2019年高考数学一模试卷及答案

合集下载

上海市2019年高考数学一模试卷(解析版)

上海市2019年高考数学一模试卷(解析版)

2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。

2019年山东省滨州市高考数学一模试卷(文科)含答案解析

2019年山东省滨州市高考数学一模试卷(文科)含答案解析

2019年山东省滨州市高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<0},B={x|(x+2)(x﹣3)≤0},则A∩B=()A.{x|﹣3≤x<0}B.{x|﹣3<x<﹣2}C.{x|﹣2≤x<0}D.{x|x≤3}2.i是虚数单位,则复数=()A.﹣ +i B. +i C.﹣i D.﹣﹣i3.已知x,y是实数,则“”是的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件得到的回归直线方程为=10.5x+a,据此模型来预测当x=20时,y的值为()A.210 B.210.5 C.211.5 D.212.55.函数y=的定义域为()A.(,+∞)B.(﹣∞,)C.(,1]D.(,1)6.在样本的频率分布直方图中,一共有m(m≥3)个小矩形,第3个小矩形的面积等于其余m﹣1各小矩形面积之和的,且样本容量为100,则第3组的频数是()A.10 B.20 C.25 D.407.已知函数f(x)=sinωx+cosωx(ω>0)的图象与x轴的两个相邻交点之间的距离等于,若将函数y=f(x)的图象向右平移个单位长度得到函数y=g(x)的图象,则函数y=g(x)在区间[0,]上的最大值为()A.0 B.1 C.D.28.一个几何体的三视图如图所示,则该几何体的表面积为()A.B. C.4 D.9.函数f(x)=|lnx|﹣x2的图象大致为()A. B.C.D.10.已知抛物线E:x2=8y的焦点F到双曲线﹣=1(a>0,b>0)的渐进线的距离为,且抛物线E上的动点M到双曲线C的右焦点F1(c,0)的距离与直线y=﹣2的距离之和的最小值为3,则双曲线C的方程为()A.﹣=1 B.﹣y2=1 C.﹣=1 D.﹣=1二、填空题:本大题共5分,每小题5分,共25分.11.执行如图所示的程序框图,则输出的S的值为______.12.设变量x,y满足约束条件,则z=2x+y+1的最大值为______.13.如图,网格纸上小正方形的边长为1,若起点和终点均在格点的向量,,,满足=x+y(x,y∈R),则x+y=______.14.已知圆C:x2+y2﹣2ax+4ay+5a2﹣25=0的圆心在直线l1:x+y+2=0上,则圆C截直线l2:3x+4y﹣5=0所得的弦长为______.15.已知函数f(x)是定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=3x,若,关于x的方程ax+3a﹣f(x)=0在区间上[﹣3,2]不相等的实数根的个数为______.三、解答题:本小题共6小题,共75分.16.某高校进行自主招生测试,对20名已经选拔入围的学生进行语言能力和逻辑思维能力由于部分数据丢失,只知道从这20名参加测试的学生中随机选取1名,选到语言表达能力一般的学生的概率为.(Ⅰ)求m,n的值;(Ⅱ)从语言表达能力为优秀的学生中随机选取2名,求其中至少有1名逻辑思维能力优秀的学生的概率.17.在△ABC中,角A,B,C所对的边分别是a,b,c,且acosB+bcosA=﹣2ccosC.(Ⅰ)求角C的大小;(Ⅱ)若c=,b=2,求△ABC的面积.18.如图,四边形ABCD为正方形,AB⊥平面BCEF,G是EF的中点,BC∥EF,BC=CE=EF.(Ⅰ)求证:DE∥平面ACG;(Ⅱ)求证:CG⊥平面ABE.19.在各项均为正数的等比数列{a n}中,a1=1,a2+a3=6.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.20.已知函数f(x)=x2+ax﹣lnx+1(a∈R),g(x)=x2﹣1(Ⅰ)当a=﹣1时,求函数y=f(x)的单调区间;(Ⅱ)设函数m(x)=f(x)﹣g(x),当x∈(0,e2]时,是否存在实数a,使得函数y=m (x)的最小值为4?若存在,求出a的值,若不存在,请说明理由.21.已知椭圆E: +=1(a>b>0)的焦距为2,离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上在第一象限内的点,如图,点P关于原点O的对称点为A,关于x 轴的对称点为Q,线段PQ与x轴交于点C,点D为线段CQ的中点,直线AD与椭圆E的另一个交点为B,证明:点P在以AB为直径的圆上.2019年山东省滨州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<0},B={x|(x+2)(x﹣3)≤0},则A∩B=()A.{x|﹣3≤x<0}B.{x|﹣3<x<﹣2}C.{x|﹣2≤x<0}D.{x|x≤3}【考点】交集及其运算.【分析】利用不等式性质和交集定义求解.【解答】解:∵集合A={x|x<0},B={x|(x+2)(x﹣3)≤0}={x|﹣2≤x≤3},∴A∩B={x|﹣2≤x<0}.故选:C.2.i是虚数单位,则复数=()A.﹣ +i B. +i C.﹣i D.﹣﹣i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.已知x,y是实数,则“”是的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】x,y是实数,则“”⇒,反之不成立,例如:取x=4,y=.即可判断出结论.【解答】解:∵x,y是实数,则“”⇒,反之不成立,例如:取x=4,y=.∴则“”是的充分不必要条件.故选:A.得到的回归直线方程为=10.5x+a,据此模型来预测当x=20时,y的值为()A.210 B.210.5 C.211.5 D.212.5【考点】线性回归方程.【分析】根据所给的表格求出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法求出a的值,再计算x=20时y的值即可.【解答】解:由表中数据可得=×(2+4+5+6+8)=5,=×(20+40+60+70+80)=54,∵(,)在回归直线方程=10.5x+a上,∴54=10.5×5+a,解得a=1.5,∴回归直线方程为=10.5x+1.5;当x=20时,=10.5×20+1.5=211.5.故选:C.5.函数y=的定义域为()A.(,+∞)B.(﹣∞,)C.(,1]D.(,1)【考点】对数函数的定义域;函数的定义域及其求法.【分析】根据二次根式以及对数函数的性质得到关于x的不等式,解出即可.【解答】解:由题意得:0<4x﹣3<1,解得:<x<1,故选:D.6.在样本的频率分布直方图中,一共有m(m≥3)个小矩形,第3个小矩形的面积等于其余m﹣1各小矩形面积之和的,且样本容量为100,则第3组的频数是()A.10 B.20 C.25 D.40【考点】频率分布直方图.【分析】根据频率分布直方图中各个小矩形的面积是相应范围内的数据频率,利用频率和为1,求出第3小组的频率,再求对应的频数.【解答】解:设第三个小矩形的频率为x ,则其余m ﹣1个小矩形对应的频率为4x , ∴x +4x=1,解得x=0.2;∴第3组的频数是100×0.2=20.故选:B .7.已知函数f (x )=sin ωx +cos ωx (ω>0)的图象与x 轴的两个相邻交点之间的距离等于,若将函数y=f (x )的图象向右平移个单位长度得到函数y=g (x )的图象,则函数y=g (x )在区间[0,]上的最大值为( )A .0B .1C .D .2【考点】三角函数中的恒等变换应用;函数y=Asin (ωx +φ)的图象变换.【分析】由已知可求出函数f (x )的解析式,进而根据函数图象的平移变换法则得到函数y=g (x )的解析式,根据正弦函数的性质分析出函数的单调性后,求出函数的最大值即可.【解答】解:∵函数f (x )=sin ωx +cos ωx=2sin (ωx +)又∵函数f (x )的图象与x 轴的两个相邻交点的距离等于=, 故函数的最小正周期T=π,又∵ω>0,∴ω=2故f (x )=2sin (2x +)将函数y=f (x )的图象向右平移个单位可得:y=g (x )=2sin [2(x ﹣)+]=2sin2x ;令+2k π≤2x ≤+2k π,即+k π≤x ≤+k π,k ∈Z故函数y=g (x )的减区间为[+k π, +k π],k ∈Z当k=0时,区间[,]为函数的一个单调递减区间又∵(,]⊆[,],∴f (x )在[0,)递增,在(,]递减,故f (x )max =f ()=2,故选:D .8.一个几何体的三视图如图所示,则该几何体的表面积为( )A.B. C.4 D.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、判断出线面的位置关系,由勾股定理求出棱长,由三角形的面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是一个三棱锥,直观图如图所示:D是AB的中点,PC⊥平面ABC,PC=2,且底面是一个等腰直角三角形,两条直角边分别是1,∵AC=BC=1,∠ACB=90°,D是AB的中点,∴CD⊥AB,CD=AB=,∵PC⊥平面ABC,∴PC⊥AC,PC⊥BC,PC⊥AB,由PC∩CD=C得,AB⊥平面PCD,∴AB⊥PD,且PD====,∴该几何体的表面积S==4,故选:C.9.函数f(x)=|lnx|﹣x2的图象大致为()A. B.C.D.【考点】函数的图象.【分析】根据函数的定义域,极限,单调性判断.【解答】解:f(x)的定义域为{x|x>0},排除A.当x→0+时,f(x)→+∞,排除D.当x>1时,f(x)=lnx﹣,f′(x)=,令f′(x)=0解得x=2,当x>2时,f′(x)<0,∴f(x)在(2,+∞)上是减函数,排除B.故选C.10.已知抛物线E:x2=8y的焦点F到双曲线﹣=1(a>0,b>0)的渐进线的距离为,且抛物线E上的动点M到双曲线C的右焦点F1(c,0)的距离与直线y=﹣2的距离之和的最小值为3,则双曲线C的方程为()A.﹣=1 B.﹣y2=1 C.﹣=1 D.﹣=1【考点】双曲线的简单性质.【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,进而可得a=2b,再利用抛物线的定义,结合P到双曲线C的右焦点F1(c,0)的距离与到直线y=﹣2的距离之和的最小值为3,可得FF1=3,从而可求双曲线的几何量,从而可得结论.【解答】解:抛物线x2=8y的焦点F(0,2),双曲线﹣=1(a>0,b>0)一条渐近线的方程为bx﹣ay=0,由抛物线x2=8y的焦点F到双曲线C的渐近线的距离为,可得d==,即有2b=a,由P到双曲线C的右焦点F1(c,0)的距离与到直线y=﹣2的距离之和的最小值为3,由抛物线的定义可得P到准线的距离即为P到焦点F的距离,可得|PF1|+|PF|的最小值为3,连接FF1,可得|FF1|=3,即c2+4=9,解得c=,由c2=a2+b2,a=2b,解得a=2,b=1,则双曲线的方程为﹣y2=1.故选:B.二、填空题:本大题共5分,每小题5分,共25分.11.执行如图所示的程序框图,则输出的S的值为.【考点】程序框图.【分析】根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.【解答】解:模拟执行程序,可得n=1,S=1S=,n=2不满足条件n<5,S=,n=3不满足条件n<5,S=,n=4不满足条件n<5,S=,n=5不满足条件n<5,S=,n=6满足条件n<5,退出循环,输出S的值为.故答案为:.12.设变量x,y满足约束条件,则z=2x+y+1的最大值为12.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.【解答】解:作出不等式组,对应的平面区域如图:(阴影部分)由z=2x+y+1得y=﹣2x+z﹣1,平移直线y=﹣2x+z﹣1,由图象可知当直线y=﹣2x+z﹣1经过点A时,直线y=﹣2x+z﹣1的截距最大,此时z最大.由,解得:,即A(6,﹣1),代入目标函数z=2x+y+1得z=2×6﹣1+1=12.即目标函数z=2x+y+1的最大值为12.故答案为:12.13.如图,网格纸上小正方形的边长为1,若起点和终点均在格点的向量,,,满足=x+y(x,y∈R),则x+y=.【考点】平面向量的基本定理及其意义.【分析】作出图形,取单位向量,从而可用分别表示出向量,再由,根据平面向量基本定理即可建立关于x,y的二元一次方程组,解出x,y,从而得出x+y的值.【解答】解:如图,取单位向量,则:,,;∴=;∴由平面向量基本定理得,;∴;∴.故答案为:.14.已知圆C:x2+y2﹣2ax+4ay+5a2﹣25=0的圆心在直线l1:x+y+2=0上,则圆C截直线l2:3x+4y﹣5=0所得的弦长为8.【考点】直线与圆的位置关系.【分析】先求出圆C:x2+y2﹣2ax+4ay+5a2﹣25=0的圆心C(2,﹣4),半径r=5,再过河卒子同圆C(2,﹣4)直线l2:3x+4y﹣5=0的距离d=3,由此能求出圆C截直线l2:3x+4y ﹣5=0所得的弦长.【解答】解:∵圆C:x2+y2﹣2ax+4ay+5a2﹣25=0的圆心C(a,﹣2a)在直线l1:x+y+2=0上,∴a﹣2a+2=0,解得a=2,∴圆C:x2+y2﹣2ax+4ay+5a2﹣25=0的圆心C(2,﹣4),半径r==5,圆心C(2,﹣4)直线l2:3x+4y﹣5=0的距离d==3,∴圆C截直线l2:3x+4y﹣5=0所得的弦长|AB|=2=2=8.故答案为:8.15.已知函数f(x)是定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=3x,若,关于x的方程ax+3a﹣f(x)=0在区间上[﹣3,2]不相等的实数根的个数为5.【考点】根的存在性及根的个数判断;函数奇偶性的性质.【分析】根据函数奇偶性和周期性的关系求出函数f(x)的解析式,利用函数与方程的关系转化为两个函数的交点个数问题,利用数形结合进行求解即可.【解答】解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,若x∈[﹣1,0]时,则﹣x∈[0,1],∵当x∈[0,1]时,f(x)=3x,∴当﹣x∈[0,1]时,f(﹣x)=﹣3x,∵函数f(x)是偶函数,∴f(﹣x)=﹣3x=f(x),即f(x)=﹣3x,x∈[﹣1,0],由ax+3a﹣f(x)=0得a(x+3)=f(x),设g(x)=a(x+3),分别作出函数f(x),g(x)在区间上[﹣3,2]上的图象如图:∵,∴当a=和时,对应的直线为两条虚线,则由图象知两个函数有5个不同的交点,故方程有5个不同的根,故答案为:5.三、解答题:本小题共6小题,共75分.16.某高校进行自主招生测试,对20名已经选拔入围的学生进行语言能力和逻辑思维能力由于部分数据丢失,只知道从这20名参加测试的学生中随机选取1名,选到语言表达能力一般的学生的概率为.(Ⅰ)求m,n的值;(Ⅱ)从语言表达能力为优秀的学生中随机选取2名,求其中至少有1名逻辑思维能力优秀的学生的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)根据概率公式计算即可,(Ⅱ)语言表达能力为优秀的学生共有6名,分别记为a,b,c,d,e,f,其中e,f为语言表达能力良好且逻辑思维能力都优秀的学生,从这6人随机选取2名,一一列举出基本事件,找到满足条件的基本事件,根据概率公式即可.【解答】解:(Ⅰ)由题意可知,语言表达能力一般的学生共有(4+m)人,设“从这20名参加测试的学生中随机选取1名,选到语言表达能力一般的学生”为事件A,则P(A)==,解得m=1,所以n=3,(Ⅱ)由题意,语言表达能力为优秀的学生共有6名,分别记为a,b,c,d,e,f,其中e,f为语言表达能力良好且逻辑思维能力都优秀的学生,从这6人随机选取2名,所有的基本事件为:ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef共15个,设“从语言表达能力为优秀的学生中随机选取2名,求其中至少有1名逻辑思维能力优秀的学生”的事件为B,则事件B包含9个基本事件,所以P(B)==17.在△ABC中,角A,B,C所对的边分别是a,b,c,且acosB+bcosA=﹣2ccosC.(Ⅰ)求角C的大小;(Ⅱ)若c=,b=2,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理将边化角化简得出cosC;(II)使用余弦定理解出a,代入三角形的面积公式.【解答】解:(I)∵acosB+bcosA=﹣2ccosC,∴sinAcosB+sinBcosA=﹣2sinCcosC,即sinC=﹣2sinCcosC,∵sinC≠0,∴cosC=﹣.∴C=.(II)由余弦定理得7=a2+4﹣2a×,整理得a2+2a﹣3=0,解得a=1或a=﹣3(舍).∴S=absinC=.18.如图,四边形ABCD为正方形,AB⊥平面BCEF,G是EF的中点,BC∥EF,BC=CE=EF.(Ⅰ)求证:DE∥平面ACG;(Ⅱ)求证:CG⊥平面ABE.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)由已知推导出四边形ADEG为平行四边形,由此能证明DE∥平面ACG.(Ⅱ)推导出AB⊥CG,从而四边形BCEG为菱形,由此能证明CG⊥平面ABE.【解答】证明:(Ⅰ)∵四边形ABCD为正方形,∴AD∥BC,AD=BC,又BC∥EF,BC=EF,∴AD∥EF,AD=EF,∵G是EF的中点,∴AD∥EG,且AD=EG,∴四边形ADEG为平行四边形,∴DE∥AG,∵AG⊂平面ACG,DE⊄平面ACG,∴DE∥平面ACG.(Ⅱ)∵AB⊥平面BCEF,而CG⊂平面BCEF,∴AB ⊥CG ,∵BC ∥EG ,BC=EG ,且BC=CE ,∴四边形BCEG 为菱形,∴BE ⊥CG ,又AB ∩BE=B ,∴CG ⊥平面ABE .19.在各项均为正数的等比数列{a n }中,a 1=1,a 2+a 3=6.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =,求数列{b n }的前n 项和T n .【考点】数列的求和;等比数列的性质.【分析】(Ⅰ)通过等比数列可知6=q +q 2,进而计算可得公比,从而可得结论;(Ⅱ)当n 为偶数时,利用分组法求和可知T n =+(2n ﹣1);当n 为奇数时利用T n +1=T n +b n +1计算可知T n =T n +1﹣2n =+(2n ﹣2).【解答】解:(Ⅰ)依题意,a 2+a 3=6=q +q 2,解得:q=2或q=﹣3(舍),∴数列{a n }的通项公式a n =2n ﹣1;(Ⅱ)依题意,当n 为偶数时,T n =[1+5+…+(2n ﹣3)]+(2+23+…+2n ﹣1)=+=+(2n ﹣1);当n 为奇数时,n +1为偶数,∵T n +1=T n +b n +1=T n +2n ,∴T n =T n +1﹣2n=+(2n +1﹣1)﹣2n=+(2n ﹣2);综上所述,T n=.20.已知函数f(x)=x2+ax﹣lnx+1(a∈R),g(x)=x2﹣1(Ⅰ)当a=﹣1时,求函数y=f(x)的单调区间;(Ⅱ)设函数m(x)=f(x)﹣g(x),当x∈(0,e2]时,是否存在实数a,使得函数y=m (x)的最小值为4?若存在,求出a的值,若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)代入a值,求出导函数,利用导函数的正负判断函数的单调性;(Ⅱ)求出m(x)=ax﹣lnx+2,假设存在实数a,使得函数y=m(x)的最小值为4,利用导函数,分别讨论参数a,求出函数的最小值判断是否满足题意,得出a的值.【解答】解:(1)当a=﹣1时,f(x)=x2﹣x﹣lnx+1,f'(x)=2x﹣1﹣=,当x>1时,f'(x)>0,f(x)递增;当0<x<1时,f'(x)<0,f(x)递减;∴f(x)的递增区间为(1,+∞),单调减区间为(0,1);(Ⅱ)m(x)=f(x)﹣g(x)=x2+ax﹣lnx+1﹣x2+1=ax﹣lnx+2,假设存在实数a,使得函数y=m(x)的最小值为4,m'(x)=,当a=0时,m'(x)<0,m(x)递减,∴函数的最小值为m(e2)=4,解得a=(舍去),当a<0时,m'(x)<0,m(x)递减,∴函数的最小值为m(e2)=4,解得a=(舍去),0<a≤时,m'(x)<0,m(x)递减,∴函数的最小值为m(e2)=4,解得a=(舍去),当a>时,m'(x)>0,m(x)递增,∴函数的最小值为m()=1+lna+2=4,解得a=e满足题意,综上可知存在实数a=e,使得函数y=m(x)的最小值为4.21.已知椭圆E: +=1(a>b>0)的焦距为2,离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上在第一象限内的点,如图,点P关于原点O的对称点为A,关于x 轴的对称点为Q,线段PQ与x轴交于点C,点D为线段CQ的中点,直线AD与椭圆E的另一个交点为B,证明:点P在以AB为直径的圆上.【考点】直线与圆锥曲线的综合问题.【分析】(I)由题意可得:2c=2,e==,又a2=b2+c2,联立解出即可得出.(II)设P(x0,y0),Q(x1,y1),可得A(﹣x0,﹣y0),C(x0,0),Q(x0,﹣y0),D.利用斜率计算公式可得k AD=.直线AD的方程为:y=(x+x0)﹣y0,与椭圆方程联立化为:x2﹣6x+9﹣16=0.利用根与系数的关系及其斜率计算公式可得k PB=.k PA,只要证明.k PB•k PA=﹣1,即可证明点P 在以AB为直径的圆上.【解答】解:(I)由题意可得:2c=2,e==,又a2=b2+c2,联立解得a=2,c=,b=1.∴椭圆E的方程为=1.(II)设P(x0,y0),Q(x1,y1),则A(﹣x0,﹣y0),C(x0,0),Q(x0,﹣y0),∴D.k AD==.∴直线AD的方程为:y=(x+x0)﹣y0,联立,化为:x2﹣6x+9﹣16=0.∴x1+(﹣x0)=,即x1=x0+,而y1=(x1+x0)﹣y0,∴而y1=(+2x0)﹣y0=.∴k PB===﹣.∴k PA==,∴.k PB•k PA=﹣1,故PA⊥PB,∴点P在以AB为直径的圆上.2019年10月4日。

2019年上海市青浦区高考数学一模试卷(含解析版)

2019年上海市青浦区高考数学一模试卷(含解析版)

2019年上海市青浦区高考数学一模试卷一、填空题(本大题满分54分)本题共有12题,1-6每题4分,7-12每题5分考生应在答题相应编号的空格内直接填写结果,每个空格填对得分,否则律得零分。

1.(4分)已知集合A={﹣1,0,1,2},B=(﹣∞,0),则A∩B=.2.(4分)写出命题“若am2<bm2,则a<b”的逆命题.3.(4分)不等式2<()3(x﹣1)的解集为.4.(4分)在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),则tan(π+θ)的值为.5.(4分)已知直角三角形ABC中,∠A=90°,AB=3,AC=4,则△ABC绕直线AC旋转一周所得几何体的体积为.6.(4分)如图所示,在复平面内,网格中的每个小正形的边长都为1,点A,B对应的复数分别是z1,z2,则||=.7.(5分)已知无穷等比数列{a n}的各项和为4,则首项a1的取值范围是.8.(5分)设函数f(x)=sinωx(0<ω<2),将f(x)图象向左平移单位后所得函数图象的对称轴与原函数图象的对称轴重合,则ω=.9.(5分)2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名为男性,则不同的选派方案共有种.10.(5分)设等差数列{a n}满足a1=1,a n>0,其前n顶和为S n,若数列{}也为等差数列,则=.11.(5分)已函数f(x)+2=,当x∈(0,1]时,f(x)=x2,若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+1)有两个不同的零点,则实数t的取值范围是.12.(5分)已知平面向量、、满足||=1,||=||=2,且=0,则当0≤λ≤1时,|﹣λ﹣(1﹣λ)|的取值范围是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则律得零分。

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

2019年上海市金山区高考数学一模试卷(解析版)

2019年上海市金山区高考数学一模试卷(解析版)

2019年上海市金山区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.1.(4分)已知集合A={1,3,5,6,7},B={2,4,5,6,8},则A∩B=.2.(4分)抛物线y2=4x的准线方程是.3.(4分)计算:=.4.(4分)不等式|3x﹣2|<1的解集为.5.(4分)若复数z=(3+4i)(1﹣i)(i为虚数单位),则|z|=.6.(4分)已知函数f(x)=1+log2x,则f﹣1(5)=.7.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.8.(5分)在(x3)10二项展开式中,常数项的值是.(结果用数值表示)9.(5分)无穷等比数列{a n}各项和S的值为2,公比q<0,则首项a1的取值范围是.10.(5分)在120°的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A、B两点,则这两个点在球面上的距离是.11.(5分)设函数f(x)=lg(1+|x|)﹣,则使得f(2x)<f(3x﹣2)成立的x的取值范围是.12.(5分)已知平面向量、满足条件:=0,||=cosα,||=sinα,α∈(0,),若向量=(λ,μ∈R).且(2λ﹣1)2cos2α+(2μ﹣1)2sin2α=,则||的最小值为.二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知方程+=1表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣114.(5分)给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件.A.充要B.充分非必要C.必要非充分D.既非充分又非必要15.(5分)欧拉公式e ix=cos x+i sin x(i为虚数单位,x∈R,e为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2018i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限16.(5分)已知函数f(x)=,则方程f(x+﹣2)=a(a∈R)的实数根个数不可能()A.5个B.6个C.7个D.8个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,三棱锥P﹣ABC中,P A⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).18.(14分)已知角α的顶点在坐标原点,始边与x轴的正半轴重合,终边经过点P(﹣3,)(1)求行列式的值;(2)若函数f(x)=cos(x+α)cosα+sin(x+α)sinα(x∈R),求函数f(﹣2x)+2f2(x)的最大值,并指出取得最大值时x的值.19.(14分)设函数f(x)=2x﹣1的反函数为f﹣1(x),g(x)=log4(3x+1).(1)若f﹣1(x)≤g(x),求x的取值范围D;(2)在(1)的条件下,设H(x)=g(x)﹣f﹣1(x),当x∈D时,函数H(x)的图象与直线y=a有公共点,求实数a的取值范围.20.(16分)已知椭圆C以坐标原点为中心,焦点在y轴上,焦距为2,且经过点(1,0).(1)求椭圆C的方程;(2)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);(3)在(2)的条件下,当0<a<1时,设△QOA的面积为S1(O是坐标原点,Q是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为S2•若正数m满足S1≤mS2,问m是否存在最小值,若存在,请求出此最小值;若不存在,请说明理由.21.(18分)在等差数列{a n}中,a1+a3+a5=15,a6=1l.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(2m+1,22m+1)内的项的个数记为{b m},记数列{b m}的前m项和S m,求使得S m>2018的最小整数m;(3)若n∈N*,使不等式a n+≤(2n+1)λ≤a n+1+成立,求实数λ的取值范围.2019年上海市金山区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.1.【解答】解:A∩B={5,6}.故答案为:{5,6}.2.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是x=﹣1.故答案为x=﹣1.3.【解答】解:.故答案为:.4.【解答】解:∵|3x﹣2|<1⇔﹣1<3x﹣2<1⇔1<3x<3,∴<x<1∴不等式|3x﹣2|<1的解集为{x|<x<1}.故答案为:{x|<x<1}.5.【解答】解:∵z=(3+4i)(1﹣i)=7+i,∴|z|=.故答案为:.6.【解答】解:根据题意,令f(x)=1+log2x=5,得log2x=4,则x=24=16,∴f﹣1(5)=16.故答案为:16.7.【解答】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.8.【解答】解:展开式的通项为T r+1=(﹣1)r C10r x30﹣5r,令30﹣5r=0得r=6,所以展开式中的常数项为C106=210,故答案为:210.9.【解答】解:由题意可得,,﹣1<q<0a1=2(1﹣q)∴2<a1<4故答案为:(2,4)10.【解答】解:由球的性质知,OA,OB分别垂直于二面角的两个面,又120°的二面角内,故∠AOB=60°∵半径为10cm的球切两半平面于A,B两点∴两切点在球面上的最短距离是6×=2π.故答案为:2π.11.【解答】解:函数f(x)=lg(1+|x|)﹣,∴f(﹣x)=f(x),且函数f(x)在[0,+∞)上单调递增.∵f(2x)<f(3x﹣2),∴|2x|<|3x﹣2|,∴(2x)2<(3x﹣2)2,化为:(x﹣2)(5x﹣2)>0,解得:x>2,或x<.∴使得f(2x)<f(3x﹣2)成立的x的取值范围是∪(2,+∞).故答案为:∪(2,+∞).12.【解答】解:由题意可设=(cosα,0),=(0,sinα),=(x,y),且设∵==(λcosα,μsinα),∴,α∈(0,),∵(2λ﹣1)2cos2α+(2μ﹣1)2sin2α=,则,即,∴C在以D()为圆心,以为半径的圆上,α∈(0,),∴||mn=|OD|﹣==,故答案为:.二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.【解答】解:椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故选:D.14.【解答】解:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件故选:C.15.【解答】解:e2018i=cos2018+i sin2018,∵2018=642π+(2018﹣642π),2018﹣642π∈,∴cos2018=cos(2018﹣642π)>0.sin2018=sin(2018﹣642π)>0,∴e2018i表示的复数在复平面中位于第一象限.故选:A.16.【解答】解:如图所示:∵函数f(x)=,即f(x)=.因为当f(x)=1时,求得x=﹣4,或,或1,或3.则①当a=1时,由方程f(x+﹣2)=a(a∈R),可得x+﹣2=﹣4,或,或1,或3.又因为x+﹣2≥0,或x+﹣2≤﹣4,所以,当x+﹣2=﹣4时,只有一个x=﹣2 与之对应,其它3种情况都有2个x值与之对应.故此时,原方程f(x+﹣2)=a的实数根有7个根.②当1<a<2时,y=f(x)与y=a有4个交点,故原方程有8个根.②当a=2时,y=f(x)与y=a有3个交点,故原方程有6个根.综上:不可能有5个根,故选:A.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.【解答】解:(1)因为P A⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为18.【解答】解:角α的终边经过点P(﹣3,)可得:sinα=,cosα=,tanα=.(1)行列式=sinαcosα﹣tanα=;(2)函数f(x)=cos(x+α)cosα+sin(x+α)sinα=cos x那么函数y=f(﹣2x)+2f2(x)=cos()+2cos2x=cos2x+sin2x+1=2sin(2x+)+1,当2x+=时,即x=kπ,函数y取得最大值为3.19.【解答】解:(1)f﹣1(x)=log2(x+1),…(3分)由log2(x+1)≤log4(3x+1),∴….(6分)解得0≤x≤1,∴D=[0,1]﹣﹣﹣.(8分)(2),…..(10分)∴,…(12分)当x∈[0,1]时,单调递增,∴H(x)单调递增,….(14分)∴因此当时满足条件.…(16分)20.【解答】解:(1)由题意得:2c=2,b=1,故a2=b2+c2=2,∴椭圆C的方程为:.(2)设P(x,y),则y2=2﹣2x2.∴|P A|2=(x﹣a)2+y2=(x﹣a)2+2﹣2x2=﹣(x+a)2+2a2+2,令f(x)=﹣(x+a)2+2a2+2,x∈[﹣1,1],所以,当﹣a<﹣1,即a>1时,f(x)在[﹣1,1]上是减函数,[f(x)]max=f(﹣1)=(a+1)2;当﹣1≤﹣a≤1,即﹣1≤a≤1时,f(x)在[﹣1,﹣a]上是增函数,在[﹣a,1]上是减函数,则[f(x)]max=f(﹣a)=2a2+2;当﹣a>1,即a<﹣1时,f(x)在[﹣1,1]上是增函数,[f(x)]max=f(1)=(a﹣1)2.所以,d(a)=.(3)当0<a<1时,P(a,±),于是S1=a,S2=2a2+2,若正数m满足条件,则a≤m(2a2+2),即m≥,m2≥.令f(a)=,设t=a2+1,则t∈(1,2),则a2=t﹣1.于是f(a)==(﹣+﹣1)=﹣(﹣)2+,∴当=时,即t=∈(1,2)时,[f(a)]max=,即m2≥,m≥.所以,m存在最小值21.【解答】解:(1)设数列{a n}的公差为d,由,解得,∴数列{a n}的通项公式为a n=2n﹣1,n∈N*.(2)对任意m∈N*,若2m+1<2n﹣1<22m+1,则,∴b m=22m﹣2m,m∈N*,S m=(22+24+26+…+22m)﹣(2+22+23+…+2m)=﹣=.令>2018,解得m >≈5.3,∴所求的最小整数m为6.(3)≤(2n+1)λ≤,,记A n =,B n=1+,n∈N*,由A n+1﹣A n =﹣=,知A1=A2,且从第二项起,{A n}递增,即A1=A2,A3<A4<…<A n,∵B n=1+递减,∴实数λ的范围为[A1,B1],即[].第11页(共11页)。

2019年上海市青浦区高考数学一模试卷解析版

2019年上海市青浦区高考数学一模试卷解析版

2019年上海市青浦区高考数学一模试卷一、选择题(本大题共4小题,共20.0分)1.“n=4”是“(x+)n的二项展开式中存在常数项”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】解:∵二项式(x+)n的通项为T r+1=C n r x r()n-r=C n r x2r-n(0≤r≤n),∴(x+)n的二项展开式中存在常数项⇔n=2r⇔n为正偶数,∵n=4⇒n为正偶数,n为正偶数推不出n=4,∴n=4是(x+)n的二项展开式中存在常数项的充分不必要条件.故选:A.二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.以简易逻辑为载体,考查了二项式定理,属基础题.2.长轴长为8,以抛物线y2=12x的焦点为一个焦点的椭圆的标准方程为()A. B. C. D.【答案】D【解析】解:抛物线y2=12x的焦点(3,0),长轴长为8,所以椭圆的长半轴为:4,半焦距为3,则b==.所以所求的椭圆的方程为:.故选:D.求出抛物线的焦点坐标,利用椭圆的长轴,求出b,即可得到椭圆方程.本题考查椭圆的简单性质的应用,抛物线的简单性质的应用,考查计算能力.3.对于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A. 若m⊊α,n∥β,m,n是异面直线,则α,β相交B. 若m⊥α,m⊥β,n∥α,则n∥βC. 若m⊊α,n∥α,m,n共面于β,则m∥nD. 若m⊥α,n⊥β,α,β不平行,则m,n为异面直线【答案】C【解析】解:若m⊊α,n∥β,m,n是异面直线,则α,β相交或平行,故A错误;若m⊥α,m⊥β,则α∥β,由n∥α,则n∥β或n⊂β,故B错误;若m⊊α,n∥α,m,n共面于β,则m∥n,故C正确;若m⊥α,n⊥β,α,β不平行,则m,n为异面直线或相交,故D错误.故选:C.由线面平行的性质和面面的位置关系可判断A;由线面垂直的性质和面面平行的判断和性质,可判断B;由线面平行的性质定理可判断C;由线面垂直的性质和面面的位置关系可判断D.本题考查空间线线、线面和面面的位置关系,主要是平行和垂直的判断和性质,考查空间想象能力和推理能力,属于基础题.4.记号[x]表示不超过实数x的最大整数,若f(x)=[],则f(1)+f(2)+f(3)+…+f(29)+f(30)的值为()A. 899B. 900C. 901D. 902【答案】C【解析】解:令g(x)=[],h(x)=,则g(1)=g(2)=g(3)=g(4)=g(5)=0,g(6)=g(7)=1,g(8)=g(9)=2,g(10)=3,g(11)=g(12)=4,g(13)=5,g(14)=6,g(15)=7g(16)=8,g(17)=9,g(18)=10g(19)=12,g(20)=13,g(21)=14g(22)=16,g(23)=17,g(24)=19g(25)=20,g(26)=22,g(27)=24g(28)=26,g(29)=28,g(30)=30h(1)=5,h(2)=7,h(3)=9,h(4)=10,h(5)=12,h(6)=13,h(7)=14,h(8)=15,h(9)=16,h(10)=17,h(11)=h(12)=18,h(13)=19,h(14)=20,h(15)=h(16)=21,h(17)=22,h(18)=h(19)=23h(20)=24,h(21)=h(22)=25,h(23)=h(24)=26,h(25)=h(26)=27,h(27)=h(28)=28,h(29)=29,h(30)=30,∴f(1)+f(2)+f(3)+…+f(29)+f(30)=901,故选:C.令g(x)=[],h(x)=,分别求出x=1,2,3,…,30时,两个函数的值,相加可得答案.本题考查的知识点是函数求值,运算量大,属于难题.二、填空题(本大题共12小题,共54.0分)5.已知集合A={-1,0,1,2},B=(-∞,0),则A∩B=______.【答案】{-1}【解析】解:A∩B={-1}.故答案为:{-1}.直接利用交集运算得答案.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.写出命题“若am2<bm2,则a<b”的逆命题______.【答案】“若a<b,则am2<bm2”【解析】解:“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,故答案为:“若a<b,则am2<bm2”.直接写出逆命题即可.本题考查了四种命题之间的关系,属于基础题.7.不等式2<()3(x-1)的解集为______.【答案】(-2,3)【解析】解:原不等式可化为:2<23-3x,根据指数函数y=2x的增函数性质得:x2-4x-3<3-3x,解得:-2<x<3,故答案为:(-2,3).两边化为同底的指数不等式,再根据指数函数的单调性可解得.本题考查了指数不等式的解法,属基础题.8.在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),则tan(π+θ)的值为______.【答案】【解析】解:∵平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),∴tanθ==,∴tan(π+θ)=tanθ=,故答案为:.由题意利用任意角的三角函数的定义求得tanθ的值,再利用诱导公式,求得tan(π+θ)的值.本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.9.已知直角三角形ABC中,∠A=90°,AB=3,AC=4,则△ABC绕直线AC旋转一周所得几何体的体积为______.【答案】12π【解析】解:∵直角三角形ABC中,∠A=90°,AB=3,AC=4,△ABC绕直线AC旋转一周所得几何体是底面是以AB为半径的圆,高为AC的圆锥,∴△ABC绕直线AC旋转一周所得几何体的体积为:V===12π.故答案为:12π.△ABC绕直线AC旋转一周所得几何体是底面是以AB为半径的圆,高为AC的圆锥,由此能求出其体积.本题考查直角三角形绕直角边旋转一周所成几何体的体积的求法,考查旋转体的性质、圆锥的体积等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.10.如图所示,在复平面内,网格中的每个小正形的边长都为1,点A,B对应的复数分别是z1,z2,则||=______.【答案】【解析】解:由表格可知,z1=i,z2=2-i,则,∴||=|-1-2i|=.故答案为:.由已知求得z1,z2,再由复数代数形式的乘除运算化简,代入复数模的公式求解.本题考查复数的代数表示法及其几何意义,考查复数代数形式的乘除运算及复数模的求法,是基础题.11.已知无穷等比数列{a n}的各项和为4,则首项a1的取值范围是______.【答案】(0,4)∪(4,8)【解析】解:由题意可得,,|q|<1且q≠0a1=4(1-q)∴0<a1<8且a1≠4故答案为:(0,4)∪(4,8)由无穷等比数列{a n}的各项和为4得,,|q|<1且q≠0,从而可得a1的范围.本题主要考查了等比数列的前n项和,而无穷等比数列的各项和是指当,|q|<1且q≠0时前n项和的极限,解题的关键是由无穷等比数列的各项和可得前n项和的极限存在则可得|q|<1且q≠0,这也是考生常会漏掉的知识点.12.设函数f(x)=sinωx(0<ω<2),将f(x)图象向左平移单位后所得函数图象的对称轴与原函数图象的对称轴重合,则ω=______.【答案】【解析】解:把函数f(x)=sinωx的图象向左平移单位后,所得函数图象对应的函数解析式为y=sinω(x+)=sin(ωx+ω).再由所得函数图象对称轴与原函数图象对称轴重合,可得ω=kπ,k∈z,结合ω的范围,可得ω=,故答案为.先求出变换后所得函数图象对应的函数解析式为y=sin(ωx-ω),再由所得函数图象对称轴与原函数图象对称轴重合,可得ω=kπ,k∈z,结合ω的范围,可得ω 的值.本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.13.2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名为男性,则不同的选派方案共有______种.【答案】80【解析】解:利用间接法,先从9人任选3人,再排除3人全是女的情况,故有C95-C43=80,故答案为:80.利用间接法,先从9人任选3人,再排除3人全是女的情况,即可求出.本题考查组合知识,考查学生分析解决问题的能力,属于基础题14.设等差数列{a n}满足a1=1,a n>0,其前n顶和为S n,若数列{}也为等差数列,则=______.【答案】【解析】解:设等差数列{a n}满足a1=1,a n>0,a n=1+(n-1)d,S n=,其前n顶和为S n,=1则,=,,数列{}也为等差数列,可得,可得d=2,所以a n=2n-1,S n=n2,===.故答案为:.求出等差数列求和公式,以及通项公式,求出数列的公差,得到数列的和,然后求解数列的极限.本题考查等差数列的应用,数列的极限的求法,考查转化思想以及计算能力.15.已函数f(x)+2=,当x∈(0,1]时,f(x)=x2,若在区间(-1,1]内,g(x)=f(x)-t(x+1)有两个不同的零点,则实数t的取值范围是______.【答案】(0,]【解析】解:由当x∈(0,1]时,f(x)=x2,当-1<x≤0,可得0<≤1,可知函数在x∈(-1,1]上的解析式为f(x)=,由g(x)=f(x)-t(x+1)=0得f(x)=t(x+1),可将函数f(x)在x∈(-1,1]上的大致图象呈现如图:根据y=t(x+1)的几何意义,x轴位置和图中直线位置为y=t(x+1)表示直线的临界位置,当直线经过点(1,1),可得t =, 因此直线的斜率t 的取值范围是(0,]. 故答案为:(0,].由g (x )=f (x )-t (x +1)=0得f (x )=t (x +1),分别求出函数f (x )的解析式以及两个函数的图象,利用数形结合进行求解即可.本题考查函数方程的转化思想,利用数形结合是解决本题的关键,属于中档题.16. 已知平面向量、、满足||=1,||=||=2,且=0,则当0≤λ≤1时,|-λ-(1-λ)|的取值范围是______.【答案】[] 【解析】解:设=+(1-λ),则|-λ-(1-λ)|=|-|,∵|||-|||≤|-|≤||+||,∴|||-1|≤|-|≤||+1,∵||2=|+(1-λ)|2=λ2||2+(1-λ)2||2+2λ(1-λ)•=4λ2+4(1-λ)2=8λ2-8λ+4=8(λ-)2+2又0≤λ≤1,∴2≤||2≤4,∴≤||≤2,∴-1≤|-|≤3,即-1≤|-λ-(1-λ)|≤3.故答案为:[-1,3].设=+(1-λ),则|-λ-(1-λ)|=|-|,得|||-1|≤|-|≤||+1,由||2=8(λ-)2+2和0≤λ≤1,得≤||≤2,得-1≤|-λ-(1-λ)|≤3.本题主要考查向量模的求解,换元法与模的求解方法结合是解决本题的关键.三、解答题(本大题共5小题,共76.0分)17. 已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为3,A 1D =5. (1)求该正四棱柱的侧面积与体积;(2)若E 为线段A 1D 的中点,求BE 与平面ABCD 所成角的大小.【答案】解:(1)在正四棱柱ABCD-A1B1C1D1中,∵AA1⊥平面ABCD,AD⊂平面ABCD,∴AA1⊥AD,故,∴正四棱柱的侧面积为(4×3)×4=48,体积为V=(32)×4=36;(2)建立如图所示的空间直角坐标系,由题意可得:D(0,0,0),B(3,3,0),A1(3,0,4),E(,0,2),,,设与所成角为α,直线BE与平面ABCD所成角为θ,则cosα=,又是平面ABCD的一个法向量,故sinθ=cosα=,则.∴直线BE与平面ABCD所成的角为.【解析】(1)直接由棱柱的表面积与体积公式求解;(2)以D为坐标原点建立空间直角坐标系,利用空间向量求解线面角.本题考查棱柱体积与表面积的求法,考查空间想象能力与思维能力,训练了利用空间向量求解线面角,是中档题.18.如图,某广场有一块边长为1(hm)的正方形区域ABCD,在点A处装有一个可转动的摄像头,其能够捕捉到图象的角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上)设∠PAB=θ,记tanθ=t.(1)用t表示的PQ长度,并研究△CPQ的周长l是否为定值?(2)问摄像头能捕捉到正方形ABCD内部区域的面积S至多为多少hm2?【答案】解:(1)设BP=t,CP=1-t(0≤t≤1),所以∠DAQ=45°-θ,DQ=A tan(45°-θ)=,则:CQ=1-.所以:PQ==,故:l=CP+CQ+PQ=1-t+=1-t+1+t=2.所以△CPQ的周长为定值2.(2)S=S正方形-S△ABP-S△ADQ,=1--=2-.当且仅当t=时,摄像头能捕捉到正方形ABCD内部区域的面积S至多为2-hm2.【解析】(1)直接利用已知条件求出t的关系式,进一步求出周长为定值.(2)利用关系式的恒等变换和不等式的基本性质的应用求出结果.本题考查的知识要点:函数的关系式的恒等变换,基本不等式的应用,分割法的应用,主要考查学生的运算能力和转化能力,属于基础题型.19.对于在某个区间[a,+∞)上有意义的函数f(x),如果存在一次函数g(x)=kx+b使得对于任意的x∈[a,+∞),有|f(x)-g(x)|≤1恒成立,则函数g(x)是函数f (x)在区间[a,+∞)上的弱渐近函数.(1)若函数g(x)=3x是函数f(x)=3x+在区间[4,+∞)上的弱渐近函数,求实数m的取值范围;(2)证明:函数g(x)=2x是函数f(x)=2在区间[2,+∞)上的弱渐近函数.【答案】解:(1)函数g(x)=3x是函数f(x)=3x+在区间[4,+∞)上的弱渐近函数,可得|3x+-3x|≤1在[4,+∞)上恒成立,即|m|≤x在[4,+∞)上恒成立,可得|m|≤4,即-4≤m≤4;(2)证明:|f(x)-g(x)|=|2-2x|,由x≥2时,由x2-(x2-1)=1>0,即x>,可得|f(x)-g(x)|=2(x-)=,由y=x,y=在x≥2递增,可得y=x+在x≥2递增,即有x+≥2+,则<=2(2-)<1,即为|f(x)-g(x)|<1在区间[2,+∞)上恒成立,故函数g(x)=2x是函数f(x)=2在区间[2,+∞)上的弱渐近函数.【解析】(1)由题意可得|m|≤x在[4,+∞)上恒成立,由x的最小值即可得到所求范围;(2)由弱渐近函数的定义,只要证得|f(x)-g(x)|<1在区间[2,+∞)上恒成立,结合函数的单调性即可得证.本题考查新定义的理解和运用,考查不等式恒成立问题解法,注意运用转化思想和函数的单调性,考查化简运算能力和推理能力,属于中档题.20.(1)已知双曲线的中心在原点,焦点在x轴上,实轴长为4,渐近线方程为y=±x.求双曲线的标准方程;(2)过(1)中双曲线上一点P的直线分别交两条渐近于A(x1,y1),B(x2,y2)两点,且P是线段AB的中点,求证:x1•x2为常数;(3)我们知道函数y=的图象是由双曲线x2-y2=2的图象逆时针旋转45°得到的,函数y=的图象也是双曲线,请尝试写出曲线y=的性质(不必证明).【答案】解:(1)设双曲线的方程为,由2a=4,a=2,由双曲线的渐近线方程为y=±x,则=,则b=2,∴双曲线的方程为:;(2)法一:由题不妨设,,则,则P在双曲线上,代入双曲线方程得x1•x2=4;法二:当直线AB的斜率不存在时,显然x=±2,则x1•x2=4;当直线AB的斜率存在时,设直线AB的方程为y=kx+t,(k≠0,k≠±),则,则,同理,则,此时,,代入双曲线方程得t2=4(k2-3),则x1•x2═=4;(3)①对称中心:原点,对称轴方程:,,②顶点坐标为,,焦点坐标:,,实轴长:,虚轴长:2b=2,焦距:2c=4;③范围:x≠0,,④渐近线:.【解析】(1)根据双曲线的性质求得双曲线的方程;(2)方法一:设A,B点坐标,求得P点坐标,代入双曲线方程,即可求得x1•x2;方法二:分类讨论,设直线AB的方程,分别求得A和B点坐标,求得P点坐标,代入双曲线方程,即可求得x1•x2;(3)根据曲线方程,分别求得曲线的性质.本题考查双曲线的方程及性质,考查分类讨论的数学思想方法,属于中档题.21.若存在常数k(k∈N*,k≥2)、c、d,使得无穷数列{a n}满足a n+1=,则称数列{a n}为“Γ数列.已知数列{b n}为“Γ数列”.(1)若数列{b n}中,b1=1,k=3、d=4、c=0,试求b2019的值;(2)若数列{b n}中,b1=2,k=4、d=2、c=1,记数列{b n}的前n项和为S n,若不等式S4n≤λ•3n对n∈N*恒成立,求实数λ的取值范围;(3)若{b n}为等比数列,且首项为b,试写出所有满足条件的{b n},并说明理由.【答案】解:(1)数列{b n}为“Γ数列”中,b1=1,k=3、d=4、c=0,所以:当n≥1时,n∈N+时,b3n+1=0,又,即:b2017=0,b2018=b2017+d=0+4=4,b2019=b2018+d=4+4=8.(2)因为数列{b n}是“Γ数列”,且b1=2,k=4,d=2,c=1,所以:b4n+1-b4n-3=1×(b4n-1+d)-b4n-3=(b4n-2+2d)-b4n-3=(b4n-3+3d)-b4n-3=3d=6,则:数列前4n项中的项b4n-3是以2为首项,6为公差的等差数列.易知{b4n}的项后按原来的顺序构成一个首项为4,公差为2的等差数列.所以:S4n=(b1+b5+…+b4n-3)+[(b2+b3+b4)+(b6+b7+b8)+…+(b4n-6+b4n-5+b4n-4)+(b4n-2+b4n-1+b4n)],=,=12n2+8n.由于不等式S4n≤λ•3n对n∈N*恒成立,所以:,设=,则:λ≥(∁n)max,所以:c n+1-∁n==.当n=1时,-24n2+8n+20>0,当n≥2时,-24n2+8n+20<0,所以:c1<c2>c3>…,所以∁n的最大值为.即.(3){b n}为等比数列,设数列{b n}的公比,由等比数列的通项公式:,当m∈N+时,b km+2-b km+1=d,即:bq km+1-bq km=bq km(q-1)=d,①q=1,则d=0,故:b n=b.②当q≠1时,则:,所以q km为常数,则q=-1,k为偶数时,d=-2b ,经检验,满足条件数列{b n}的通项公式为:.【解析】(1)直接利用信息求出数列的项.(2)利用恒成立问题和函数的单调性,求出λ的取值范围.(3)直接利用分类讨论思想求出数列的通项公式.本题考查的知识要点:数列的通项公式的求法及应用,函数的单调性的应用,主要考查学生的运算能力和转化能力,属于中档题.第11页,共11页。

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z=i(1+i),则|z|等于()A。

2B。

√2C。

1D。

2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。

(2.-7)B。

(3.1)C。

(1.5)D。

(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。

5anB。

6anC。

7anD。

14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。

则函数g(x)的一个增区间是()A。

(π/4.3π/4)B。

(3π/4.5π/4)C。

(5π/4.7π/4)D。

(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。

a>b+1B。

a>b-1C。

a^2>b^2D。

a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。

①④B。

②③C。

②④D。

①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。

6B。

8C。

10D。

128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。

336B。

510C。

1326D。

3603二、填空题共6小题,每小题5分,共30分。

9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。

答案:1010.已知向量a=(1.b)。

b=(-2.-1),且向量a+b的模长为√10.则实数x=______。

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.2019年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2}.【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用补集定义直接求解.【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为6π.【考点】G8:扇形面积公式.【专题】11:计算题;31:数形结合;44:数形结合法;56:三角函数的求值.【分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.【解答】解:根据扇形的弧长公式可得l=αr=×6=2π,根据扇形的面积公式可得S=lr=•2π•6=6π.故答案为:6π.【点评】本题考查扇形的弧长与面积公式,正确运用公式是解题的关键,属于基础题.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为900.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由双曲线方程,求得其渐近线方程,求得直线的夹角,即可求得两条渐近线夹角.【解答】解:双曲线x2﹣y2=11的两条渐近线的方程为:y=±x,所对应的直线的倾斜角分别为90°,∴双曲线x2﹣y2=1的两条渐近线的夹角为90°,故答案为:90°.【点评】本题考查双曲线的几何性质,考查直线的倾斜角的应用,属于基础题.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=3.【考点】DA:二项式定理.【专题】35:转化思想;49:综合法;5P:二项式定理.【分析】由题意利用二项式系数的性质,求得n的值.【解答】解:(a+b)n展开式的二项式系数之和为2n=8,则n=3,故答案为:3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是[﹣,].【考点】7F:基本不等式及其应用.【专题】11:计算题;57:三角函数的图象与性质.【分析】三角换元后,利用二倍角正弦公式和正弦函数的值域可得.【解答】因为x2+y2=1,所以可设x=cosθ,y=sinθ,则xy=cosθsinθ=sin2θ∈[﹣,]故答案为[﹣,]【点评】本题考查了三角换元以及正弦函数的值域.属基础题.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于12πcm3.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题.【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12πcm3.【点评】本题考查圆锥侧面积的求法.注意圆锥的高,母线长,底面半径组成直角三角形.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.【考点】8J:数列的极限.【专题】11:计算题;54:等差数列与等比数列.【分析】无穷等比数列{a n}中,,推出0<|q|<1,然后求出首项a1的取值范围.【解答】解:因为无穷等比数列{a n}中,,所以|q|<1,=,所以,∵﹣1<q<1且q≠0∴0<a1<1且a1≠故答案为:.【点评】本题考查无穷等比数列的极限存在条件的应用,解题时要注意极限逆运算的合理运用.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为[﹣1,0].【考点】1C:集合关系中的参数取值问题.【专题】36:整体思想;4O:定义法;5J:集合.【分析】先化简集合A,由B⊆A,得,得﹣1≤a≤0.【解答】解:∵>0,∴(x+1)(x﹣1)<0,∴﹣1<x<1,∴A=(﹣1,1);∵B⊆A,∴,∴﹣1≤a≤0,∴实数a的取值范围为[﹣1,0].故答案为[﹣1,0].【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是﹣1.【考点】OY:三阶矩阵.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】将行列式按第3行第2列展开,由f(x)=A32=﹣=﹣(4×2x﹣4×4x)=﹣2x+2(1﹣2x),令y=1+f(x)=1﹣2x+2(1﹣2x)=0,解得:x=﹣1,即可求得y =1+f(x)的零点.【解答】解:第3行第2列的元素的代数余子式A32=﹣=﹣4×2x+4×4x=﹣2x+2(1﹣2x),∴f(x)=﹣2x+2(1﹣2x),y=1+f(x)=1﹣2x+2(1﹣2x),令y=0,即2x+2(1﹣2x)=1,解得:2x=,x=﹣1故答案为:﹣1.【点评】本题考查三阶行列式的余子式的定义,考查函数的零点的定义,属于中档题.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期π.【考点】A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】38:对应思想;4R:转化法;57:三角函数的图象与性质;5N:数系的扩充和复数.【分析】由已知求得Z1,Z2的坐标,结合∠Z1OZ2=90°可得f(x)的解析式,降幂后利用辅助角公式化积,再由周期公式求周期.【解答】解:由题意,Z1(cos x,2f(x)),,∴∠Z1OZ2=90°,∴,即2f(x)=﹣,∴f(x)=.则函数f(x)的最小正周期为π.故答案为:π.【点评】本题考查复数的代数表示法及其几何意义,考查三角函数周期的求法,是基础的计算题.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为2.【考点】3R:函数恒成立问题.【专题】11:计算题;35:转化思想.【分析】想法求出左边式子的最小值,首先把分式形式乘以a2,变形为2+[+]+[+],利用均值不等式得出式子的最小值.【解答】解:∵(+)a2=(+)[x+(a﹣x)]2=(+)[x2+2x(a﹣x)+(a﹣x)2]=2+[+]+[+]≥2+4+2=8∴+≥∴≥2'∴0<a≤2.【点评】考查了对式子的配凑变形,均值定理的应用,思路不太好想,有一定难度.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为3,4.【考点】8E:数列的求和.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】求得n=1,2,3,4,5时,数列{b n}的前5项,即可求出通项公式,再求得d 和首项a1,得到等差数列{a n}的通项公式,求得n=1,2,3,4,H2n﹣1的特点,结合k =3,4,5,6,集合的特点,即可得到所求取值.【解答】解:T n+=(﹣1)n b n(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.答案为:3,4【点评】本题考查新定义的理解和运用,考查等差数列的通项公式的求法,集合的性质和数列的单调性的判断和应用,考查化简整理的运算能力,属于难题.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x【考点】3E:函数单调性的性质与判断;3K:函数奇偶性的性质与判断.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】可看出f(x)=arcsin x在[﹣1,1]上单调递增,y=lg|x|和f(x)=cos x都是偶函数,从而判断A,B,D都错误,只能选C.【解答】A.f(x)=arcsin x在区间[﹣1,1]上单调递增;∴该选项错误;B.y=lg|x|为偶函数,∴该选项错误;C.f(x)=﹣x是奇函数,且在[﹣1,1]上单调递减;∴该选项正确;D.f(x)=cos x是偶函数,∴该选项错误.故选:C.【点评】考查反正弦函数和一次函数的单调性,以及奇函数和偶函数的定义.14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】确定基本事件的个数,即可求出概率.【解答】解:随机选派2人参加象棋比赛,有=10种,选出的2人中恰有1人是女队员,有=6种,∴所求概率为=,故选:B.【点评】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c【考点】3G:复合函数的单调性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】先判断f(x)在(0,+∞)上是减函数,再比较,,的大小关系,从而得到a,b,c的大小关系.【解答】解:∵f(x)=log sinθx,θ∈(0,),∴sinθ∈(0,1),故f(x)在(0,+∞)上为减函数.∵a=f(),b=f(),c=f(),∵≥>0,∴a=f()≤b=f (),a≤b.又≤=,即)≥,∴b=f()≤c=f(),即b≤c.综上,a≤b≤c,故选:D.【点评】本题主要考查复合函数的单调性,基本不等式的应用,比较两个数大小的方法,属于中档题.16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)【考点】19:集合的相等.【专题】32:分类讨论;35:转化思想;5J:集合.【分析】由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,解得:0<n<4;综上所述,0≤n+m<4;故选:A.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)转换底面,代入体积公式计算;(2)利用线线垂直证明AF⊥平面PBC,即可得出结论.【解答】(1)解:∵P A⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵P A⊥平面ABCD,∴P A⊥AB,又∵P A=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又P A⊥BC,BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,又AF⊂平面P AB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE⊂平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)【点评】本题给出特殊的四棱锥,考查了线面垂直的证明与性质的运用,考查了学生的空间想象能力与推理论证能力,关键是要熟练掌握定理的条件.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.【考点】9O:平面向量数量积的性质及其运算;HR:余弦定理.【专题】15:综合题;35:转化思想;58:解三角形;5A:平面向量及应用.【分析】(1)利用同角三角函数基本关系式可求sin B,由sin B>sin A,可得A为锐角,可求cos A,根据三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算得解cos C 的值.(2)由余弦定理,基本不等式可求得ac≤13,根据平面向量数量积的运算,诱导公式即可计算得解.【解答】解:(1)∵cos B=,可得:sin B==,∵sin B=>sin A=,∴B>A,可得A为锐角,∴cos A==,∴cos C=﹣cos(A+B)=sin A sin B﹣cos A cos B=.(2)证明:∵由余弦定理b2=a2+c2﹣2ac cos B,可得:a2+c2﹣ac=16,∵a2+c2≥2ac,∴解得:ac≤13,当且仅当a=c时等号成立,∴=ac cos(π﹣B)=﹣ac cos B=﹣ac≥﹣5.得证.【点评】本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,余弦定理,基本不等式,平面向量数量积的运算,诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.【考点】5A:函数最值的应用;5C:根据实际问题选择函数类型.【专题】34:方程思想;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解出即可得出.(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].可得获得利润f(t)=5×+1﹣=﹣+1,t>0.利用反比例函数的单调性即可得出.【解答】解:(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解得:3≤x≤10,因此要使生产该产品2小时获得的利润不低于30元,x的取值范围为[3,10].(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].则获得利润f(t)=5×+1﹣=﹣+1,t>0.由反比例函数的单调性可得:f(t)在t∈[90,900]单调递减.∴t=90时,即该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.故该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.【点评】本题考查了不等式的解法、利用导数研究函数的单调性极值与最值,考查了数形结合方法、推理能力与计算能力,属于中档题.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.【考点】KN:直线与抛物线的综合.【专题】34:方程思想;4I:配方法;4J:换元法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由抛物线方程求得p,则答案可求;(2)P(x P,y P),设A(,y1),B(,y2),运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,由根与系数的关系即可得到结论;(3)由题意可得,﹣1≤x P<0,﹣2<y P<2,可得△P AB面积为S=|PM|•|y1﹣y2|,再由配方和换元法结合函数单调性求最值.【解答】(1)解:由抛物线C:y2=4x,得2p=4,则p=2,∴抛物线C的焦点到准线的距离为2;(2)证明:P(x P,y P),设A(,y1),B(,y2),AB中点为M的坐标为M(x M,y M),则M(,),抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上,可得,,化简可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,可得y1+y2=2y P,y1y2=8,可得;(3)解:若P是曲线x2+=1(x<0)上的动点,可得,﹣1≤x P<0,﹣2<y P<2,由(2)可得y1+y2=2y P,y1y2=8,由PM垂直于y轴,可得△P AB面积为S=|PM|•|y1﹣y2|=()•=[﹣]•=(),令t===,得时,t取得最大值.x P=﹣1时,t取得最小值2,即2≤t≤,则S=在2≤t≤递增,可得S∈[6,],∴△P AB面积的最小值为6.【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,训练了利用换元法及函数的单调性求最值,属于难题.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)a n=2n+cos,可得a1=2,a2=3,a3=8,M3,m3.即可得出b3.(2)充分性:若“数列{a n}是等差数列”,设其公差为d,可得b n=,b n+1=.b n+1﹣b n=常数,即可证明“数列{b n}是等差数列”.必要性:若“数列{b n}是等差数列”,设其公差为d′,b n+1﹣b n=﹣=+=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n =a1,进而得出.同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.由|b n|=1,b n=1或﹣1,对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反.在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<….﹣1===…==,1===…===…,=﹣1,=1.=﹣1,=1,由于≥与≤中只有一个等号成立,必有>,=.可得=+4.==+4.k i>k i﹣1,k i≥k i﹣1+1,≥+1,≥+4,﹣≥4.利用累加求和方法即可得出.【解答】解:(1)∵a n=2n+cos,∴a1=2,a2=3,a3=8,∴M3=8,m3=2.∴b3==5.(2)证明:充分性:若“数列{a n}是等差数列”,设其公差为d,则b n=,b n+1=.∴b n+1﹣b n=,故“数列{b n}是等差数列”必要性:若“数列{b n}是等差数列”,设其公差为d′则b n+1﹣b n=﹣=+=d′根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1﹣b n=﹣==d′,即a n+1﹣a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.∵|b n|=1,∴b n=1或﹣1,∴对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反∴在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<…且﹣1===…==,1===…===…∵=﹣1,=1即=﹣1,=1,由于≥与≤中只有一个等号成立,∴必有>,=.可得=+4.∴==+4.∵k i>k i﹣1∴k i≥k i﹣1+1∴≥+1∴≥+4∴﹣≥4.利用累加求和方法可得:≥+4(m﹣1),∴≥+4×(1010﹣1)>﹣2018+4036=2018.这与|a n|<2018矛盾,故假设错误,∴存在K∈N*,使∀n≥K,有b n+1=b n.【点评】本题考查了数列递推关系、等差数列的通项公式与单调性、累加求和方法、不等式的解法、充要条件,考查了推理能力与计算能力,属于难题.。

2019年东北三省三校(哈尔滨师大附中、东北师大附中、 辽宁省实验中学)高考数学一模试卷(文科)-解析版

2019年东北三省三校(哈尔滨师大附中、东北师大附中、 辽宁省实验中学)高考数学一模试卷(文科)-解析版

2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分) 1. 复数(1-i )(3+i )的虚部是( )A. 4B. −4C. 2D. −2 2. 若集合A ={x |-1≤x ≤2},B ={x |log 3x ≤1},则A ∩B =( )A. {x|−1≤x ≤2}B. {x|0<x ≤2}C. {x|1≤x ≤2}D. {x|x ≤−1或x >2}3. 已知向量a ⃗ ,b ⃗ 的夹角为60°,|a⃗ |=1,|b ⃗ |=2,则|3a ⃗ +b ⃗ |=( ) A. √5 B. √17 C. √19 D. √214. 设直线y =x -√2与圆O :x 2+y 2=a 2相交于A ,B 两点,且|AB |=2√3,则圆O 的面积为( )A. πB. 2πC. 4πD. 8π 5. 等差数列{a n }的前n 项和为S n ,且a 2+a 10=16,a 8=11,则S 7=( )A. 30B. 35C. 42D. 566. 已知α∈(0,π2),tan (α+π4)=-3,则sinα=( )A. 2√55B. √55C. 45D. 357. 执行两次如图所示的程序框图,若第一次输入的x 的值为4,第二次输入的x 的值为5,记第一次输出的a 的值为a 1,第二次输出的a 的值为a 2,则a 1-a 2=( )A. 0B. −1C. 1D. 28. 设a =(57)37,b =(37)57,c =(37)37,则a ,b ,c 的大小关系为( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b9. 已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( )A. m ⊥n ,n ⊂αB. m//β,α⊥βC. n ⊥α,n ⊥β,m ⊥βD. α∩β=n ,α⊥β,m ⊥n10. 圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y >√1−x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A. 7825B. 7225C. 257D. 22711. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点为F (-√5,0),点A 的坐标为(0,2),点P 为双曲线右支上的动点,且△APF 周长的最小值为8,则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √512. 若函数f (x )=e x -ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是( ) A. a ≤e2B. a >eC. a ≤eD. a >e2二、填空题(本大题共4小题,共20.0分)13. 已知x ,y 满足约束条件:{x +2y −1≤0x −y −2≤0x ≥−1,则z =2x +y 的最大值是______.14. 甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是______.15. 等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=______.16. 四面体A -BCD 中,AB ⊥底面BCD ,AB =BD =√2,CB =CD =1,则四面体A -BCD 的外接球的表面积为______.三、解答题(本大题共7小题,共82.0分) 17. 设函数f (x )=sin (2x -π6)+2cos 2x .(Ⅰ)当x ∈[0,π2]时,求函数f (x )的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且f (A )=32,a =√6,b =2,求△ABC 的面积.18. 世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据: 每周累计户外暴露时间 (单位:小时) [0,7) [7,14) [14,21) [21,28) 不少于28小时 近视人数 21 39 37 2 1 不近视人数3375253(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?近视 不近视足够的户外暴露时间 不足够的户外暴露时间附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d) P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.82819. 如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,P 在平面ABCD 上的射影为G ,且G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(Ⅰ)求异面直线GE 与PC 所成的角余弦值; (Ⅱ)求点D 到平面PBG 的距离;(Ⅲ)若F 点是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.20. 已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,点P (-1,√22)在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.21. 已知函数f (x )=e x (e 为自然对数的底数),g (x )=ax (a ∈R ).(Ⅰ)当a =e 时,求函数t (x )=f (x )-g (x )的极小值;(Ⅱ)若当x ≥1时,关于x 的方程f (x )+ln x -e =g (x )-a 有且只有一个实数解,求实数a 的取值范围. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的方程为y =kx ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)曲线C 与直线l 交于A ,B 两点,若|OA |+|OB |=2√3,求k 的值.23. 已知函数f (x )=|x -4a |+|x |,a ∈R .(Ⅰ)若不等式f (x )≥a 2对∀x ∈R 恒成立,求实数a 的取值范围;(Ⅱ)设实数m 为(Ⅰ)中a 的最大值,若实数x ,y ,z 满足4x +2y +z =m ,求(x +y )2+y 2+z 2的最小值.答案和解析1.【答案】D【解析】解:∵(1-i)(3+i)=4-2i.∴复数(1-i)(3+i)的虚部是-2.故选:D.再利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【答案】B【解析】解:B={x|0<x≤3};∴A∩B={x|0<x≤2}.故选:B.可解出集合B,然后进行交集的运算即可.考查描述法的定义,对数函数的单调性,以及交集的运算.3.【答案】C【解析】解:∵向量,的夹角为60°,||=1,||=2,∴==1,则|3+|====,故选:C.由已知结合向量数量积的定义可求,然后根据向量数量积的性质|3+|=,展开后可求.本题主要考查了向量数量积的定义及性质的简单应用,属于基础试题.4.【答案】C【解析】解:根据题意,圆O:x2+y2=a2的圆心为(0,0),半径r=|a|,圆心到直线y=x-的距离d==1,又由弦长|AB|=2,则有a2=1+()2=4,则圆O的面积S=πa2=4π;故选:C.根据题意,求出圆O的圆心与半径,求出圆心O到直线的距离,由直线与圆的位置关系可得a2=1+()2=4,结合圆的面积公式计算可得答案.本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题.5.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,∴,解得a1=,d=,∴S7=7a1+==35.故选:B.利用等差数列通项公式列方程组,能求出a1=,d=,由此再利用等差数列前n项和公式能求出S7.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.【答案】A【解析】解:∵利用两角和的正切公式得tan ()==-3,∴tanα=2.∵α∈(0,),∴.再根据sin2α+cos2α=1,解得.故选:A.利用两角和的正切公式求出tanα,再结合角的范围及同角三角函数基本关系即可求出sinα.本题考查两角和的正切公式,考查同角三角函数基本关系式的应用,是基础题.7.【答案】B【解析】解:当输入的x值为4时,b=2,第一次,不满足b2>x,不满足x能被b整数,故输出a=0;当输入的x值为5时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;即第一次输出的a的值为a1的值为0,第二次输出的a的值为a2的值为1,则a1-a2=0-1=-1.故选:B.根据已知中的程序框图,模拟程序的执行过程,可得答案.本题考查的知识点是程序框图,难度不大,属于基础题.8.【答案】B【解析】解:由函数y=()x为减函数,可知b<c,由函数y=x为增函数,可知a>c,即b<c<a,故选:B.根据指数函数和幂函数的单调性即可求出.本题考查了指数函数和幂函数的单调性,属于基础题.9.【答案】C【解析】解:当n⊥β,m⊥β时,m∥n,当n⊥α时,m⊥α,即充分性成立,即m⊥α的一个充分条件是C,故选:C.根据空间直线和平面垂直的判定定理以及性质结合充分条件和必要条件的定义进行求解即可.本题主要考查充分条件和必要条件的判断,结合空间直线和平面垂直的位置关系是解决本题的关键.10.【答案】A【解析】解:从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y >的数对(x,y)共有11个,即从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y≤的数对(x,y)共有100-2×11=78个,由几何概型中的面积型可得:=,所以π==,故选:A.由不等式表示的平面区域得:不等式y >的平面区域为正方形内位于第一,二象限圆x2+y2=1外的区域,由几何概型中的面积型得:=,即π==,得解本题考查了几何概型中的面积型,及不等式表示的平面区域,属中档题11.【答案】D【解析】解:由|AF|==3,三角形APF的周长的最小值为8,可得|PA|+|PF|的最小值为5,又F'为双曲线的右焦点,可得|PF|=|PF'|+2a,当A,P,F'三点共线时,|PA|+|PF'|取得最小值,且为|AF'|=3,即有3+2a=5,即a=1,c=,可得e==.故选:D.由题意可得|AF|=3,可得|PA|+|PF|的最小值为5,由双曲线的定义可得|PA|+|PF'|+2a的最小值为5,当A,P,F'三点共线时,取得最小值,可得a=1,由离心率公式可得所求值.本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力,属于中档题.12.【答案】D【解析】解:f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >,故选:D.求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查了切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,是一道综合题.13.【答案】3【解析】解:作出x,y满足约束条件:对应的平面区域如图:(阴影部分),由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由,解得A (,),代入目标函数z=2x+y得z=3.即目标函数z=2x+y的最大值为3.故答案为:3.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】乙【解析】解:①设会弹钢琴的是甲,则甲、乙说的是真话,与题设矛盾,故会弹钢琴的不是甲,②设会弹钢琴的是乙,则丙说的是真话,与题设相符,故会弹钢琴的是乙,③设会弹钢琴的是丙,则乙、丙说的时真话,与题设矛盾,故会弹钢琴的不是丙,综合①②③得:会弹钢琴的是乙,故答案为:乙先理解题意,再进行简单的合情推理,逐一进行检验即可得解.本题考查了进行简单的合情推理,属简单题.15.【答案】30【解析】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q ),=16,解得a1=q=2.则S4==30.故答案为:30.利用等比数列的通项公式与求和公式即可得出.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.【答案】4π【解析】解:如图,在四面体A-BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,可得∠BCD=90°,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥A-BCD的外接球的半径为1.其表面积为4π×12=4π.故答案为:4π.由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.本题考查多面体外接球表面积的求法,补形是关键,是中档题.17.【答案】(本题满分为12分)解:(Ⅰ)f(x)=sin(2x-π6)+2cos2x=√32sin2x+12cos2x+1=sin(2x+π6)+1,…………………(2分)∵x∈[0,π2],∴π6≤2x +π6≤7π6,…………………(4分)∴1 2≤sin(2x+π6)+1≤2,∴函数f(x)的值域为[12,2];…………………(6分)(Ⅱ)∵f(A)=sin(2A+π6)+1=32,∴sin(2A+π6)=12,∵0<A<π,∴π6<2A+π6<13π6,∴2A+π6=5π6,即A=π3,…………………(8分)由余弦定理,a2=b2+c2-2bc cos A,∴6=4+c2-2c,即c2-2c-2=0,又c>0,∴c=1+√3,…………………(10分)∴S△ABC=12bc sin A=12×2×(1+√3)×√32=32+√32.…………………(12分)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+)+1,由已知可求范围≤2x+≤,利用正弦函数的性质可求其值域.(Ⅱ)由已知可求sin(2A+)=,可求范围<2A+<,从而可求A=,由余弦定理解得c的值,即可根据三角形的面积公式计算得解.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A,则P(A)=C31C11C42=12故随机抽取2名,其中恰有一名学生不近视的概率为12.(Ⅱ)根据以上数据得到列联表:近视不近视足够的户外暴露时间4060不足够的户外暴露时间6040所以K2的观测值k2=200×(40×40−60×60)2(40+60)×(60+40)×(40+60)×(60+40)=8.000>6.635,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【解析】(Ⅰ)根据古典概型概率公式计算可得;(Ⅱ)先得2×2列联表,再根据表格中数据计算k2,再根据临界值表作答.本题考查了独立性检验,属中档题.19.【答案】解:(I )由已知V P−BGC =13S △BCG ⋅PG =13⋅12BG ⋅GC ⋅PG =83,∴PG =4.在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角.在△PCH 中,CH =√2,PC =√20,PH =√18,由余弦定理得,cos ∠PCH =√1010,∴异面直线GE 与PC 所成的角的余弦值为√1010.(II )∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ,在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ∴DK 的长就是点D 到平面PBG 的距离.∵BC =2√2∴GD =34AD =34BC =32√2.在△DKG ,DK =DG sin45°=32,∴点D 到平面PBG 的距离为32.(III )在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF , 又因为DF ⊥GC ,∴GC ⊥平面MFD ,∴GC ⊥FM .由平面PGC ⊥平面ABCD ,∴FM ⊥平面ABCD ∴FM ∥PG ; 由GM ⊥MD 得:GM =GD •cos45°=32. ∵PFFC =GMMC =3212=3,∴由DF ⊥GC 可得PFFC =3.【解析】(1)先利用等体积法求出PG 的长,在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角,在△PCH 中利用余弦定理求出此角即可; (2)在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ,DK 的长就是点D 到平面PBG 的距离,在△DKG 利用边角关系求出DK 长;(3)在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF ,先证明FM ∥PG ,然后利用三角形相似对应边成比例建立等量关系即可.本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.【答案】解:(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|=2√2解得a =√2,c =1,b =1,所以椭圆E 的标准方程为x 22+y 2=1,(Ⅱ)由已知,可设直线l 方程为x =ty +1,设A (x 1,y 1),B (x 2,y 2), 联立{x 2+y 2=3x=ty+1得(t 2+1)y 2+2ty -2=0 易知△>0, 则y 1+y 2=-2t t 2+1,y 1y 2=-2t 2+1,所以F 1A ⃗⃗⃗⃗⃗⃗⃗ •F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2=(t 2+1)y 1y 2+2t (y 1+y 2)+4=2−2t 2t 2+1 因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2−2t 2t 2+1=1,解得t 2=13.联立{x =ty +1x 22+y 2=1,得(t 2+2)y 2+2ty -1=0 易知△=8(t 2+1)>0,设C (x 3,y 3),B (x 4,y 4),则y 3+y 4=-2t t 2+2,y 1y 2=-1t 2+2,∴|y 3-y 4|=√(y 3+y 4)2−4y 3y 4=√8(1+t 2)t 2+2∴△F 1CD 的面积S =12|F 1F 2|•|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67 【解析】(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a=|PF 1|+|PF 2|=2,求解a ,b 即可得到椭圆方程.(Ⅱ)设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2),利用联立 可得(t 2+1)y 2+2ty-2=0,通过韦达定理以及向量的数量积推出解得t 2=.联立,得(t 2+2)y 2+2ty-1=0.设C (x 3,y 3),D (x 4,y 4),利用韦达定理,求解三角形的面积.本题考查椭圆的简单性质,考查直线与椭圆的位置关系的应用,考查三角形的面积计算公式,把面积比转化为长度比是解题的关键,考查了运算求解能力,转化与化归能力,属于中档题.21.【答案】解:(Ⅰ)当a =e 时,t (x )=e x -ex ,t ′(x )=e x -e ,………(1分)令t ′(x )=0,则x =1,x ,t ′(x ),t (x )的变化列表如下: x (-∞,1) 1 (1,+∞) t ′(x ) - 0 + t (x )单调递减极小值单调递增………(3分)所以t(x)极小值=t(1)=e-e=0……………(5分)(Ⅱ)设F(x)=f(x)-g(x)+ln x-e+a=e x-ax+ln x-e+a,(x≥1),F′(x)=e x-a+1x,(x≥1),设h(x)=e x-a+1x ,h′(x)=x2⋅e x−1x2,………(7分)由x≥1得,x2≥1,x2e x-1>0,h′(x)>0,h(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1-a,①当e+1-a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程f(x)+ln x-e=g(x)-a有且只有一个实数解…(9分)②当e+1-a<0,即a>e+1时,由(Ⅰ)可知e x≥ex,所以F′(x)=e x+1x -a≥ex+1x-a,F′(ae)≥e•ae+ea-a=ea>0,又ae>1e=1,故∃x0∈(1,ae),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+ln a-a2+a-e>e a-a2+1,令k(x)=e x-x2+1(x≥1),s(x)=k′(x)=e x-2x,s′(x)=e x-2≥e-2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故x>1时,k′(x)>0,k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>ae>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解x1,又在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.综上,a≤e+1…(12分)【解析】(Ⅰ)代入a的值,解关于导函数的不等式,求出函数的单调区间,求出函数的极小值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合方程的解的个数确定a 的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(Ⅰ)∵{x=√3cosα+2y=√3sinα,∴x2-4x+y2+1=0所以曲线C的极坐标方程为ρ2-4ρcosθ+1=0.(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入曲线C得ρ2-4ρcosθ1+1=0,设A,B所对应的极径分别为ρ1,ρ2.ρ1+ρ2=4cosθ1,ρ1ρ2=1>0,△=16cosθ12-4>0 ∴|QA|+|QB|=|ρ1|+|ρ2|=|ρ1+ρ2|=2√3∴cosθ1=±√32满足△>0∴θ1=π6或5π6∴l的倾斜角为π6或5π6,则k=tanθ1=√33或-√33.【解析】(Ⅰ)先消去α得C的普通方程,再化成极坐标方程;(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入C的极坐标方程,利用韦达定理可求得.本题考查了参数方程化成普通方程,属基础题.23.【答案】解:(Ⅰ)因为f(x)=|x-4a|+|x|≥|x-4a-x|=4|a|,所以a2≤4|a|,解得:-4≤a≤4.故实数a的取值范围为[-4,4];(Ⅱ)由(1)知,m=4,即4x+2y+z=4,根据柯西不等式(x+y)2+y2+z2=121[(x+y)2+y2+z2]•[42+4+1]≥121[4(x+y)-2y+z]2=1621等号在x+y4=y−2=z即x=87,y=-821,z=421时取得.所以(x+y)2+y2+z2的最小值为1621.【解析】(Ⅰ)根据基本不等式的性质得到关于a的不等式,解出即可;(Ⅱ)根据柯西不等式的性质求出代数式的最小值即可.本题考查了解绝对值不等式,考查基本不等式以及柯西不等式的性质,是一道常规题.。

[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析

[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析

-2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A ={1,3},B ={0,1},则集合A ∪B =.2.(5分)已知复数(i 为虚数单位),则复数z 的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b 的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm ,侧面的对角线长是3cm ,则这个正四棱柱的体积是cm 3.7.(5分)若实数x ,y 满足x ≤y ≤2x+3,则x+y 的最小值为.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有个.11.(5分)已知函数f (x )是定义在R 上的奇函数,且f (x+2)=f (x ).当0<x ≤1时,f (x )=x 3﹣ax+1,则实数a 的值为.12.(5分)在平面四边形ABCD 中,AB =1,DA =DB ,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围.14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P ﹣ABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面P AD⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ;(2)MD ⊥平面PAB .16.(14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,,.(1)求角B 的值;(2)若,求△ABC 的面积.17.(14分)如图,在平面直角坐标系xOy 中,椭圆(a >b >0)的左焦点为F ,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.【解答】解:抛物线y 2=2px (p >0)的准线为l :x =﹣,双曲线的两条渐近线方程为y =±x ,可得A (﹣,﹣),B ((﹣,),|AB|==,可得p =2.故答案为:2.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为4.【解答】解:根据题意得,t =1y ′=acosx ﹣bsinx ∴k =acos0﹣bsin0=a ∴a =3,bcos0=1∴a =3,b =1故答案为4.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x 3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为?=3,AB=1,所以可设C(3,n),又?=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围﹣4<m.【解答】解:显然直线l 有斜率,设直线l :y =k (x ﹣m ),即kx ﹣y ﹣km =0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m >0且3m 2+8m ﹣16<0解得﹣4<m <,故答案为:﹣4<m .14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f (x )关于点对称,所以,解得:a =﹣673,f (x )=(2x ﹣673)(|x+673|+|x ﹣2×673|)=2019,显然有:0<2x ﹣673<2019,即,所以,f (x )=(2x ﹣673)(x+673+2×673﹣x )=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面PAB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC?平面PBC,MN?平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB?底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD?侧面PAD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面PAB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cosB=sinB.…………………………………………………………………4分若cosB=0,则sinB=0,与sin2B+cos2B=1矛盾,故cosB≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n ﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3?2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为ξ012P所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:?,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。

2019年高考数学一模试卷(附答案)

2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (

4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2019年河南省洛阳市高考数学一模试卷和答案(文科)

2019年河南省洛阳市高考数学一模试卷和答案(文科)

17.在公差为 d 的等差数列{an}中,已知 a1=10,且 a1,2a2+2,5a3 成等比数列. (1)求 d,an; (2)若 d<0,求此数列前 n 项的和 Sn 的最大值.
18.通过随机询问某地 100 名高中学生在选择座位时是否挑同桌,得到如下 2×2 列联表:
男生
女生
合计
挑同桌
30
40
第 1 页(共 14 页)
A.1
B.﹣2
C.
D.﹣
8.(5 分)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则这个
几何体的外接球体积为( )
A.4π
B.
C.
D.
9.(5 分)正方体 ABCD﹣A1B1C1D1 的棱长为 1,点 P,Q,R 分别是棱 A1A,A1B1,A1D1 的中点,以△PQR 为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体 的表面上,则这个正三棱柱的高为( )
同桌”有关?
下面的临界值表供参考:
P(K2≥k0) 0.10
0.05
0.025
0.010
0.005
0.001
k0
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:
,其中 n=a+b+c+d)
第 3 页(共 14 页)
19.在四棱锥 P﹣ABCD 中,平面 PAD⊥平面 ABCD,AB∥CD,△PAD 是等边三角形,已
a 的取值范围是( A.(0,3)
) B.(1,3)
C.(1,+∞)
D.
6.(5 分)在平行四边形 ABCD 中,AC 与 BD 交于点 O,E 是线段 OD 的中点,AE 的延长

2019年广东省广州市高考数学一模试卷(理科)-解析版

2019年广东省广州市高考数学一模试卷(理科)-解析版

2019年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-2x<0},B={x|2x>1},则()A. B. C. D.2.已知a为实数,若复数(a+i)(1-2i)为纯虚数,则a=()A. B. C. D. 23.已知双曲线:的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,则C的离心率为()A. B. C. D. 34.刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O,圆O的半径为2,现随机向圆O内段放a粒豆子,其中有b粒豆子落在正十二边形内(a,b∈N*,b<a),则圆固率的近似值为()A. B. C. D.5.若等边三角形ABC的边长为1,点M满足,则=()A. B. 2 C. D. 36.设S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,S2m-1=11,则m=()A. 11B. 10C. 6D. 57.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A.B.C.D.8.(2-x3)(x+a)5的展开式的各项系数和为32,则该展开式中x4的系数是()A. 5B. 10C. 15D. 209.已知函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,且在,上单调递减,则ω的最大值是()A. B. C. D. 210.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.B.C.D.11.已知以F为焦点的抛物线C:y2=4x上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是()A. 2B.C.D. 412.已知函数,>,,的图象上存在关于直线x=1对称的不同两点,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设S n是等比数列{a n}的前n项和,若S3=6,S6=54,则a1=______.14.若函数的图象在点(1,f(1))处的切线过点(2,4),则a=______.15.已知关于x,y的不等式组,表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则m的取值范围是______.16.已知直四棱柱ABCD-A1B1C1D1,的所有棱长都是1,∠ABC=60°,AC∩BD=O,A1C1∩B1D1=O1,点H在线段OB1上,OH=3HB1,点M是线段BD上的动点,则三棱锥M-C1O1H的体积的最小值为______.三、解答题(本大题共7小题,共82.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知c cos B=(3a-b)cos C.(1)求sin C的值;(2)若,b-a=2,求△ABC的面积.18.如图,在三棱锥A-BCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.19.某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值.20.已知椭圆:>>的两个焦点和两个顶点在图O:x2+y2=1上.(1)求椭圆C的方程(2)若点F是C的左焦点,过点P(m,0)(m≥1)作圆O的切线l,l交C于A,B两点.求△ABF 的面积的最大值.21.已知函数f(x)=e2x-ax2,a∈R.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若f(x)在(0,+∞)上存在极大值M,证明:<.22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(a∈R).(1)写出曲线C1的普通方程和直线C2的直角坐标方程;(2)若直线C2与曲线C1有两个不同交点,求a的取值范围.23.已知函数f(x)=|x+a|-|2x-1|.(1)当a=1时,求不等式f(x)>0的解集;(2)若a>0,不等式f(x)<1对x∈R都成立,求a的取值范围.答案和解析1.【答案】D【解析】解:集合A={x|x2-2x<0}={x|0<x<2},集合B={x|2x>1}={x|x>0},A、A∩B={x|0<x<2},故本选项错误;B、A B={x|x>0},故本选项错误;C、A B,故本选项错误;D、A B,故本选项正确;故选:D.首先化简集合,再求交集,并集即可.本题主要考查集合的基本运算,比较基础.2.【答案】A【解析】解:(a+i)(1-2i)=a+2+(1-2a)i,∵复数是纯虚数,∴a+2=0且1-2a≠0,得a=-2且a≠,即a=-2,故选:A.根据复数的运算法则进行化简,结合复数是纯虚数,进行求解即可.本题主要考查复数的运算以及复数的概念,根据复数是纯虚数建立条件关系是解决本题的关键.3.【答案】C【解析】解:圆P:(x-2)2+(y+4)2=1的圆心(2,-4),双曲线的一条渐近线为:y=bx,双曲线的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,可得2b=4,所以b=2,a=1,则c=,则C的离心率为:.故选:C.求出圆心坐标,代入渐近线方程没去成b,然后求解双曲线的离心率.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】C【解析】解:由几何概型中的面积型可得:=,所以=,即π=,故选:C.由正十二边形的面积与圆的面积公式,结合几何概型中的面积型得:=,所以=,即π=,得解本题考查了正十二边形的面积及几何概型中的面积型,属中档题5.【答案】D【解析】解:由题意,可根据平行四边形法则画出如下图形:由图可知:=,∴===1•2•+1•2•1=3.故选:D.本题可根据平行四边形法则画出图形找到M点的位置,然后根据两个向量的数量积的性质进行计算.本题主要考查两个向量的数量积的计算,属基础题.6.【答案】C【解析】解:S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,则:,解得:a m=1.S2m-1===11,解得:m=6故选:C.直接利用等差数列的性质的应用和等差数列的前n项和公式的应用求出结果.本题考查的知识要点:等差数列的通项公式的性质的应用,等差数列的前n项和公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】B【解析】解:函数h=f(t)是关于t的减函数,故排除C,D,则一开始,h随着时间的变化,而变化变慢,超过一半时,h随着时间的变化,而变化变快,故对应的图象为B,故选:B.根据时间和h的对应关系分别进行排除即可.本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.8.【答案】A【解析】解:∵(2-x3)(x+a)5的展开式的各项系数和为32,则(2-1)(1+a)5=32,∴a=1,该展开式中x4的系数是2••a-1••a4=10a-5a4=5,故选:A.令x=1,可得展开式的各项系数和,再根据展开式的各项系数和为32,求得a的值,再利用通项公式可得该展开式中x4的系数.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于基础题.9.【答案】C【解析】解:函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,则:φ=.所以:f(x)=cos(ωx+),令:(k∈Z),解得:(k∈Z),由于函数在上单调递减,故:,当k=0时,整理得:,故:,所以最大值为.故选:C.直接利用函数的奇偶性和单调性,建立不等式组,进一步求出最大值.本题考查的知识要点:函数的奇偶性和单调性的应用,不等式组的解法的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.【答案】B【解析】解:由题意可知:几何体是一个圆柱与一个的球的组合体,球的半径为:1,圆柱的高为2,可得:该几何体的表面积为:+2×π×12+2π×2=7π.故选:B.画出几何体的直观图,利用三视图的数据求解表面积即可.本题考查三视图求解几何体的表面积,可知转化思想以及计算能力.11.【答案】B【解析】解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1设A(x1,y1),B(x2,y2),则∵|AF|=λ|BF|,∴x1+1=λ(x2+1),∴x1=λx2+λ-1∵|y1|=λ|y2|,∴x1=λ2x2,当λ=1时,弦AB的中点到C的准线的距离2.当λ≠1时,x1=λ,x2=,|AB|=(x1+1)+(x2+1)=.∵,∴(λ++2)max=.则弦AB的中点到C的准线的距离d=,d最大值是.∵,∴弦AB的中点到C的准线的距离的最大值是.故选:B.根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义得到中点到准线的距离,属于中档题..12.【答案】A【解析】解:当x>1时,f(x)==x+,设f(x)在(1,+∞)上的图象关于x=1的对称图象为g(x),则g(x)=f(2-x)=2-x+(x<1),由题意可知f(x)与g(x)在(-∞,1)上有公共点.∵g′(x)=-1+<0,∴g(x)在(-∞,1)上单调递减,又f(x)=ln(x+a)在(-∞,1)上单调递增,∴g(1)<f(1),即2<ln(1+a),解得a>e2-1.故选:A.求出f(x)关于直线x=1对称的函数g(x),则g(x)与f(x)在(-∞,1)上有公共解,根据两函数的单调性列出不等式即可得出a的范围.本题考查了函数零点与单调性的关系,属于中档题.13.【答案】【解析】解:∵S3==6,S6==54,∴=1+q3=9,解得q3=8,则q=2,∴=6,解得a1=故答案为:先利用等比数列的求和公式分别表示出S3及S6,代入已知的等式,两者相除并利用平方差公式化简后,得到关于q的方程,求出方程的解得到q的值即可求出首项此题考查了等比数列的性质,以及等比数列的前n项和公式,熟练掌握公式是解本题的关键.14.【答案】2【解析】解:函数的导数为:f′(x)=a+,f′(1)=a+3,而f(1)=a-3,切线方程为:y-a+3=(a+3)(x-1),因为切线方程经过(2,4),所以4-a+3=(a+3)(2-1),解得a=2.故答案为:2.求出函数的导数,利用切线的方程经过的点求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.【答案】( ,]【解析】解:作出x,y的不等式组对应的平面如图:交点C的坐标为(-m,-2),直线x-2y=2的斜率为,斜截式方程为y=x-1,要使平面区域内存在点P(x0,y0)满足x0-2y0=2,则点C(-m,-2)必在直线x-2y=2的下方,即-2≤-m-1,解得m≤2,并且A在直线的上方;A(-m,1-2m),可得1-2m≥-1,解得m,故m的取值范围是:(-∞,].故答案为:(-∞,].作出不等式组对应的平面区域,要使平面区域内存在点点P(x0,y0)满足x0-2y0=2,则平面区域内必存在一个C点在直线x-2y=2的下方,A在直线是上方,由图象可得m的取值范围.本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.16.【答案】【解析】解:因为直四棱柱ABCD-A1B1C1D1的底面是菱形,∠ABC=60°,边长为1,∴O1C1⊥平面BB1D1D,且O1C1=,O1B1=,∴C1到平面BB1D1D的距离为O1C1=,∵OH=3HB1,点M是线段BD上的动点,∴当M在B处时△O1MH的面积取得最小值.连接O1B,则O1B=OB1==,∴B1到O1B的距离d===,∵OH=3HB1,∴H到直线O1B的距离为d=.∴S ===,∴V =S•O1C1==.故答案为:.当M与B重合时△O1HM的面积最小,故三棱锥M-C1O1H的体积最小,求出△O1BH的面积,代入棱锥的体积公式计算即可.考查四面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查数形结合思想,是中档题.17.【答案】(本题满分为12分)解:(1)∵c cos B=(3a-b)cos C,∴由正弦定理可知,sin C cos B=3sin A cos C-sin B cos C,…1分即sin C cos B+cos C sin B=3sin A cos C,∴sin(C+B)=3sin A cos C,…2分∵A+B+C=π,∴sin A=3sin A cos C,…3分∵sin A≠0,∴cos C=,…4分∵0<C<π,∴sin C==;…6分(2)∵,cos C=,∴由余弦定理:c2=a2+b2-2ab cos C,可得:24=a2+b2-ab,…8分∴(a-b)2+ab=24,…9分∵b-a=2,∴解得:ab=15,…10分∴S△ABC=ab sin C==5…12分【解析】(1)已知等式利用正弦定理化简,再利用诱导公式变形,求出cosC的值,利用同角三角函数基本关系式可求sinC的值;(2)利用余弦定理及已知可求ab的值,利用三角形的面积公式即可计算得解.此题考查正弦、余弦定理的综合应用,涉及三角函数中的恒等变换应用,熟练掌握定理是解本题的关键,属于基础题.18.【答案】证明:(1)∵△ABC是等边三角形,∠BAD=∠BCD=90°,∴Rt△ABD=Rt△BCD,∴AD=CD,∵点P是AC的中点,则PD⊥AC,PB⊥AC,∵PD∩PB=P,∴AC⊥平面PBD,∵AC⊂平面ACD,∴平面ACD⊥平面BDP.解:(2)作CE⊥BD,垂足为E,连结AE,∵Rt△ABD≌Rt△BCD,∴AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由已知二面角A-BD-C为120°,∴∠AEC=120°,在等腰△AEC中,由余弦定理得AC=,∵△ABC是等边三角形,∴AC=AB,∴AB=,在Rt△ABD中,,∴BD=,∵BD=,∴AD=,∵BD2=AB2+AD2,∴AB=2,∴AE=,,由上述可知BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO是直线AD与平面BCD所成角,在Rt△AEO中,∠AEO=60°,∴AO=,AE=1,sin,∴直线AD与平面BCD所成角的正弦值为.【解析】(1)推导出AD=CD,PD⊥AC,PB⊥AC,从而AC⊥平面PBD,由此能证明平面ACD⊥平面BDP.(2)作CE⊥BD,垂足为E,连结AE,则AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由二面角A-BD-C为120°,得∠AEC=120°,由余弦定理得AC=,推导出BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO 是直线AD与平面BCD所成角,由此能求出直线AD与平面BCD所成角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】角:(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),则P(η=2)=,∴购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(2)(i)依题意X的取值分别为400,450,500,550,600,P(X=400)=0.4×0.4=0.16,P(X=450)=2×0.4a=0.8a,P(X=500)=2×0.4b+a2=0.8b+a2,P(X=550)=2ab,P(X=600)=b2,(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得a+b=0.6,∴b=0.6-a,∵P(X≤500)≥0.8,∴0.16+0.48+a2≥0.8,解得a≥0.4或a≤-0.4,∵a>0,∴a≥0.4,∵b>0,∴0.6-a>0,解得a<0.6,∴a∈[0.4,0.6),E(X)=400×0.16+450×0.8a+500(0.8b+a2)+1100ab+600b2=520-100a,当a=0.4时,E(X)的最大值为480,∴X的数学期望E(X)的最大值为480.【解析】(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),由此能求出购买该商品的3位顾客中,恰有2位选择分2期付款的概率.(2)(i)依题意X的取值分别为400,450,500,550,600,分别求出相应的概率,由此能求出X的分布列.(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得b=0.6-a,由P(X≤500)≥0.8,得a≥0.4,由b>0,得a<0.6,由此能求出X的数学期望E(X)的最大值.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)由椭圆:>>可知焦点在x轴上,∵圆O:x2+y2=1与x轴的两个交点坐标为(-1,0),(1,0),与y轴的两个交点的坐标分别为(0,1),(0,-1),根据题意可得b=c=1,故a2=b2+c2=2,故椭圆方程为+y2=1(2)设过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,则=1,即m2=t2+1设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,则△=(2tm)2-4(t2+2)(m2-2)=8>0,∴y1+y2=-,y1y2=,∴|y1-y2|===,∴△ABF的面积S=|PF|•|y1-y2|=,令f(m)=,m≥1∴f′(m)=,当m≥1时,f′(m)≤0,∴f(m)在[1,+∞)上单调递减,∴f(m)≤f(1)=,故△ABF的面积的最大值为【解析】(1)根据根据题意可得b=c=1,故a2=b2+c2=2,即可求出椭圆方程,(2)过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,可得m2=t2+1,设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,根据韦达定理和三角形面积即可表示出S=,构造函数,利用导数求出函数的最值即可求出面积的最大值本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、韦达定理、三角形面积计算公式、导数和函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)函数的导数f′(x)=2e2x-2ax,若f(x)在(0,+∞)上单调递增,即f′(x)≥0恒成立,即2e2x-2ax≥0,得a≤在(0,+∞)上恒成立,设h(x)=,则h′(x)==,当0<x<时,h′(x)<0,此时函数为减函数,由x>时,h′(x)>0,此时函数为增函数,即当x=时,函数h(x)取得极小值同时也是最小值,h()=2e,则a≤2e,即实数a的取值范围是(-∞,2e].(2)由(1)知,当a≤2e时,f(x)在(0,+∞)上单调递增,则不存在极大值,当a>2e时,<ln,ln a>ln,又f′(0)=2>0,f′()=2e-a<0,f′(ln a)=2e2ln a-2a lna=2a(a-ln a)>0,(易证明a-ln a>0),故存在x1∈(0,),使得f′(x1)==0,存在x2∈(,ln a),使得f′(x2)=0,则x∈(0,x1)时,f′(x)>0,x∈(x1,x2)时,f′(x)<0,x∈(x2,+∞)时,f′(x)>0,故f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,即当x=x1时,f(x)取得极大值,即M=,由0<x1<时,得1-x1>0,x1≠1-x1,由2-2ax1=0,得=ax1,故M==ax1-ax12=ax1(1-x1)<a•()2=,即<成立.【解析】(1)求函数的导数,利用函数的单调性转化为f′(x)≥0恒成立进行求解.(2)求函数的导数,结合函数极大值的定义,讨论a范围,进行证明即可.本题主要考查导数的应用,结合函数单调性,极值和导数的关系转化为导数问题是解决本题的关键.考查学生的运算和推导能力,综合性较强,难度较大.22.【答案】解:(1)曲线C1的普通方程为y=1-x2(-1≤x≤1),把x=ρcosθ,y=ρsinθ代入ρ(cosθ-a sinθ)=,得直线C2的直角坐标方程为y-ax=,即ax-y+=0,(2)由直线C2:ax-y+=0,知C2恒过点M(0,),由y=1-x2(-1≤x≤1),当时,得x =±1,所以曲线C1过点P(-1,0),Q(1,0),则直线MP的斜率为k1==,直线MQ的斜率k2==-,因为直线C2的斜率为a,且直线C2与曲线C1有两个不同的交点,所以k2≤a≤k1,即-,所以a的取值范围为[-,].【解析】(1)利用平方关系消去参数t可得C1的普通方程,利用x=ρcosθ,y=ρsinθ可得C2的直角坐标方程;(2)根据直线的斜率可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)函数f(x)=|x+1|-|2x-1|,f(x)>0即为|x+1|>|2x-1|,可得(x+1+2x-1)(x+1-2x+1)>0,即3x(x-2)<0,解得0<x<2,则原不等式的解集为(0,2);(2)若a>0,不等式f(x)<1对x∈R都成立,即有1>f(x)max,由f(x)=|x+a|-|2x-1|=|x+a|-|x-|-|x-|≤|x+a-x+|-0=|a+|,可得f(x)的最大值为|a+|=a+,(a>0),则a+<1,解得0<a<.【解析】(1)运用两边平方和平方差公式,可得不等式的解集;(2)由题意可得1>f(x)max,由绝对值不等式的性质可得f(x)的最大值,解不等式可得所求范围.本题考查绝对值不等式的解法和不等式恒成立问题的运用,考查运算能力,属于基础题.。

2019长春高三一模数学文科试卷及答案高考资料高考复习资料中考资料

2019长春高三一模数学文科试卷及答案高考资料高考复习资料中考资料

你永远是最棒的长春市普通高中 2019 届高三质量监测(一)数学试题卷(文科)一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.复数 (13i)(3i)A.10 B.10C.10i D.10i2.已知集合 M {0,1},则满足条件 MN M 的集合 N 的个数为A.1 B.2C.3D.43.函数 f (x) 3sin x 3 cos x 的最大值为,A.3 B.2C.2 3D.44.下列函数中是偶函数,且在区间(0,) 上是减函数的是A. y | x | 1B.y x2C.1 y xD.y2|x|x5.已知平面向量 a 、b ,满足| a || b |1,若 (2a b)b 0 ,则向量 a 、 b 的夹角为 A.30B.45C.60D.1206.已知a aaS 是等比数列{a }前 n 项的和,若公比 q2,则135 nnS6A.1 3B.1 7C.23D.377.在正方体 ABCDA B C D 中,异面直线 1 1 1 1A C 与 1 1B C 所成角的余弦值为1A.B.12C.2 2D.3218. 在 ABC 中,内角 A 、B 、C 的对边分别为 a 、b 、c ,若b a cosC c ,则 角 A 为2A.60 B.120 C.45 D.1359.某运动制衣品牌为了成衣尺寸更精准,现选择 15 名志愿者,对其身高和臂展进行测量(单 位:厘米),左图为选取的 15 名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为y 1.16x 30.75 ,以下结论中不正确的为自信是迈向成功的第一步你永远是最棒的190185180175170165160155150145123456789101112131415身高臂展A.15名志愿者身高的极差小于臂展的极差B.15名志愿者身高和臂展成正相关关系,C.可估计身高为190厘米的人臂展大约为189.65厘米,D.身高相差10厘米的两人臂展都相差11.6厘米,10.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一头五升(注:一斗为十升).问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S 2.5(单位:升),则输入的k值为,A. 4.5B.6C.7.5D.10开始输入kn 1,S k否n 4?是输出Sn n 1结束S S S n11.已知双曲线x y22221(a 0,b 0)的两个顶点分别为A、B,点P为双曲线上除A、a bB外任意一点,且点P与点A、B连线的斜率分别为k,若k k ,则双曲线的渐k、12312近线方程为,A.yx B.y2x C.y3x D.y2x12.已知函数f(x)xx12与g(x)1sin x,则函数F(x)f(x)g(x)在区间[2,6]上所有零点的和为自信是迈向成功的第一步你永远是最棒的A.4B.8C.12D.16二、填空题:本题共4小题,每小题5分.13.log4log2.2414.若椭圆C的方程为x y221,则其离心率为.4315.函数f(x)ln x x的图象在点(1,f(1))处的切线方程为.16.已知一所有棱长都是2的三棱锥,则该三棱锥的体积为.三、解答题:共70份,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)已知S是等差数列{a}的前n项和,a,37 n n S. 327(1)求数列{a}的通项公式a;n n(2)设b 13a,求n n1111.b b b b b b b b 122334n n118.(本小题满分12分)在四棱锥P ABCD中,平面PAD 平面ABCD,PA PD 2,四边形ABCD是边长为2的菱形,A 60,E是AD的中点.(1)求证:BE 平面PAD;(2)求点E到平面PAB的距离.PDCEAB19.(本小题满分12分)平面直角坐标系中,O为坐标原点,已知抛物线C的方程为y22px(p 0).(1)过抛物线C的焦点F且与x轴垂直的直线交曲线C于A、B两点,经过曲线C上任意一点Q作x轴的垂线,垂足为H.求证:|QH|2|AB||OH|;(2)过点D(2,2)的直线与抛物线C交于M、N两点且OM ON,OD MN.求抛物线C的方程.自信是迈向成功的第一步你永远是最棒的20. (本小题满分 12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元, 未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求 量与当天最高气温(单位:℃)有关.如果最高气温不低于 25,需求量为 500 瓶;如果最高气 温位于区间[20, 25) ,需求量为 300 瓶;如果最高气温低于 20,需求量为 200 瓶.为了确定 六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15, 20) [20, 25) [25,30) [30,35) [35, 4 0) 天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过 300 瓶的概率,;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货 量为 450 瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 21. (本小题满分 12 分)已知函数1f (x) e xax (aR) .x22(1)当 a1时,试判断函数 f (x) 的单调性;(2)若 a 1 e ,求证:函数 f (x) 在[1,) 上的最小值小于1 2;(二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题 计分.22. (本小题满分 10 分)选修 4-4 坐标系与参数方程选讲已知直线l 的参数方程为x 1t cosy t sin(t 为参数,0≤ ),以原点为极点,x轴 的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为 21 2cos 4 sin .(1)求圆C 的直角坐标方程;(2)若直线l 与圆C 相交于 A 、 B 两点,且| AB |2 3 ,求 的值.23. (本小题满分 10 分) 选修 4-5 不等式选讲 已知 a0 ,b 0, a b 2 . (1)求证:a 2b 2≥2 ;(2)求证:2 12≥1 .a b2自信是迈向成功的第一步你永远是最棒的长春市普通高中2019届高三质量监测(一)数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1.C【命题意图】本题考查复数的运算.【试题解析】C (13i)(3i)10i.故选C.2.D【命题意图】本题考查集合运算.【试题解析】D M N M有N M.故选D.3.C【命题意图】本题考查三角函数的相关知识.【试题解析】C由题意可知函数最大值为23.故选C.4..B【命题意图】本题主要考查函数的性质.【试题解析】B由函数是偶函数,排除C,在(0,)上是减函数,排除A,D.故选B.5.C【命题意图】本题考查平面向量的相关知识.21【试题解析】C由题意知2a b b 0,c os a,b.故选C.2 6.A【命题意图】本题主要考查等比数列的相关知识.【试题解析】A由条件可知,所求算式等于13.故选A7.B【命题意图】本题考查线面成角.1【试题解析】B由题意知成角为,余弦值为328.A【命题意图】本题主要考查解三角形的相关知识..故选B.1【试题解析】A由正弦定理可知cos A ,A 60.故选A.29.D【命题意图】本题主要考查统计相关知识.【试题解析】D由统计学常识可知,D选项正确.故选D.10.D【命题意图】本题主要考查中华传统文化.【试题解析】D由题可知k 10.故选D.11.C【命题意图】本题考查双曲线的相关知识.y x y222【试题解析】C由题意可知,从而渐近线方程为3,1x a a3a2222y3x.故选C.12.D【命题意图】本题是考查函数图象的对称性.【试题解析】D函数g(x),f(x)的图象关于(2,1)点对称,则F(x)0共有8个零点,其和为16.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.14.52【命题意图】本题考查对数运算.5【试题解析】由题意可知值为.21【命题意图】本题考查椭圆的相关知识.21【试题解析】a 2,b 3,c 1,e.2自信是迈向成功的第一步你永远是最棒的15.y2x 1【命题意图】本题考查导数的几何意义的相关知识.【试题解析】由题意可得1f (x) 1, f (1) 2, f (1) 1, y 2x 1 .x16.1 3【命题意图】本题考查三棱锥的相关知识. 【试题解析】由题意可知其1 1 ( 2)23 2 3 1 V.3 223 3 三、解答题17.(本小题满分 12 分)【命题意图】本题考查数列的相关知识. 【试题解析】解:(1)由ada d,解得 ad, 12 7,3 1 3 27111,2可得 a132n .n(2)由(1)b2n ,n111 1 1()b b 4n(n 1) 4 n n 1 n n 1,所求式等于111 11 1(1 ) b b b b b bb b4n11 22 33 4n n 1.18.(本小题满分 12 分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间 想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接 BD ,由 PA PD 2, E 是 AD 的中点,得 PE AD ,由平面 PAD 平面 ABCD ,可得 PE 平面 ABCD , PE BE ,又由于四边形 ABCD 是边长为 2 的菱形, A 60 ,所以 BE AD ,从而 BE 平面 PAD .(2)在 PAB 中,15 PA AB 2,PB 6,S ,PAB21 11V31 3,所以点 E 到平面 PAB 的距离为P ABE32 219.(本小题满分 12 分)【命题意图】本小题考查抛物线的相关知识.15 5.【试题解析】答案:(1)设Q(x , y ), H(x , 0),| QH || y |,| OH | x ,| AB | 2p ,从而| QH |y 2px| AB || OH |.22 0(2)由条件可知, MN : yx 4 ,联立直线 MN 和抛物线C ,有y x 4y, 有 y 2 2py 8p 0 , 设 M (x , y ), N(x , y ) , 由 OM ON有1 12 22px2x1x2y1y20,有(4y)(4y)y y0,由韦达定理可求得p2,1212所以抛物线C:y24x.20.(本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望.【试题解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.6,所以这种酸奶一天的需求90量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;自信是迈向成功的第一步你永远是最棒的若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36257490,因此Y大于零的概率的估计值为0.8.0.821.(本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得fx e x x a,设gx f x e x a,则gx e 1,x x所以当x 0时gx 0,fx 在0,上单调递增,当x 0时gx0,fx在,0上单调递减,所以fx f01a,因为a1,所以1a 0,即fx 0,所以函数f x在R上单调递増.(6分)(2)由(1)知fx 在1,上单调递増,因为a 1e,所以f 1e 1a 0,所以存在t1,,使得ft0,即0e t t a ,即a t e t,所以函数f x 在1,t上单调递减,在t,上单调递増,111所以当x1,时f x f t e t at e t t t e e t t,t2t2t t21min22 21令1,1h x e x xx x ,则hx x(1e)0恒成立,2x211所以函数h x在1,上单调递减,所以h xe,11122 2111所以e tt t2,即当x1,时fx,1222min故函数f x 在1,上的最小值小于12.(12分)22.(本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识.【试题解析】(1)圆C的直角坐标方程为x2y22x 4y 10.(2)将直线l的参数方程代入到圆C的直角坐标方程中,有t24t sin0,由32AB 23得sin ,所以或.23 323.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容.本小题重点考查化归与转化思想.2212【试题解析】(1)a b(a b)2.2(2)21a b213b a3(22)2()2,a b2a b2a2b24故2121.a b2自信是迈向成功的第一步。

2019年上海市宝山区高考数学一模试卷和答案

2019年上海市宝山区高考数学一模试卷和答案

2019年上海市宝山区高考数学一模试卷一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分。

1.(4分)函数f(x)=sin(﹣2x)的最小正周期为.2.(4分)集合U=R,集合A={x|x﹣3>0},B={x|x+1>0},则B∩∁U A=.3.(4分)若复数z满足(1+i)z=2i(i是虚数单位),则=.4.(4分)方程ln(9x+3x﹣1)=0的根为.5.(4分)从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每个班级至少有一名代表,则各班级的代表数有种不同的选法.(用数字作答)6.(4分)关于x,y的二元一次方程的增广矩阵为,则x+y=.7.(5分)如果无穷等比数列{a n}所有奇数项的和等于所有项和的3倍,则公比q=.8.(5分)函数y=f(x)与y=lnx的图象关于直线y=﹣x对称,则f(x)=.9.(5分)已知A(2,3),B(1,4),且=(sin x,cos y),x,y∈(﹣,),则x+y=.10.(5分)将函数y=﹣的图象绕着y轴旋转一周所得的几何容器的容积是.11.(5分)张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC中,a,b,c分别是角A,B,C的对边,已知b=2,∠A=45°,求边c,显然缺少条件,若他打算补充a的大小,并使得c只有一解,a的可能取值是(只需填写一个适合的答案)12.(5分)如果等差数列{a n},{b n}的公差都为d(d≠0),若满足对于任意n∈N*,都有b n ﹣a n=kd,其中k为常数,k∈N*,则称它们互为同宗”数列.已知等差数列{a n}中,首项a 1=1,公差d=2,数列{b n}为数列{a n}的“同宗”数列,若()=,则k=.二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.(5分)若等式1+x+x2+x3=a0+a1(1﹣x)+a2(1﹣x)2+a3(1﹣x)3对一切x∈R都成立,其中a0,a1,a2,a3为实常数,则a0+a1+a2+a3=()A.2B.﹣1C.4D.114.(5分)“x∈[﹣,]是“sin(arcsin)=x”的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要15.(5分)关于函数f(x)=的下列判断,其中正确的是()A.函数的图象是轴对称图形B.函数的图象是中心对称图形C.函数有最大值D.当x>0时,y=f(x)是减函数16.(5分)设点M、N均在双曲线C:=1上运动,F1,F2是双曲线C的左、右焦点,||的最小值为()A.2B.4C.2D.以上都不对三、解答题(本题满分76分)本大题共有5题,解答下列名题必须在答题纸的规定区域(对应的题号)内写出必要的步骤。

大庆市2019届高三第一次模拟考试数学(理科)含答案解析

大庆市2019届高三第一次模拟考试数学(理科)含答案解析
A. B. C. D.
【分析】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0, ]内的x0的值.
【解答】解:∵曲线f(x)=sin(wx)+ cos(wx)=2sin(wx+ )的两条相邻的对称轴之间的距离为 ,
∴ =π,
∴w=2
∴f(x)=2sin(2x+ ).
∵f(x)的图象关于点(x0,0)成中心对称,
【解答】解:函数f(x)=x3﹣x2﹣x+a的导数为f′(x)=3x2﹣2x﹣1,
当x>1或x<﹣ 时,f′(x)>0,f(x)递增;
当﹣ <x<1时,f′(x)<0,f(x)递减.
即有f(1)为极小值,f(﹣ )为极大值.
∵f(x)在(﹣∞,﹣ )上单调递增,
∴当x→﹣∞时,f(x)→﹣∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞,
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;
因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;
由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.

2019年上海市闵行区高考数学一模试卷(含解析版)

2019年上海市闵行区高考数学一模试卷(含解析版)

2019年上海市闵行区高考数学一模试卷一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=.2.(3分)=.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=.4.(3分)方程=0的解为.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=.6.(3分)(1﹣2x)5的展开式中x3的项的系数是(用数字表示)7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是(写出所有正确结论的序号)二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).2019年上海市闵行区高考数学一模试卷参考答案与试题解析一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=(0,3).【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可求出集合A,然后进行补集的运算即可.【解答】解:A={x|x≤0,或x≥3};∴∁U A=(0,3).故答案为:(0,3).【点评】考查描述法的定义,以及补集的运算.2.(3分)=.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】由,,可得==.【解答】解:=.===,故答案为:.【点评】本题考查了极限及其运算,属简单题.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=2﹣i.【考点】A5:复数的运算.【专题】34:方程思想;49:综合法;5N:数系的扩充和复数.【分析】利用复数的运算性质即可得出.【解答】解:(1+2i)z=4+3i(i是虚数单位),∴(1﹣2i)(1+2i)z=(1﹣2i)(4+3i),∴5z=10﹣5i,可得z=2﹣i.故答案为:2﹣i.【点评】本题考查了复数的运算法则及其性质,考查了推理能力与计算能力,属于基础题.4.(3分)方程=0的解为log25.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用行列式展开法则列出方程,从而能求出结果.【解答】解:∵方程=0,∴2x﹣2﹣3=0,解得x=log25.故答案为:log25.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=256.【考点】87:等比数列的性质.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.【分析】根据题意,设等比数列{a n}的公比为q,由等比数列的通项公式可得a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得q4的值,又由a9+a10=q8×a1+q8×a2=q8(a1+a2),计算可得答案.【解答】解:根据题意,设等比数列{a n}的公比为q,若a1+a2=1,则a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得:q4=16,则a9+a10=q8×a1+q8×a2=q8(a1+a2)=256,故答案为:256.【点评】本题考查等比数列的性质,关键是求出等比数列的公比,属于基础题.6.(3分)(1﹣2x)5的展开式中x3的项的系数是﹣80(用数字表示)【考点】DA:二项式定理.【专题】11:计算题.【分析】在(1﹣2x)5的展开式中,令通项x的指数等于3,求出r,再求系数【解答】(1﹣2x)5的展开式的通项为T r+1=C5r(﹣2x)r,令r=3,得x3的项的系数是C53(﹣2)3=﹣80故答案为:﹣80【点评】本题考查二项式定理的简单直接应用,属于基础题.7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.【考点】IU:两条平行直线间的距离.【专题】35:转化思想;49:综合法;5B:直线与圆.【分析】先把直线方程中x、y的系数化为相同的,再利用两条平行直线间的距离公式d =,求出他们之间的距离.【解答】解:两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,即两条直线l1:4x+2y﹣3=0,l2:4x+2y+2=0,它们之间的距离为d==,故答案为:.【点评】本题主要考查两条平行直线间的距离公式d=应用,注意未知数的系数必需相同,属于基础题.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是[2,4].【考点】34:函数的值域.【专题】33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】写出分段函数解析式,作出图形,数形结合得答案.【解答】解:数f(x)=|x﹣1|(x+1)=.作出函数的图象如图:由图可知,b=3,a∈[﹣1,1],则a+b∈[2,4].故答案为:[2,4].【点评】本题考查函数的值域,考查数形结合的解题思想方法,是中档题.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为12.【考点】LN:异面直线的判定.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】结合正方体的结构特征,利用列举法能求出在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数.【解答】解:在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线有:A1D1,DD1,CD,A1B1,BC,BB1,B1D1,B1C,D1C,BD,A1D,A1B,共12条.故答案为:12.【点评】本题考查异面直线的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是基础题.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=0.【考点】HR:余弦定理.【专题】35:转化思想;49:综合法;58:解三角形.【分析】由余弦定理和三角形面积公式得sin C﹣cos C=1,结合平方关系得答案.【解答】解:∵4S=(a+b)2﹣c2,∴4×ab sin C=a2+b2﹣c2+2ab,由余弦定理得:2ab sin C=2ab cos C+2ab,∴sin C﹣cos C=1,又∵sin2C+cos2C=1,∴sin C cos C=0,又∵在△ABC中,sin C≠0,∴cos C=0.故答案为:0.【点评】本题考查余弦定理、三角形面积公式、平方关系,考查计算能力.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.【考点】9O:平面向量数量积的性质及其运算;GL:三角函数中的恒等变换应用.【专题】11:计算题;5A:平面向量及应用.【分析】首先解决,结合两角差的余弦可以得到的模,即对应点的轨迹,进而得到对应点的轨迹,问题得解.【解答】解:∵,∴=2+2cos(α﹣β)=3,令,则||=,∴D点轨迹为以原点为原心,半径为的圆,令,则||=||=1,∴C点轨迹是以原点为原心,半径为的两个圆及其之间的部分,∴最大值为,即||最大值为.故答案为:.【点评】此题考查了向量的模与点的轨迹,三角公式等,难度不大.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是①②③④(写出所有正确结论的序号)【考点】2K:命题的真假判断与应用;8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】由常数列,结合新定义可得a n=0,可判断①;由等差数列的定义和单调性,可判断②;由等比数列的定义和单调性可判断③;假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,根据第二数学归纳法可判断④.【解答】解:①,若数列{a n}是常数列,由|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1},可得max{a1,a2,…,a n﹣1}=0,则a n=0(n∈N*),故①正确;②,若数列{a n}是公差d≠0的等差数列,由max{a1,a2,…,a n﹣1}=|d|,若d>0,即有数列递增,可得d=a n,即数列为常数列,不成立;若d<0,可得数列递减,可得﹣d=a1成立,则d<0,故②正确;③,若数列{a n}是公比为q的等比数列,若q=1可得数列为非零常数列,不成立;由|a2﹣a1|=a1,可得a2=0(舍去)或a2=2a1,即有q=2>1,a1>0,则数列递增,由max{a1,a2,…,a n﹣1}=a n﹣1,可得a n﹣a n﹣1=a n﹣1,可得a n=2a n﹣1,则q>1,故③正确;④,假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,则|a i+1﹣a i|=max{a1,a2,…a i}=a i,因此a i+1是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a i,a i+1…,a i+k﹣1},故a i+k是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a1,a i+1,…,a i+k﹣1},因此,a i+k也是a i的倍数,由第二数学归纳法可知,对任意n≥i,a n都是a i的倍数,又存在正整数T,对任意正整数n,都有a T+n=a n,故存在正整数m≥i,a m=a1,故a i 是a1的倍数,但a i>a1,故a1不是a i的倍数,矛盾,故a i是数列{a n}的最大值.故④正确.故答案为:①②③④.【点评】本题考查数列新定义问题,考查等差数列和等比数列的定义的运用,考查举例法和数学归纳法的运用,属于综合题.二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】首先找出>﹣1的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【解答】解:>﹣1⇔a<﹣1或a>0,∵a<﹣1⇒a<﹣1或a>0,a<﹣1或a>0推不出a<﹣1,∴“a<﹣1”是“>﹣1”的充分非必要条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交【考点】LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【专题】11:计算题;35:转化思想;44:数形结合法;5F:空间位置关系与距离.【分析】以正方体ABCD﹣A1B1C1D1为载体,能求出结果.【解答】解:由a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,知:在A中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1⊄平面ABCD,且C1D1∥AB,∴b⊄β,且b∥α有可能成立,故A错误;在B中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b⊄a有可能成立,故B错误;在C中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b∥α,且b∥β有可能成立,故C错误;在D中,b与α,β都相交不可能成立,故D成立.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】问题转化为函数y=(x≥a,a>0,b>0)与函数y=x有交点.【解答】解:依题意得:函数y=(x≥a,a>0,b>0)与函数y=x有交点,即=x2,x2==≥a2,∴b2>a2,∴b>a,故选:B.【点评】本题考查了反函数.属基础题.16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;44:数形结合法;5A:平面向量及应用.【分析】首先去绝对值,得到曲线,并发现垂直关系,从而找到向量的射影,得解.【解答】解:去绝对值整理后知,曲线为菱形BCDE,易知CD⊥AN,BE⊥AN,故当点M在曲线上运动时,在上的射影必在FN上,且当M在CD上时得到最大值,在BE上时得到最小值,最大值为==2,最小值为﹣2,故选:A.【点评】此题考查了曲线方程,数量积,射影等,难度适中.三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】(1)该三棱柱的表面积S=2S△ABC+3,由此能求出结果.(2)取AC中点E,连结DE,C1E,则DE∥AB,从而∠C1DE是异面直线AB与C1D 所成角(或所成角的补角),由此能求出异面直线AB与C1D所成角的大小.【解答】解:(1)∵正三棱柱ABC﹣A1B1C1的各棱长均为2,∴该三棱柱的表面积:S=2S△ABC+3=2×+3×2×2=12+2.(2)取AC中点E,连结DE,C1E,∵D为棱BC的中点,∴DE∥AB,DE==1,∴∠C1DE是异面直线AB与C1D所成角(或所成角的补角),DC1=EC1==,cos∠C1DE===,∴∠C1DE=arccos,∴异面直线AB与C1D所成角的大小为arccos.【点评】本题考查三棱柱的表面积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.【考点】KN:直线与抛物线的综合.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据抛物线的定义可得;(2)设出直线l:y=2x+b,并代入抛物线,根据韦达定理以及x1x2+y1y2=0解得b,然后求得M(4,0).【解答】解:(1)由抛物线的定义得:1﹣(﹣=3,解得:p=4,所以抛物线C的方程为:y2=8x;(2)p=2时,抛物线C:y2=4x,设直线l:y=2x+b,并代入抛物线C:y2=4x得:4x2+(4b﹣4)x+b2=0,△=(4b﹣4)2﹣16b2>0,解得设A(x1,y1),B(x2,y2),则x1+x2=1﹣b,x1x2=,∵•=x1x2+y1y2=x1x2+(2x1+b)(2x2+b)=5x1x2+2b(x1+x2)+b2=+2b(1﹣b)+b2=0,解得b=0或b=﹣8当b=0时,M(0,0)不在x轴正半轴上,舍去;当b=﹣8时,M(4,0)故点M的坐标为(4,0)【点评】本题考查了直线与抛物线的综合.属中档题.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;57:三角函数的图象与性质.【分析】(1)对照图象可求出a,ω,φ以及ABC的解析式;(2)先根据对称性求出DEF段的解析式,再令函数值等于24,解出x=60,可得.【解答】解:(1)a=12﹣4=8,=24﹣12=12,∴T=48,ω==,由×24+φ=可得φ=,∴f(x)=8sin(x+)+20=8cos x+20,x∈[0,24].(2)由题意得DEF的解析式为:y=8cos[(68﹣x)]+20,由8cos[(68﹣x)]+20=24,得x=60,故买入60﹣44=16天后股价至少是买入价的两倍.【点评】本题考查了由y=A sin(ωx+φ)的部分图象确定其解析式,属中档题.20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.【考点】3E:函数单调性的性质与判断;52:函数零点的判定定理.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】(1)由新定义直接化简即可得到F(x)的解析式,判断单调性可得f(x)的性质;(2)命题为假命题,可举指数函数;(3)由新定义结合单调性和导数,解不等式可得k的范围,运用正弦函数的图象和性质,讨论k的范围,即可得到所求零点个数.【解答】解:(1)f(x)=x2+2,F(x)=(x+1)2+2﹣x2﹣2=2x+1,F(x)在R上递增,可知f(x)具有性质A;(2)命题“减函数不具有性质A”,为假命题,比如:f(x)=0.5x,F(x)=f(x+1)﹣f(x)=﹣0.5x+1在R上递增,f(x)具有性质A;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,可得F(x)=f(x+1)﹣f(x)=k(x+1)2+(x+1)3﹣kx2﹣x3=3x2+(3+2k)x+1+k 在x≥0递增,可得﹣≤0,解得k≥﹣;由t=sin x(0≤t≤1),可得g(x)=0,即f(t)=t,可得kt2+t3=t,t=0时显然成立;0<t≤1时,k=,由在(0,1]递减,且值域为[,+∞),k=0时,t=0或1,sin x有三解,3个零点;当k=时,t=1,即sin x=1,可得x=,1个零点;当k>时,f(t)=t,t有一解,x两解,即两个零点;当﹣≤k<,且k≠0时,f(t)=t无解,即x无解,无零点.【点评】本题考查函数的解析式的求法,注意运用新定义,考查函数的单调性,以及分类讨论思想方法,考查化简运算能力,属于中档题.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).【考点】8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】(1)根据基本不等式的性质以及“拟等比数列”的定义进行求解证明即可(2)根据等差数列的通项公式以及前n项和公式,推导首项和公差d的范围,结合{c n}是“拟等比数列,建立不等式关系进行求解即可【解答】解:(1)①∵a>0,b>0,且a>b,a1=,b1=<1,∴b1∈(0,1).②由题意得a1=>=b1,∴当n∈N*且n≥2时,a n﹣b n=>0,∴对任意n∈N*,都有a n+1﹣b n+1=<﹣=(a n﹣b n),即存在p=,使得有a n+1﹣b n+1<p(a n﹣b n),∴数列数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)∵c1>0,S4035>0,S4036<0,∴,⇒,⇒⇒,由c1>0得d<0,从而解得﹣2018<<﹣2017,又{c n}是“拟等比数列”,故存在p>0,使得c n+1≤p c n成立,1°当n≤2018时,c n>0,p≥==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≤2018时递减,故p≥=1+∈(,),2°当n≥2019时,c n<0,p≤==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≥2019时递减,故p≤1,由1°2°得p的取值范围是[1+,1].【点评】本题考查递推数列的应用,利用“拟等比数列”的定义结合等差数列的前n项和公式进行递推是解决本题的关键.查了推理能力与计算能力,运算量较大,有一定的难度.。

2019年上海市虹口区高考数学一模试卷(含解析版)

2019年上海市虹口区高考数学一模试卷(含解析版)

2019年上海市虹口区高考数学一模试卷一、填空题1.(4分)计算=.2.(4分)不等式的解集是(用区间表示).3.(4分)设全集U=R,若A={﹣2,﹣1,0,1,2},B={x|y=log2(1﹣x)},则A∩(∁U B)=4.(4分)设常数a∈R,若函数f(x)=log3(x+a)的反函数的图象经过点(2,1),则a =.5.(4分)若一个球的表面积是4π,则它的体积是.6.(4分)函数f(x)=x+(x∈[2,8])的值域为.7.(5分)二项式()6的展开式的常数项为.8.(5分)双曲线﹣=1的焦点到其渐近线的距离为.9.(5分)若复数z=(i为虚数单位),则z的模的最大值为.10.(5分)已知7个实数1,﹣2,4,a,b,c,d依次构成等比数列,若从这7个数中任取2个,则他们的和为正数的概率为.11.(5分)如图,已知半圆O的直径AB=4,△OAC是等边三角形,若点P是边AC(包含端点AC)上的动点,点Q在弧上,且满足OQ⊥OP,则的最小值为.12.(5分)若直线y=kx与曲线y=2﹣|x﹣1|恰有两个公共点,则实数k的取值范围为.二、选择题13.(5分)已知x∈R,则“|x﹣|”是“x<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(5分)关于三个不同平面α,β,γ与直线l,下列命题中的假命题是()A.若α⊥β,则α内一定存在直线平行于βB.若α与β不垂直,则α内一定不存在直线垂直于βC.若α⊥γ,β⊥γ,α∩β=l,则l⊥γD.若α⊥β,则α内所有直线垂直于β15.(5分)已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,﹣)∪(1,+∞)D.(﹣∞,0)∪(0,1)16.(5分)已知点E是抛物线C:y2=2px(P>0)的对称轴与准线的交点,点F为抛物线C的焦点,点P在抛物线C上,在△EFP中,若sin∠EFP=μ•sin∠FEP,则μ的最大值为()A.B.C.D.三、解答题17.(14分)在如图所示的圆锥中,底面直径与母线长均为4,点C是底面直径AB所对弧的中点,点D是母线P A的中点(1)求该圆锥的侧面积与体积;(2)求异面直线AB与CD所成角的大小.18.(14分)已知函数f(x)=1﹣(a>0,a≠1)是定义在R上的奇函数.(1)求实数a的值及函数f(x)的值域;(2)若不等式t•f(x)≥3x﹣3在x∈[1,2]上恒成立,求实数t的取值范围.19.(14分)某城市的棚户区改造建筑用地平面示意图如图所示,经过调研、规划确定,棚改规划用地区域近似为圆面,该圆的内接四边形ABCD区域是原棚户区建筑用地,测量可知边界AB=AD=2(km),BC=3(km).CD=1(km).(1)求AC的长以及原棚户区建筑用地ABCD的面积;(2)因地理条件限制,边界AD,DC不能更变,而边界AB,BC可以调整,为了增加棚户区建筑用地的面积,请在弧上设计一点P,使得棚户区改造后的新建筑用地(四边形APCD)的面积最大,并求出这个面积的最大值.20.(16分)设椭圆Γ:+y2=1,点F为其右焦点,过点F的直线与椭圆Γ相交于点P,Q.(1)当点P在椭圆Γ上运动时,求线段FP的中点M的轨迹方程;(2)如图1,点R的坐标为(2,0),若点S是点P关于x轴的对称点,求证:点Q,S,R共线;(3)如图2,点T是直线l:x=2上的任意一点,设直线PT,FT,QT的斜率分别为k PT,k FT,k QT.求证:k PT,k FT,k QT成等差数列.21.(18分)对于n(n∈N*)个实数构成的集合E={e1,e2,…,e n},记S E=e1+e2+…+e n.已知由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.(1)求a1,a2的值;(2)求证:“a1,a2,…,a n成等差数列”的充要条件是“S A=(n+1)”(3)若S A=2018.求证:n的最小值是11,并求n取最小值时,a n的最大值.2019年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题1.(4分)计算=5.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】当|q|<1时,,由==则可得解.【解答】解:====5.故答案为:5.【点评】本题考查了极限及其运算,属简单题.2.(4分)不等式的解集是(1,2)(用区间表示).【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】先将2移项,然后通分,利用同解变形将不等式化为(x﹣2)(x﹣1)<0,利用二次不等式的解法求出解集.【解答】解:不等式同解于:,即,即(x﹣2)(x﹣1)<0,解得1<x<2,所以不等式的解集是(1,2).故答案为:(1,2).【点评】本题考查解决分式不等式时,先通过移项,将右边化为0,然后通过同解变形将分式不等式化为整式不等式来解,属于基础题.3.(4分)设全集U=R,若A={﹣2,﹣1,0,1,2},B={x|y=log2(1﹣x)},则A∩(∁U B)={1,2}【考点】1H:交、并、补集的混合运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可解出B,然后进行交集、补集的运算即可.【解答】解:B={x|x<1};∴∁U B={x|x≥1};∴A∩(∁U B)={1,2}.故答案为:{1,2}.【点评】考查列举法、描述法表示集合的概念,以及交集和补集的运算.4.(4分)设常数a∈R,若函数f(x)=log3(x+a)的反函数的图象经过点(2,1),则a =8.【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【解答】解:依题意知:f(x)=log3(x+a)的图象过(1,2),∴log3(1+a)=2,解得a=8.故答案为:8【点评】本题考查了反函数.属基础题.5.(4分)若一个球的表面积是4π,则它的体积是.【考点】LG:球的体积和表面积.【专题】5F:空间位置关系与距离.【分析】由球的表面积是4π,求出球半径为1,由此能求出球的体积.【解答】解:设球的半径为R,∵球的表面积是4π,∴4πR2=4π,解得R=1,∴球的体积V==.故答案为:.【点评】本题考查球的体积的求法,是基础题,解题时要认真审题,注意球的表面积、体积的计算公式的合理运用.6.(4分)函数f(x)=x+(x∈[2,8])的值域为[,9].【考点】34:函数的值域.【专题】11:计算题;51:函数的性质及应用.【分析】直接利用对勾函数的单调性即可求解函数的最大与最小值,从而可求值域【解答】解:由对勾函数的单调性可知,f(x)=x+在[2,2]上单调递减,在(2,8]上单调递增∴当x=2时,函数有最小值f(2)==4,∵f(2)=6,f(8)=9当x=8时,函数有最大值f(8)=9故函数的值域为[4,9]故答案为:[4,9]【点评】本题主要考查了对勾函数的单调性的简单应用,属于基础试题7.(5分)二项式()6的展开式的常数项为60.【考点】DA:二项式定理.【专题】11:计算题.【分析】求出二项式的通项公式,令x的幂指数等于0,求出r的值,即可得到展开式中的常数项.【解答】解:二项式的通项公式为T r+1=C6r2r x﹣r=2r C6r,令3﹣=0,解得r=2.故常数项为4C62=60,故答案为60.【点评】本题主要考查二项展开式的通项公式,求展开式中某项的系数,属于中档题.8.(5分)双曲线﹣=1的焦点到其渐近线的距离为.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣,0),(,0).渐近线方程为y=±x,即x﹣2y=0,所以焦点到其渐近线的距离d==.故答案为:.【点评】本题以双曲线方程为载体,考查双曲线的标准方程,考查双曲线的几何性质,属于基础题.9.(5分)若复数z=(i为虚数单位),则z的模的最大值为.【考点】A8:复数的模;OM:二阶行列式的定义.【专题】38:对应思想;4R:转化法;56:三角函数的求值;5N:数系的扩充和复数.【分析】由已知展开二阶行列式,求得复数模,利用倍角公式降幂后求最值.【解答】解:∵z==sinθ•i﹣cosθ(i﹣1)=cosθ+(sinθ﹣cosθ)i,∴|z|====.故答案为:.【点评】本题考查二阶行列式的定义,考查复数模的求法及三角函数的化简求值,是中档题.10.(5分)已知7个实数1,﹣2,4,a,b,c,d依次构成等比数列,若从这7个数中任取2个,则他们的和为正数的概率为.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;38:对应思想;4R:转化法;5I:概率与统计.【分析】这7个实数为1,﹣2,4,﹣8,16,﹣32,64,根据概率公式计算即可.【解答】解:由题意可得,这7个实数为1,﹣2,4,﹣8,16,﹣32,64,①所选2个数均为正数:C42=6,②所选2个一正一负:(﹣2,4),(﹣2,16),(﹣2,64),(﹣8,16),(﹣8,64),(﹣32,64),共6种,∴P==,故答案为:【点评】本题考查了古典概率的问题,关键是列举,属于基础题.11.(5分)如图,已知半圆O的直径AB=4,△OAC是等边三角形,若点P是边AC(包含端点AC)上的动点,点Q在弧上,且满足OQ⊥OP,则的最小值为2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由题意可得,====,结合向量数量积的几何意义可知,当P与C重合时,在上的投影最短,代入可求【解答】解:∵OQ⊥OP,∴=0,∵半圆O的直径AB=4,△OAC是等边三角形,且边长为2,由题意可得,====,由数量积的几何意义可知,当P与C重合时,在上的投影最短,此时()min=2×=2.故答案为:2【点评】本题主要考查了平面向量数量积的定义及向量投影定义的简单应用,解题的关键是要把图象问题转化为已知问题.12.(5分)若直线y=kx与曲线y=2﹣|x﹣1|恰有两个公共点,则实数k的取值范围为(﹣∞,0]∪{1}.【考点】53:函数的零点与方程根的关系.【专题】11:计算题;31:数形结合;51:函数的性质及应用.【分析】y=2﹣|x﹣1|=即y=,观察y=kx与y=f(x)可得恰有两个公共点的k的取值范围为:k=1【解答】解:y=2﹣|x﹣1|=,即y=,则y=kx与y=f(x)恰有两个公共点的k的取值范围为:k=1或k≤0,故答案为:(﹣∞,0]∪{1}【点评】本题考查了函数的零点与方程的根的关系,考查了数形结合的思想.二、选择题13.(5分)已知x∈R,则“|x﹣|”是“x<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;5L:简易逻辑.【分析】由|x﹣|得:﹣<x<1,再由“﹣<x<1”与“x<1”的关系判断即可【解答】解:由|x﹣|得:﹣<x<1,又“﹣<x<1”能推出“x<1”又“x<1”不能推出“﹣<x<1”即“|x﹣|”是“x<1”的充分非必要条件,故选:A.【点评】本题考查了充分条件、必要条件、充要条件及绝对值不等式的解法,属简单题.14.(5分)关于三个不同平面α,β,γ与直线l,下列命题中的假命题是()A.若α⊥β,则α内一定存在直线平行于βB.若α与β不垂直,则α内一定不存在直线垂直于βC.若α⊥γ,β⊥γ,α∩β=l,则l⊥γD.若α⊥β,则α内所有直线垂直于β【考点】LO:空间中直线与直线之间的位置关系.【专题】31:数形结合;48:分析法;5F:空间位置关系与距离.【分析】根据空间线面位置关系的判定和性质判断或距离说明.【解答】解:对于A,假设α∩β=a,则α内所有平行于a的直线都平行β,故A正确;对于B,假设α内存在直线a垂直于β,则α⊥β,与题设矛盾,故假设错误,故B正确;对于C,设α∩γ=c,β∩γ=d,在γ内任取一点P,作PM⊥c于点M,PN⊥d于点N则PM⊥α,PN⊥β,且PM、PN不可能共线.又l⊂α,l⊂β,∴PM⊥l,PN⊥l.又PM∩PN=P,PM⊂γ,PN⊂γ,∴l⊥γ.故C正确.对于D,假设α∩β=a,则α内所有平行于a的直线都平行β,故D错误.故选:D.【点评】本题主要考查了直线与平面位置关系的判定,考查了空间想象能力和推理论证能力,属于中档题.15.(5分)已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,﹣)∪(1,+∞)D.(﹣∞,0)∪(0,1)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;13:作图题;51:函数的性质及应用.【分析】化函数y=f(x)﹣g(x)恰好有2个不同零点为函数f(x)+x﹣1与函数y=ax2的图象有两个不同的交点,从而解得.【解答】解:∵f(x)﹣(ax2﹣x+1)=0,∴f(x)+x﹣1=ax2,而f(x)+x﹣1=,作函数y=f(x)+x﹣1与函数y=ax2的图象如下,,结合选项可知,实数a的取值范围是(﹣∞,0)∪(0,1),故选:D.【点评】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.16.(5分)已知点E是抛物线C:y2=2px(P>0)的对称轴与准线的交点,点F为抛物线C的焦点,点P在抛物线C上,在△EFP中,若sin∠EFP=μ•sin∠FEP,则μ的最大值为()A.B.C.D.【考点】K8:抛物线的性质.【专题】35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】设PE的倾斜角为α,则cosα=,当μ取得最大值时,cosα最小,此时直线PM与抛物线相切,将直线方程代入抛物线方程,△=0,求得k的值,即可求得λ的最大值.【解答】解:过P(x轴上方)作准线的垂线,垂足为H,则由抛物线的定义可得|PF|=|PH|,由sin∠EFP=μ•sin∠FEP,则△PFE中由正弦定理可知:则|PE|=μ|PF|,∴|PE|=μ|PH|,设PE的倾斜角为α,则cosα=,当μ取得最大值时,cosα最小,此时直线PM与抛物线相切,设直线PM的方程为x=ty﹣,则,即y2﹣2pty+p2=0,∴△=4p2t2﹣4p2=0,∴k=1,即tanα=1,则cos,则μ的最大值为,故选:C.【点评】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查正弦定理,考查直线与抛物线相切,考查计算能力,属于中档题.三、解答题17.(14分)在如图所示的圆锥中,底面直径与母线长均为4,点C是底面直径AB所对弧的中点,点D是母线P A的中点(1)求该圆锥的侧面积与体积;(2)求异面直线AB与CD所成角的大小.【考点】L5:旋转体(圆柱、圆锥、圆台);LM:异面直线及其所成的角.【专题】11:计算题;5Q:立体几何.【分析】(1)直接利用公式代值求解即可;(2)需取OP中点E,利用DE∥AB化异面直线为共面直线,找到异面直线所成角,求解较易.【解答】解:(1)由题意得,OB=2,PB=4,PO==2,S侧=πrl=8π,==(2)取PO的中点E,连接DE,CE,则∠CDE或其补角即为所求,易证DE⊥面EOC,∴DE⊥EC,DE==1,=,∴,故异面直线AB与DE所成角的大小为.【点评】此题考查了圆锥的侧面积和体积,异面直线所成角等,难度不大.18.(14分)已知函数f(x)=1﹣(a>0,a≠1)是定义在R上的奇函数.(1)求实数a的值及函数f(x)的值域;(2)若不等式t•f(x)≥3x﹣3在x∈[1,2]上恒成立,求实数t的取值范围.【考点】3K:函数奇偶性的性质与判断;3R:函数恒成立问题.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】(1)根据函数的奇偶性求出a的值,检验即可;(2)问题转化为t≥[(3x﹣3)•]max,令3x﹣1=m,m∈[2,8],根据函数的单调性求出t的范围即可.【解答】解:(1)由f(0)=0,解得:a=3,反之a=3时,f(x)=1﹣=,f(﹣x)=﹣f(x),符合题意,故a=3,由f(x)=1﹣,x→0时,f(x)→﹣1,x→∞时,f(x)→1,故函数的值域是(﹣1,1);(2)f(x)=1﹣在x∈[1,2]递增,故f(x)∈[,],故t≥(3x﹣3)•,故t≥[(3x﹣3)•]max,令3x﹣1=m,m∈[2,8],则(3x﹣3)•=(m﹣2)•=m﹣随m的增大而增大,最大值是,故实数t的取值范围是[,+∞).【点评】本题考查了函数的奇偶性,单调性问题,考查函数恒成立,转化思想,是一道中档题.19.(14分)某城市的棚户区改造建筑用地平面示意图如图所示,经过调研、规划确定,棚改规划用地区域近似为圆面,该圆的内接四边形ABCD区域是原棚户区建筑用地,测量可知边界AB=AD=2(km),BC=3(km).CD=1(km).(1)求AC的长以及原棚户区建筑用地ABCD的面积;(2)因地理条件限制,边界AD,DC不能更变,而边界AB,BC可以调整,为了增加棚户区建筑用地的面积,请在弧上设计一点P,使得棚户区改造后的新建筑用地(四边形APCD)的面积最大,并求出这个面积的最大值.【考点】5A:函数最值的应用.【专题】38:对应思想;49:综合法;58:解三角形.【分析】(1)由圆内接四边形ABCD对角互补,利用余弦定理求得AC的值,再求建筑用地ABCD的面积;(2)设CP=x,AP=y,利用余弦定理和基本不等式求得四边形APCD面积的最大值.【解答】解:(1)四边形ABCD中,B+D=π,∴cos B+cos D=0,即+=0,解得AC=,且cos B=﹣cos D=;∴sin B=sin D=,∴建筑用地ABCD的面积为S=×(2×1+2×3)×sin B=2;(2)设CP=x,AP=y,由余弦定理得x2+y2﹣xy=7,又7=x2+y2﹣xy≥2xy﹣xy=xy,当且仅当x=y时,等号成立;得S四边形APCD=×2×1×+×x×y×≤,所以,当且仅当AP=CP,即P为线段AC垂直平分线与弧交点时,面积最大,此时△APC为等边三角形,面积最大,最大值为.【点评】本题考查了圆内接四边形的面积计算问题和基本不等式的应用问题,是中档题.20.(16分)设椭圆Γ:+y2=1,点F为其右焦点,过点F的直线与椭圆Γ相交于点P,Q.(1)当点P在椭圆Γ上运动时,求线段FP的中点M的轨迹方程;(2)如图1,点R的坐标为(2,0),若点S是点P关于x轴的对称点,求证:点Q,S,R共线;(3)如图2,点T是直线l:x=2上的任意一点,设直线PT,FT,QT的斜率分别为k PT,k FT,k QT.求证:k PT,k FT,k QT成等差数列.【考点】J3:轨迹方程;K4:椭圆的性质.【专题】34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由椭圆方程可知,F(1,0)设M(x,y),则P(2x﹣1,2y),把P的坐标代入椭圆Γ,即可求得线段FP的中点M的轨迹方程;(2)当PQ的斜率存在时,设其方程为y=k(x﹣1),与椭圆方程联立,利用根与系数的关系证明k RQ=k RS,即Q,S,R共线.而当PQ斜率不存在时,由椭圆对称性,Q,S 重合,结论显然成立,可得Q,S,R共线;(3)设T(2,t),然后证明k PT+k QT﹣2k FT=0即可证明k PT,k FT,k QT成等差数列.【解答】(1)解:由椭圆方程可知,F(1,0)设M(x,y),则P(2x﹣1,2y),由点P在椭圆Γ上,有.∴线段FP的中点M的轨迹方程;(2)证明:当PQ的斜率存在时,设其方程为y=k(x﹣1),P(x1,y1),Q(x2,y2),将y=k(x﹣1)代入椭圆方程并化简得:(2k2+1)x2﹣4k2x+2(k2﹣1)=0.,.∵==[2x1x2﹣3(x1+x2)+4]=.∴k RQ=k RS,即Q,S,R共线.而当PQ斜率不存在时,由椭圆对称性,Q,S重合,结论显然成立,综上,Q,S,R共线;(3)证明:设T(2,t),,由(2)知,,∴k PT+k QT﹣2k FT===﹣t[]=0.故k PT,k FT,k QT成等差数列.【点评】本题考查轨迹方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.(18分)对于n(n∈N*)个实数构成的集合E={e1,e2,…,e n},记S E=e1+e2+…+e n.已知由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.(1)求a1,a2的值;(2)求证:“a1,a2,…,a n成等差数列”的充要条件是“S A=(n+1)”(3)若S A=2018.求证:n的最小值是11,并求n取最小值时,a n的最大值.【考点】16:子集与真子集;83:等差数列的性质;8E:数列的求和.【专题】14:证明题;35:转化思想;49:综合法;5J:集合.【分析】(1)由题意能求出a1=1,a2=2.(2)先证明必要性:推导出a n=n,从而S A=.再证充分性:推导出a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,从而S A=a1+a2+…+a n≥1+2+3+…+n=,从而a1,a2,…,a n成等差数列.(3)先证明,(k=1,12,3,…,n),推导出当m∈(2p﹣1﹣1,a p)时,m 不能等于集合A的任何一个子集的所有元素之和,再由反证法求出(k=1,2,…,n)成立,从而2n≥2019,n≥11,推导出a n≤1009,由此能求出当n取最小值11时,a n的最大值为1009.【解答】解:(1)∵由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n ≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.∴a1=1,a2=2.证明:(2)先证明必要性:∵a1=1,a2=2,a1,a2,…,a n成等差数列,∴a n=n,∴S A=.再证充分性:∵a1<a2<…<a n,a1,a2,…,a n为正整数数列,∴a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,∴S A=a1+a2+…+a n≥1+2+3+…+n=,∵S A=(n+1),∴a k=k,(k=1,2,3,…,n),∴a1,a2,…,a n成等差数列.(3)先证明,(k=1,12,3,…,n),假设存在a p>2p﹣1,且p为最小的正整数,由题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2﹣1,∵a1<a2<…<a n,∴当m∈(2p﹣1﹣1,a p)时,m不能等于集合A的任何一个子集的所有元素之和,∴假设不成立,即(k=1,2,…,n)成立,∴2018=a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,即2n≥2019,∴n≥11,∵S A=2018,∴a1+a2+…+a n﹣1=2018﹣a n,若2018﹣a n<a n﹣1时,则当m∈(2018﹣a n,a n)时,集合A中不可能有不同元素之和为m,∴2018﹣a n≥a n﹣1,即a n≤1009,此时,可构造集合A={1,2,4,8,16,32,64,128,256,498,1009},∵当m∈{2,2+1}时,m可以等于集合{1,2}中若干个不同元素之和,∴当m∈{22,22+1,22+2,22+3}时,m可以等于集合{1,2,22}中若干个不同元素之和,…∴当m∈{28,28+1,28+2,…,28+255}时,m可以等于集合{1,2,22,…,28}中若干个不同元素之和,∴当m∈{498+3,498+4,…,498+511}时,m可以等于集合{1,2,22,…,28,498}中若干个不同元素之和,∴当m∈{1009,1009+1,1009+2,…,1009+1008}时,m可以等于集合{1,2,22,…,498,1009},∴集合A={1,2,4,8,16,32,64,128,256,498,1009}满足题设,∴当n取最小值11时,a n的最大值为1009.【点评】本题考查数列的前两项的求法,考查等差数列的条件的证明,考查集合的项数的最小值的证明,考查运算求解能力,考查化归与转化思想,是中档题.。

2019年上海市徐汇区高考数学一模试卷及解析〔精品解析版〕

2019年上海市徐汇区高考数学一模试卷及解析〔精品解析版〕

2019年上海市徐汇区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.2.(4分)已知全集U=R,集合A={y|y=x﹣2,x∈R,x≠0},则∁U A=.3.(4分)若实数x,y满足xy=1,则2x2+y2的最小值为.45分)已知双曲线6直线经过坐标原点,=对任意的正整数n,点(a n+1,a n)均在上,若a2=67)∈N*)的展开式中各项的二项式系数之和为式中含(结果用数值表示)8分)上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表B+B B﹣C+C﹣49其他人的成绩至少是B级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为人.9.(5分)已知函数f(x)是以2为周期的偶函数,当0≤x≤1时,f(x)=lg(x+1),令函数g(x)=f(x)(x∈[1,2]),则g(x)的反函数为.10.(5分)已知函数y=sin x的定义域是[a,b],值域是[﹣1,],则b﹣a的最大值是.11.(5分)已知λ∈R,函数f(x)=,若函数f(x)恰有2个零点,则λ的取值范围是.12.(5分)已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1.直线l1、l2分别过圆心M、N,且11与圆M相交于A,B两点,12与圆N相交于C,D两点,点P是椭圆=1上任意一点,则+的最小值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设θ∈R,则“θ=”是“sinθ=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.若正方体的棱长为2,则“牟合方盖”的体积为()A.16B.16C.D.15.(5分)对于函数y=f(x),如果其图象上的任意一点都在平面区域{(x,y)|(y+x)(y ﹣x)≤0}内,则称函数f(x)为“蝶型函数”,已知函数:①y=sin x;②y=,下列结论正确的是()A.①、②均不是“蝶型函数”B.①、②均是“蝶型函数”C.①是“蝶型函数”;②不是“蝶型函数”D.①不是“蝶型函数”:②是“蝶型函数”16.(5分)已知数列{a n}是公差不为0的等差数列,前n项和为S n,若对任意的n∈N*,都有S n≥S3,则的值不可能为()A.2B.C.D.三、解答题.17.(14分)如图,已知正方体ABCD﹣A′B′C′D′的棱长为1.(1)正方体ABCD﹣A′B′C′D'中哪些棱所在的直线与直线A′B是异面直线?(2)若M,N分别是A'B,BC′的中点,求异面直线MN与BC所成角的大小.18.(14分)已知函数f(x)=,其中a∈R.(1)解关于x的不等式f(x)≤﹣1;(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.19.(14分)我国的“洋垃极禁止入境”政策已实施一年多.某沿海地区的海岸线为一段圆弧AB,对应的圆心角∠AOB=,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD对不明船只进行识别查证(如图:其中海域与陆地近似看作在同一平面内)在圆弧的两端点A,B分别建有监测站,A与B之间的直线距离为100海里.(1)求海域ABCD的面积;(2)现海上P点处有一艘不明船只,在A点测得其距A点40海里,在B点测得其距B 点20海里.判断这艘不明船只是否进入了海域ABCD?请说明理由.20.(16分)已知椭圆Γ:=1(a>b>0)的长轴长为2,右顶点到左焦点的距离为+1,直线l:y=kx+m与椭圆Γ交于A,B两点.(1)求椭圆Γ的方程;(2)若A为椭圆的上项点,M为AB中点,O为坐标原点,连接OM并延长交椭圆Γ于N,,求k的值.(3)若原点O到直线l的距离为1,=λ,当时,求△OAB的面积S 的范围.21.(18分)已知项数为n0(n0≥4)项的有穷数列{a n},若同时满足以下三个条件:①a 1=1,a=m(m为正整数);②a i﹣a i﹣1=0或1,其中i=2,3,……,n0;③任取数列{a n}中的两项a p,a q(p≠q),剩下的n0﹣2项中一定存在两项a s,a t(s≠t),满足a p+a q=a s+a t,则称数列{a n}为Ω数列.(1)若数列{a n}是首项为1,公差为1,项数为6项的等差数列,判断数列{a n}是否是Ω数列,并说明理由.(2)当m=3时,设Ω数列{a n}中1出现d1次,2出现d2次,3出现d3次,其中d1,d2,d3∈N*.求证:d1≥4,d2≥2,d3≥4;(3)当m=2019时,求Ω数列{a n}中项数n0的最小值.2019年上海市徐汇区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【解答】解:由i•z=1+2i,得z=,∴z2.(4∴∁U A3.(41,则2x2+y2的最小值为≥2=2,(当且仅当=±,.4.(4的通项公式为a n=(n∈N,则﹣则a n=(﹣)=﹣1.故答案为:﹣1.5.(4分)已知双曲线=1(a>0,b>0)的一条渐近线方程是y=2x,它的一个焦点与抛物线y2=20x的焦点相同,则此双曲线的方程是.【解答】解:抛物线y2=20x的焦点为(5,0),则双曲线的焦点在x轴上,双曲线的一条渐近线为y=2x,可得b=2a,由题意双曲线的一个焦点与抛物线y2=20x的焦点相同,可得=5,解得a=,b=2,则双曲线的方程为:.故答案为:.6.(4分)在平面直角坐标系xOy中,直线经过坐标原点,=(3,1)是l的一个法向量.已知数列{a n}满足:对任意的正整数n,点(a n+1,a n)均在l上,若a2=6,则a3的值为﹣2.【解答】解:直线经过坐标原点,=(3,1)是l的一个法向量,可得直线l的斜率为﹣3,即有直线l的方程为y=﹣3x,点(a n+1,a n)均在l上,可得a n=﹣3a n+1,即有a n+1=﹣a n,则数列{a n}为公比q为﹣的等比数列,可得a3=a2q=6×(﹣)=﹣2.故答案为:﹣2.7.(5分)已知(2x2﹣)n(n∈N*)的展开式中各项的二项式系数之和为128,则其展开式中含项的系数是﹣84.(结果用数值表示)【解答】解:由题意,2n=128,得n=7.∴(2x2﹣)n=(2x2﹣)7,其二项展开式的通项=.由14﹣3r=﹣1,得r=5.∴展开式中含项的系数是.故答案为:﹣84.8.(5分)上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示:上海某高中2018届高三(1)班选考物理学业水平等级考的学生中,有5人取得A+成绩,其他人的成绩至少是B级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为15人.【解答】解:设取得A成绩的x人,取得B+成绩的y人,取得B成绩的z人,则70×5+67x+64y+61z=64×(5+x+y+z),即z﹣x=10,又x,y,z∈N,即当且仅当x=0,y=0,z=10时,5+x+y+z取得最小值15,取得A成绩的0人,取得B+成绩的0人,取得B成绩的10人,这个班级选考物理学业水平等级考的人数至少为15人,故答案为:159.(5分)已知函数f(x)是以2为周期的偶函数,当0≤x≤1时,f(x)=lg(x+1),令函数g(x)=f(x)(x∈[1,2]),则g(x)的反函数为g﹣1(x)=3﹣10x(0≤x≤lg2).【解答】解:当﹣1≤x≤0时,0≤﹣x≤1,∴f(x)=f(﹣x)=lg(﹣x+1),当1≤x≤2时,﹣1≤x﹣2≤0,∴f(x)=f(x﹣2)=lg[﹣(x﹣2)+1]=lg(﹣x+3).∴g(x)=lg(﹣x+3)(1≤x≤2),∴﹣x+3=10g(x),∴x=3﹣10g(x),故答案为:g﹣1(x)=3﹣10x,(0≤x≤lg2)10.(5分)已知函数y=sin x的定义域是[a,b],值域是[﹣1,],则b﹣a的最大值是.【解答】解:函数y=sin x,令≤a≤,要使b﹣a的最大值,可知b的最大值为:b=,∴b﹣a的最大值为;故答案为:11.(5分)已知λ∈R,函数f(x)=,若函数f(x)恰有2个零点,则λ的取值范围是(1,3]∪(4,+∞).【解答】解:根据题意,在同一个坐标系中作出函数y=x﹣4和y=x2﹣4x+3的图象,如图:若函数f(x)恰有2个零点,即函数f(x)图象与x轴有且仅有2个交点,则1<λ≤3或λ>4,即λ的取值范围是:(1,3]∪(4,+∞)故答案为:(1,3]∪(4,+∞).12.(5分)已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1.直线l1、l2分别过圆心M、N,且11与圆M相交于A,B两点,12与圆N相交于C,D两点,点P是椭圆=1上任意一点,则+的最小值为8.【解答】解:由题意可得,M(0,1),N(0,﹣1),r M=r N=1,=()•()==,=()•==﹣1,∵∵P为椭圆上的点,∴=+﹣2=2(x2+y2)=由题意可知,﹣3≤x≤3,∴8≤,故答案为:8.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设θ∈R,则“θ=”是“sinθ=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:由θ=,则有sinθ=,即“θ=”是“sinθ=”的充分条件,由sinθ=,得:θ=kπ+(﹣1)k,即“θ=”是“sinθ=”的不必要条件,即“θ=”是“sinθ=”的充分不必要条件.故选:A.14.(5分)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.若正方体的棱长为2,则“牟合方盖”的体积为()A.16B.16C.D.【解答】解:正方体的棱长为2,则其内切球的半径r=1,∴正方体的内切球的体积,又由已知,∴.故选:C.15.(5分)对于函数y=f(x),如果其图象上的任意一点都在平面区域{(x,y)|(y+x)(y ﹣x)≤0}内,则称函数f(x)为“蝶型函数”,已知函数:①y=sin x;②y=,下列结论正确的是()A.①、②均不是“蝶型函数”B.①、②均是“蝶型函数”C.①是“蝶型函数”;②不是“蝶型函数”D.①不是“蝶型函数”:②是“蝶型函数”【解答】解:由y=sin x,设g(x)=sin x+x,导数为cos x+1≥0,即有x>0,g(x)>0;x<0时,g(x)<0;设h(x)=sin x﹣x,其导数为cos x﹣1≤0,x>0时,h(x)<0,x<0时,h(x)>0,可得(y+x)(y﹣x)≤0恒成立,即有y=sin x为“蝶型函数”;由(+x)(﹣x)=x2﹣1﹣x2=﹣1<0,可得y=为“蝶型函数”.故选:B.16.(5分)已知数列{a n}是公差不为0的等差数列,前n项和为S n,若对任意的n∈N*,都有S n≥S3,则的值不可能为()A.2B.C.D.【解答】解:∵数列{a n}是公差不为0的等差数列,前n项和为S n,对任意的n∈N*,都有S n≥S3,∴,∴,且∴﹣3d≤a1≤﹣2d,∴当==2时,a1=﹣3d.成立;当==时,a1=﹣d.成立;当==时,a1=﹣2d.成立;当==时,a1=﹣d.不成立.∴的值不可能为.故选:D.三、解答题.17.(14分)如图,已知正方体ABCD﹣A′B′C′D′的棱长为1.(1)正方体ABCD﹣A′B′C′D'中哪些棱所在的直线与直线A′B是异面直线?(2)若M,N分别是A'B,BC′的中点,求异面直线MN与BC所成角的大小.【解答】解:(1)正方体ABCD﹣A′B′C′D′中,直线A′B是异面直线的棱所在直线有:AD,B′C′,CD,C′D′,DD′,CC′,共6条.(2)M,N分别是A'B,BC′的中点,以D为原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,则A′(1,0,1),B(1,1,0),C′(0,1,1),M(1,,),N(),B(1,1,0),C(0,1,0),=(﹣,0),=(﹣1,0,0),设异面直线MN与BC所成角的大小为θ,则cosθ===,∴θ=45°,∴异面直线MN与BC所成角的大小为45°.18.(14分)已知函数f(x)=,其中a∈R.(1)解关于x的不等式f(x)≤﹣1;(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.【解答】解:(1)x的不等式f(x)≤﹣1,即为≤﹣1,即为≤0,当a=﹣1时,解集为{x|x≠﹣2};当a>﹣1时,解集为(﹣2,0];当a<﹣1时,解集为(﹣∞,﹣2)∪[0,+∞);(2)f(x)==a+,由f(x)在区间(0,+∞)上是单调减函数,可得﹣2﹣2a>0,解得a<﹣1.即a的范围是(﹣∞,﹣1).19.(14分)我国的“洋垃极禁止入境”政策已实施一年多.某沿海地区的海岸线为一段圆弧AB,对应的圆心角∠AOB=,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD对不明船只进行识别查证(如图:其中海域与陆地近似看作在同一平面内)在圆弧的两端点A,B分别建有监测站,A与B之间的直线距离为100海里.(1)求海域ABCD的面积;(2)现海上P点处有一艘不明船只,在A点测得其距A点40海里,在B点测得其距B 点20海里.判断这艘不明船只是否进入了海域ABCD?请说明理由.【解答】解:(1)∵∠AOB=,在海岸线外侧20海里内的海域ABCD,AB=100∴AD=BC=20,OA=OB=AB=100,∴OD=OA+AD=100+20=120,∴S ABCD=•π(OD2﹣OA2)=π(1202﹣1002)=(平方海里),(2)由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即(x﹣100)2+y2=7600…①,点P也在圆A上,即(x﹣50)2+=1600…②;由①②组成方程组,解得或;又区域ABCD内的点满足,由302+=3600<10000,∴点(30,30)不在区域ABCD内,由902+=15600>14400,∴点(90,50)也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.20.(16分)已知椭圆Γ:=1(a>b>0)的长轴长为2,右顶点到左焦点的距离为+1,直线l:y=kx+m与椭圆Γ交于A,B两点.(1)求椭圆Γ的方程;(2)若A为椭圆的上项点,M为AB中点,O为坐标原点,连接OM并延长交椭圆Γ于N,,求k的值.(3)若原点O到直线l的距离为1,=λ,当时,求△OAB的面积S的范围.【解答】解:(1)由题意可知,,于是得到,因为右顶点到左焦点的距离为,所以,c=1,则,因此,椭圆Γ的方程为;(2)当点A为椭圆的上顶点时,点A的坐标为(1,0),则m=1,直线l的方程为y=kx+1,将直线l的方程代入椭圆的方程并化简得(2k2+1)x2+4kx=0,解得,,所以点B的坐标为,由于点M为线段AB的中点,则点M的坐标为,由于,所以,点N的坐标为,将点N的坐标代入椭圆的方程得,化简得,解得;(3)由于点O到直线l的距离为1,则有,所以,m2=k2+1.设点A(x1,y1)、B(x2,y2),将直线l的方程代入椭圆方程并化简得(2k2+1)x2+4kmx+2m2﹣2=0,由韦达定理可得,,=x1x2+(kx1+m)(kx2+m)====,由于,即,解得,线段AB的长为====,所以,.因此,△OAB的面积S的取值范围是.21.(18分)已知项数为n0(n0≥4)项的有穷数列{a n},若同时满足以下三个条件:①a 1=1,a=m(m为正整数);②a i﹣a i﹣1=0或1,其中i=2,3,……,n0;③任取数列{a n}中的两项a p,a q(p≠q),剩下的n0﹣2项中一定存在两项a s,a t(s≠t),满足a p+a q=a s+a t,则称数列{a n}为Ω数列.(1)若数列{a n}是首项为1,公差为1,项数为6项的等差数列,判断数列{a n}是否是Ω数列,并说明理由.(2)当m=3时,设Ω数列{a n}中1出现d1次,2出现d2次,3出现d3次,其中d1,d2,d3∈N*.求证:d1≥4,d2≥2,d3≥4;(3)当m=2019时,求Ω数列{a n}中项数n0的最小值.【解答】解:(1)若数列{a n}:1,2,3,4,5,6是Ω数列,取数列{a n}中的两项1和2,则剩下的4项中不存在两项a s,a t(s≠t),使得1+2=a s+a t,故数列{a n}不是Ω数列;(2)若d1≤3,对于p=1,q=2,若存在2<s<t,满足a p+a q=a s+a t,∵2<s<t,于是s≥3,t≥4,故a5≥a2,a t>a1,从而a s+a t>a2+a1,矛盾,故d1≥4,同理d3≥4,下面证明d2≥2:若d2=1,即2出现了1次,不妨设a k=2,a1+a k=a s+a t,等式左边是3,等式右边有几种可能,分别是1+1或1+3或3+3,等式两边不相等,矛盾,于是d1≥2;(3)设出现d1次,2出现d2次…,2019出现d2019次,其中d1,d2,…,d2019∈N*,由(2)可知,d1≥4,d2019≥4,且d2≥2,同理d2018≥2,又∵d3,d4…,d2017∈N*,故项数n0=d1+d2+…+d2019≥2027,下面证明项数n0的最小值是2027:取d1=4,d2=2,d3=d4=…=d2017=1,d2018=2,d2019=4,可以得到数列{a n}:1,1,1,1,2,2,3,4…,2016,2017,2018,2019,2019,2019,2019,接下来证明上述数列是Ω数列:若任取的两项分别是1,1,则其余的项中还存在2个1,满足1+1=1+1,同理,若任取的两项分别是2019,2019也满足要求,若任取的两项分别是1,2,则其余的项中还存在3个1,1个2,满足要求,同理,若任取的两项分别是2018,2019也满足要求,若任取a p=1,a q≥3,则在其中的项中取a5=2,a t=a q﹣1,满足要求,同理,若a p≤2017,a q=2019也满足要求,若任取的两项a p,a q满足1<a p≤a q<2019,则在其余的项中选取a s=a p﹣1,a t=a q+1,每个数最多被选取了1次,于是也满足要求,从而,项数n 0的最小值是2027.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学一模试卷及答案一、选择题1.设1i 2i 1i z -=++,则||z = A .0 B .12 C .1 D .22.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种4.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞5.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )A .1123AB AD - B .1142AB AD + C .1132AB DA + D .1223AB AD -. 7.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( )A .1B 2C 3D .2 9.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 10.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3211.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32412.设双曲线22221x y a b -=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )A .3B .2C .6D .5二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________. 15.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .16.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________17.函数()lg 12sin y x =-的定义域是________.18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 三、解答题21.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.22.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.23.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 6=APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 24.若不等式2520ax x +->的解集是122xx ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.25.已知函数()ln f x x x =.(1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i 2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.C解析:C【解析】【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项.故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.考点:三视图.3.A解析:A【解析】【分析】【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法,甲在星期二有A 32=6种安排方法,甲在星期三有A 22=2种安排方法,总共有12+6+2=20种;故选A .4.C解析:C【解析】【分析】 求得函数的导数()(2)()x xe a f x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)xf x x e a x x =-+-+, 可得2()(3)(1)(2)()(2)()x x xx a xe a f x e x e a x e x x x x -'=+-+-=--=-⋅, 又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe a x x--⋅=在(1,)+∞上有两解, 即0x xe a -=在在(1,)+∞上有不等于2的解,令()x g x xe =,则()(1)0,(1)xg x x e x '=+>>, 所以函数()xg x xe =在(1,)+∞为单调递增函数, 所以()1a g e >=且()222a g e ≠=, 又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立, 即(2)()0x xe a x x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立, 即x a xe ≥在(1,2)上恒成立,又由函数()x g x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=, 综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C. 【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.5.A解析:A【解析】【分析】根据充分条件和必要条件的定义,结合祖暅原理进行判断即可.【详解】根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件.故选:A【点睛】本题考查充分条件与必要条件的判断,属于基础题.6.D解析:D【解析】【分析】用向量的加法和数乘法则运算。

【详解】由题意:点E 是DC 的中点,点F 是BC 的一个三等分点, ∴11122323EF ED DA AB BF AB AD AB AD AB AD =+++=--++=-。

故选:D 。

【点睛】本题考查向量的线性运算,解题时可根据加法法则,从向量的起点到终点,然后结合向量的数乘运算即可得。

相关文档
最新文档