图形的变换与平移旋转.PPT课件
合集下载
利用图形的平移、旋转和轴对称设计图案ppt课件
样
的
作
吗 ?
图 对 你
有
所
启
发
例2 下面花边中的图案以正方形为基础,由 圆弧、圆或线段构成.仿照例图,请你为班级的 板报设计一条花边,要求:(1)只要画出组成花 边的一个图案;(2)以所给的正方形为基础,用 圆弧、圆或线段画出;(3)图案应有美感.
小结:
1.生活中很多美丽的图案和几何图形 都有密切联系,复杂美丽的图案都是由 简单图形按一定规律排列组合而成; 即 使最简单的几何图案经过你的精心设计 也会给人以赏心悦目的感觉。
精选ppt
22
图案欣赏
图案欣赏
请同学们分组讨论:怎样用直尺 圆规画出这个六花瓣图?
注意! 半径能不能变?
A O
A
O
A
O
A
O
画完之后请同学们思考以下几个问题:
(1) 图中A点的位置对六花瓣的形状有没 有影响?对花瓣的位置有影响吗?
A O
A
O
A
O
A
O
(对形状没影响,对位置有影响)
这
分析图案的形成过程
基本 图案
图案 的形 成过 程
由 旋 转 得 到
精选ppt
13
由 平 移 得 到
精选ppt
14
轴对称
由 轴 对 称 得 到
精选ppt
15
看吾七十二变
下图由四部分组成 ,每部分都包括两 个小“十字”.红 色部分能经过适当 的旋转得到其他三 部分吗?平移呢? 轴对称呢?还有其 他的办法吗?
对称是一种思想,通过它,人们毕生追求, 并创造次序、美丽和完善…… ------赫尔曼·外尔
精选ppt
8
16.5利用图形的平移、旋转 和轴对称设计图案
图形的平移旋转和轴对称PPT课件
切,那么⊙A由图示位置需向右平移_2___,__4____或__6___个单位长度。
A
B
练习2:已知点A(1,1)、B(-1,4)、 C(-4,-1为一平 行四边形的三个顶点,求第四个顶点的坐标。
1.定义:把一个平面图形绕着平面内某一点O转动一 个角度叫做图形的旋转,点O叫做旋转中心, 转动的角叫做旋转角。
后再向上平移4个单位到达B1点,若设ΔABC的
面积为S1,ΔAB1C的面积为S2 小关系为( B )
,则y S1
、S2的大
A.S1>S2 B.B. S1=S2 C.C. S1<S2 D.D.不能确定
C
B1 (2,1)
o
x
A
B
练习1:如图,在10×6的网格图中(每个小正方形的边长均为1个单
位长),⊙A的半径为1, ⊙B的半径为2,要使⊙A与静止的⊙B相
D
C
25
E
F
A
B
练习3:在正方形ABCD中,E为DC边上的点,连结
BE,将△BCE绕点C顺时针方向旋转900得△DCF,连
结EF,若∠BEC=600,则∠EFD的度数为( B )
A、100
B、150 C、200
D、250
D A
E
B
C
F
1.轴对称 把一个图形沿一条直线折叠,如果它能够与 的定义: 另一个图形重合,那么就说这两个图形成轴
图①
图②
图③
图①
图②
图③
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
18
谢谢大家
荣幸这一路,与你同行
A
B
练习2:已知点A(1,1)、B(-1,4)、 C(-4,-1为一平 行四边形的三个顶点,求第四个顶点的坐标。
1.定义:把一个平面图形绕着平面内某一点O转动一 个角度叫做图形的旋转,点O叫做旋转中心, 转动的角叫做旋转角。
后再向上平移4个单位到达B1点,若设ΔABC的
面积为S1,ΔAB1C的面积为S2 小关系为( B )
,则y S1
、S2的大
A.S1>S2 B.B. S1=S2 C.C. S1<S2 D.D.不能确定
C
B1 (2,1)
o
x
A
B
练习1:如图,在10×6的网格图中(每个小正方形的边长均为1个单
位长),⊙A的半径为1, ⊙B的半径为2,要使⊙A与静止的⊙B相
D
C
25
E
F
A
B
练习3:在正方形ABCD中,E为DC边上的点,连结
BE,将△BCE绕点C顺时针方向旋转900得△DCF,连
结EF,若∠BEC=600,则∠EFD的度数为( B )
A、100
B、150 C、200
D、250
D A
E
B
C
F
1.轴对称 把一个图形沿一条直线折叠,如果它能够与 的定义: 另一个图形重合,那么就说这两个图形成轴
图①
图②
图③
图①
图②
图③
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
18
谢谢大家
荣幸这一路,与你同行
《图形的旋转》图形的平移旋转与对称PPT课件
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、知人者智,自知者明。胜人者有力,自胜者强。——老子
五年级数学下册 1.图形的变换(第2课时)旋转平移课件 新人教版
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
3个 1次 1800
精选课件
16
3个 1次 600
14
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
精选课件
15
本图案可以看做是一个菱形通过几次旋转
得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
3、平移与旋转都不改变图形的大小,形状。
精选课件
10
A P
B P
平移
①向哪个方向平移?(上、下、左、右) ②平移的距离。(平移了几格?)
精选课件
11
B A
O
旋转
①绕哪个点旋转?(旋转中心) ②绕哪个方向旋转?(顺时针、逆时针) ③旋转了几度?(旋转角)
精选课件
12
O
O
A
精选课件
13
A
精选课件
旋转平移
精选课件
1
A
精选课件
2
A
精选课件
3
A
精选课件
4
A
精选课件
5
A
精选课件
6
A
精选课件
7
精选课件
8
精选课件
9
平移与旋转
1、平移:指在平面内,将一个图形沿着某个方向移动一定的距离, 这样的图形运动称为平移。
2、旋转:在平面内,将一个图形绕着一个定点沿某个方向转动一个 角度,这样的图形运动称为旋转。
《图形的平移与旋转》复习课件
平移和旋转的组合
顺序 矩阵相乘的应用 综合应用案例
平移和旋转可以按照不同的顺序组合,但组合 的顺序会影响最终的变换结果。
矩阵相乘可以把多个平移和旋转变换合并为一 个矩阵,达到优化计算的目的。
我们可以通过真实案例来理解平移和旋转的组 合应用,比如机器人的姿态控制。
总结与展望
1 实际应用
2 深入学习
矩阵表示
除了向量表示,矩阵也可以用来表示平移。
性质
平移具有什么性质?比如它是一个等距变换。
应用
平移在哪些领域有应用?举几个具体的例子。
旋转
1
角度表示
我们如何描述一个图形的旋转角度?
矩阵表示
2
和平移一样,旋转也可以用矩阵来表
示。
3
性质
旋转有哪些独特的性质?
应用
4
旋转在哪些领域有应用?比如,数字 图像处理中的旋转操作。
《图形的平移与旋转》复 习课件
欢迎大家来到这次关于图形的平移与旋转的复习课程。本课程将带领大家深 入了解图形在空间中的变化,以及如何使用向量和矩阵来描述这些变化。让 我们开始吧!
概述
平移和旋转的定义ቤተ መጻሕፍቲ ባይዱ
什么是平移和旋转?如何理解它们?
平移和旋转的性质
平移和旋转有哪些共同的特点和性质?
平移
向量表示
平移可以使用向量来表示,这个向量称为平移向 量。
3 自主学习和练习建
议
在实际生活中,平移和
如果你对向量和矩阵变
旋转有哪些应用?
换还想了解更多,可以
我们建议同学们做一些
继续学习线性代数等相
练习和实践,比如编写
关课程。
一个小程序来实现平移
和旋转。
2021完整版《图形的平移》平移旋转和轴对称PPT课件
小船图先向( )平移了(
)
格,再向(
)平移了(
)格。
电灯图先向( )平移了(
)格,
再向(
)平移了(
)格。
平行四边形先向右平移5格,再向上平移4格。
5格
平行四边形先向右平移5格,再向上平移4格。
5格
平行四边形先向右平移5格,再向上平移4格。
4格 5格
把蓝色和绿色正方形都向右平移8格,分别涂上颜色; 把红色正方形向左平移4倍,涂上颜色。
本节课我们来学习图形的平 移,同学们要能够按照要求 将一个图形进行上下左右的 平移,能够判断一个图形是 经过怎么样的平移得到的。
你能把小亭子图从左上方平移到右下方吗?
ቤተ መጻሕፍቲ ባይዱ
先向下平移4格, 4格
可以这样 移……
先向下平移4格,再向右平移6格。 6格
先向右平移6格, 6格
还可以这 样移……
先向右平移6格, 再向下平移4格。 4格
画一画:梯形先向下平移2格,再向左平移7格。
将图中的小船向左平移5格。
C 如图,小船平移得到的图形是( )
小船
A
BC
D
59.很多时候我们总是低估了自己,对自己不够狠,从而错过了遇到一个更加优秀的自己。逼自己一把,很多事并不需要多高的智商,仅仅需要你的一份坚持,一个认真的态度,一颗迎难而上的 决心。
31.人所缺乏的不是才干而是志向,不是成功的能力而是勤劳的意志。——部尔卫 12.果断的放弃是面对人生面对生活的一种清醒的选择。 16.活着,谁都有疲惫,有迷茫。 2.没有一种不通过蔑视忍受和奋斗就可以征服的命运。 28.没有志向的人,就像失去了领航舵的航船。 24.通过云端的道路,只亲吻攀登者的足迹。 1.没有人会让你输,除非你不想赢。 37.如果在胜利前却步,往往只会拥抱失败;如果在困难时坚持,常常会获得新的成功。 37.什么叫做失败?失败是到达较佳境地的第一步。 68.人生如爬山,每个人都有自己的不易。有人嫌苦从未前行,有人怕累起步就停;有人努力爬了一半怀疑到不了终点折功而返;有人却心怀梦想竭尽全力、洒尽汗水、历尽挫折终登巅峰。 2.你是我无法抵达的地点,就似我和夕阳的距离。 97.攀登者智慧和汗水,构思着一首信念和意志的长诗。 66.永远不要被阴云吓倒,只要我们相信自己,只要我们敢于接受挑战,我们的心就会得到冶炼,我们的前路就不会永远黑暗。 13.在你渐渐迷失在你的人生道路上的时候,记得这句话:千万不要因为走的太久,而忘记了我们为什么出发。 72.不能埋怨社会的不公,既然老天没给你你想要的,就要自己去争取。 99.人生就是生活的过程。哪能没有风没有雨?正是因为有了风雨的洗礼才能看见斑斓的彩虹;有了失败的痛苦才会尝到成功的喜悦。 41.本来无望的事,大胆尝试,往往能成功。
《图形的旋转》平移旋转和轴对称PPT课件2-苏教版四年级数学下册
及点O,以O 为旋转中心,把△ABC绕点O顺时针旋 转60°,画出旋转后的三角形。
A
B
C
·O
作图形旋转的一般步骤: 1.找点(确定图形中的一些特殊点) 2.旋点(画出特殊点关于点O旋转后的对应点) 3.连线(连接对应点)
练习
已知:△ABC,以AC的中点为中心, 把△ABC逆时针旋转45°,画出旋转后 的三角形。
转角。
A
B
旋转角
o
旋转中心
自转与公转
随堂练习
1.下列现象中属于旋转的有( )个.
①地下水位逐年下降; ②传送C带的移动;
③方向盘的转动;
④水龙头的转动;
⑤钟摆的运动;
⑥荡秋千.
A.2
B.3
C.4
D.5
随堂练习 2. 观察下列旋转图形,试体会旋转的 决定因素。
旋转的决定因素:
旋转中心和旋转角度(旋转方向).
基础达标
1.课本64页第1题、第二题; 2.课本66页第1题(1); 3.课本66页第3题; 4.课本66页第一线题。
A
B
C
你的收获
一、定义: 把一个图形绕着某点O转动一个角度的图形变换叫 做旋转。
二、性质: 1.旋转前后的图形全等。 2.图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。 3.任意一对对应点与旋转中心的连线所成的角度都是旋转角。 4.对应点到旋转中心的距离相等。
三、步骤 1.找点 2.旋点
3.连线
平移变换 轴对称变换
旋转变换
学习目标
1.了解旋转的定义,并能举例指出旋 转中心、旋转角及旋转的对应点; 2.掌握旋转的基本性质; 3.通过实例认识旋转,理解基本含义; 4.能利用旋转的性质作一个图形的旋 转图形。
A
B
C
·O
作图形旋转的一般步骤: 1.找点(确定图形中的一些特殊点) 2.旋点(画出特殊点关于点O旋转后的对应点) 3.连线(连接对应点)
练习
已知:△ABC,以AC的中点为中心, 把△ABC逆时针旋转45°,画出旋转后 的三角形。
转角。
A
B
旋转角
o
旋转中心
自转与公转
随堂练习
1.下列现象中属于旋转的有( )个.
①地下水位逐年下降; ②传送C带的移动;
③方向盘的转动;
④水龙头的转动;
⑤钟摆的运动;
⑥荡秋千.
A.2
B.3
C.4
D.5
随堂练习 2. 观察下列旋转图形,试体会旋转的 决定因素。
旋转的决定因素:
旋转中心和旋转角度(旋转方向).
基础达标
1.课本64页第1题、第二题; 2.课本66页第1题(1); 3.课本66页第3题; 4.课本66页第一线题。
A
B
C
你的收获
一、定义: 把一个图形绕着某点O转动一个角度的图形变换叫 做旋转。
二、性质: 1.旋转前后的图形全等。 2.图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。 3.任意一对对应点与旋转中心的连线所成的角度都是旋转角。 4.对应点到旋转中心的距离相等。
三、步骤 1.找点 2.旋点
3.连线
平移变换 轴对称变换
旋转变换
学习目标
1.了解旋转的定义,并能举例指出旋 转中心、旋转角及旋转的对应点; 2.掌握旋转的基本性质; 3.通过实例认识旋转,理解基本含义; 4.能利用旋转的性质作一个图形的旋 转图形。
《图形的平移》图形的平移与旋转PPT(第3课时)
知识源于悟
益智的“机会”
按如下方法可以将△ABC的三边缩小为原来的1/2:
如图,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F; △DEF的三边就是△ABC相应三边的1/2.
实际上△ABC与△DEF是位似图形.
实践出真知,一起来动手:
O 做一做:
B
E●
●
F
C
●
D
A
任意画一个三角形,用上面的方法 亲自试一试.
源泉 实践的 能力的 “享受” (1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA,
OE=2OB, OF=2OC,那么,结果又会怎样?
结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们 的位似比是2∶1.
E
B
O
B
C
F
A
D F
O
E D
C A
(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果 又会怎样呢? 结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1.
课堂小结
1.一个图形依次沿x轴方向、y轴方向平移后所得的图形,可以看成是由原来图形经过一次 平移得到的.
2.设(x,y)是原图形上的点,当它沿x轴方向平移a个单位长度(a>0)、沿y轴方向平移 b个单位长度(b>0)后,这个点与其对应点的坐标之间有单位长度,向上平移b个单位长度
△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A₁B₁C₁,那么
点A的对应点A1的坐标为( D )
A.(4,3)
B.(2,4)
C.(3,1)
D.(2,5)
随堂检测
五年级数学下册 1.图形的变换(第2课时)旋转平移课件 新人教版
旋转平移
.
1
A
.
2
A
.
3
A
.
A
.
5
A
.
6
A
.
7
.
8
.
9
平移与旋转
1、平移:指在平面内,将一个图形沿着某个方向移动一定的距离, 这样的图形运动称为平移。
2、旋转:在平面内,将一个图形绕着一个定点沿某个方向转动一个 角度,这样的图形运动称为旋转。
3、平移与旋转都不改变图形的大小,形状。
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
3个 1次 1800
.
16
3个 1次 600
.
10
A P
B P
平移
①向哪个方向平移?(上、下、左、右) ②平移的距离。(平移了几格?)
.
11
B A
O
旋转
①绕哪个点旋转?(旋转中心) ②绕哪个方向旋转?(顺时针、逆时针) ③旋转了几度?(旋转角)
.
12
O
O
A
.
13
A
.
14
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
.
15
本图案可以看做是一个菱形通过几次旋转
得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
.
1
A
.
2
A
.
3
A
.
A
.
5
A
.
6
A
.
7
.
8
.
9
平移与旋转
1、平移:指在平面内,将一个图形沿着某个方向移动一定的距离, 这样的图形运动称为平移。
2、旋转:在平面内,将一个图形绕着一个定点沿某个方向转动一个 角度,这样的图形运动称为旋转。
3、平移与旋转都不改变图形的大小,形状。
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
3个 1次 1800
.
16
3个 1次 600
.
10
A P
B P
平移
①向哪个方向平移?(上、下、左、右) ②平移的距离。(平移了几格?)
.
11
B A
O
旋转
①绕哪个点旋转?(旋转中心) ②绕哪个方向旋转?(顺时针、逆时针) ③旋转了几度?(旋转角)
.
12
O
O
A
.
13
A
.
14
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
.
15
本图案可以看做是一个菱形通过几次旋转
得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在下列常见几何图形中,判断是否是对称图 形,若是对称图形的,画出它的对称轴.
课堂活动:
3.请将图3中的“小鱼” 向左平移5格.
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A顺时针旋转900形成图形B。
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A顺时针旋转900形成图形B。
图形A如何形成图形 B,并与同学
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
进行交流.
A
B
图形A顺时针旋转900形成图形B。
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A逆时针旋转900形成图形B。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
图形的变换与 旋转平移
这些都 是旋转
现象
玩滑梯、 推积木、 小猴表演, 这些都是 平移现象。
C
A o
B
平移和旋转的特征
平移不改变图形的大小和形状,图形上 的每个点都沿同一个方向移动了相同的 距离。关键是平移前先确定一个点。
旋转点、方向、度数是图形旋转的基本点, 缺一不可。注意利用图形的边做参照,去找 图形旋转的度数,才能得到旋转后的新图形。
请你想一想:你能将上图中的每一个图形沿某条
直线对折,使直线两旁的部分完全重合吗?
轴对称图形
如果一个图形能够沿某条直线对 折,对折的两部分是完全重合的,那 么就称这样的图形为轴对称图形,
这条直线叫这个图形的对称轴。
哇!我知道了什么 是轴对称图形!
你能找出图1中各图形的对称轴吗?如果 能,请在图上画出来。是否有些图形的对称 轴不形的对称轴这么多哇!
以后找对称轴我可得好好想想呀!
1.下面哪些是平移现象? 哪些是旋转?
平移
旋转
平移
2.在平移现象后面画 ,在 旋转现象后面画 。
传送带运货物。( ) 荡秋千。( ) 飞机螺旋桨的转动。( ) 开推拉窗。( ) 电梯上下移动。( ) 钟面上秒针的运动。( )
3.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以 通过平移图案(1)得到的.