变压器油中溶解气体分析与诊断

合集下载

DLT 722-2000 变压器油中溶解气体分析和判断导则

DLT 722-2000 变压器油中溶解气体分析和判断导则
3 定义 本导则采用下列定义。
3.1 特征气体 对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、
乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。 3.2 总烃
烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。 3.3 游离气3 游离气体
5 检测周期
5.1 投运前的检测 按表 2 进行定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现
场进行感应耐压和局部放电试验,则应在试验后再作一次检测。制造厂规定不取样的全密 封互感器不做检测。 5.2 投运时的检测
按表 2 所规定的新的或大修后的变压器和电抗器至少在投运后 1d(仅对电压 330KV 及 以上的变压器和电抗器、容量在 120MVA 及以上的发电厂升压变压器)、4d、10d、30d 各 做一次检测,若无异常,可转为定期检测。制造厂规定不取样的全密封互感器不做检测。 套管在必要时进行检测。 5.3 运行中的定期检测
于 300℃,在生成水的同时,生成大量的CO和CO2及少量烃类气体和呋喃化合物,同时被油
氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。
概括上述的要点,不同的故障类型产生的主要特征气体和次要特征气体可归纳为表 1.
分解出的气体形成气泡,在油中经流、扩散,不断地溶解在油中。这些故障气体的组 成和含量与故障的类型及其严重程度有密切关系。因此,分析溶解于油中的气体,就能尽 早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。
运行中设备的定期检测周期按表 2 的规定进行。 5.4 特殊情况下的检测
当设备出现异常时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有 怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。

变压器油中溶解气体分析与故障诊断

变压器油中溶解气体分析与故障诊断

浅谈变压器油中溶解气体分析与故障诊断摘要:在电力系统的各种电气设备中,变压器是其重要的组成部分。

采用油中溶解气体分析(dga)技术对变压器故障进行早期故障诊断,可减少变压器不必要的事故停用,对保证电力系统安全可靠运行有较大的作用。

文章对变压器油中溶解气体的组分及故障诊断方法进行了分析讨论。

关键词:变压器油中溶解气体故障诊断变压器是电力系统中最重要的设备,用途非常广泛。

变压器内的绝缘油和有机绝缘材料随着运行时间的增加,在热和电的长期作用下会逐渐老化和分解,并产生极少量的气体,这些油中溶解气体包括氢气、甲烷、乙烯、乙烷、乙炔、一氧化碳和二氧化碳等。

但是,当变压器内部出现故障时,油中气体的含量就会发生很大的变化。

随着故障的发展,当产气量大于溶解量时,便有一部分气体以游离气体的形态释放出来。

实践证明,绝大多数的变压器初期缺陷都会出现早期迹象,因此,测量分析溶解于油中的气体含量就能尽早的发现变压器内部故障。

一、油中溶解气体的成分分析变压器绝缘材料热分解所产生的可燃和非可燃性气体达20种左右。

因此,为了有利于变压器内部故障判断,选定必要的气体作为分析对象是很重要的。

目前国内外所分析的气体对象是不统一的,我国按dl/722-2000要求一般分析9种或8种气体,最少必须分析七种气体。

变压器中的故障特征气体种类为:o2、n2、h2、ch4、c2h6、c2h4、c2h2、co、co2。

以这九种气体作为分析对象的原因见如下:o2主要了解脱气程度和密封好坏;n2主要了解氮气饱和程度;h2主要了解热源温度或有没有局部放电;co2主要了解固体绝缘老化或平均温度是否高;co主要了解固体绝缘有无热分解;ch4、c2h6、c2h4三种气体主要了解热源温度;c2h2主要了解有无放电或高温热源。

二、变压器内部常见故障与油中溶解气体的关系变压器内部常见故障可大致分为电性故障和热性故障两种。

油中溶解的气体可反映故障点引起的周围油、纸绝缘的电、热分解本质。

变压器油中溶解气体分析和判断导则DL精选T—精编

变压器油中溶解气体分析和判断导则DL精选T—精编

变压器油中溶解气体分析和判断导则编写:审核:批准:变压器油中溶解气体分析和判断导则Guidetotheanalysisandthediagnosisofgasesdissolvedintransformeroil1范围本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。

本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。

2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB7597—87电力用油(变压器油、汽轮机油)取样方法GB/T17623—1998绝缘油中溶解气体组分含量的气相色谱测定法DL/T596—1996电力设备预防性试验规程IEC567—1992从充油电气设备取气样和油样及分析游离气体和溶解气体的导则IEC60599—1999运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则3定义本导则采用下列定义。

3.1特征气体characteristicgases对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。

3.2总烃totalhydrocarbon烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。

3.3游离气体freegases非溶解于油中的气体。

4产气原理4.1绝缘油的分解绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C—C键键合在一起。

由电或热故障的结果可以使某些C—H键和C —C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。

变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法

变压器油中溶解⽓体分析的原理及⽅法变压器油中溶解⽓体分析的原理及⽅法充油电⼒变压器在正常运⾏过程中受到热、电和机械⽅⾯⼒的作⽤下逐渐⽼化,产⽣某些可燃性⽓体,当变压器存在潜伏性故障时,其⽓体产⽣量和⽓体产⽣速率将逐渐明显,⼈们取变压器油样使⽤⽓相⾊谱⽅法获得油中溶解的特征⽓体浓度后,就可以对变压器的故障情况进⾏分析。

由于⼤型充油电⼒变压器是⼀个⾮常复杂的电⽓设备,变压器存在潜伏性故障时与多种因素存在耦合,特征⽓体形成涉及的机理⼗分复杂,这些机理及由这些机理导出的诊断⽅法对智能诊断⽅法有很好的借鉴意义。

1 变压器油及固体绝缘的成份及⽓体产⽣机理分析虽然SF6⽓体绝缘、蒸发冷却式⽓体绝缘变压器和⼲式变压器、交联聚⼄烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能⼒是它们所不能替代的,⽬前⾼电压、⼤容量的电⼒变压器仍然普遍采⽤充油式。

充油电⼒变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运⾏年限为20年左右时,最⾼允许的温度为105℃左右。

变压器油中特征⽓体是由变压器油及固体绝缘产⽣的,与它们的性能存在着密切的关系。

1 变压器油的成份及⽓体产⽣机理变压器油是由天然⽯油经过蒸馏、精炼⽽获得的⼀种矿物油。

它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。

主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳⾹烃(5%~15%)组成[9]。

不同变压器油各种成份的含量有些不同。

变压器油中不同烃类⽓体的性能是不同的。

环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很⼩。

芳⾹烃化学稳定性和介电稳定性也较好,在电场作⽤下不析出⽓体,⽽且能吸收⽓体;但芳⾹烃易燃、黏度⼤、凝固点⾼,且在电弧的作⽤下⽣成的碳粒较多,会降低油的电⽓性能。

环烷烃中的⽯蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作⽤下易发⽣电离⽽析出⽓体,并形成树枝状的X蜡,影响油的导热性。

变压器油中溶解气体的检测与分析技术

变压器油中溶解气体的检测与分析技术

变压器油中溶解气体的检测与分析技术变压器是电力系统中常用的设备之一,其正常运行对电力系统的稳定运行起着至关重要的作用。

然而,随着变压器运行时间的增长,变压器油中可能会溶解各种气体,这些气体可能对变压器的性能和安全性造成不利影响。

因此,准确检测和分析变压器油中的溶解气体成分,对变压器的运行状态进行评估和维护具有重要意义。

一、变压器油中溶解气体的来源及其影响1. 溶解气体来源变压器油中的溶解气体主要来源于以下几个方面:(1)变压器绝缘体的老化、降解过程中产生的气体;(2)变压器内部与油接触的活性金属表面(如铜、铁等)的腐蚀产物;(3)变压器内部存在的绝缘材料或固体绝缘层的气体释放;(4)变压器运行过程中,外界环境中进入变压器的气体。

2. 影响变压器油中溶解气体的存在会对变压器的性能和安全性产生以下不利影响:(1)气体在变压器中积聚会导致电晕放电等异常现象,加剧设备老化;(2)有些溶解气体在变压器油中会发生化学反应,产生酸性物质,对变压器内部金属与绝缘材料的腐蚀加剧;(3)气体的存在会降低变压器油的绝缘性能,缩短变压器的使用寿命;(4)变压器油中气体增加会导致油的体积变大,进而影响变压器油的流动性和传热性。

二、变压器油中溶解气体的检测技术1. 气体浓度检测气体浓度检测是评估变压器油中溶解气体含量的主要方法之一。

常用的气体浓度检测技术包括:(1)气体色谱法:利用气体色谱仪检测变压器油中各种气体的含量,通过对色谱图的解析和比对,确定各种气体的浓度。

(2)红外光谱法:利用红外传感器对变压器油中的溶解气体进行检测,通过红外光谱的吸收峰进行气体浓度的定量分析。

(3)超声波法:通过超声波传感器对变压器油进行扫描,测定气体的传递速度以及声速的变化,进而计算出气体的浓度。

2. 气体成分分析除了检测气体的浓度外,对气体成分进行精确分析也是重要的一步。

常用的气体成分分析技术有:(1)质谱法:利用质谱仪对变压器油中溶解气体进行定性和定量分析,通过碰撞诱导解离(CID)技术,实现气体分子的碎片化,进而确定气体成分。

变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法随着变压器的使用年限逐渐增长,变压器油中的溶解气体也会越来越多。

这些溶解气体会导致油的劣化和变压器内部部件的氧化腐蚀,从而影响变压器正常运行。

因此,分析变压器油中的溶解气体,了解其类型和含量,对变压器的维护和管理非常重要。

那么,变压器油中的溶解气体分析方法有哪些呢?一、气相色谱法气相色谱法是目前应用较广泛的溶解气体分析方法之一。

该方法适用于水、空气、油和气体中的溶解气体的分析。

变压器油中的溶解气体分析中,气相色谱法可以分析二氧化碳、乙烯、甲烷等气体。

气相色谱法的分析原理是将混合气体样品与气相色谱柱中填充的固定相分离。

气相色谱法具有分离效果好、分离速度快、分析灵敏度高等特点。

但是,气相色谱法需要有较高的分析仪器设备和专业技术,使用成本相对较高。

二、傅里叶变换红外光谱法傅里叶变换红外光谱法是一种将样品吸收红外辐射产生的光谱进行处理以获取样品化学结构信息的分析方法。

在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、氮气、二氧化碳等气体的检测。

傅里叶变换红外光谱法的分析原理是通过改变样品中各种化学键所吸收的红外光的频率来对样品分析。

该方法具有快速、准确、不需要分离样品等优点。

但是,傅里叶变换红外光谱法需要对样品进行前处理,如稀释、过滤等,同时也需要高质量的样品和分析仪器设备。

三、电化学分析法电化学分析法是一种利用电化学方法进行分析的技术。

在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、二氧化碳等气体的检测。

电化学分析法的分析原理是利用电极反应与被测物质间的作用,测定电荷变化或者释放的能量,并进一步计算出被测物质的含量。

该方法具有实时、便捷、经济等优点,但也存在着变压器油中其他成分对溶解气体分析的干扰问题。

综上所述,变压器油中的溶解气体分析方法有多种,每种方法具有不同的优缺点和适用范围。

因此,在实际应用中需要根据分析要求和条件选择合适的分析方法,综合考虑分析精度、成本和可操作性等因素,以实现对变压器油中溶解气体的高效分析和准确检测,提升变压器的正常运行和使用寿命。

dlt722-2016变压器油中溶解气体分析和判断导则

dlt722-2016变压器油中溶解气体分析和判断导则

dlt722-2016变压器油中溶解气体分
析和判断导则
变压器油中溶解气体分析和判断导则
变压器就像一个可以调节电力输出的设备,它是电力系统的重要组成部分,为此,变压器的安全和正常运行是必不可少的。

变压器的主要工作介质是变压器油,变压器油是变压器正常运行和长期使用保障的前提条件,所以变压器油要定期检查和更换,以保证变压器正常工作。

在检查更换变压器油时,除了查看油的外观、温度等,需要对变压器油中的溶解气体进行分析和判断。

变压器油中的溶解气体主要有甲烷、乙烷、碳酸氢根等几种,它们不仅表现为
变压器的故障的警告信号,并且通过检测可以推断出变压器的运行状态。

因此,为了安全和可靠地检测变压器油中的溶解气体,《DLT722-2016变压器油中溶解气体
分析和判断导则》提出了一系列精细化的技术要求,保证了检测变压器油中溶解气体的准确性、稳定性和可靠性。

《DLT722-2016变压器油中溶解气体分析和判断导则》提出,电力元件现场变
压器油应按照GB/T11099-2005的规定进行油品抽样,然后在500ml大型瓶中进行
油量控制,即抽样好的油原样保存,确保所抽取的油与原油处理一致。

在实际使用之前,应将油样过滤,去除r237、r250及其他金属及杂质。

然后进行精滤,去除
油样中各类污染物,而后,把油样加入检测设备中。

检测时使用排气法,对油样中的溶解气体的含量进行检测,检测结束后按照规定进行数据计算和处理。

进行变压器油检测时,必须遵循《DLT722-2016变压器油中溶解气体分析和判
断导则》的要求,确保检测结果的准确性,以便进行及时有效的保护与维护变压器,使变压器能够正常安全使用。

变压器油中溶解气体分析和故障诊断实用技术

变压器油中溶解气体分析和故障诊断实用技术

变压器油中溶解气体分析和故障诊断实用技术发布时间:2022-08-16T02:39:04.855Z 来源:《中国科技信息》2022年4月第7期作者:孙杰[导读] 乙炔是放电性故障的特征气体,存在放电现象或存在极高的过热故障。

正常运行的变压器,油中不孙杰大秦铁路股份有限公司大同西供电段山西大同 037005摘要:乙炔是放电性故障的特征气体,存在放电现象或存在极高的过热故障。

正常运行的变压器,油中不应产生乙炔,油中有电弧放电时,分解气体大部分为H2和C2H2,并有一定量的CH4、 C2H4。

高温下产气速率最大的气体依次是CH4、C2H6、C2H4、C2H2。

本文典型故障是螺母搭接铁芯磁路回路过热引发故障,引起的局部过热油裂解产生乙炔类气体。

因此普遍认为,当发现乙炔从无到有时,就应引起重视,进行跟踪。

关键词:变压器油油中溶解气体色谱分析 CH4、C2H2、C2H4、C2H6 铁芯漏磁第一章变压器绝缘结构 1.1绝缘材料 1.1.1变压器油功能:绝缘;散热。

成分:碳氢化合物。

(烷烃、环烷烃、芳香烃、烯烃等) 1.1.2绝缘纸、绝缘纸板成分:纤维素。

聚合度(DPv):纤维素分子长链内串接的重复单元的个数(n)。

反映绝缘纸的机械强度,其机械强度的下降可判断纸的老化程度以推断设备的剩余寿命。

第二章变压器中的气体 2.1绝缘结构:变压器电气设备选用油纸或油和纸板组成的绝缘结构。

当设备内部发生热故障、放电性故障或者油、纸老化时,均会产生各种气体,并溶解于油中。

2.2不同故障类型产生的气体组合第三章油中溶解气体的分析故障诊断方法通过变压器油中溶解气体分析即色谱分析技术,能够分析诊断运行中变压器内部是否正常,及时发现变压器内部存在的潜伏性故障,掌握充油设备的健康状况。

3.1三比值法诊断方法 CH4/H2:区分是热故障还是放电故障; C2H4/C2H6:区分热故障温度的高低; C2H2/C2H4:区分放电故障的类型编码规则第四章故障诊断实例应用分别从变压器的中部和底部进行取油进行色谱分析 4.1平鲁西2# 中部油样分析报告取样日期:20201112 设备名称:主变取样地点:平鲁西分析日期:20201113谱图文件:平鲁西变电所平鲁西2#变中部.hw总烃浓度:780.55三比值编码:022故障类型判断:高温过热(高于700℃)故障实例:分接开关接触不良,引线夹件螺丝松动或接头焊接不良,涡流引起铜过热,铁心漏磁,局部短路,层间绝缘不良,铁心多点接地等分析意见:不合格4.2平鲁西2# 底部油样分析报告取样日期:20201112设备名称:主变取样地点:平鲁西分析日期:20201113谱图文件:平鲁西变电所2#变底部.hw总烃浓度:942.73三比值编码:022故障类型判断:高温过热(高于700℃)故障实例:分接开关接触不良,引线夹件螺丝松动或接头焊接不良,涡流引起铜过热,铁心漏磁,局部短路,层间绝缘不良,铁心多点接地等分析意见:不合格4.3故障处理情况及原因分析4.3.1故障处理变压器生产厂家:中铁电气工业有限公司保定铁道变压器分公司出于对变压器故障严谨分析的考虑,油样送第三方检测机构进行化验,结果与我段所测结果一致。

变压器油中溶解气体的分析与判断_吴文英

变压器油中溶解气体的分析与判断_吴文英

电弧放电 电弧放电兼过热
线圈匝间、层间短路,相间闪络、分接头引线间油隙闪络、引线对 箱壳放电、线圈熔断、分解开关飞弧、因环路电流引起电弧、引线对
其他接地体放电等
表 6 #4 变压器油样色谱试验数据
滋L/L
取样日期 H2 CH4 C2H6 2018-06-09 26.0 10.9 5.0
C2H4 4.9
C2H2、C2H6、CO2 —
CH4、C2H4、C2H6 CH4、C2H4、C2H6
主要方法,但前提是,应先期运用产气速率法和特 征气体法判断变压器内部可能存在潜在性故障。根 据表 4 的编码规则,对照表 5 的编码组合,运用三 比值法可以பைடு நூலகம்到相应的故障类型。三比值法中对应 的故障类型基本上都是具有代表性的,同时,在实 际跟踪分析过程中,也会遇到不具有代表性的比值 组合,或者多种故障影响下的多种比值的联合,例 如,三比值为 121 表明可能为低能放电兼过热性故 障;三比值为 222 则表明故障可能是先发生过热后 发展为电弧放电兼过热,这时就要综合分析它的多 重性和复杂性。
展不迅速。
2.4 故障原因初步分析
为进一步查明原因和确定是否为铁芯接地过热
导致,结合以下几方面来分析。
1) 色谱分析特征表现。总烃含量升高,超过了
transformer oil; dissolved gas; chromatography analysis; fault analysis; judgment
引言
变压器油在变压器内主要起到绝缘、冷却散热 的作用,变压器油质量的好坏直接影响到变压器绝 缘系统的寿命,从而威胁到变压器的安全运行。一 旦变压器内部发生放电和过热的故障,变压器油及 内部的有机固体绝缘材料就会发生化学分解,产生 特定的烃类气体、氢气和碳氧化物,并经对流、扩 散不断地溶解在油中。故障气体的种类、含量、各 种气体之间的比例关系直接反映了变压器内的故障 类别、严重程度。绝大多数的初期缺陷都会出现早

变压器油中溶解气体分析和判断导则

变压器油中溶解气体分析和判断导则

变压器油中溶解气体分析和判断导则Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998变压器油中溶解气体分析和判断导则Guide to the ananlysis and the diagnosis of gases dissolved in transformer oilDL/T 722-2000DL/T 722-2000前言分析油中溶解气体的组份和含量是监视充油电气设备安全运行的最有效的措施之一。

利用气相色谱法分析油中的溶解气体来监视充油电气设备的安全运行,在我国已有30多年的使用经验。

自1986年以来,由原水利电力部颁发的SD187-86《变压器油中溶解气体分析和判断导则》,在电力安全生产中发挥了重要作用,并积累了丰富的实践经验。

随着电力生产的发展和科学技术水平的提高,对所使用的分析方法和分析结果的判断及解释均需要加以补充和修订。

1998年在广泛函调征求意见的基础上写出了征求意见稿,于1998年11月召开全国范围的讨论修订会,并组成标准起草小组,根据讨论会的意见,整理出初稿。

1999年,参考新出版的IEC60599-1999,又对上述初稿进行了反复的修改,并征求了有关专家的意见,制定了本导则。

本导则自生效之日起,代替原水利电力部颁发的SD187-86《变压器油中溶解气体分析和判断导则》。

本导则的附录A和附录B是标准的附录。

本导则的附录C、附录D、附录E、附录F和附录G是提示的附录。

本导则由电力行业电力变压器标准化委员会提出并归口。

本导则起草单位:中国电力科学研究院,辽宁省电力科学研究院,华东电力试验研究院、吉林省电力科学研究院本导则主要起草人:贾瑞君、范玉华、薛辰东、钱之银、张士诚。

本导则由中国电力科学研究院负责解释。

DL/T 722-2000目次前言1、范围。

.。

12、引用标准。

.13、定义。

14、产气原理。

15、检测周期。

36、取样。

第6章 变压器油中溶解气体的监测与诊断2

第6章 变压器油中溶解气体的监测与诊断2
编码规则
气体的比值范围
<0.1 ≥0.1~<1 ≥1~<3
≥3
C2H2/C2H4 0 1 1 2
比值范围的编码 CH4/H2 1 0 2 2
C2H4/C2H6 1 0 1 2
第五节 油中溶解气体分析与故障诊断 二、故障诊断方法
改进的三比值法(P156,表7-11)
气体的比值范围
<0.1 ≥0.1~<1 ≥1~<3
传感器
可燃性气体传感器(接触燃烧式气体传感器),对碳氢类 气体较为敏感。
复合分布式传感器
将多个具有不同工艺和不同材料组成的金属氧化物半导体 传感器(SnO2气敏传感器)构成一个传感器阵列,充分利 用不同气体传感器分辩气体的能力,不同传感器单元分别 响应混合气体中各自的特征气体。
可省去色谱柱,仅由该复合分布式传感器就能完成气体分 离及信号转换功能,是发展方向。
第四节 变压器油中溶解气体的在线监测 二、油气分离
2. 鼓泡脱气法
方法
用定量的空气循环地重复 吹入油中形成许多气泡, 大大增加了气相和液相的 接触面,油中溶解的气体 被拉入气泡并随气泡排出 油面,直到溶解于油中的 气体在油中和油面上空间 中的浓度达到平衡。
第四节 变压器油中溶解气体的在线监测 二、油气分离
(单一气体,聚酰亚胺膜,不需色谱柱,接触燃烧式气体传感器)
第四节 变压器油中溶解气体的在线监测 五、系统结构
常用的变压器油中溶解气体在线监测装置
(三组分或六组分,PFA膜,有色谱柱,接触燃烧式气体传感器)
第四节 变压器油中溶解气体的在线监测
五、系统结构
变压器
F4b 膜
电磁六通阀 气室
定量管
六种气体分布传感器 前置处理部分

变压器油中溶解气体在线监测与诊断技术的分析

变压器油中溶解气体在线监测与诊断技术的分析

变压器油中溶解气体在线监测与诊断技术的分析变压器是电力系统的核心设备,对整个电网的安全运行有着至关重要的作用。

为提高电力系统变壓器的安全性与稳定性,对变压器油中溶解气体在线监测与诊断技术的现状及发展趋势进行分析研究,以期对电力系统的降耗增效有所帮助。

标签:油溶气体变压器监测电网维护随着电网建设的日益细化,电力变压器的运维显得愈发重要。

目前,电力系统中最为常见的对变压器的在线监测手段是油中溶解气体分析,这一方法作为变压器运营维护、故障诊断的重要工具,既能够显示出电气装置实际运行的状态,也可以诊断出电力设备出现故障的原因。

1.变压器油溶解气体在线监测的原理在电力系统的发展历程中,油溶气体分析(Dissolved Gas Analysis)是较为常见变压器监测和诊断工具,其基本原理说明如下:1.1变压器油产生溶解气体的过程变压器油具有传热性好、耐电性能强等特质,并且其绝缘性、散热性也较为适宜,因而当前架设的电网系统中,变压器的基本构造多为油浸式,其正常运转也依赖于变压器油。

在设备运行过程中,变压器油中含有大量的具有多种类碳氢化合物的矿物油,此类油质的分子化合物中,含有多种碳氢基团。

若出现温度剧升高或者异常放电,变压器油中的碳氢基团稳定性就会发生变化,从而致使C-H 化学键断裂,形成大量的游离氢原子。

游离的氢原子与油内自由基发生反应,产生烷类、烃类特殊气体以及部分碳氢聚合物。

1.2变压器油中溶解气体在线监测基于1.1所述的反应过程,电网技术人员在进行变压器架设时,应以出厂初测的方式,测量投运状态中的变压油中溶解的气体总量,以此为正常状态的锚点,设置相应的检测装置进行记录和判定。

当变压器油溶解气体超出了设定的指标以后,变压器的稳定运行将会受到影响,因而需对变压器油进行实时在线监测,防患于未然。

当前在线监测溶解气体的装置主要有半导体类、催化燃烧类、场效应管类等三类,可以检出油溶气体中的氢气、氧气、氮气、一氧化碳与二氧化碳等常见组分,也可以检出甲烷乙烷、乙烯乙炔等烷烯炔类物质,从而标示出变压器的放电、高热等异常现象。

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。

变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。

当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。

1、变压器油中的气体类别气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。

矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2)、氧气(O2)、氮气(N2)、甲烷(CH4)、一氧化碳(CO)、乙烷(C2H6)、二氧化碳(CO2)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。

油在正常老化过程产生的气体主要是一氧化碳(CO)和二氧化碳(CO2),油绝缘中存在局部放电时(如油中气泡击穿),油裂解产生的气体主要是氢气(H2)和甲烷(CH4)。

在故障温度高于正常运行温度不多时,产生的气体主要是甲烷(CH4),随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000℃时(如在电弧弧道温度300℃以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳(CO)和二氧化碳(CO2)。

2、如何判断电气设备的故障性质运用五种特征气体的三对比值判断电气设备的故障性质:(1)C2H2/C2H4≤0.10.1<CH4/H2<1C2H4/C2H6<1时,属变压器已正常老化。

(2)C2H2/C2H4≤0.1CH4/H2<0.10.1<C2H4/C2H6<1时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。

浅析变压器油中溶解气体在线监测及故障诊断

浅析变压器油中溶解气体在线监测及故障诊断

浅析变压器油中溶解气体在线监测及故障诊断摘要:本文主要介绍了变压器油中溶解气体在线监测技术,总结国内外主要的研究成果,最后提出故障诊断方法。

关键词:变压器油;油气分离;在线监测;油中溶解气体;诊断Abstract: this paper mainly introduces the gases dissolved in transformer oil on-line monitoring technology, this paper summarizes the main research results at home and abroad, and finally proposes some fault diagnosis method.Keywords: transformer oil; Oil and gas separation; Online monitoring; The dissolved gas; diagnosis1变压器油中溶解气体在线监测1.1油气分离技术油气分离技术是绝缘油中溶解气体色谱在线监测系统的核心,也是难点之一,怎样快速高效的分离油气且能够自动、长寿命、无污染以及不消耗绝缘油溶解在变压器油中的微量故障特征气体,是变压器油溶解气体色谱在线监测技术发展的趋势。

(1)膜油气分离装置。

在学者们对渗透膜进行了大量研究,用高分子材料分离膜渗透出油中气体,并制作成相应的在线监测系统对变压器油进行分析后,又相继研制成功了聚酰亚胺、聚六氟乙烯和聚四氟乙烯等各种高分子聚合物分离膜,以及相应的监测装置。

由于聚酰亚胺等透气性能和耐老化能力差,而聚四氟乙烯的透气性能好,又有良好的机械性能和耐油等诸多优点,因此国内外早期产品选用聚四氟乙烯作为油中溶解气体监测仪上的分离膜。

(2)波纹管顶空式分离技术。

利用波纹管的不断往复运动,将变压器油中的气体快速的脱出,具有效率高、莺复性好的优点。

并且采用循环取油方式,油样具有代表性。

《变压器油中溶解气体分析和判断导则》GBT7252-2001

《变压器油中溶解气体分析和判断导则》GBT7252-2001

对应的旧标准:GB 7252-87ICS 29.040.10E 38中华人民共和国国家标准GB/T 7252—2001neq IEC 60599:1999变压器油中溶解气体分析和判断导则Guide to the analysis and the diagnosisof gases dissolved in transformer oil2001-11-02发布2002-04-01实施目次前言1 范围2 引用标准3 定义4 产气原理5 检测周期6 取样7 从油中脱出溶解气体8 气体分析方法9 故障识别10 故障类型判断11 气体继电器中自由气体的分析判断12 设备档案卡片附录A(标准的附录)样品的标签格式附录B(标准的附录)设备档案卡片格式附录C(提示的附录)哈斯特气体分压-温度关系附录D(提示的附录)标准混合气的适用浓度附录E(提示的附录)气体比值的图示法附录F(提示的附录)充油电气设备典型故障前言分析油中溶解气体的组分和含量是监视充油电气设备安全运行的最有效的措施之一。

利用气相色谱法分析油中溶解气体监视充油电气设备的安全运行在我国已有30多年的使用经验。

1987年由原国家标准局颁发的GB/T 7252—1987《变压器油中溶解气体分析和判断导则》,在电力安全生产中发挥了重要作用,并积累了丰富的实践经验。

随着电力生产的发展和科学技术水平的提高,对所使用的分析方法和分析结果的判断及解释均需要加以补充和修订。

本标准非等效采用IEC 60599:1999,对GB/T 7252—1987进行修订。

主要修订内容:1.根据国家标准编写格式的新规定增加了“引用标准”和“定义”两章,并结合本标准的内容在编写章节上做了必要的修改。

2.修改厂对故障产气原理的阐述和对非故障气体来源的分析,使得更系统清晰。

3.针对各种不同设备规定了不同的检测周期,这是本标准主要新增加的内容之一。

4.将“故障判断”改为两章:首先判断有无故障——针对不同设备推荐了油中溶解气体的注意值和产气速率的注意值;其次再进一步判断故障的性质及其严重程度—推荐了国内最有效的判断方法和IEC 60599:1999最新推荐的方法。

变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法

变压器油中存在多种溶解气体,不同气体的存在及浓度可以提供有关变压器故障类型和严重程度的重要线索。
变压器油中溶解气体的解读
根据变压器油中溶解气体的类型和浓度,我们可以对变压器的健康状况和潜 在故障进行解读和分析。
基于溶解气体分析的诊断方法
利用变压器油中溶解气体的信息,我们可以开发出各种诊断方法和工具,对 变压器的故障进行准确的诊断和评估。
变压器油中气体溶解的原理和 机制
了解变压器油中气体溶解的原理和机制对溶解气体分析非常重要。我们将深 入研究气体溶解的过程和相关因素。响变压器油中溶解气体浓度的因素对分析结果的准确性至关重要。我们将讨论温度、压力、电场等因素 的影响。
变压器油中常见的溶解气体
变压器油中溶解气体分析 的原理及方法
变压器油中溶解气体分析是变压器维护中至关重要的一部分,它可以帮助我 们及时发现潜在故障和预防变压器的损坏。
变压器油和溶解气体分析简介
什么是变压器油和溶解气体分析?我们将探讨其原理、目的和应用领域,并 了解其在变压器维护中的重要性。
变压器油测试方法概述
变压器油测试是确保变压器正常运行的重要手段。我们将概述常见的变压器油测试方法,包括溶解气体分析。

变压器油中溶解气体分析和判断导则

变压器油中溶解气体分析和判断导则

中华人民共和国国家标准变压器油中溶解气体分析和判断导则GB7252 87Gmide fer the analysis and the diagnosis of gases dlssolved in trassformer oll1总则1.1概述正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等气体,这些气体大部分溶解在油中。

当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。

随着故障发展,分解出的气体形成的气泡在油里经过对流、扩散,不断地溶解在油中。

在变压器里,当产气速率大于溶解速率时,会有一部分气体进入气体继电器。

故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。

因此,分析溶解于油中的气体,就能尽早发现设备内部存在的潜伏性故障并可随时掌握故障的发展情况。

当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况作出判断。

1.2适用范围本导则适用于充油电气设备,其中包括变压器、电抗器、电流互感器、电压互感器、充油套管等。

1.3检测周期出厂前的检测按有关规定执行并提供试验数据。

投运时及运行中的设备按SD187­86《变压器油中溶解气体分析和判断导则》执行。

2取样2.1从充油电气设备中取油样2.1.1概述取样部位应注意所取的油样能代表油箱本体的油。

一般应在设备下部的取样阀门取油样,在特殊情况下,可由不同的取样点取样。

取样量,对大油量的变压器、电抗器等可为50~250ml,对少油量的设备要尽量少取,以够用为限。

2.1.2取油样的容器应使用密封良好的玻璃注射器取样。

当注射器充有油样时,芯子能自由滑动,可以补偿油的体积随温度的变化,使内外压力平衡。

2.1.3取油样的方法一般对电力变压器及电抗器可在运行中取样。

对需要设备停电取样时,应停运后尽快取样。

对于可能产生负压的密封设备,应防止负压进气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器油中溶解气体分析与诊断摘要变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。

其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。

目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。

本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。

在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。

分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。

对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。

论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。

关键词:变压器油中溶解气体在线监测故障诊断目录第一章绪论 (4)1.1变压器 (4)1.1.1变压器的分类 (4)1.1.2电力变压器的选型原则 (6)1.1.3变压器的作用及其意义 (13)1.2变压器油 (14)1.2.1变压器油简介 (14)1.2.2变压器油国内外发展现状 (15)第二章.变压器油中溶解气体分析与诊断 (17)2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17)2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19)2.3利用油中糠醛分析诊断变压器绝缘老化 (20)2.3.1概述 (20)2.3.2.油中糠醛含量测试方法 (21)2.3.4利用油中糠醛诊断变压器绝缘寿命 (23)2.4固体绝缘老化的综合诊断 (29)3 变压器油的运行维护 (30)3.1变压器油的选择 (30)3.1.1变压器油的质量标准 (30)3.1.2变压器油在低温下的特性 (31)3.2 混油、补油和换油 (33)3.2.1 混油和补油 (33)3.2.2换油 (34)3.3 运行变压器油的防劣措施 (36)3.3.1 隔膜密封装置 (36)3.3.2 净油器 (37)3.4 变压器油的金属减活(钝化)剂 (42)4变压器故障原因分析与处理 (45)4.1变压器内部故障 (45)4.1.1内部故障诊断 (45)4.2 变压器油渗漏油的危害和原因分析 (48)4.2.1变压器渗漏油的危害 (48)5变压器油中溶解气体分析与诊断 (51)5.1利用气象色谱分析检测变压器内部故障的原理 (51)5.1.1 油中溶解气体与变压器内部故障的关系 (51)5.1.2气相色谱分析原理 (52)5.2 变压器内部故障诊断 (53)5.2.1 诊断程序 (53)5.2.2有效故障判定 (54)5.2.3 故障类型诊断 (56)5.2.4 故障状态诊断 (57)5.3变压器油中气体总含量测定 (61)5.3.1概述 (61)5.3.2 油中含气量测定方法 (62)5.3.3 判断标准 (63)5.4.1 油中氢气在线监测装置 (64)5.4.2 油中溶解气体在线监测装置 (65)英文文献 (67)中文文献 (82)结论 (88)变压器油中溶解气体分析与诊断第一章绪论电力变压器可以:1、传输和分配电能。

如果是升压变压器,可以把电能送出去。

如果是降压变压器或者配电变压器,可以将电能分别输送或分配出去;2、可以改变一、二次侧的额定电压;3、可以改变一、二次侧的相位角;4、主要是以上几条,当然还可以有:改善或保护电网的作用,减少或增加相数等等。

对变压器油有十分重要的作用。

1.1变压器通过电磁感应将一个系统的交流电压和电流转换为另一个系统的电压和电流的电力设备。

由铁心和套于其上的两个或多个绕组组成。

1.1.1变压器的分类电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。

当一次绕组通以交流电时,就产生交变的磁通,交变的磁通通过铁芯导磁作用,就在二次绕组中感应出交流电动势。

二次感应电动势的高低与一二次绕组匝数的多少有关,即电压大小与匝数成正比。

主要作用是传输电能,因此,额定容量是它的主要参数。

额定容量是一个表现功率的惯用值,它是表征传输电能的大小,以Kva或MVA表示,当对变压器施加额定电压时,根据它来确定在规定条件下不超过温升限值的额定电流。

变压器的分类可根据用途、绕组电压等级和结构、输入及输出地相数、冷却方式、铁芯结构、防潮结构、调压结构以及星形连接的绕组中性点绝缘等分类原则进行分类,如表1-1所示。

表1-1 变压器分类表注符号“—”表示无代号1.1.2电力变压器的选型原则众所周知,电力变压器的安全经济运行已涉及到各行各业的营运的安全性、经济性、合理性、稳定性、可靠性。

电力变压器在全过程管理的主流程中,选型是首要环节。

电力变压器的选型原则可参照GB/T 17468-1998《电力变压器选用导则》,结合实际使用条件、环境、要求,投资可行性,相关的技术标准、导则等规范着手。

但是,该导则仅仅只是一个技术规范,条件的局限性使之不可能包罗其他方面的综合性因素,例如,投资经济指标、维护运行经济效益、新管理环境下的适应性等。

本节仅针对该导则以技术经济指标形势为要求予以简述,并结合现代新的管理理念,阐述合理选型的原则。

一.使用条件根据变压器使用所在地的环境条件海拔高度、年最高和最低温度、最湿月平均最大相对湿度,参照国家标准GB 1094-1985相关条件及要求,予以比较对照后,再确定选型的基本要求。

(1)海拔高度。

该条件与油浸变压器的外绝缘有关,亦与干式变压器器身耐受绝缘水平有关。

一般使用地点在海拔高度1000m以下属于正常使用范围;当超过1000m时,则变压器的外绝缘应该进行校正,以提高外绝缘水平,必须按要求进行绝缘距离设计并采用比内绝缘水平高的外绝缘件,即采用高原型绝缘组件产品。

对于干式变压器相对正常海拔高度的额定工频耐压值,以每500m为一级增加6.5%的水平进行设计。

同时,随着海拔高度的升高,最高日平均、年平均温度有所降低。

在正常海拔高度试验的空气冷却的变压器,当在1000m以上地点使用时,应以每500m为一级递减(油浸自冷变压器是2.0%;油浸风冷及强油风冷变压器是3.0%;自冷干式变压器是2.5%;风冷干式变压器是5.0%)进行温升值的校正设计。

在正常海拔高度试验的变压器没有必要给予海拔校正。

(2)环境温度。

变压器的温升与环境温度有关,若变压器冷却空气温度高于最高允许气温(40℃),则变压器的设计应将其绕组、铁芯及温升限制降低,以保证绝缘材料温度在耐热等级的允许温度以下。

(3)温度及环境污秽等级。

变压器外绝缘性能与环境湿度及其污秽等级相关。

对油浸变压器,湿度影响并不严重,但对于干式变压器多少有些影响,因为这类变压器的主绝缘和铁芯完全裸露在空气中,凝露对变压器绝缘有影响,同时对变压器的辅助电气设备也有影响。

实际上,仅仅是湿度的影响并不大,但考虑环境污秽因素的影响,则对变压器的绝缘威胁程度是很大的。

所亦必须提供湿度及环境污秽等级值,以便在设计变压器时适当地调整绝缘的爬距。

二.一般基准原则选用变压器时,应遵循变压器的行业规范,不可随心所欲拟定不规则的技术参数,这样不会形成紊乱的局面。

必须明确应符合的标准(国家标准、行业标准、国际标准或国外不标准)、名称及代号。

在选用国产或者国外产品时,应力求参照国家标准GB/T 6451-1999、GB/T 10228-1997、GB/T 16274-1996、JB/T 2426-2004 进行选择。

另外其他特殊要求,如损耗、声级等参数要求,即确定是升压变压器、降压变压器、配电变压器、联络变压器还是常用变压器,并根据表1-1的变压器分类,结合其用途选择变压器的绕组数(三绕组或单绕组变压器)、相数(三相或单相变压器)、调压方式(有载调压或是无励磁调压变压器),再根据容量大小选用冷却方式。

三.技术参数的选择(1)额定电压及分接。

变压其额定电压应与所在的电力系统各电压等级相符。

例如一台110kV电力降压变压器,一次侧的系统电压是110kV,二次侧电压是低于一次侧电压的各级电压,即35、10、6kV,以所需电压级为准,有可能是两级,也可能是一级。

所以变压器的额定电压选择只根据所处电力系统电压而定。

选择难度较大的使分接。

所谓分接,即是为了达到调整电压选择的目的,将绕组按若干记抽头来改变绕组匝数。

一般设计为主绕组和分接绕组,而分接绕组起到改变匝数的目的。

在分接绕组上又分为主分接头与非主分接头,主分接即为与额定量(额定电压、电流、容量)相对应的分接,通常是,当分解位置数为奇数时也称主分接为中间分接;当分接位置数为偶数时,两个中间分接位置有效匝数最多的是主分接。

对于分接还引进其他有关技术参数:分接因数、分接级、分接范围。

在实际应用中,分接因数出现较少,但是它是一个基础参数,必须将其定义予以交代。

1)分接因数,即计非分接绕组施加额定电压时在分接绕组上所指定分接位置线端子上产生的空载电压U0绕组的额定电压UN之比值(U0/UN)或100U0、UN(以百分数表示分接因数);也表示带有分接的绕组处在某一分接时,其有效匝数与主分接时匝数的比值。

由此可见,分接因数值为1时,则说明在主分接位置上;当大于1时,称为正分接;当小于1时,称为负分接。

2)分接级为相邻分接间以百分数表示的分接因数之差。

3)分接范围为用百分数表示的分接因数与100相比的变化范围。

若该因数在(100+a)~(100+a)之间变化,则认为分接范围是(+a%,-b%).当a=b时,则分接范围是±a%。

可见变压器电压的调节范围不一定是以主分接为中心的对称分布,也也可以设计成不对称,根据具体需要而定。

在实际运用中是将正负调压范围分成若干等分的级数(多抽头),譬如a=n*a'。

关键问题是在建立这些概念后,如何选择。

一般是10kV及以下电压等级的配电变压器推荐有载调压范围±4*2.5%,无励磁调压范围±5%;63kV级变压器推荐有载调压范围±8*1.25%,无励磁调压2±2.5%;110kV及以上变压器推荐有载调压范围±8*1.25%,无励磁调压范围2*2.5%。

若有特殊要求,在许可的前提下可与制造厂商协商解决,如将级电压 a’有1.25%修改为1.5%,或者是适当修改n值。

相关文档
最新文档