回归分析实验报告(含程序及答案)

合集下载

线性回归分析实验报告

线性回归分析实验报告

线性回归分析实验报告线性回归分析实验报告引言线性回归分析是一种常用的统计方法,用于研究因变量与一个或多个自变量之间的关系。

本实验旨在通过线性回归分析方法,探究自变量与因变量之间的线性关系,并通过实验数据进行验证。

实验设计本实验采用了一组实验数据,其中自变量为X,因变量为Y。

通过对这组数据进行线性回归分析,我们将得到回归方程,从而可以预测因变量Y在给定自变量X的情况下的取值。

数据收集与处理首先,我们收集了一组与自变量X和因变量Y相关的数据。

这些数据可以是实际观测得到的,也可以是通过实验或调查获得的。

然后,我们对这组数据进行了处理,包括数据清洗、异常值处理等,以确保数据的准确性和可靠性。

线性回归模型在进行线性回归分析之前,我们需要确定一个线性回归模型。

线性回归模型的一般形式为Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

回归系数β0和β1可以通过最小二乘法进行估计,最小化实际观测值与模型预测值之间的误差平方和。

模型拟合与评估通过最小二乘法估计回归系数后,我们将得到一个拟合的线性回归模型。

为了评估模型的拟合程度,我们可以计算回归方程的决定系数R²。

决定系数反映了自变量对因变量的解释程度,取值范围为0到1,越接近1表示模型的拟合程度越好。

实验结果与讨论根据我们的实验数据,进行线性回归分析后得到的回归方程为Y = 2.5 + 0.8X。

通过计算决定系数R²,我们得到了0.85的值,说明该模型能够解释因变量85%的变异程度。

这表明自变量X对因变量Y的影响较大,且呈现出较强的线性关系。

进一步分析除了计算决定系数R²之外,我们还可以对回归模型进行其他分析,例如残差分析、假设检验等。

残差分析可以用来检验模型的假设是否成立,以及检测是否存在模型中未考虑的其他因素。

假设检验可以用来验证回归系数是否显著不为零,从而判断自变量对因变量的影响是否存在。

回归分析 实验报告

回归分析 实验报告

回归分析实验报告回归分析实验报告引言回归分析是一种常用的统计方法,用于研究两个或多个变量之间的关系。

通过回归分析,我们可以了解变量之间的因果关系、预测未来的趋势以及评估变量对目标变量的影响程度。

本实验旨在通过回归分析方法,探究变量X对变量Y 的影响,并建立一个可靠的回归模型。

实验设计在本实验中,我们选择了一个特定的研究领域,并采集了相关的数据。

我们的目标是通过回归分析,找出变量X与变量Y之间的关系,并建立一个可靠的回归模型。

为了达到这个目标,我们进行了以下步骤:1. 数据收集:我们从相关领域的数据库中收集了一组数据,包括变量X和变量Y的观测值。

这些数据是通过实验或调查获得的,具有一定的可信度。

2. 数据清洗:在进行回归分析之前,我们需要对数据进行清洗,包括处理缺失值、异常值和离群点。

这样可以保证我们得到的回归模型更加准确可靠。

3. 变量选择:在回归分析中,我们需要选择适当的自变量。

通过相关性分析和领域知识,我们选择了变量X作为自变量,并将其与变量Y进行回归分析。

4. 回归模型建立:基于选定的自变量和因变量,我们使用统计软件进行回归分析。

通过拟合回归模型,我们可以获得回归方程和相关的统计指标,如R方值和显著性水平。

结果分析在本实验中,我们得到了如下的回归模型:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。

通过回归分析,我们得到了以下结果:1. 回归方程:根据回归分析的结果,我们可以得到回归方程,该方程描述了变量X对变量Y的影响关系。

通过回归方程,我们可以预测变量Y的取值,并评估变量X对变量Y的影响程度。

2. R方值:R方值是衡量回归模型拟合优度的指标,其取值范围为0到1。

R方值越接近1,说明回归模型对数据的拟合程度越好。

通过R方值,我们可以评估回归模型的可靠性。

3. 显著性水平:显著性水平是评估回归模型的统计显著性的指标。

通常,我们希望回归模型的显著性水平低于0.05,表示回归模型对数据的拟合是显著的。

线性回归分析实验报告

线性回归分析实验报告

线性回归分析实验报告实验报告:线性回归分析一、引言线性回归是一种基本的统计分析方法,用于研究自变量与因变量之间的线性关系。

此实验旨在通过一个实际案例对线性回归进行分析,并解释如何使用该方法进行预测和解释。

二、实验方法1.数据收集:从电商网站收集了一份销售量与广告费用的数据集,其中包括了十个月的数据。

该数据集包括两个变量:广告费用(自变量)和销售量(因变量)。

2.数据处理:首先对数据进行清洗,包括处理缺失值和异常值等。

然后进行数据转换,对广告费用进行对数转换,以适应线性回归的假设。

3.构建模型:使用线性回归模型,将广告费用作为自变量,销售量作为因变量,构建一个简单的线性回归模型。

模型的公式为:销售量=β0+β1*广告费用+ε,其中β0和β1是回归系数,ε是误差项。

4.模型评估:通过计算回归系数的置信区间和检验假设以评估模型的拟合程度和相关性。

此外,还使用残差分析来检验模型的合理性和独立性。

5.模型预测:根据模型的回归系数和新的广告费用数据,预测销售量。

三、实验结果1.数据描述:首先对数据进行描述性统计。

数据集的平均广告费用为1000元,标准差为200元。

平均销售量为1000件,标准差为150件。

广告费用和销售量之间的相关系数为0.8,说明两者存在一定的正相关关系。

2. 模型拟合:通过拟合线性回归模型,得到回归系数的估计值。

估计值的标准误差很小,R-square值为0.64,说明模型可以解释63%的销售量变异。

3.置信区间和假设检验:通过计算回归系数的置信区间,发现β1的置信区间不包含零,说明广告费用对销售量有显著影响。

假设检验结果也支持这一结论。

4.残差分析:通过残差分析,发现残差的分布基本符合正态性假设,没有明显的模式或趋势。

这表明模型的合理性和独立性。

四、结论与讨论通过线性回归分析,我们得出以下结论:1.广告费用对销售量有显著影响,且为正相关关系。

随着广告费用的增加,销售量也呈现增加的趋势。

2.线性回归模型可以解释63%的销售量变异,说明模型的拟合程度较好。

回归分析 实验报告

回归分析 实验报告

回归分析实验报告1. 引言回归分析是一种用于探索变量之间关系的统计方法。

它通过建立一个数学模型来预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。

本实验报告旨在介绍回归分析的基本原理,并通过一个实际案例来展示其应用。

2. 回归分析的基本原理回归分析的基本原理是基于最小二乘法。

最小二乘法通过寻找一条最佳拟合直线(或曲线),使得所有数据点到该直线的距离之和最小。

这条拟合直线被称为回归线,可以用来预测因变量的值。

3. 实验设计本实验选择了一个实际数据集进行回归分析。

数据集包含了一个公司的广告投入和销售额的数据,共有200个观测值。

目标是通过广告投入来预测销售额。

4. 数据预处理在进行回归分析之前,首先需要对数据进行预处理。

这包括了缺失值处理、异常值处理和数据标准化等步骤。

4.1 缺失值处理查看数据集,发现没有缺失值,因此无需进行缺失值处理。

4.2 异常值处理通过绘制箱线图,发现了一个销售额的异常值。

根据业务经验,判断该异常值是由于数据采集错误造成的。

因此,将该观测值从数据集中删除。

4.3 数据标准化为了消除不同变量之间的量纲差异,将广告投入和销售额两个变量进行标准化处理。

标准化后的数据具有零均值和单位方差,方便进行回归分析。

5. 回归模型选择在本实验中,我们选择了线性回归模型来建立广告投入与销售额之间的关系。

线性回归模型假设因变量和自变量之间存在一个线性关系。

6. 回归模型拟合通过最小二乘法,拟合了线性回归模型。

回归方程为:销售额 = 0.7 * 广告投入 + 0.3回归方程表明,每增加1单位的广告投入,销售额平均增加0.7单位。

7. 回归模型评估为了评估回归模型的拟合效果,我们使用了均方差(Mean Squared Error,MSE)和决定系数(Coefficient of Determination,R^2)。

7.1 均方差均方差度量了观测值与回归线之间的平均差距。

在本实验中,均方差为10.5,说明模型的拟合效果相对较好。

《多元回归分析》实验报告

《多元回归分析》实验报告

《多元回归分析》实验报告第一次实验《应用回归分析》第二章作业答案(何晓群版)2.15 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。

经过十周时间,收集了每周加班时间的数据和签发的新保单数目,x为每周签发的新保单数目,y为每周加班时间(小时)。

周序号12345678910 x825215107055048092013503256701215 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0(1)画出散点图。

(2) X与Y之间是否存在大致呈线性关系?得到的=0.9,拟合效果较好,所以是大致呈线性关系。

(3)用最小二乘估计求出回归方程。

可以得到的回归方程为:y=0.004x + 0.118。

(4)求出回归标准误差。

由方差分析表可以得到回归标准误差:SSE=1.843,所以回归标准差误差为:SSE/2=0.48回归标准误差为0.4800。

(5)给出置信度为95%的区间估计。

可以得到的区间估计为:[-0.701,0,937] 与 [0.003,0.005](6)计算X与Y的决定系数。

从表中可以看到,决定系数为0.9,说明模型的拟合度较高。

(7)对回归方程做方差分析.方差分析中可以得到:F值=72.396>5.32[F(1,8)=5.32]。

(8)做回归系数的显著性检验。

由方差分析表中显著性约为0,所以拒绝原假设,说明回归方程显著(9)做相关系数的显著性检验。

因为模型的相关系数达到0.949,说明x与y显著性相关。

(10)对回归方程做残差图并做相应的分析。

从残差图上可以发现残差就是围绕e=0上下波动,满足模型的看基本假设。

(11)该公司预计下一周签发新保单=1000张,需要的加班时间是多少?y =0.118+0.00359*1000=3.7032。

所以需要加班时间为3.7032.(12)给出的置信度为95%的精确预测区间和预测区间。

得到精确预测区间为[-0.701,0.937]和预测区间为[0.003,0.005]。

实验五 回归分析

实验五 回归分析

实验五回归分析一.实验目的和要求回归分析是研究自变量与因变量之间的关系形式的研究方法,其目的在于根据已知自变量来估计和预测因变量的总平均值。

本次实验根据已有的银行业务数据信息进行回归分析,找出影响不良贷款的因素,进而控制并减少不良贷款,降低银行进一步的损失。

二.实验内容1.实验数据2010年该银行所属的25家分行的有关业务数据如下表所示。

某商业银行2010年的制药业务数据表分行编号不良贷款(亿元)y各项贷款余额(亿元)x1本年累计应收贷款(亿元)x2贷款项目个数(个)x3本年固定资产投资额(亿元)x41 1.2 70.6 7.7 6 54.72 1.4 114.6 20.7 17 93.83 5.1 176.3 8.6 18 76.64 3.5 83.9 8.1 11 18.55 8.2 202.8 17.5 20 66.36 2.9 19.5 3.4 2 4.97 1.9 110.7 11.7 17 23.68 12.7 188.9 27.9 18 46.99 1.3 99.6 2.6 11 56.110 2.9 76.1 10.1 16 67.611 0.6 67.8 3.1 12 45.912 4.3 135.6 12.1 25 79.813 1.1 67.7 6.9 16 25.914 3.8 177.9 13.6 27 120.115 10.5 266.6 16.5 35 149.916 3.3 82.6 9.8 16 32.717 0.5 17.9 1.5 4 45.618 0.7 76.7 6.8 13 28.619 1.3 27.8 5.9 6 16.820 7.1 143.1 8.1 29 67.821 11.9 371.6 17.7 34 167.222 1.9 99.2 4.7 12 47.823 1.5 112.9 11.2 16 70.224 7.5 199.8 16.7 18 43.125 3.6 105.7 12.9 12 100.22.实验过程分别绘制不良贷款与贷款余额、应收贷款、贷款项目数、固定资产投资额之间的散点图。

回归分析实验报告

回归分析实验报告

回归分析实验报告实验报告:回归分析摘要:回归分析是一种用于探究变量之间关系的数学模型。

本实验以地气温和电力消耗量数据为例,运用回归分析方法,建立了气温和电力消耗量之间的线性回归模型,并对模型进行了评估和预测。

实验结果表明,气温对电力消耗量具有显著的影响,模型能够很好地解释二者之间的关系。

1.引言回归分析是一种用于探究变量之间关系的统计方法,它通常用于预测或解释一个变量因另一个或多个变量而变化的程度。

回归分析陶冶于20世纪初,经过不断的发展和完善,成为了数量宏大且复杂的数据分析的重要工具。

本实验旨在通过回归分析方法,探究气温与电力消耗量之间的关系,并基于建立的线性回归模型进行预测。

2.实验设计与数据收集本实验选择地的气温和电力消耗量作为研究对象,数据选取了一段时间内每天的气温和对应的电力消耗量。

数据的收集方法包括了实地观测和数据记录,并在数据整理过程中进行了数据的筛选与清洗。

3.数据分析与模型建立为了探究气温与电力消耗量之间的关系,需要建立一个合适的数学模型。

根据回归分析的基本原理,我们初步假设气温与电力消耗量之间的关系是线性的。

因此,我们选用了简单线性回归模型进行分析,并通过最小二乘法对模型进行了估计。

运用统计软件对数据进行处理,并进行了以下分析:1)描述性统计分析:计算了气温和电力消耗量的平均值、标准差和相关系数等。

2)直线拟合与评估:运用最小二乘法拟合出了气温对电力消耗量的线性回归模型,并进行了模型的评估,包括了相关系数、残差分析等。

3)预测分析:基于建立的模型,进行了其中一未来日期的电力消耗量的预测,并给出了预测结果的置信区间。

4.结果与讨论根据实验数据的分析结果,我们得到了以下结论:1)在地的气温与电力消耗量之间存在着显著的线性关系,相关系数为0.75,表明二者之间的关系较为紧密。

2)构建的线性回归模型:电力消耗量=2.5+0.3*气温,模型参数的显著性检验结果为t=3.2,p<0.05,表明回归系数是显著的。

实验十三(回归分析)

实验十三(回归分析)

告报验实验实学数学大13x3根据表中的数据及残插图,我们可以解答题目中的三个问题。

值都有明显的增加, s2值则明显的减小了,残3.3926x24 大学数学实验 实验报告 | 2014/5/304[B3,BINT3,R3,RINT3,STATS3] = regress(y',X3); [BX,BINTX,RX,RINTX,STATSX] = regress(y',XX); rcoplot(R1,RINT1);pause; rcoplot(R2,RINT2);pause; rcoplot(R3,RINT3);pause; rcoplot(RX,RINTX);pause;项目二:下表列出了某城市18位35岁~ 44岁经理的年平均收入x 1(千元),风险偏好度x 2和人寿保险额y (千元)的数据,其中风险偏好度是根据发给每个经理的问卷调查表综合评估得到的,它的数值越大,就越偏爱高风险。

研究人员想研究此年龄段中的经理所投保的人寿保险额与年均收入及风险偏好度之间的关系。

研究者预计,经理的年均收入和人寿保险额之间存在着二次关系,并有把握地认为风险偏好度对人寿保险额有线性效应,但对于风险偏好度对人寿保险额是否有二次效应以及两个自变量是否对人寿保险额有交互效应,心中没底。

通过表中的数据来建立一个合适的回归模型,验证上面的看法,并给出进一步的分析。

序号 y x 1 x 2 序号 y x 1 x 2 1 196 66.290 7 10 49 37.408 5 2 63 40.964 5 11 105 54.376 2 3 252 72.996 10 12 98 46.186 7 4 84 45.010 6 13 77 46.130 4 5 126 57.204 4 14 14 30.366 3 6 14 26.852 5 15 56 39.060 5 7 49 38.122 4 16 245 79.380 1 8 49 35.840 6 17 133 52.766 8 926675.79691813355.9166问题分析及模型建立:此题中主要确定了经理的年均收入x 1和人寿保险额y 之间存在着二次关系,风险偏好度x 2对人寿保险额y 有线性效应,但是主要需要我们确定是否存在交互项x 1x 2以及二次项x 12,x 22,从而确定最佳的多元多项式回归模型。

回归分析 实验报告

回归分析 实验报告

回归分析实验报告回归分析实验报告引言:回归分析是一种常用的统计方法,用于探究变量之间的关系。

本实验旨在通过回归分析来研究某一自变量对因变量的影响,并进一步预测未来的趋势。

通过实验数据的收集和分析,我们可以得出一些有关变量之间关系的结论,并为决策提供依据。

数据收集:在本次实验中,我们收集了一组数据,包括自变量X和因变量Y的取值。

为了保证数据的可靠性和准确性,我们采用了随机抽样的方法,并对数据进行了严格的统计处理。

数据分析:首先,我们进行了数据的可视化分析,绘制了散点图以观察变量之间的分布情况。

通过观察散点图,我们可以初步判断变量之间是否存在线性关系。

接下来,我们使用回归分析方法对数据进行了拟合,并得到了回归方程。

回归方程:通过回归分析,我们得到了如下的回归方程:Y = a + bX其中,a表示截距,b表示斜率。

回归方程可以用来预测因变量Y在给定自变量X的取值时的期望值。

回归系数的解释:在回归方程中,截距a表示当自变量X为0时,因变量Y的取值。

斜率b表示自变量X每变动一个单位时,因变量Y的平均变动量。

通过对回归系数的解释,我们可以更好地理解变量之间的关系。

回归方程的显著性检验:为了验证回归方程的有效性,我们进行了显著性检验。

通过计算回归方程的F值和P值,我们可以判断回归方程是否具有统计学意义。

如果P值小于显著性水平(通常为0.05),则我们可以拒绝零假设,即回归方程是显著的。

回归方程的拟合优度:为了评估回归方程的拟合程度,我们计算了拟合优度(R²)。

拟合优度表示因变量的变异程度可以被自变量解释的比例。

拟合优度的取值范围为0~1,值越接近1表示回归方程对数据的拟合程度越好。

回归方程的预测:通过回归方程,我们可以进行因变量Y的预测。

当给定自变量X的取值时,我们可以利用回归方程计算出因变量Y的期望值。

预测结果可以为决策提供参考,并帮助我们了解自变量对因变量的影响程度。

结论:通过本次实验,我们成功地应用了回归分析方法,研究了自变量X对因变量Y的影响,并得到了回归方程。

一元线性回归分析实验报告doc

一元线性回归分析实验报告doc

一元线性回归分析实验报告.doc一、实验目的本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,即一个变量是否随着另一个变量的变化而呈现线性变化。

通过实际数据进行分析,理解一元线性回归模型的应用及其局限性。

二、实验原理一元线性回归是一种基本的回归分析方法,用于研究两个连续变量之间的关系。

其基本假设是:因变量与自变量之间存在一种线性关系,即因变量的变化可以由自变量的变化来解释。

一元线性回归的数学模型可以表示为:Y = aX + b,其中Y是因变量,X是自变量,a是回归系数,b是截距。

三、实验步骤1.数据收集:收集包含两个变量的数据集,用于建立一元线性回归模型。

2.数据预处理:对数据进行清洗、整理和标准化,确保数据的质量和准确性。

3.绘制散点图:通过散点图观察因变量和自变量之间的关系,初步判断是否为线性关系。

4.建立模型:使用最小二乘法估计回归系数和截距,建立一元线性回归模型。

5.模型评估:通过统计指标(如R²、p值等)对模型进行评估,判断模型的拟合程度和显著性。

6.模型应用:根据实际问题和数据特征,对模型进行解释和应用。

四、实验结果与分析1.数据收集与预处理:我们收集了一个关于工资与工作经验的数据集,其中工资为因变量Y,工作经验为自变量X。

经过数据清洗和标准化处理,得到了50个样本点。

2.散点图绘制:绘制了工资与工作经验的散点图,发现样本点大致呈线性分布,说明工资随着工作经验的变化呈现出一种线性趋势。

3.模型建立:使用最小二乘法估计回归系数和截距,得到一元线性回归模型:Y = 50X + 2000。

其中,a=50表示工作经验每增加1年,工资平均增加50元;b=2000表示当工作经验为0时,工资为2000元。

4.模型评估:通过计算R²值和p值,对模型进行评估。

在本例中,R²值为0.85,说明模型对数据的拟合程度较高;p值为0.01,说明自变量对因变量的影响是显著的。

统计回归模型实验报告(3篇)

统计回归模型实验报告(3篇)

第1篇一、实验背景与目的随着社会科学和自然科学研究的深入,统计分析方法在各个领域得到了广泛应用。

回归分析作为统计学中一种重要的预测和描述方法,在经济学、医学、心理学等领域发挥着重要作用。

本次实验旨在通过EViews软件,对统计回归模型进行实践操作,掌握回归分析的原理和方法,并验证模型在实际问题中的应用效果。

二、实验内容与步骤1. 数据准备(1)收集实验所需数据:选取某地区近五年居民消费支出与居民收入作为实验数据。

(2)数据整理:将数据录入EViews软件,并进行必要的预处理,如剔除异常值、缺失值等。

2. 模型设定(1)根据实验目的,设定回归模型为:消费支出= β0 + β1 居民收入+ ε,其中β0为截距项,β1为居民收入对消费支出的影响系数,ε为误差项。

(2)选择合适的回归模型:根据实验数据特点,选择线性回归模型进行建模。

3. 模型估计(1)在EViews软件中,输入数据并选择线性回归模型。

(2)进行参数估计:利用最小二乘法(OLS)估计模型参数,得到β0和β1的估计值。

4. 模型检验(1)检验模型的整体拟合优度:计算R²、F统计量等指标,判断模型是否显著。

(2)检验参数估计的显著性:进行t检验,判断β0和β1是否显著异于零。

(3)检验误差项的正态性:进行正态性检验,判断误差项是否符合正态分布。

5. 模型应用(1)预测居民消费支出:利用估计出的模型,预测居民收入在一定范围内的消费支出。

(2)分析居民收入对消费支出的影响:根据β1的估计值,分析居民收入对消费支出的影响程度。

三、实验结果与分析1. 模型整体拟合优度根据实验数据,计算R²为0.9,F统计量为35.12,表明模型整体拟合优度较好,可以用于预测和描述居民消费支出与居民收入之间的关系。

2. 参数估计的显著性t检验结果显示,β0和β1的t值分别为2.12和3.45,均大于临界值,表明β0和β1在统计上显著异于零,居民收入对消费支出有显著影响。

线性回归分析实验报告

线性回归分析实验报告

实验一:线性回归分析实验目的:通过本次试验掌握回归分析的基本思想和基本方法,理解最小二乘法的计算步骤,理解模型的设定T检验,并能够根据检验结果对模型的合理性进行判断,进而改进模型。

理解残差分析的意义和重要性,会对模型的回归残差进行正态型和独立性检验,从而能够判断模型是否符合回归分析的基本假设。

实验内容:用线性回归分析建立以高血压作为被解释变量,其他变量作为解释变量的线性回归模型。

分析高血压与其他变量之间的关系。

实验步骤:1、选择File | Open | Data 命令,打开gaoxueya.sav图1-1 数据集gaoxueya 的部分数据2、选择Analyze | Regression | Linear…命令,弹出Linear Regression (线性回归) 对话框,如图1-2所示。

将左侧的血压(y)选入右侧上方的Dependent(因变量) 框中,作为被解释变量。

再分别把年龄(x1)、体重(x2)、吸烟指数(x3)选入Independent (自变量)框中,作为解释变量。

在Method(方法)下拉菜单中,指定自变量进入分析的方法。

图1-2 线性回归分析对话框3、单击Statistics按钮,弹出Linear Regression : Statistics(线性回归分析:统计量)对话框,如图1-3所示。

1-3线性回归分析统计量对话框4、单击 Continue 回到线性回归分析对话框。

单击Plots ,打开Linear Regression:Plots (线性回归分析:图形)对话框,如图1-4所示。

完成如下操作。

图1-4 线性回归分析:图形对话框5、单击Continue ,回到线性回归分析对话框,单击Save按钮,打开Linear Regression;Save 对话框,如图1-5所示。

完成如图操作。

图1-5 线性回归分析:保存对话框6、单击Continue ,回到线性回归分析对话框,单击Options 按钮,打开Linear Regression ;Options 对话框,如图1-6所示。

计量经济学实验报告回归分析

计量经济学实验报告回归分析

计量经济学实验报告回归分析计量经济学实验报告:回归分析一、实验目的本实验旨在通过运用计量经济学方法,对收集到的数据进行分析,研究自变量与因变量之间的关系,并估计回归模型中的参数。

通过回归分析,我们可以深入了解变量之间的关系,为预测和决策提供依据。

二、实验原理回归分析是一种常用的统计方法,用于研究自变量与因变量之间的线性或非线性关系。

在回归分析中,我们通过最小二乘法等估计方法,得到回归模型中未知参数的估计值。

根据估计的参数,我们可以对因变量进行预测,并分析自变量对因变量的影响程度。

三、实验步骤1.数据收集:收集包含自变量与因变量的数据集。

数据可以来自数据库、调查、实验等。

2.数据预处理:对收集到的数据进行清洗、整理和格式化,以确保数据的质量和适用性。

3.模型选择:根据问题的特点和数据的特性,选择合适的回归模型。

常见的回归模型包括线性回归模型、多元回归模型、岭回归模型等。

4.模型估计:运用最小二乘法等估计方法,对选择的回归模型进行估计,得到模型中未知参数的估计值。

5.模型检验:对估计后的模型进行检验,以确保模型的适用性和可靠性。

常见的检验方法包括残差分析、拟合优度检验等。

6.预测与分析:根据估计的模型参数,对因变量进行预测,并分析自变量对因变量的影响程度。

四、实验结果与分析1.数据收集与预处理本次实验选取了某网站的销售数据作为样本,数据包含了商品价格、销量、评价等指标。

在数据预处理阶段,我们剔除了缺失值和异常值,以确保数据的完整性和准确性。

2.模型选择与估计考虑到商品价格和销量之间的关系可能存在非线性关系,我们选择了多元回归模型进行建模。

采用最小二乘法进行模型估计,得到的估计结果如下:销量 = 100000 + 10000 * 价格 + 5000 * 评价 + 随机扰动项3.模型检验对估计后的模型进行残差分析,发现残差分布较为均匀,且均在合理范围内。

同时,拟合优度检验也表明模型对数据的拟合程度较高。

线性回归分析实验报告

线性回归分析实验报告

线性回归分析实验报告实验报告:线性回归分析一、引言线性回归是一种常用的统计分析方法,用于建立自变量与因变量之间的线性关系模型。

它可以通过对已知数据的分析,预测未知数据的数值。

本实验旨在通过应用线性回归分析方法,探究自变量和因变量之间的线性关系,并使用该模型进行预测。

二、实验方法1. 数据收集:收集相关的自变量和因变量的数据,确保数据的准确性和完整性。

2. 数据处理:对收集到的数据进行清洗和整理,确保数据的可用性。

3. 模型建立:选择合适的线性回归模型,建立自变量和因变量之间的线性关系模型。

4. 模型训练:将数据集分为训练集和测试集,使用训练集对模型进行训练。

5. 模型评估:使用测试集对训练好的模型进行评估,计算模型的拟合度和预测准确度。

6. 预测分析:使用训练好的模型对未知数据进行预测,分析预测结果的可靠性和合理性。

三、实验结果1. 数据收集和处理:我们收集了100个样本数据,包括自变量X和因变量Y。

通过数据清洗和整理,我们得到了可用的数据集。

2. 模型建立:我们选择了简单线性回归模型,即Y = aX + b,其中a为斜率,b为截距。

3. 模型训练和评估:我们将数据集分为训练集(80个样本)和测试集(20个样本),使用训练集对模型进行训练,并使用测试集评估模型的拟合度和预测准确度。

4. 预测分析:使用训练好的模型对未知数据进行预测,分析预测结果的可靠性和合理性。

四、实验讨论1. 模型拟合度:通过计算模型的拟合度(如R方值),可以评估模型对训练数据的拟合程度。

拟合度越高,说明模型对数据的解释能力越强。

2. 预测准确度:通过计算模型对测试数据的预测准确度,可以评估模型的预测能力。

预测准确度越高,说明模型对未知数据的预测能力越强。

3. 模型可靠性:通过对多个不同样本集进行训练和评估,可以评估模型的可靠性。

如果模型在不同样本集上的表现一致,说明模型具有较高的可靠性。

五、实验结论通过本实验,我们建立了一种简单线性回归模型,成功实现了对自变量和因变量之间的线性关系进行分析和预测。

《应用回归分析 》---多元线性回归分析实验报告

《应用回归分析 》---多元线性回归分析实验报告

《应用回归分析》---多元线性回归分析实验报告
二、实验步骤:
1、计算出增广的样本相关矩阵
2、给出回归方程
Y=-65.074+2.689*腰围+(-0.078*体重)3、对所得回归方程做拟合优度检验
4、对回归方程做显著性检验
5、对回归系数做显著性检验
三、实验结果分析:
1、计算出增广的样本相关矩阵相关矩阵
2、给出回归方程
回归方程:Y=-65.074+2.689*腰围+(-0.078*体重)
3、对所得回归方程做拟合优度检验
由表可知x与y的决定性系数为r2=0.800,说明模型的你和效果一般,x与y 线性相关系数为R=0.894,说明x与y有较显著的线性关系,当F=33.931,显著性Sig.p=0.000,说明回归方程显著
4、对回归方程做显著性检验
5、对回归系数做显著性检验
Beta的t检验统计量t=-6.254,对应p的值接近0,说明体重和体内脂肪比重对腰围数据有显著影响
6、结合回归方程对该问题做一些基本分析
从上面的分析过程中可以看出腰围和脂肪比重以及腰围和体重的相关性都是很大的,通过检验可以看出回归方程、回归系数也很显著。

其次可以观察到腰围、脂肪比重、体重的数据都是服从正态分布的。

回归分析实验报告

回归分析实验报告

回归分析实验报告财政收入研究摘要本文是对财政收入与农业增加值、工业增加值、建筑业增加值、人口数、社会消费总额、受灾面积进行多元线性回归。

首先,根据所给数据,对数据进行标准化,然后进行相关性分析,初步确定各因素与财政收入的相关程度。

再运用逐步回归分析,确定了变量子集为工业增加值、人口数和社会消费总额。

之后,为了消除复共线性,用主成分估计对回归系数进行有偏估计,获得了模型的回归系数估计值。

最后,对所得结果作了分析,并给出了适当建议。

一、数据处理为了消除变量间的量纲关系,从而使数据具有可比性,运用spss对所给数据进行标准化。

二、相关性分析要对某地财政收入影响因素进行多元回归分析,首先要分析财政收入与各自变量的相关性,只有与财政收入有一定相关性的自变量才能对财政收入变动进行解释。

运用spss得到变量间的相关系数表如下:表一:由上表可知,财政收入与农业增加值、工业增加值、建筑业增加值、人口数、社会消费总额呈高度正相关,但与受灾面积相关程度不高。

由此表明所选取的大部分变量是可以用来解释财政收入变动的。

为进一步确定最优子集,下面用逐步回归法。

三、回归分析回归分析就是对具有相关关系的变量之间数量变化的一般关系进行测定,确定一个相关的数学表达式,以便于进行估计或预测的统计方法。

在此利用逐步回归法选定回归方程。

逐步回归思想:综合运用前进法和后退法,将变量一个一个引入,引入变量的条件是其偏回归平方和经检验是显著的。

同时,每引入一个新变量,对已入选方程的老变量逐个进行检验,将经检验认为不显著的变量剔除,以保证所得自变量子集中的每个变量都是显著的。

此过程经若干步直到不能再引入新变量为止。

运用spss得到逐步回归的输出结果:表二:回归系数表模型 非标准化系数标准化系数 t Sig. CollinearityStatistics B 标准误差BetaToleranceVIF1(Constant) -1.292E-16.029 .0001.000x5:社会消费总额.991 .029 .991 33.990.000 1.000 1.0002(Constant) -1.210E-16.024 .000 1.000x5:社会消费总额 2.649 .555 2.6494.776.000 .002 499.022 x2: 工业增加值-1.660 .555 -1.660 -2.992.007 .002 499.0223(Constant) -2.451E-17.017 .000 1.000x5:社会消费总额 4.021 .485 4.021 8.292.000 .001 783.048 x2: 工业增加值 -2.829 .460 -2.829 -6.147 .000 .001 705.453 x4: 人口数-.225.048-.225 -4.697.000.1317.663a. Dependent Variable: y: 财政收入由表二可知,模型三是最终模型,最终选入方程的自变量为:x2:工业增加值;x4:人口数;x5:社会消费总额。

数学建模回归分析实验报告[1]

数学建模回归分析实验报告[1]

beta = 21.0058 19.5285
所以:养护日期 x(日)及抗压强度 y(kg/cm2)的回归方程:y=21.0050+19.5288ln(x)
(2)、主程序如下: x=[2 3 4 5 7 9 12 14 17 21 28 56]; y=[35 42 47 53 59 65 68 73 76 82 86 99]; beta0=[1 1]'; [beta,r,J]=nlinfit(x',y','volum',beta0); beta
(3)、输出结果:
实验目的 1、直观了解回归分析基本内容。 2、掌握用数学软件求解回归分析问题。 实验内容 1、回归分析的基本理论。 2、用数学软件求解回归分析问题。
程序设计
1、考察温度 x 对产量 y 的影响,测得下列 10 组数据:
温度(℃) 20 25 30
35
40
45
50
55
60
65
产量(kg) 13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3
差的置信区间均包含零点,这说明回归模型 y=9.1212+0.2230x 能较好的符合原 始数据,没有异常点.
(5)、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
预测 x=42℃时产量的估值.y=18.4872
2、某零件上有一段曲线,为了在程序控制机床上加工这一零件,需要求这段曲 线的解析表达式,在曲线横坐标 xi 处测得纵坐标 yi 共 11 对数据如下:
s=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7];

实验二:回归实验报告

实验二:回归实验报告
实验报告
实验项目名称回归实验
所属课程名称数学建模
实验类型综合性实验
实验日期2014-05-07
班级数本1202班
学号
姓名梁丽东梁世伟李彦良
胡凯涛郭云华杨俊亨
成绩
一、实验概述:
【实验目的】
1.直观了解回归分析基本内容.
2.掌握用数学软件包求解回归分析问题.
【实验原理】
(见附录1)
【实验环境】
Matlab 7.0
b1 =
0.1152 0.0845
r1 =
Columns 1 through 10
-0.6181 0.0617 0.7518 0.1986 0.0540 0.0917 -0.1845 -0.2909 0.0719 0.0570
Columns 11 through 15
-0.0308 0.0850 -0.1881 0.0476 -0.1492
Columns 11 through 15
10.6270 10.7110 10.7842 10.8483 10.9051
【实验结论】(结果)
通过这次试验,了解了拟合的方法和基本原理,遇到实际问题将它数学模型化,并运用数学软件Matlab来解决问题
【实验小结】(收获体会)
深刻体会到,拟合对解决实际问题起着至关重要的作用。所以要理解和熟练掌握回归、线性拟合以及非线性拟合的原理以及Matlab软件实现方法。
j1 =
-24.7681 -49.5362
-22.0774 -66.2320
-19.4846 -77.9380
-17.3032 -86.5157
-15.5077 -93.0457
-14.0248 -98.1734

实验三-回归分析

实验三-回归分析

实验三 回归分析1.为了分析X 射线的杀菌作用,用200千伏的X 射线来照射细菌,每次照射6分钟用平板计数法估计尚存活的细菌数,照射次数记为 t ,照射后的细菌数y 如表1所示。

表1 X 射线照射次数与残留细菌数试求:①给出y 与t 的二次函数回归模型;②在同一坐标系内做出原始数据与拟合结果的散点图;③预测t=16时残留的细菌数;④根据问题实际意义,你认为选择多项式函数是否合适?⑤给出非线性回归模型,并预测照射16次后细菌残留数目。

解:(1)实验程序: t=1:15;y=[352 211 197 160 142 106 104 60 56 38 36 32 21 19 15];rstool(t',y','purequadratic')结果如图1所示:468101250100150200250300350图1在Matlab 工作区中输入命令:beta ,rmsebeta =347.8967 -51.1394 1.9897 rmse =22.2649所以y 与t 的二次回归模型函数:29897.11394.518967.347t t y +-= (2)画出同一坐标散点图,如图2所示,程序如下: [p,s]=polyfit(t,y,2); Y=polyconf(p,t,y); plot(t,y,'k+',t,Y,'r')05101550100150200250300350400图2 散点图(3)当t=16时,计算程序如下: [p,s]=polyfit(t,y,2); Y=polyconf(p,16); 结果是:Y =39.0396即说明预测残留的细菌数y=39.0396个;(4)用二次函数计算出细菌残留数为39.0396,显然与实际不相符合。

根据实际问题的意义可知:尽管二次多项式拟合效果较好,但是用于预测并不理想。

因此,如何根据原始数据散点图的规律,选择适当的回归曲线是非常重要的,因此有必要研究非线性回归分析。

(完整版)应用回归分析实验报告3

(完整版)应用回归分析实验报告3

实验报告实验课程应用回归分析第 3 次实验实验日期2012.10.11 指导教师王振羽班级基地班学号1007402072 姓名张艺璇成绩一、实验目的1、进一步熟悉Excel的常用计算功能和统计功能.2、学习运用网络查询统计数据3、了解JMP软件.二、实验内容(一). 用Excel计算x¯1. 用一个Excel函数计算例2.1中的∑x i; 用一个Excel函数计算例2.1中的样本均值x¯; 用一个Excel函数计算例2.1中的样本方差(除n–1的) s2, 并用它计算样本标准差s.2. 用函数PEARSON计算例2.1中的x与y的相关系数;3. 用函数DEVSQ计算例2.1中的∑(x i–x¯)2 ;4. 用函数SUMPRODUCT计算例2.1中的∑x i y i ;(二). 利用宏制作一个按钮, 其功能为转置数据.(三). 在国家统计局网站上查询p.64例题3.1的数据。

说明你的数据来自《中国统计年鉴(2009)》的哪个表(如y列是表9_16的第1列)。

能看出书上数据中哪两列是错误的吗?(四). 某种合金的抗拉强度y1(kg)和延伸率y2(%)与钢中碳含量x有一定的关系。

Excel 表中有92炉钢样的记录。

利用JMP软件,分别用y2对x求一元线性回归方程,并进行拟合检验和方程显著性检验。

附JMP步骤: (日期改到2003年6月30日前)1. 新建JMP数据表文件2. 将Excel中的数据复制到JMP数据表文件中3. 双击每列上面的列名称“Column 1”等,将其改为x,y1, y2等。

4. 点击菜单Avalyze/Fit Model5. 点击[Y] 按钮将变量y2作为因变量,点击[Add] 按钮将变量x作为自变量,最后点击[OK] 按钮。

三、实验结果与分析(包括运行结果及其数据分析、解释等)(一). 用Excel计算x¯1. 输入数据,用sum函数计算得到∑x i=49.20 ; 用Average函数计算得到样本均值x¯=3.28; 用var函数计算得到样本方差(除n– 1的) s2=2.484571, 并用它计算样本标准差得到s=1.576252.2. 用函数PEARSON计算例2.1中的x与y的相关系数r= 0.961259;3. 用函数DEVSQ计算例2.1中的∑(x i–x¯)2 =34.784;4. 用函数SUMPRODUCT计算例2.1中的∑x i y i =1472.01;(二). 利用宏制作一个按钮, 其功能为转置数据.选择工具→宏(M)→录制新宏(R),设置快捷键为Ctrl+z,开始录制后,选定区域,复制,选择性粘贴中勾选转置后粘贴,停止录制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告三课程应用回归分析
学生姓名陆莹
学号20121315021
学院数学与统计学院
专业统计学
任课教师宋凤丽
二O一四年四月十七日
(1)
shuju<-read.table("E:/4.14.txt")
namesdata<-c("y",paste("x",1:2,sep=""))
colnames(shuju)<-namesdata
lm.shuju<-lm(y~.,data=shuju)
summary(lm.shuju)
Call:
lm(formula = y ~ ., data = shuju)
Residuals:
Min 1Q Median 3Q Max
-747.71 -229.80 -2.15 267.23 547.68
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -574.0624 349.2707 -1.644 0.1067
x1 191.0985 73.3092 2.607 0.0121 *
x2 2.0451 0.9107 2.246 0.0293 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 329.7 on 49 degrees of freedom
Multiple R-squared: 0.2928, Adjusted R-squared: 0.264
F-statistic: 10.15 on 2 and 49 DF, p-value: 0.0002057
>plot(lm.shuju,2)
由上图可知,残差通过正态性检验,原假设成立。

(2)
>qqplot(lm.shuju)
由上图可知,残差通过正态性检验。

(3)
residplot<-function(fit,nbreaks=10){
z<-rstudent(fit)
hist(z,breaks=nbreaks,freq=FALSE,xlab="Studentized Residual",
main="Distribution of Errors")
rug(jitter(z),col="Blue")
curve(dnorm(x,mean=mean(z),sd=sd(z)),add=TRUE,col="Red",lwd=2)
lines(density(z)$x,density(z)$y,col="red",lwd=3,lty=1)
legend("topright",legend=
c("NormalCurve","KernelDensityCurve"),lty=1:2,col=c("Red,"Blue"),cex=.7)} residplot(lm.shuju)
(4)
>y.res<-resid(lm.shuju)
ks.test(y.res,"pnorm",mean(y.res),sd(y.res),exact=FALSE)
One-sample Kolmogorov-Smirnov test
data: unique(y.res)
D = 0.0713, p-value = 0.9539
alternative hypothesis: two-sided
由上述检验结果可知,接受原假设,残差通过正态性检验。

2.检验误差独立性
>durbinWatsonTest(lm.shuju)
lag Autocorrelation D-W Statistic p-value
1 0.6152401 0.7452616 0
Alternative hypothesis: rho != 0
拒绝原假设。

3.线性检验
>crPlots(lm.shuju)
检验满足假设。

4.同方差性检验
(1)
>plot(lm.shuju,1)
由图知,同方差假设成立。

(2)
>spreadLevelPlot(lm..shuju)
(3)
>attach(shuju)
y.res<-residuals(lm.shuju)
cor.test(y.res,x1,method="spearman")
Spearman's rank correlation rho
data: y.res and x1
S = 22691.33, p-value = 0.8253
alternative hypothesis: true rho is not equal to 0 sample estimates:
rho
0.03136148
>attach(shuju)
y.res<-residuals(lm.shuju)
cor.test(y.res,x2,method="spearman")
Spearman's rank correlation rho
data: y.res and x2
S = 24622.08, p-value = 0.7192
alternative hypothesis: true rho is not equal to 0 sample estimates:
rho
-0.05105765
由以上p值可知,接受原假设。

(4)
>ncvTest(lm.shuju)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 0.4950307 Df = 1 p = 0.4816918 p值>0.05,所以暂且接受原假设,即同方差假设成立。

相关文档
最新文档