弹性模量GPa E 200=,泊松比3.0=μ。

解: 选取坐标轴x 、y 、z 如图。

x σ=0, σz =-10101083⨯⨯=-80MPa ,εy =1E 〔σy -μ(σz +σx )〕=1E〔σy -μσz 〕=0 由此得 σy =μσz =0.3×(-80)=-24 MPa 。

Pxzyo将x σ、y σ、z σ按代数值大小排列,得三个主应力为 σ1=0 、σ2 =-24 MPa 、σ3=-80 MPa 。

最大剪应力 τm a x =σσ132-=280=40 MPa 。

22-12 试比较图示正方形棱柱体在下列两种情况下的相当应力3xd σ:(a )棱柱体自由受压:(b )棱柱体在刚性方模内受压。

弹性常数E 、μ均为已知.解:对于图(a )中的情况,应力状态如图(c )对于图(b )中的情况,应力状态如图(d )所以,,22-20 N O.28a普通热轧工字钢简支梁如图所示。

今由贴在中性层上某点K处、与轴线夹45º角方向上的应变片测得ε45º=-260×10-6。

已知钢材的E=210GPa,μ=0.28。

求作用在梁上的载荷F P。

材料力学应力状态分析强度理论

材料力学应力状态分析强度理论
断裂力学
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。

材料力学第06章 复杂应力状态分析及强度理论

材料力学第06章 复杂应力状态分析及强度理论
薄壁圆筒的横截面面积
2
s′
p
A πD
πD 2 F p 4 pD s A πD 4
n
D
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
s"
p
直径平面
FN

FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2s l plD 0 s 2
理论分析表明,在复杂应力状态下(平面应力状态和空 间应力状态),一点处的最大正应力为 s max s 1 ,最小 正应力为 s min s 3 ,最大切应力的值为t s 1 s 3。
max
2
例题1 简支梁如图所示.已知 m-m 截面上A点的弯曲正应力和 切应力分别为s =-70MPa,t =50MPa.确定A点的主应力及主平面 的方位.
t xy
s x s y 0
txy
Mn t xy t WP
求极值应力
tyx
y O
s x s y 2 2 s 1 s x s y ( )t xy 2 2 s 2
2 t xy t
x
s 1t ;s 2 0;s 3 t
s x s y 2 2 t max ( )t xy t 2 t min
铸铁
在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(例如低碳 钢),破坏是从杆的最外层沿横截面发生剪断产生的(图c),而对于 拉伸强度低于剪切强度的材料(例如铸铁),其破坏是由杆的最外层 沿杆轴线约成450倾角的螺旋形曲面发生拉断而产生的(图d)
2
平面应力状态分析——图解法
一、应力圆( Stress Circle)
2 2

材料力学 第七章 应力状态和强度理论

材料力学 第七章  应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

材料力学B试题7应力状态-强度理论

材料力学B试题7应力状态-强度理论

材料力学B试题7应力状态-强度理论LT应力状态 强度理论1. 图示单元体,试求(1) 指定斜截面上的应力;(2) 主应力大小及主平面位置,并将主平面标在单元体上。

解:(1)MPa6.762sin 2cos 22=--++=ατασσσσσαx yx yxMPa 7.322cos 2sin 2-=+-=ατασσταx yx(2)22min max )2(2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02=σ,98.1213-=σ35.3940200arctan 21)2arctan(210==--=yx xyσστα2.解:取合适坐标轴令25=x σ MPa ,9.129-=xτ由02cos 2sin 2120=+-=ατασστxy yx得125-=yσMPa所以22min max )2(2xy y x y x τσσσσσσ+-±+=20010015050)9.129(755022-=±-=-+±-= MPa1001=σMPa ,02=σ,2003-=σ MPa3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。

解:150=yσMPa ,120-=x τ MPaMPa由 ατασστ2cos 2sin 245xy yx +-=802150-=-=x σ得10-=x σ MPa所以22min max )2(2xyy x y x τσσσσσσ+-±+=22.7422.214-= MPa22.2141=σ MPa ,02=σ,22.743-=σ4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e MkN ·m 。

求靠圆筒内壁任一点处的主应力。

解:75.505.032)1.0104.0(π10192.0443=⨯-⨯=x τ MPa504==t pd x σ MPa1002==tpd y σ MPa35.497.100)2(222min max =+-±+=xy y x y xτσσσσσσ MPa7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa5. 受力体某点平面上的应力如图示,求其主应力大小。

材料力学-第8章应力状态与强度理论及其工程应用(A)

材料力学-第8章应力状态与强度理论及其工程应用(A)
应力状态的基本概念
应力的面的概念——过同一点 不同方向面上的应力各不相同
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
受力之前,表面的正方形
FP
FP
受拉后,正方形变成了矩形,直角没有改变。
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
受力之前,表面斜置的正方形
FP
2
2
x
2
3
3
3
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
例题2
l
FP
S
a
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
y
1 例题2 4 2 3
z
x S平面
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
y
1
FQy
1
4
4 2
3
Mz
x
z
Mx
3
2
第8章 应力状态与强度理论及其工程应用
应力的点的概念——同一截面上 不同点的应力各不应力状态的基本概念
FQ F Nx
Mz
横截面上的正应力分布 横截面上的剪应力分布
横截面上正应力分析和剪应力分析的结果表明: 同一面上不同点的应力各不相同,此即应力的点的 概念。
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
描述一点应力状态的方法
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
描述一点应力状态的基本方法
微元(Element)
微元及其各面上一点 应力状态的描述
dx
dz
dy

家电公司研发部资料材料力学习题答案(七)

家电公司研发部资料材料力学习题答案(七)

第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。

答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。

A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。

答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。

《材料力学》第7章-应力状态和强度理论-习题解

《材料力学》第7章-应力状态和强度理论-习题解
解:支座反力:
(↑); (↓)
K截面的弯矩与剪力:

K点的正应力与切应力:

故坐标面应力为:X( ,0),Y(0,— )
(最大正应力 的方向与 正向的夹角),故
[习题7—22]一直径为 的实心钢球承受静水压力,压强为 。设钢球的 , .试问其体积减小多少?
解:体积应变
=
[习题7-23]已知图示单元体材料的弹性常数 , 。试求该单元体的形状改变能密度。
解:坐标面应力X(70,21),Y(14,—21)
所画的圆变成椭圆,其中
(长轴)
(短轴)
[习题7—14]已知一受力构件表面上某点处的 , , ,单元体的三个面上都没有切应力.试求该点处的最大正应力和最大切应力。
解:最大正应力为 。最小正应力是 。
最大切应力是
[习题7—15]单元体各面上的应力如图所示。试用应力圆的几何关系求主应力及最大切应力。
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
点,则C为应力圆的圆心。设圆心坐标为C( )
则根据垂直平线上任一点到线段段两端的距离相等
性质,可列以下方程:
解以上方程得: 。即圆心坐标为C(86,0)
应力圆的半径:
主应力为:
(2)主方向角
(上斜面A与中间主应力平面之间的夹角)
(上斜面A与最大主应力平面之间的夹角)
(3)两截面间夹角:

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论
W
eq4
M 2 0.75T 2 [ ]
W
统一形式:
eq
M eq W
[ ]
M eq3
M
2 z
M2 yT2 NhomakorabeaM eq4
M
2 z
M
2 y
0.75T
2
例1 求图示单元体的主应力及主平面的位置。(
单位:MPa)
解:主应力坐标系如图
25 3 4 5 B 9 5
A
在坐标系内画出点
2
1
0
° 5
25 3
45o
拉伸对应
2E
1
45o
剪切对应值
E
1
现在已测得圆杆表面上一点a沿45方向的线应变 45o=-2×10-4, 是上述两45方向的线应变之和
45o 测试值 45o 剪切对应值 45o 拉伸对应值
E45o 剪切对应值 E 45o 测试值 45o 拉伸对应值 =
1
1
E
2 3
1 3
体积改变比能
vV
1 2
6E
1 2
3 2
形状改变比能
1
vd 6E
1 2 2 2 3 2 1 3 2
5、四个常用强度理论
强度理论的统一形式: eqk [ ]
• 第一强度理论: • 第二强度理论: • 第三强度理论: • 第四强度理论:
eq1 1
eq2 1 2 3
组合变形习题课
一、应力分析和强度理论
1、平面应力状态分析
(1)斜截面上的应力
x x
y 2 y
2
x y
2
sin 2 x
cos cos
2 2

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第9章 应力状态与强度理论

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第9章 应力状态与强度理论

τ max =
σ1 −σ 3
2
=
380 1 2 + 100 2 + 4τ xy < 160 4 4
解得 | τ xy | <120MPa
所以,取 | τ xy | <120MPa。 9- 6 图示外径为 300mm 的钢管由厚度为 8mm 的钢带沿 20°角的螺旋线卷曲焊接而
成。试求下列情形下,焊缝上沿焊缝方向的剪应力和垂直于焊缝方向的正应力。 1.只承受轴向载荷 FP = 250 kN; 2.只承受内压 p = 5.0MPa(两端封闭) *3.同时承受轴向载荷 FP = 250kN 和内压 p = 5.0MPa(两端封闭)
εt =
2 π ( r + Δ r ) − 2 πr Δ r = 2 πr r 1 Δr = ε t ⋅ r = [σ t −νσ m ] E 1 = (118.72 − 0.33 × 59.36 ) × 254 = 0.336mm 75 ×103
9- 8
构件中危险点的应力状态如图所示。 试选择合适的准则对以下两种情形作强度校
9- 7
承受内压的铝合金制的圆筒形薄壁容器如图所示。 已知内压 p = 3.5MPa, 材料
的 E = 75GPa, ν = 0.33。试求圆筒的半径改变量。
5
习题 9-7 图
解:
σm =
3.5 × (254 × 2 + 7.6) = 59.36 MPa 4 × 7.6 3.5 × (254 × 2 + 7.6) = 118.72 MPa σt = 2 × 7.6
σ r4 =
1 (100 2 + 20 2 + 120 2 ) = 111.4 MPa 2
2. σ =

材料力学 第七章 应力状态与强度理论

材料力学 第七章 应力状态与强度理论

取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2

cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2

x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2

材料力学第六章应力状态与强度理论

材料力学第六章应力状态与强度理论
(c)
e
xy
x
b
a
a
f
y
yx
第6章
应力状态与强度理论
斜截面应力
由图 d 所示体元上各面上的力的平衡,参考法 线n和切线t方向可得:
(d)
e
xy dA cosa xdA cosa
b yx dA sina
adA
n
adA
f t
n 0
y dA sina

a dA x dA cos a cosa xy dA cos a sin a
x y
2

x y
2
因此,C点坐标为应力圆圆心坐标,并且
B1B2 2 x y 2 CD1 B1D1 xy 2 2
该线段长度等于应力圆半径。从而证明上述 圆确为应力圆。
2
2
第6章
应力状态与强度理论
由图b可见,A1、A2两点的横坐标为:
OA1 OC CA1
OA2 OC CA2
第6章
应力状态与强度理论
主应力
由此可得两个主应力值为:
应力圆
2
1
x y
2
x y 2 2 xy
x y 2 2 xy

其中dA为斜截面ef的面积。 由此可得,任一斜截面上的应力分量为:
a
x y
2

x y
2
cos 2a xy sin 2a
a
x y
2
sin 2a xy cos 2a
第6章
应力状态与强度理论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应力状态分析与强度理论
基 本 概 念 题
一、选择题
1. 三种应力状态分别如图(a )、(b )、(c )所示,则三者间的关系为( )。

A .完全等价
B .完全不等价
C .图(b )、图(c )等价
D .图(a )、图(c )等价
题1图
2. 已知应力情况如图所示,则图示斜截面上的应力为( )。

(应力单位为 MPa)。

A .70-=ασ,30-=ατ
B .0=ασ,30=ατ
C .70-=ασ,30=ατ
D .0=ασ,30-=ατ
3. 在纯剪切应力状态中,其余任意两相互垂直截面上的 正应力,必定是( )。

A .均为正值
B .一为正值一为负值
C .均为负值 题2图
D .均为零值
4. 单元体的应力状态如图所示,由x 轴至1σ方向的夹角为( )。

A .︒
5.13 B .︒-5.76 C .︒5.76 D .︒-5.13
题4图 题5图
5. 单元体的应力状态如图所示,则主应力1σ、2σ分别为( )。

(应力单位MPa). -33-
A .901=σ,102-=σ
B .1001=σ,102-=σ
C .901=σ,02=σ
D .1001=σ,02=σ 6. 如图6所示单元体最大剪应力m ax τ为( )。

A .100 MPa
B .50 MPa
C .25 MPa
D .0
题6图 题7图
7. 单元体如图所示,关于其主应力有下列四种答案,正确的是( )。

A .1σ>2σ,03=σ B .3σ<2σ<0,03=σ01=σ C .1σ>0,2σ= 0,3σ<0,1σ<3σ D .1σ>0,2σ= 0,3σ<0,1σ>3σ
8. 已知应力圆如图7-22所示,图(a )、(b )、(c )、(d )分别表示单元体的应力状态和A 截面的应力,则与应力圆所对应的单元体为( )。

A .图(a )
B .图(b )
C .图(c )
D .图(d )
题8图
9. 在图示四种应力状态中,其应力圆具有相同的圆心和相同的半径是( )。

-34-
题9图
A .图(a )、图(d )
B .图(b )、图(c )
C .图(a )、图(b )、图(c ) 、图(d )
D .图(a )、图(d )、图(b )、图(c )
10. 如图所示,较大体积的钢块上开有一贯穿的槽,槽内嵌入一铝质立方体,铝块受到均布压力P 作用,假设钢块不变形,铝块处于( )。

A .单向应力、单向应变状态
B .单向应力、二向应变状态
C .二向应力、二向应变状态
D .三向应力、三向应变状态
题10图 题11图
11. 平面应力状态如图所示,设︒=45α,材料沿n 方向的正应力ασ和线应变αε为( )。

A .τσ
σα+=2
,E ⎪⎭

⎝⎛+=τσ
εα2 B .τσσα-=2,E ⎪⎭⎫ ⎝⎛-=τσεα2
C .τσ
σα+=2
,()()E E τμσμεα++-=121 D .τσ
σα-=
2
,()()E E τμσμεα+--=121
12. 广义虎克定律的适用范围是( )
A .脆性材料
B .塑性材料
C .任何材料
D .材料为各向同性,且处于线弹性范围内
13. 在图所列单元体中,必须采用强度理论进行强度计算的是( )。

题13图
14. 铸铁试件拉伸时,沿横截面断裂;扭转时沿与轴线成︒45倾角的螺旋面断裂,这与( )有关。

-35-
A .最大剪应力
B .最大拉应力
C .最大剪应力和最大拉应力
D .最大拉应变
15. 塑性材料构件内有四个点处的应力状态分别如图15(a )、(b )、(c )、(d )所示,其中最容易屈服的点是( )。

A .图(a )
B .图(b )
C .图(c )
D .图(d )
题15图
二、判断题(正确的打“√”,错的打“×”)
1. 单元体最大正应力面上的剪应力恒等于零。

( )
2. 单元体最大剪应力面上的正应力恒等于零。

( )
3. 正应力最大的面与剪应力最大的面相交成︒45角。

( )
4. 正应力最大的面与正应力最小的面必互相垂直。

( )
5. 纯剪应力状态中最大剪应力与最大正应力的值相等。

( )
6. 等截面杆受轴向拉伸,如图所示,A 、B 两点应力状态不相同。

( )
题6图 题7图
7. 某点处应力状态如图所示,材料为各向同性,弹性系数E 、μ已知,线应变x ε、y
ε已知,则)(y x z εεμε+-=。

( )
8. 若受力杆件一点处,沿某方向线应变为零,则该方向的正应力必为零。

( )
9. 应力圆半径是
2
y
x σσ-。

( )
10. 若各向同性材料单元体的三个正应力x σ>y σ>z σ,则对应的三个线应变也有x ε>y ε>z ε。

( )
-36-
11. 对受力构件进行强度计算时,都需要考虑强度理论。

( )
三、填空题
1. 画出图示各受力构件上指定点处的单元体。

题1图
2. 图示两个单元体的应力状态分别是( )和( )应力状态(应力单位:MPa)。

题2图
3. 若单元体处于平面应力状态,当x σ、y σ、xy τ三者满足条件x σ=y σ=xy τ>0时,则该单元体处于( )应力状态;当x σ、y σ、xy τ三者满足条件x σ=y σ=xy τ<0时,则该单元体为( )应力状态。

4. 图示梁的A 、B 、C 、D 、E 五点中,,单向应力状态的点是( ),纯剪切应力状态的点是( ),在任何截面上应力均为零的点是( )。

题4图 题5图
5. 图示应力状态的主应力1σ、2σ、3σ和最大剪应力m ax τ,的值分别为(单为MPa) -37-
图(a ):1σ=( ),2σ=( ),3σ=( ), m ax τ=( ); 图(b ):1σ=( ),2σ=( ),3σ=( ), m ax τ=( )。

6. 图示应力圆各表示什么应力状态? 画出与之相应的单元体及其各面上的应力。

题6图
7. 火车轮轮缘与钢轨接触点处的主应力为 –800 MPa 、–900 MPa 和–1100 MPa , 按第三和第四强度理论,相当应力分别为( )MPa 。

8. 强度理论的任务是( )。

9. 四种应力状态如图所示,按第三强度理论,其相当应力最大的是(
),最小的是( )。

题9图
计 算 题
1. 构件受力如图所示。

(1)确定危险点的位置。

(2)用单元体表示危险点的应力状态。

题1图
2. 在图示各单元体中,试用解析法和图解法求斜截面ab 上的应力。

应力的单位为MPa 。

-38-
题2图
3. 已知应力状态如图所示,图中应力单位皆为MPa。

试用解析法及图解法求:
(1)主应力大小,主平面位置;
(2)在单元体上绘出主平面位置及主应力方向;
(3)最大切应力。

题3图
4. 二向应力状态如图所示,应力单位为MPa。

试求主并作应力圆。

题4图题5图
5. 在处于二向应力状态的物体的边界bc上,A点处的最大切应力为35 MPa。

试求A 点的主应力。

若在A点周围以垂直于x轴和y
轴的平面分割出单元体,试求单元体各面上的应
力分量。

6. 在通过一点的两个平面上,应力如图所
示,单位为MPa。

试求主应力的数值及主平面
的位置,并用单元体的草图表示出来。

题6图
7. 试求图示各应力状态的主应力及最大切应力(应力单位为MPa)。

-39-
题7图
-40-。

相关文档
最新文档