31不等关系与不等式
高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案
均值不等式[新知初探]1.均值定理 如果a ,b ∈R +当且仅当a =b 时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a ,b ,数a +b2称为a ,b 的算术平均值(平均数),数ab 称为a ,b 的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛] (1)“a =b ”是a +b2≥ab 的等号成立的条件.若a ≠b ,则a +b2≠ab ,即a +b2>ab .(2)均值不等式a +b2≥ab 与a 2+b 2≥2ab 成立的条件不同,前者a >0,b >0,后者a ∈R ,b ∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值; (2)两个正数的和为常数时,它们的积有最大值.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立( ) (2)若a ≠0,则a +4a≥2a ·4a=4( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22( )解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据均值不等式,才有不等式a +4a≥2a ·4a=4成立. (3)正确.因为ab ≤a +b2,所以ab ≤⎝⎛⎭⎪⎫a +b 22.答案:(1)× (2)× (3)√2.已知f (x )=x +1x-2(x >0),则f (x )有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2答案:B3.对于任意实数a ,b ,下列不等式一定成立的是( ) A .a +b ≥2ab B.a +b2≥abC .a 2+b 2≥2ab D.b a +a b≥2答案:C4.已知0<x <1,则函数y =x (1-x )的最大值是________. 答案:14[典例] (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定(2)若a>b>1,P=lg a·lg b,Q=12(lg a+lg b),R=lga+b2,则P,Q,R的大小关系是________.[解析] (1)因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m ≥2a-1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.(2)因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.[答案] (1)A (2)P<Q<R[活学活用]已知a,b,c都是非负实数,试比较a2+b2+b2+c2+c2+a2与2(a+b+c)的大小.解:因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a2+b2≥22(a+b),同理b2+c2≥22(b+c), c2+a2≥22(c+a),所以a2+b2+b2+c2+c2+a2≥22[(a+b)+(b+c)+(c+a)],即a2+b2+b2+c2+c2+a2≥2(a+b+c),当且仅当a=b=c时,等号成立.[典例] 设a,b,c都是正数,求证:ab(a+b)+bc(b+c)+ca(c+a)≥6abc.[证明] 因为a,b,c都是正数,所以ab(a+b)+bc(b+c)+ca(c+a)=a2b+ab2+b2c+bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc ,所以原不等式成立,当且仅当a =b =c 时,等号成立.[活学活用]已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.[典例] (1)(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.[解] (1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由均值不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x+9xy+10,又∵x >0,y >0, ∴y x +9xy+10≥2y x ·9xy+10=16, 当且仅当y x=9xy,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.[活学活用]1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选 C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a≥6×(5+4)=54,当且仅当2ab=2ba时等号成立,∴9m≤54,即m≤6,故选C.2.若x>0,y>0,且x+4y=1,则xy的最大值为________.解析:1=x+4y≥24xy=4xy,∴xy≤116,当且仅当x=4y=12时等号成立.答案:1 16[典例] 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解] (1)设铁栅长为x米,一堵砖墙长为y米,而顶部面积为S=xy,依题意得,40x +2×45y+20xy=3 200,由均值不等式得3 200≥240x×90y+20xy=120xy+20xy,=120S+20S.所以S+6S-160≤0,即(S-10)(S+16)≤0,故S≤10,从而S≤100,所以S的最大允许值是100平方米,(2)取得最大值的条件是40x=90y且xy=100,求得x=15,即铁栅的长是15米.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一 学业水平达标1.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x≥2不成立;由均值不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1B.1a +1b ≥1C.1a +1b<2 D.1a +1b≥2解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bc B.a +d2<bc C.a +d2=bcD.a +d2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b=ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立. 答案:128.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x≥2.当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞9.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)已知x ,y 是正实数,且x +y =4,求1x +3y的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x+-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x=3xy,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. 证明:因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =b c, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6. 层级二 应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ), 所以1a +1b +1c =-1b +c +1b +1c ,因为b <0,c <0,所以b +c ≤-2bc , 所以-1b +c ≤12bc ,又1b +1c ≤-21bc, 所以-1b +c +1b +1c ≤12bc-21bc=-32bc<0,故选B.3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值为( )A .0B .1C .2D .4解析:选 D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以a +b2cd=x +y 2xy=x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4,当且仅当x =y 时,等号成立. 4.设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .6B .4 2C .2 6D .8解析:选B ∵a ,b 是实数,∴2a>0,2b>0, 于是2a+2b≥2 2a·2b=2 2a +b=223=42,当且仅当a =b =32时取得最小值4 2.5.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 解析:x +1x -1≥a 恒成立⇔⎝ ⎛⎭⎪⎫x +1x -1min ≥a ,∵x >1,即x -1>0, ∴x +1x -1=x -1+1x -1+1≥2x -1x -1+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. ∴a ≤3,即a 的最大值为3. 答案:36.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2a +b +=79ab +10,又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某厂家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该厂家2016年的促销费用为多少万元时,厂家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m=4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2016年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12x y +k y x ≥2恒成立.又k >16, ∴⎝ ⎛⎭⎪⎫3k -12xy+k y x≥2k ⎝⎛⎭⎪⎫3k -12,∴2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,∴k min =12.。
3.1.1不等关系和3.1.2不等关系与不等式(一)课件ppt
∴aabb=abba.(8 分) a (3)当 a<b 时,0< <1,a-b<0, b
a a-b ∴ >1,∴aabb>abba.(11 分) b
综上可知,当 a>0,b>0 时,aabb≥abba.(12 分)
课堂讲练互动
自学导引
1.关于a≥b或a≤b的含义 (1)a>b或a<b,表示严格的不等式. 大于或等于b 或者a (2)不等式“a≥b”读作“_____________”.其含义是指“_____ >b,或者a=b ______________”,等价于“a不小于b”,即a>b或a=b中有
一个正确,则a≥b正确. a小于或等于b (3)不等式“a≤b”读作“______________”.其含义是指“或者 a不大于b a<b,或者a=b”,等价于“__________”,即a<b或a=b中 有一个正确,则a≤b正确.
解 1)(x
2
(x3-1)-(2x2-2x)=(x-1)(x2+x+1)-2x(x-1)=(x-
1 2 3 -x+1)=(x-1)x- + 2 4
12 3 ∵x<1,∴x-1<0,又x- + >0. 2 4 1 2 3 ∴(x-1)[x- + ]<0,∴x3-1<2x2-2x. 2 4
课前探究学习
课堂讲练互动
【题后反思】 (1)作商比较法的应用条件,利用作商比较 法的前提是两个数需同号,一般情况下,比较两个正数间 的大小关系多用作商法. (2)作商法的基本步骤: ①作商;②变形;③判断与1的大小;④得出结论.
课前探究学习
课堂讲练互动
【训练3】 若m>0,比较mm与2m的大小.
3.1不等关系与不等式
500x 600 y 4000
(2)截得600mm钢管的数量不能超过500mm 的钢管数量的3倍; (3)截得两种钢管的数量都不能为负.
假设截得500mm的钢管x根,截得600mm的钢管y根。 根据题意,应当有什么样的不等式呢?
数学应用
问题3.某钢铁厂要把长度为4000mm的钢管截成500mm 和600mm的两种规格。按照生产的要求,600mm的钢 管的数量不能超过500mm钢管的3倍, 写出满足上述 所有不等关系的不等式. 分析:
1 1 倒数法则:a b, ab 0 a b
练习.用不等号填空
(1) a b
2
2 ≥ ____
2 ab
< ______
(2)( x 5)( x 7)
(3)( x 1)
2 2
( x 6)
2
2
< _____
x 2x 2
4
> (4) x x 1 _____
∵两个正数的和仍是正数
∴
(a b) (b c) 0
ac 0
∴Hale Waihona Puke ac由性质1知性质2也可表示为如果
c b且b a
那么
ca
不等式的性质
性质3.如果
a b ,那么 a c b c
不等式的可加性
(即a b a c b c)
证明: ∵
∴
(a c) (b c) a b 0
500x 600 y 4000
y 3x
x≥0,y≥0
假设截得500mm的钢管x根,截得600mm的钢管y根。 根据题意,应当有什么样的不等式呢?
数学应用
3.1不等关系与不等式
3.1不等关系与不等式1.用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;2.理解不等式(组)对于刻画不等关系的意义和价值;一、新课导学※探索新知现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,如:1、今天的天气预报说:明天早晨最低温度为14℃,明天白天的最高温度23℃;2、三角形ABC的两边之和大于第三边;3、a是一个非负实数。
4、右图是限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h ,写成不等式是:_________5、某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,用不等式可以表示为:()A. f≥2.5%或p≥2.3%B.f≥2.5%且p≥2.3%1.不等式的定义:2.2≥2,这样写正确吗?“≥“的含义是什么?a≥b、a≤b表示什么?题型1.建立不等关系例1 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。
怎样写出满足上述所有不等关系的不等式呢?【解题思路】设出变量,将文字语言转化为数学符号.4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨。
现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产。
请用不等式组把此实例中的不等关系表示出来。
题型2:比较法两个数的大小3.4.数轴上两点A、B有怎样的位置关系?两实数有怎样的大小关系?点的关系:数的关系:5.如何比较两数大小①作差法a b>a b=a b<②作商法: ;a b?.a b?如果p qÞ,同时pq⇒,则记为。
例2.比较x2-x和 x-2的大小变式:比较a mb m++与ab(其中0b a>>,0m>)的大小不等式的性质性质1:如果a>b,那么b<a;如果b<a,那么a>b.性质1表明,把不等式的左边和右边交换位置,所得不等式与原不等式异向,我们把这种性质称为不等式的对称性。
不等关系与不等式教案
不等关系与不等式教案教学设计3.1.1 不等关系与不等式整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a<b”“a≠b”“a≥b”“a≤b”等式子表示,不等关系是可以通过不等式来体现的.教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA<xB.教师协助画出数轴草图如下图.实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x ≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|Ac|+|Bc|>|AB|,如下图.|AB|+|Bc|>|Ac|、|Ac|+|Bc|>|AB|、|AB|+|Ac|>|Bc|.|AB|-|Bc|<|Ac|、|Ac|-|Bc|<|AB|、|AB|-|Ac|<|Bc|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a<b三种关系中有且仅有一种关系成立.用逻辑用语表达为:a-b >0 a>b;a-b=0 a=b;a-b<0 a<b.应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x) B.f(x)=g(x)c.f(x)<g(x)D.随x值变化而变化答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b 2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a -b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为,根据问题的要求a<b,且ab≥10%,由于a+b+-ab=b-a b b+>0,于是a +b+>ab.又ab≥10%,因此a+b+>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a<b,>0,则a +b+>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ≠1,则( )A.a1+a8>a4+a5 B.a1+a8<a4+a5 c.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4 =a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )A.3B.2c.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.c 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)2-2+5和-2+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(2-2+5)-(-2+5)=2-2+5+2-5=2.∵2≥0,∴(2-2+5)-(-2+5)≥0.∴2-2+5≥-2+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x<y<0,∴xy>0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0<ab<1,a-b<0.则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba.。
3-1《不等式与不等关系》课件(共29张PPT)
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
3.1不等关系与不等式(2)
布置作业 一.结合创新设计阅读课本P72至P75; 二.作业本
P36§3.1不等关系与不等式(二)
个人收集整理,仅供交流学习!
个人收集整理,仅供交流学习!
B.c(b a) 0
C.cb2 <ab2
D.ac(a c) 0
二、利用不等式性质证明不等式
例2:已知a>b>0, c<0
求证:c a
>
c b
练习:已知a>b>0,d<c&l不等式性质确定取值范围
例3.已知二次函数f (x) ax2 -c, 且-4 f (1) 1,1 f (2) 5, 求f (3)的取值范围.
性质1.如果a>b,那么b<a,如果b<a,那么
a>b.即 a>b b<a (对称性)
性质2.如果a>b,且b>c,那么a>c.
即 a>b,b>c a>c (传递性)
性质3.如果a>b,那么a+c>b+c.(可加性)
a>b a+c>b+c
推论.如果a+b>c,那么a>c-b(移项法则)
§3.1.2不等关系 与不等式
试一试.已知a>b,比较1/a 与1/b 的大小.
a b ab0 问题1、如何利用公理: a b a b 0 及实数的运算性质, a b a b 0 得出不等式的性质?
问题2、不等式的哪些性质可推广, 如何推广?证明?
不等式的性质
性质8.若 a b 0,则n a n b (n N且n 1)
点评:反证法证题思路是: 反设结论→找出矛盾→肯定结论.
3.1 不等关系与不等式 导学案
复习回顾
1.不等式的基本性质有哪些?
自主检测
1.求证 2 7 3 6 .
2.比较下列各组中两个代数式的大小: 自主探究(阅读课本 57~62 页) ※ 探究任务一:阅读并感受分析法 如何解决不 ... 等式的问题 求证: 3 6 2 2 7 . 证明:要想证明 3 6 2 2 7 , 因为 3 6 0 , 2 2 7 0 , 只需证明 15 6 6 15 4 14 , 即只需证明 3 6 2 14 , 即只需要证明 54 56 , 显然这是成立的,即可证得 3 6 2 2 7 . 分析法 (也叫执果索因法)是从结论入手,倒 ... 着求使它成立需要的条件,直到得到已知条件 或者得到一种事实为止, 从而找出解题途径. 概 括地说,就是“从未知,看需知,逐步靠拢已 知” . ※ 探究任务二: 作差比较法的理论依据 (1) a b 0 a b (2) a b 0 a b (3) a b 0 a b (4) x 2 y 2 1 与 2 x y 1 . (3)当 x 1 时, x 3 与 x 2 x 1 ; (2) x 3 与 x 2 x 4 .
5m 5m
已知 a b 0 , c d 0 ,求证 a b . d c
仓
5m
库
5m
绿地
38
班级
姓名
必修五导学案
使用日期:2014 年 3 月 31 日
3.1 不等关系与不等式(2)
学习目标
1.熟练掌握不等式的基本性质. 2.掌握运用分析法和作差(商)比较法比较并 证明两个数的大小. 从这三个式子我们得到这样的启示,比较两个 数的大小,我们只需考察这两个数的差.这种 方法叫作差比较法.
高中数学第三章不等式31不等关系与不等式课件新人教A版必修5
D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.
3.1不等式与不等关系课(共32张PPT)
探究点1
不等式的性质
(对称性) (1)a > b b < a; (传递性) (2)a > b,b > c a > c;
(可加性) (3) a > b a + c > b + c;
由性质(3)可得:
a + b > c a + b +( - b )> c +( - b ) a > c - b .
解:因为15 < b < 36,所以 - 36 < -b < -15. 又因为12 < a < 60,所以12 - 36 < a - b < 60 - 15, 所以 - 24 < a - b < 45. 1 1 1 12 a 60 因为 < < ,所以 < < , 36 b 15 36 b 15 1 a 所以 < < 4. 3 b
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
f≥2.5% 写成不等式组为 p≥2.3% .
【即时练习】 某高速公路对行驶的各种车辆的最大限速为120km/h.
行驶过程中,同一车道上的车间距d不得小于10 m,用不
等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m)
2.设M=x2,N=x-1,则M与N的大小关系为 ( A ) A.M>N C.M<N B.M=N D.与x有关
【解析】 ∵M-N=x2-(x-1)=x2-x+1 1 3 =x -x+ + 4 4
2
12 3 =(x- ) + >0. 2 4 ∴M>N.
不等关系与不等式
不等关系与不等式、一元二次不等式的应用一、知识梳理1. 不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号>、<、≥、≤、≠连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2. 两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b<1⇔a < b (a ∈R ,b >0).3. 不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c , a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc , a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒(n ∈N ,n ≥2).4.分式不等式(1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0;(3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 5.解分式、高次不等式(穿针引线法)(1)将不等式化为标准形式;一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积.(2)求出各因式为0时的实数根,并在数轴上标出.(3)自最右端上方起,用曲线从右至左依次由各根穿过数轴,遇奇次重根一次穿过,遇偶次重根穿而不过(说明:奇过偶不过).(4)记数轴上方为正,下方为负,根据不等式的符号写出解集.[难点正本 疑点清源]1. 在学习不等式的性质时,要特别注意下面几点(1)不等式的性质是解、证不等式的基础,对任意两实数a 、b 有a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ,这是比较两数(式)大小的理论根据,也是学习不等式的基石. (2)一定要在理解的基础上记准、记熟不等式的性质,并注意在解题中灵活、准确地加以应用.(3)不等式的传递性:若a >b ,b >c ,则a >c ,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a >c ,选择中间量b ,在证出a >b ,c >b 后,就误认为能得到a >c .(4)同向不等式可相加,但不能相减,即由a >b ,c >d ,可以得出a +c >b +d ,但不能得出a -c >b -d .2. 理解不等式的思想和方法(1)作差法是证明不等式的最基本也是很重要的方法,应引起高度注意,要注意强化. (2)加强化归意识,把比较大小问题转化为实数的运算.(3)通过复习要强化不等式“运算”的条件.如a >b 、c >d 在什么条件下才能推出ac >bd . (4)强化函数的性质在大小比较中的重要作用,加强知识间的联系.二、基础自测1. 已知a >b >0,且c >d >0,则a d与bc的大小关系是____a d >bc___. 解析 ∵a >b >0,c >d >0,∴a d >bc>0,∴a d> b c. 2. 已知a <0,-1<b <0,那么a ,ab ,ab 2的大小关系是____ab >ab 2>a ___.解析 由-1<b <0,可得b <b 2<1.又a <0,∴ab >ab 2>a .3. 限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,写成不等式就是( D )A .v <40 km/hB .v >40 km/hC .v ≠40 km/hD .v ≤40 km/h4. 设a ,b 为实数,则“0<ab <1”是“b <1a”的( D )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 ∵0<ab <1,∴a ,b 同号,且ab <1. ∴当a >0,b >0时,b <1a ;当a <0,b <0时,b >1a.∴“0<ab <1”是“b <1a ”的不充分条件.而取b =-1,a =1,显然有b <1a,但不能推出0<ab <1,∴“0<ab <1”是“b <1a”的不必要条件.5.设a >b >1,c <0,给出下列三个结论:①c a >cb;②a c <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( D )A .①B .①②C .②③D .①②③答案 D解析 根据不等式的性质构造函数求解.∵a >b >1,∴1a <1b .又c <0,∴c a >cb ,故①正确.构造函数y =x c .∵c <0,∴y =x c 在(0,+∞)上是减函数.又a >b >1,∴a c <b c ,故②正确. ∵a >b >1,-c >0,∴a -c >b -c >1.∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ), 即log b (a -c )>log a (b -c ),故③正确.6. 若不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( D ) A .m ≥2 B .m ≤-2 C .m ≤-2或m ≥2 D .-2≤m ≤2 解析 由题意,得Δ=m 2-4≤0,∴-2≤m ≤2.7. 若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( C )A .100台B .120C .150台D .180台解析 y -25x =-0.1x 2-5x +3 000≤0,∴x 2+50x -30 000≥0,x ≥150或x ≤-200(舍去).8.若不等式x 2+x +k >0恒成立,则k 的取值范围为___⎝ ⎛⎭⎪⎫14,+∞_. 解 由题意知Δ<0,即1-4k <0,∴k >14,即k ∈⎝⎛⎭⎫14,+∞. 三、题型解析题型一 不等式性质的应用例1 已知-π2<α<β<π2,求α+β2,α-β2的取值范围.解 因为-π2<α<β<π2,所以-π4<α2<π4,-π4<β2<π4.所以-π2<α+β2<π2,-π4<-β2<π4.因为α<β,所以α-β2<0.故-π2<α-β2<0.探究提高 (1)利用不等式的性质求范围要充分利用题设中的条件,如本题中的条件α<β;(2)注意“α-β”形式,利用不等式要正确变形.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是__(3,8)__.答案 (3,8)解析 设2x -3y =m (x +y )+n (x -y ),∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎨⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ),∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152,∴3<-12(x +y )+52(x -y )<8,即3<2x -3y <8,所以z =2x -3y 的取值范围为(3,8). 题型二 比较大小问题例2 已知a ≠1且a ∈R ,试比较11-a与1+a 的大小.解 ∵11-a -(1+a )=a 21-a,①当a =0时,a 21-a =0,∴11-a =1+a .②当a <1,且a ≠0时,a 21-a >0,∴11-a >1+a .③当a >1时,a 21-a <0,∴11-a<1+a .探究提高 实数的大小比较常常转化为对它们差(简称作差法)的符号的判定,当解析式里面含有字母时常需分类讨论.(2012·四川)设a ,b 为正实数.现有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有_①④_.(写出所有真命题的编号)解析 ①中,a 2-b 2=(a +b )(a -b )=1,a ,b 为正实数,若a -b ≥1,则必有a +b >1,不合题意,故①正确.②中,1b -1a =a -bab =1,只需a -b =ab 即可.如取a =2,b =23满足上式,但a -b =43>1,故②错.③中,a ,b 为正实数,所以a +b >|a -b |=1, 且|a -b |=|(a +b )(a -b )|=|a +b |>1,故③错. ④中,|a 3-b 3|=|(a -b )(a 2+ab +b 2)|=|a -b |(a 2+ab +b 2)=1.若|a -b |≥1,不妨取a >b >1,则必有a 2+ab +b 2>1,不合题意,故④正确. 题型三 不等式与函数、方程的综合问题例3 已知f (x )是定义在(-∞,4]上的减函数,是否存在实数m ,使得f (m -sinx )≤f ⎝⎛⎭⎫1+2m -74+cos 2x 对定义域内的一切实数x 均成立?若存在,求出实数m 的取值范围;若不存在,请说明理由. 解 假设实数m 存在,依题意,可得⎩⎪⎨⎪⎧ m -sin x ≤4,m -sin x ≥1+2m -74+cos 2x ,即⎩⎪⎨⎪⎧m -4≤sin x ,m -1+2m +12≥-⎝⎛⎭⎫sin x -122. 因为sin x 的最小值为-1,且-(sin x -12)2的最大值为0,要满足题意,必须有⎩⎪⎨⎪⎧m -4≤-1,m -1+2m +12≥0,解得m =-12或32≤m ≤3. 所以实数m 的取值范围是⎣⎡⎦⎤32,3∪⎩⎨⎧⎭⎬⎫-12.探究提高 不等式恒成立问题一般要利用函数的值域,m ≤f (x )恒成立,只需m ≤f (x )min .已知a 、b 、c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.解 ∵a 2+b 2+c 2-(ab +bc +ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0,当且仅当a =b =c 时取等号,∴a 2+b 2+c 2≥ab +bc +ca . 题型四 分式不等式的解法 例4 解下列不等式. (1)x +1x -3≥0;(2)5x +1x +1<3. 解 (1)按商的符号法则,不等式x +1x -3≥0可转化成不等式(x +1)(x -3)≥0,但x ≠3.解这个不等式,可得x ≤-1或x >3.即知原不等式的解集为{x |x ≤-1或x >3}. (2)不等式5x +1x +1<3可改写为5x +1x +1-3<0(不等式的右边为0),即2(x -1)x +1<0.仿(1),可将这个不等式转化成2(x -1)(x +1)<0,解得-1<x <1. 所以,原不等式的解集为{x |-1<x <1}. 变式训练4 解下列不等式. (1)x -3x +2<0; (2)x +12x -3≤1. 解 (1)x -3x +2<0⇔(x -3)(x +2)<0⇔-2<x <3,∴原不等式的解集为{x |-2<x <3}.(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.∴⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4.题型五 简单高次不等式的解法 例5 解不等式:(x -1)(x -2)(x -3)>0.思考1 不等式对应的函数为f (x )=(x -1)(x -2)(x -3)的图像与x 轴有几个交点?交点把x 轴分成几个区间?答 由(x -1)(x -2)(x -3)=0,得交点坐标为(1,0),(2,0),(3,0); 分成的区间为(-∞,1),(1,2),(2,3),(3,+∞).思考2 在思考1中的各个区间内,函数值的符号是怎样的?有什么变化规律?答 当x ∈(3,+∞)时,即x >3时,由于三个因式(x -1),(x -2),(x -3)都是正数,所以f (x )>0;在区间(2,3)上,因式(x -1)>0,(x -2)>0,(x -3)<0,所以f (x )<0.同理可知其他区间函数值的符号.又函数f (x )的图像是一条不间断的曲线,所以f (x )的符号每顺次经过x 轴的一个交点就会发生一次变化.思考3 如何形象的把函数值的符号变化的规律表示出来? 答反思与感悟 上述解不等式的方法可以形象的说成是穿针引线法.解简单的高次不等式时要特别注意偶次方根要“穿而不过”,也就是要“反弹”起来,遵循“奇穿偶回”的原则. 变式训练5 解不等式:(1)x (x -1)2(x +1)3(x +2)≥0;(2)3x -5x 2+2x -3≥2.解 (1)各因式的根分别为0,1,-1,-2,其中1为二重根,-1为三重根.在x 轴上标根,并从右上方引曲线可得图∴原不等式的解集为{x |-2≤x ≤-1,或x ≥0}. (2)原不等式可化为3x -5x 2+2x -3-2≥0,即(2x -1)(x +1)(x -1)(x +3)≤0,此不等式等价于(2x -1)(x +1)(x -1)(x +3)≤0,且x ≠1,x ≠-3. 令每个因式为零,可得根为12,-1,1,-3.在x 轴上标根,并从右上方引曲线可得图 ∴原不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-3<x ≤-1,或12≤x <1.四、易错点分析:不等式变形中扩大范围致误例4 已知1≤lg x y ≤2,2≤lg x 3y ≤3,求lg x 33y的取值范围.易错分析 根据不等式性质先解出lg x ,lg y 的范围,再求lgx 33y的范围,错误原因是lg x ,lg y 的最值不一定能同时取到,这种做法可能扩大所求范围.解由⎩⎨⎧1≤lg xy≤2,2≤lg x3y≤3变形,得⎩⎪⎨⎪⎧1≤lg x -lg y ≤2,2≤3lg x -12lg y ≤3,令⎩⎪⎨⎪⎧lg x -lg y =a ,3lg x -12lg y =b ,解得⎩⎨⎧lg x =2b -a 5,lg y =2b -6a 5.∴lgx 33y=3lg x -13lg y =3·2b -a 5-13·2b -6a 5=1615b -15a .由⎩⎪⎨⎪⎧1≤a ≤2,2≤b ≤3, 得⎩⎨⎧-25≤-15a ≤-15,3215≤1615b ≤165.∴2615≤1615b -15a ≤3,即2615≤lg x 33y≤3.[11分] ∴lgx 33y的取值范围是⎣⎡⎦⎤2615,3.温馨提醒 (1)此类问题的一般解法是:先建立待求整体与已知范围的整体的关系,最后通过”一次性“使用不等式的运算求得整体范围; (2)本题也可以利用线性规划思想求解;(3)求范围问题如果多次利用不等式有可能扩大变量取值范围.五、方法与技巧1. 用同向不等式求差的范围.⎩⎨⎧ a <x <b c <y <d ⇒⎩⎪⎨⎪⎧a <x <b-d <-y <-c⇒a -d <x -y <b -c 这种方法在三角函数中求角的范围时经常用到.2. 倒数关系在不等式中的作用.⎩⎨⎧ ab >0a >b⇒1a <1b ;⎩⎨⎧ab >0a <b ⇒1a >1b .3. 比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比差法的主要步骤为:作差——变形——判断正负.在所给不等式完全是积、商、幂的形式时,可考虑比商. 失误与防范1. a >b ⇒ac >bc 或a <b ⇒ac <bc ,当c ≤0时不成立.2. a >b ⇒1a <1b 或a <b ⇒1a >1b ,当ab ≤0时不成立.3. a >b ⇒a n >b n 对于正数a 、b 才成立. 4. ab>1⇔a >b ,对于正数a 、b 才成立.5. 注意不等式性质中“⇒”与“⇔”的区别,如:a >b ,b >c ⇒a >c ,其中a >c 不能推出⎩⎨⎧a >bb >c.6. 求范围问题要整体代换,“一次性”使用不等式性质,注意不要扩大变量的取值范围.课堂训练一、选择题1. 下面四个条件中,使a >b 成立的充分而不必要的条件是( A )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3解析 由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1.2. 设a <b <0,则下列不等式中不成立的是( B )A.1a >1bB.1a -b >1aC .|a |>-b D.-a >-b解析 由题设得a <a -b <0,所以有1a -b <1a 成立,即1a -b >1a 不成立.3. 设a =lg e ,b =(lg e)2,c =lg e ,则( B )A .a >b >cB .a >c >bC .c >a >bD .c >b >a解析 ∵0<lg e<lg 10=12,∴lg e>12lg e>(lg e)2.∴a >c >b .4. 已知p =a +1a -2,q =⎝⎛⎭⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系是 ( A )A .p ≥qB .p >qC .p <qD .p ≤q解析 p =a +1a -2=a -2+1a -2+2≥2+2=4,当且仅当a =3时取等号.因为x 2-2≥-2,所以q =⎝⎛⎭⎫12x 2-2≤⎝⎛⎭⎫12-2=4,当且仅当x =0时取等号.所以p ≥q . 二、填空题5. 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的__充分不必要__条件.解析 ∵x ≥2且y ≥2,∴x 2+y 2≥4,∴“x ≥2且y ≥2”是“x 2+y 2≥4”的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故“x ≥2且y ≥2”不是“x 2+y 2≥4”的必要条件.∴“x ≥2且y ≥2”是“x 2+y 2≥4”的充分不必要条件. 6. 若角α、β满足-π2<α<β<π2,则2α-β的取值范围是__⎝ ⎛⎭⎪⎫-3π2,π2__.解析 ∵-π2<α<β<π2,∴-π<2α<π,-π2<-β<π2,∴-3π2<2α-β<3π2,又∵2α-β=α+(α-β)<α<π2,∴-3π2<2α-β<π2.7. 对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a >b ,1a >1b,则a >0,b <0.其中真命题为___②③___.(把正确命题的序号写在横线上) 解析 若c ≥0,①不成立;由ac 2>bc 2知c 2≠0,则a >b ,②正确; 当a >b 时,1a -1b =b -aab >0,则a >0,b <0,③成立.三、解答题8. 已知a ,b 是正实数,求证:a b +ba≥a +b . 证明 方法一 a b +ba -(a +b )=a3+b3-a +b abab=a +ba -2ab +b ab=a +ba -b2ab.∵a +b >0,ab >0,(a -b )2≥0, ∴a b +b a -(a +b )≥0,∴a b +ba≥a +b . 方法二 a b +baa +b=a a +b b ab a +b=a3+b 3aba +b=a +b -abab=1+a -b 2ab≥1,∵a >0,b >0,∴a b +b a >0,a +b >0,∴a b +ba≥a +b . 9. 设f (x )=ax 2+bx,1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.解 方法一 设f (-2)=mf (-1)+nf (1) (m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧ m +n =4n -m =-2,解得⎩⎪⎨⎪⎧m =3n =1,∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.课后训练一、选择题1. 设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 当0<x <π2时,0<sin x <1.由x sin 2x <1知x sin x <1sin x ,不一定得到x sin x <1.反之,当x sin x <1时,x sin 2x <sin x <1.故x sin 2x <1是x sin x <1的必要不充分条件. 2. 已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析 c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b ,已知两式作差得2b =2+2a 2,即b =1+a 2, ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a ,∴b =1+a 2>a ,∴c ≥b >a . 3. 若a >b >0,则下列不等式中一定成立的是( A )A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1a D.2a +b a +2b >ab解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,这样,a -1a >b -1b ⇔a +1b >b +1a .二、填空题4. 已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n(n ∈N *,n >2),则f (n ),g (n ),φ(n )的大小关系是__f (n )<φ(n )<g (n )__. 解析 f (n )=n 2+1-n =1n 2+1+n <12n=φ(n ),g (n )=n -n 2-1=1n +n 2-1>12n =φ(n ),∴f (n )<φ(n )<g (n ). 5. 设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是_27___.解析 由4≤x 2y ≤9,得16≤x 4y 2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.又x =3,y =1满足条件,这时x 3y 4=27.∴x 3y 4的最大值是27.6. 设a >b >c >0,x =a 2+b +c2,y =b 2+c +a2,z =c 2+a +b2,则x ,y ,z 的大小关系是__z >y >x __.解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x . 三、解答题7. (1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)·(x +y )的大小;(2)已知a ,b ,x ,y ∈(0,+∞)且1a >1b ,x >y ,求证:x x +a >y y +b.(1)解(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[x2+y2-(x+y)2]=-2xy(x-y),∵x<y<0,∴xy>0,x-y<0,∴-2xy(x-y)>0,∴(x2+y2)(x-y)>(x2-y2)(x+y).(2)证明xx+a-yy+b=bx-ayx+a y+b.∵1a>1b且a,b∈(0,+∞),∴b>a>0,又∵x>y>0,∴bx>ay>0,∴bx-ayx+a y+b>0,∴xx+a>yy+b.11。
江西省吉安县第三中学高中数学必修五课件:31不等关系与不等式(共20张PPT)
预习导学
课堂讲义
课堂讲义
第三章 不等式
课堂小结
3.不等式的性质 (1)不等式的性质有很多是不可逆的,特别对同向不等式,只有同 向不等式才可以相加,但不能相减,而且性质不可逆.只有同向 且是正项的不等式才能相乘,且性质不可逆. (2)不等式的性质是解(证)不等式的基础,要依据不等式的性质进行 推导,不能自己“制造”性质运算. 4. 在利用不等式的性质进行证明、判断或者推理过程中,要注意 性质成立的条件,不能出现同向不等式相减、相除的情况,要特 别注意同向不等式相乘的条件为同为正.
预习导学
第三章 不等式
[预习思考] 根据p69ቤተ መጻሕፍቲ ባይዱ70页认识生活中的不等关系 1.不等式的概念
思
用 数 学 符 号 “ ≠” 、 “ >” 、 “ <” 、 “ ≥” 、 “ ≤” 连 接 两 个 数 或 代 数 式,以表示它们之间的__不__等__关__系__.含有这些不等号的
式子,叫作不等式.
2.符号“≥”和“≤”的含义
(2)变形的方法:①因式分解;②配方;③通分;④分母
或分子有理化;⑤分类等.
2.作商法比较大小
作商法适用于幂式、积式、分式间大小的比较,作商后
可变形为能与 1 比较大小的式子,要注意利用函数的有
关性质进行比较.
预习导学
课堂讲义
课堂讲义
第三章 不等式
议
探究二 利用不等式性质判断命题的真假
例 2 判断下列不等式关系是否正确,并说明理由. (1)若ca2>cb2,则 a>b; (2)若 a>b,ab≠0,则1a<1b; (3)若 a>b,c>d,则 ac>bd.
议
∴aabb=abba.
③当 a<b 时,0<ab<1,a-b<0,∴(ab)a-b>1,
[课件]必修五 第三章 31不等关系与不等式
(a b) 0
ba 0
即:a>b⇔ b<a
ba
思考2:若甲的身材比乙高,乙的身材比丙高, 那么甲的身材与丙的有什么大小关系? 性质 2 :如果 a > b ,且 b > c ,那么 a > c.(传递性) 即:a > b,b > c a > c.
必修五
3.1 不等关系与不等式
一.问题情境
实际生活中
长短
轻重
大小
高矮
远横 近看 高成 低岭 各侧 不成 同峰
你能发现下列成语、谚语中反映的不等关系吗?
雷声大,雨点小 捡了芝麻,丢了西瓜
道高一尺,魔高一丈
三个臭皮匠,抵过一个诸葛亮
说一说
我们生活中的到处都有不等关系 在数学中我们如何表示不等关系?
作差比较法
这既是比较大小 ( 或证明大小 ) 的基本方 法,又是推导不等式的性质的基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
例5.比较x2-x与x-2的大小. 解:(x2-x)-(x-2)= x2-2x+2
=(x-1)2+1, 因为(x-1)2≥0, 所以(x2-x)-(x-2)>0, 因此x2-x>x-2.
思考5:如果a>b,那么ac>bc吗?
如果a>b,c>0,那么ac与bc的大小关系如何? a >b ,c >0
a >b ,c <0
证明:
ac>bc;
ac<bc
(可乘性)
a b a b 0 c0
(a b)c 0 ac bc 0
ac bc
思考6:如果a>b>0,c>d>0,那么ac与bd的 大小关系如何?为什么?
3.1不等式与不等关系(第一课时)
典例讲评 例2.若 若
x≠2
2
或
2
y ≠ −1x ≠ 2
M = x + y − 4x + 2y , N = − 5
求证: 求证:M
>N
Q 证明: M − N = x2 + y2 − 4x + 2y + 5 ----(1)作差 ( )
= x2 − 4x + 4 + y 2 + 2 y + 1
= ( x − 2) 2 + ( y + 1) 2 ------(2)变形 ( ) 又 x ≠ 2 或 y ≠ −1
课堂小结
3.用 差比法”比较两个实数的大小, 3.用“差比法”比较两个实数的大小,一 般分三步进行:作差→变形→定号→ 般分三步进行:作差→变形→定号 结论. 其中变形的目的在于判断差式的符号, 其中变形的目的在于判断差式的符号,常 用的变形手段有因式分解、配方等. 用的变形手段有因式分解、配方等.
a
b
大数对应的点位于小数对应的点的右边
新知探究
a -b >0
⇔
a> ⇔a>b
a-b=0
⇔a=b
新知探究
a -b <0 a -b >0 a-b=0 a -b <0
客观事实:(作差法比较大小的原理) 客观事实:(作差法比较大小的原理) :(作差法比较大小的原理
a< ⇔ a <b
a> ⇔a>b ⇔a=b a< ⇔ a<b
ì f ³ 2.5% ï ï í ï p ³ 2.3% ï ï î
某种杂志原以每本2.5元的价格销售, 某种杂志原以每本2.5元的价格销售, 2.5元的价格销售 可以售出8万本.据市场调查, 可以售出8万本.据市场调查,若单价 每提高0.1 0.1元 每提高0.1元,销售量就可能相应减少 2000本 若把提价后杂志的定价设为x 2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入 不低于20万元? 20万元 不低于20万元?
第32讲 不等关系与不等式
课前双基巩固
对点演练
9.[2016·北京卷改编] 已知 x,y∈R,且 x>y>0,
有下列结论:①1x-1y>0;②sin x-sin y>0;③12x
-
1 2
y<0
;
④ln
x + ln
y>0. 其 中 一 定 成 立 的 是
________(填序号).
[答案] ③
[解析] ①中,因为 x>y>0,所以1x<1y,即1x-1y <0,故结论不成立;②中,当 x=5π6 ,y=π3 时,sin x-sin y<0,故结论不成立;③中, 函数 y=12x 是定义在 R 上的减函数,因为 x>y>0,所以12x<12y,所以12x-12y<0;④中, 当 x=e-1,y=e-2 时,结论不成立.
第32讲 PART 06
不等关系与不等式
考试说明
了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.
教学参考
考情分析
考点
比较大小
不等式的 性质
不等式的 应用
考查方向 比较两个数的大小
考例
考查热度
2016·全国卷Ⅰ8,2016· 全国卷Ⅲ7,2013·新课标
全国卷Ⅱ 8
★★☆
■ [2016-2015] 其他省份类似高考真题
1.[2016·浙江卷] 已知 a,b>0,且 a≠1,b≠1. 若 logab>1,则( ) A.(a-1)(b-1)<0 B.(a-1)(a-b)>0 C.(b-1)(b-a)<0 D.(b-1)(b-a)>0
[ 解 析 ] D logab>1 = logaa. 若 0<a<1,则 b<a,从而 b<1,故(b- 1)(b-a)>0;若 a>1,则 b>a,从而 b>1,故(b-1)(b-a)>0.故选 D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
a
B
A
在图中,点A表示实数a,点B表示实数b,点A 在点B右边,那么a>b.
如果a-b是正数,那么a>b ;
如果a-b=0,那么a=b; 如果a-b是负数,那么a<b.反之呢?
表示为: a b 0 a b; a b 0 a b; a b 0 a b.
由此可见,要比较两个实数的大小,只要考察它们 的差就可以了,这是我们研究不等关系的一个出发点.
3.1不等关系与不等式
问题1:设点A与平面的距离为d,B为平面上的一点,
则d≦∣AB∣.
问题2:某种杂志原以每本2.5元的价格销售,可以售出 8万本.据市场调查,若单价每提高0.1元,销售量就 可能相应减少2000本.若把提价后杂志的定价设为 x元,怎样用不等式表示销售的总收入仍不低于20 万元呢?
(6) a>b>0,c>d>0 =>ac>bd
(7) a>b>0 => an >bn (n∈N,N≥1) (8) a>b>0 =>n a >n b (n∈N,N≥1)
问题3:某钢铁厂要把长度为4000mm的钢管截成
500mm和600mm两种.按照生产的要求,600mm钢 管的数量不能超过500mm钢管的3倍.怎样写出满 足上述所有不等关系的不等式呢?
我们知道,实数可以比较大小.实数与数轴上 的点是一一对应的,在数轴上不同的两点中,右边 的点表示的实数比左边的点表示的实数大.
不等式的主要性质:
(1) 对称性:a>b b<a
(2) 传递性:a>b ,b>c => a>c c<b, b<a => c<a
(3) 加法单调性:a>b a+c>b+c
a>b,c>d => a+c> => ac>bc
a>b ,c<0 => ac<bc
(5)
a>b, c>d,=>a+c>b+d