余角,补角概念

合集下载

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)
-难点在于将理论知识应用到解决具体问题时,如何识别问题中的余角和补角关系。
-难点在于在实际问题中灵活运用余角和补角的性质,进行角度的转换和计算。
举例:对于性质的掌握,可以通过以下步骤进行教学:
a.引导学生观察图形,直观感受余角和补角的关系。
b.通过具体例题,如“如果一个角的度数是40°,那么它的余角和补角分别是多少度?”,让学生尝试自己推导出答案。
另外,在学生小组讨论环节,虽然大部分学生能够积极参与,但仍有个别学生显得比较被动。为了提高这部分学生的参与度,我打算在接下来的课程中,多设计一些互动性强的活动,鼓励他们大胆发表自己的观点。
b.提供实际操作的机会,如让学生用量角器在纸上画出特定角度,并找出其补角或余角。
c.引导学生进行小组讨论,分享解题策略,以促进学生之间的相互学习和启发。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《余角、补角的概念和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要补全角度的情况?”比如,当我们用直角尺测量一个角度时,如何快速找出另一个角度的度数。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角和补角的奥秘。
其次,在新课讲授环节,我发现学生在案例分析部分表现得比较积极,能够跟着我的思路走。但在重点难点解析时,尤其是从角度和推导出补角或余角的度数这一部分,学生们的掌握程度不够理想。我意识到,对于这个难点的讲解,我可能需要再细化一些,用更简单易懂的语言和示例来进行解释。
在实践活动和小组讨论环节,学生们表现出了很高的热情。通过分组讨论和实验操作,他们能够将所学的理论知识应用到实际问题中。但在讨论过程中,我也发现有些小组在问题的深入挖掘上还不够,可能需要我在今后的教学中多给予一些引导和启发。

数学课件余角和补角

数学课件余角和补角
详细描述
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。

比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角的性质:同角的余角相等。

比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。

比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90°或180°,就一定互为余角或补角。

余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。

人教版数学七年级上册4.3.3余角、补角的概念和性质教案

人教版数学七年级上册4.3.3余角、补角的概念和性质教案
人教版数学七年级上册4.3.3余角、补角的概念和性质教案
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的定义:两个角的和等于90°时,这两个角互为余角。
2.补角的定义:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为Байду номын сангаас角的两个角中,一个角的度数等于90°减去另一个角的度数。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角与补角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对余角与补角的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点三:理解余角和补角在几何图形中的应用。学生需要能够将余角和补角的概念应用到更复杂的几何图形中,如多边形或图形的相交部分。
举例:
-对于难点一,可以通过制作角度转盘或使用动态几何软件,让学生动态观察角度变化,加深对互为余角、补角数量关系的理解。
-对于难点二,可以设计不同类型的实际问题,如角度计算、图形分割等,引导学生发现问题的解决关键在于应用余角和补角的知识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角与补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

数学人教版七年级上册余角补角概念和性质

数学人教版七年级上册余角补角概念和性质
P139: 习题4.3 第7、13题。
1
互余、互补是两角之间的数量关系,只 与他们的度数和有关,与位置无关。 互余、互补概念中的角是成对出现的。
角 的余角是 90 ,补角是 180 , 同一个锐角的补角比余角大 90o。 只有锐角才有余角。 一个角的余角(补角)有多个。 9 0 。 同角(等角)的补角相等; 同角(等角)的余角相等。
如图∠AOC=∠BOC=∠DOE=90°,则 ∠2 ,∠4 (1) 图中与∠3互余的角是_________, (2) 图中与∠4互余的角是∠ _________, 3 ,∠1 ∠BOD (3) 图中有与∠3互补的角吗?_________.
D C E 1 A 2 3 4 O
B
若一个角的补角等于它的 余角的4倍,求这个角的余角 是多少度?
2
3
4 5
6
思考题: 如图,A,O,B在同一直线上,
射线OD和射线OE分别平分∠AOC和∠BOC,
图中哪些角互余? D
C
E
A o B
小结:
本节课你有什么收获? 还有什么疑问?
互余
互补
两角间 1 2 9 0 1 2 1 8 0 的数量 1 1 8 0 2 ) ( 1 9 0 2 )( 关系
对应 图形 性质 同角或等角的 余角相等 同角或等角的 补角相等
作业:
1
3
2
4
余角性质:
同角或等角的余角相等
三、练一练
如图两堵墙围一个角 AOB ,但人 不能进入围墙,我们如何去测量这个角的 大小呢?
A
α
动动脑 C
O B
认真观察下面的图形,回答下列问题: C (1)图中有哪几对互余的角? ∠A与∠B互余 2 1 ∠A与∠2互余 ∠1与∠B互余 B D ∠1与∠2互余 A (2)图中哪几对角是相等的角(直角除外)? 说明它们相等的原因。 ∠B=∠2(同角的余角相等) ∠A=∠1(同角的余角相等)

《余角与补角》课件

《余角与补角》课件

什么是补角?
补角也是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个 角相加等于90°的角。 举例说明:角C和角D相交,角C的补角是90°减去角D的度数。
余角与补角的性质和关系
性质
余角与原角相加等于180° 补角与原角相加等于90°
关系
一个角的余角与补角的差是90° 一个角的余角与另一个角的补角互为对角
《余角与补角》PPT课件
欢迎来到《余角与补角》PPT课件!在本课程中,我们将探讨余角与补角的概 念、性质和应用,并深入探究它们之间的关系。
什么是余角?
余角是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个角相加等于180°的角。 举例说明:角A和角B相交,角A的余角是180°减去角B的度数。
余角与补角的应用
在解题中,我们可以利用余角与补角的概念和性质来简化问题并找到解题的思路。 举例说明:通过确定角的余角或补角,我们可以推导出其他角度的关系,从而解决复杂的几何问题。
ቤተ መጻሕፍቲ ባይዱ
总结
1 概念和性质
余角与补角的定义和计算 方法
2 关系
余角与补角的关系及其重 要性
3 应用
在解题中如何利用余角与 补角简化问题

初中数学知识点精讲精析 余角和补角

初中数学知识点精讲精析 余角和补角

6.8 余角和补角学习目标1. 了解补角和余角的概念。

2. 理解等角的余角相等,等角的补角相等。

知识详解1.余角和补角如果两个锐角的和是一个直角,我们就说这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

如果两个角的和是一个平角,我们就说这两个角互为补角,简称互补,也可以说其中一个角是另一个角的补角注意:(1)互余与互补是指两个角之间的关系,说单独的一个角是余角或补角没有意义,但可以说成一个角是某一个角的余角或补角。

(2)两个角是否互余或互补只跟这两个角的大小有关,与它们的位置无关,不要误认为互余或互补的角必须相邻。

(3)强调两个角互余或互补的数量关系:互余:∠α+∠β=90°;互补:∠α+∠β=180°。

因此互余或互补的两个角中,已知一个角的度数,就可以求出另一个角的度数。

2.余角和补角的性质同角或等角的余角相等。

同角或等角的补角相等。

【典型例题】例1:已知∠a=32°,则∠a的补角为()A. 58°B. 68°C. 148°D. 168°【答案】C【解析】∵∠a=32°,∴∠a的补角为180°﹣32°=148°例2:已知∠α=35°,则∠α的余角是()A. 35°B. 55°C. 65°D. 145°【答案】B【解析】根据定义∠α的余角度数是90°﹣35°=55°例3:一个角的补角是它的余角的3倍,那么这个角为()A. 60°B. 45°C. 30°D. 15°【答案】B【解析】根据题意:设这个角为x,则有180﹣x=3(90﹣x),解可得x=45°【误区警示】易错点1:余角和补角关系1. 两个角大小的比为7:3,它们的差是72°,则这两个角的数量关系是()A. 相等B. 互补C. 互余D. 无法确定【答案】B【解析】设这两个角分别是7x,3x,根据题意,得7x﹣3x=72°,∴x=18°,∴7x+3x=126°+54°=180°,∴这两个角的数量关系是互补.易错点2:余角和补角的性质2.如图,CO⊥AB于点O,OD⊥OE,则图中相等的角有()A. 3对B. 4对C. 5对D. 6对【答案】C【解析】∵CO⊥AB于点O,OD⊥OE,∴∠AOC=∠BOC=∠DOE=90°,∴∠AOC=∠BOC,∠AOC=∠DOE,∠BOC=∠DOE,共3对,∵∠BOD+∠BOE=90°,∠BOD+∠COD=90°,∴∠BOE=∠COD,又∵∠AOD=∠COD+90°,∠COE=∠BOE+90°,∴∠AOD=∠COE,综上所述,共有3+1+1=5对.【综合提升】针对训练1. 茗茗总结的下列结论中,不正确的是()A. 等角的补角相等B. 等角的余角相等C. 过两点有且只有两条直线D. 两点之间线段最短2. 如图,点O在直线AB上,∠AOD=22°30′,∠BOC=45°,OE平分∠BOC,则∠EOC 的补角是()A. ∠AOCB. ∠AOE或∠DOBC. ∠AOE或∠DOB或∠AOC+∠DOED. 以上都不对3. 如图,AOB是直线,OE⊥AB于O,OC⊥OD于O,则与∠EOD互为补角的是()A. ∠AOCB. ∠BOEC. ∠AODD. 非上述答案1.【答案】C【解析】A、当∠A和∠B都是∠C的补角时,∠A=∠B=180°﹣∠C,正确,故本选项错误;B、当∠A和∠B都是∠C的余角时,∠A=∠B=90°﹣∠C,正确,故本选项错误;C、过两点有且只有一条直线,错误,故本选项正确,D、线段的性质之一是两点之间线段最短,正确,故本选项错误。

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角令狐采学余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A 的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。

比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角的性质:同角的余角相等。

比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。

比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90°或180°,就一定互为余角或补角。

余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:假如两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说个中一个角是另一个角的余角.∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:假如两个角的和是一个平角,那么这两个角叫互为补角.个中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的双方分离是另一个角的反向延伸线,这两个角是对顶角.两条直线订交后所得的只有一个公共极点且两个角的双方互为反向延伸线,如许的两个角叫做互为对顶角.两条直线订交,构成两对对顶角.对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特别地位的角的名称;对顶角相等反应的是两个角间的大小关系.补角的性质:同角的补角相等.比方:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B.等角的补角相等.比方:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B.余角的性质:同角的余角相等.比方:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B.等角的余角相等.比方:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B.留意:①钝角没有余角;②互为余角.补角是两个角之间的关系.如∠A+∠B+∠C=90°,不克不及说∠A.∠B.∠C互余;同样:如∠A+∠B+∠C=180°,不克不及说∠A.∠B.∠C互为补角;③互为余角.补角只与角的度数相干,与角的地位无关.只要它们的度数之和等于90°或180°,就必定互为余角或补角.余角与补角概念熟悉提醒:(1)界说中的“互为”一词若何懂得?假如∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;假如∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1.(2)互余.互补的两角是否必定有公共极点或公共边?两角互余或互补,只与角的度数有关,与地位无关.(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 .∠2. ∠3 互余(互补)吗?不克不及,互余或互补是两个角之间的数目关系.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是[ D ] A.40°B.50°C.130°D.140°假如∠A的补角是它的余角的4倍,则∠A=______度.设∠A为x,则∠A的余角为90°-x,补角为180°-x,依据题意得,180°-x=4(90°-x),解得x=60°.故答案为:60.已知∠ α=50°17',则∠α的余角和补角分离是[ B ]A.49°43',129°43'B.39°43',129°43'C .39°83',129°83'D.129°43′,39°43′两个角的比是6:4,它们的差为36°,则这两个角的关系是( )A .互余B .相等C .互补D .以上都不合错误设一个角为6x,则另一个角为4x, 则有6x-4x=36°,∴x=18°,则这两个角分离为108°,72°, 而108°+72°=180°∴这两个角的关系为互补. 故选C .假如∠A=35°18′,那么∠A 的余角等于______.假如∠A=35°18′,那么∠A 的余角等于90°-35°18′=54°42′. 故填54°42′.已知∠1和∠2互补,∠3和∠2互余,求证:∠3= =21(∠1-∠2).证实:由题意得:∠2+∠3=90°,∠1+∠2=180°,∴2(∠2+∠3)=∠1+∠2, 故可得:∠3=21(∠1-∠2) 如图,∠1的邻补角是[ ]A.∠BOCB.∠BOC 和∠AOFC.∠AOFD.∠BOE 和∠AOF两个角互为补角,那么这两个角大小 [ D ]假如两个角互为补角,那么这两个角必定互为邻补角,证实此命题真——加原因 假如两个角互为补角,那么这两个角必定互为邻补角,这是假命题.假如两个角互为领补角,那么这两个角必定互为补角,这是真命题.譬如说,两直线平行,同旁内角互补,但互为同旁内角的两个角必定不互为领补角.假如两个角互补,那它们是邻补角”——————为什么说这个是假命题?两条平行线切出的同旁内角也互补,但是它们不是邻补角.所以说:“假如两个角互补,那它们是邻补角”是假命题!因为邻补角是相邻的两个角互补,那么这两个角是互为邻补角,而互补的两个角有不相邻的,比方四边形的两个对角互补,则这四点共圆假如一个角是36°,那么 [ D ].它的余角是64° B.它的补角是64° C.它的余角是144° D.它的补角是144°下列说法中:①同位角相等;②两点之间,线段最短;③假如两个角互补,那么它们是邻补角;④两个锐角的和是锐角;⑤同角或等角的补角相等.准确的个数是( ) A .2个 B .3个 C .4个 D .5个①同位角相等,说法错误;②两点之间,线段最短,说法准确;③假如两个角互补,那么它们是邻补角,说法错误;④两个锐角的和是锐角,说法错误;⑤同角或等角的补角相等,说法准确;说法准确的共有2个,故选:A.下列说法准确的是()A.小于平角的角是锐角B.相等的角是对顶角C.邻补角的和等于180°D.同位角相A.小于平角的角有:锐角.直角.钝角,故本选项错误;B.对顶角相等,相等的角不必定是对顶角,故本选项错误;C.邻补角的和等于180°准确,故本选项准确;D.只有两直线平行,才有同位角相等,故本选项错误.故选C.下列说法准确的是() A.相等的角是对顶角 B.对顶角相等 C.同位角相等 D.锐角大于它的余角A.相等的角是对顶角,说法错误;B.对顶角相等,说法准确;C.同位角相等,说法错误;D.锐角大于它的余角,说法错误;故选:B.下列说法中,准确的是()A.对顶角相等B.内错角相等C.锐角相等D.同位角相等A.对顶角相等,说法准确;B.内错角相等,说法错误,只有两直线平行时,内错角才相等;C.锐角相等,说法错误,例如30°角和20°角;D.同位角相等,说法错误,只有两直线平行时,同位角才相等;故选:A.三条直线订交于一点可以构成几对对顶角?两条直线消失 2*(2-1)=2对对顶角三条直线消失 3*(3-1)=6对对顶角四条直线消失 4*(4-1)=12对对顶角依次类推,n条直线订交于一点有n*(n-1)对对顶角三条直线订交于一点,共可构成______对对顶角.如图,单个的角是对顶角的有3对,两个角的复合角是对顶角的有3对,所以,共有对顶角3+3=6对.故答案为:6.三条直线订交与一点,能构成几对对顶角?四条呢?五条呢?N条呢?我要办法和答案!三条直线订交与一点,6对;四条直线订交与一点,12对;五条直线订交与一点,20对;N条直线订交与一点,N(N-1)对;假如有n条直线订交于一点,有若干对对顶角?n的平方减去2条数个数2 2=2x13 6=3x24 12=4x35 20=5x4…………n n(n-1)三条直线订交于一点,对顶角最多有______对.把三条直线订交于一点,拆成三种两条直线交于一点的情形,因为两条直线订交于一点,形成两对对顶角,所以三条直线订交于一点,有3个两对对顶角,共6对对顶角两条直线订交,有一个交点.三条直线订交,最多有若干个交点?四条直线呢?你能发明什么纪律吗?这个其实就是组合问题.因为两条线构成一个交点,所以三条线时,从三条线中取两条线,有3*2/2=3种取法,所以有3个交点.四条线中取两条,有4*3/2=6种取法,所以有6个交点.n条线中取两条,有n(n-1)/2种取法,所以有n(n-1)/2个交点.邻补角是互补的角是真命题吗当然是,邻补角相加等于180度就是互补啊互补的角是邻补角是真命题照样假命题若是真命题,请举反例两个角有一条公共边,它们的另一条边互为反向延伸线,具有这种关系的两个角称为互为邻补角.可以随意画两个没有公共边的角,比方1个60度,另一个120度,显然它们是互补的,但是其实不是邻补角所以互补的角是邻补角这是一个假命题应当说邻补角是互补的角,这才是真命题既相邻又互补的两个角是邻补角吗两条平行线切出的同旁内角也互补,但是它们不是邻补角.所以说:“假如两个角互补,那它们是邻补角”是假命题!成互补关系的两个角互为邻补角是对照样错不合错误相邻的两个角互补称之为邻补角像两直线平行,同旁内角互补(这两个互补的角不相邻).互补的两个角是邻补角用因为所以答因为两个角是邻补角所以两个角互补反过来不成立。

人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)

人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概个角的和等于180°的两个角。它们在几何图形的求解和实际应用中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过一个三角形的例子,展示如何利用余角和补角求解未知角度,以及它们在实际中的应用。
三、教学难点与重点
1.教学重点
-余角和补角的概念:学生需要掌握余角和补角的定义,即两个角的和分别为90°和180°时,它们互为余角和补角。
-余角和补角的性质:学生需要理解并运用余角和补角的性质,如互为余角的两个角的和为90°,互为补角的两个角的和为180°。
-运用余角和补角解决实际问题:学生需要学会将余角和补角的概念应用于角度计算,解决实际问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我会在课后认真反思本次教学过程中的不足,不断改进教学方法,努力提高学生的学习效果。同时,我也将关注学生的学习进度和反馈,为他们在几何学习道路上提供更多的支持和帮助。
举例解释:
-例如,强调当一个角为40°时,它的余角为50°,补角为140°。通过具体数值让学生直观感受余角和补角的概念。
-在解题过程中,强调利用余角和补角的性质简化计算,如已知一个角的度数,求其补角或余角的度数。

七年级数学余角和补角

七年级数学余角和补角

余角、补角的性质(重难点) 例题:如图 1,A、O、E 三点在同一条直线上,且∠AOC =∠BOD=90°.
图1 (1)指出图中∠BOC 的所有余角; (2)∠DOC 与∠AOB 有什么关系?为什么?
思路导引:关键看∠BOC 与哪些角的和为 90°. 解:(1)∠BOC 的余角有∠AOB 和∠COD. (2)∠DOC=∠AOB. 因为∠DOC 和∠AOB 都是∠BOC 的余角, 所以它们相等.
1.如果∠β=20°,那么∠β的余角等于( B )
A.20°
B.70°
C.110° D.160°
2.一个角的补角是( D )
A.锐角
B.直角
C.钝角
D.以上三种情况都有可能
3.如果∠1 与∠2 互余,∠2 与∠3 互余,那么∠1 与∠3
Байду номын сангаас
的关系是( B )
A.∠1>∠3
B.∠1=∠3
C.∠1<∠3
D.不能确定
A.45° C.135°
B.90° D.180°
余角与补角
黄石十四中七年级数学组
1.余角、补角的概念 2.如果两个角的和为 90°,那么就说这两个角互为余角, 即其中一个角是另一个角的余角. 3.如果两个角的和为 180°,那么就说这两个角互为补角, 即其中一个角是另一个角的补角.
4.余角、补角的性质 等角的余角___相__等___,等角的补角___相__等___. 5.方位角 方位角是表示方向的角,以正南、正北方向为基准,表示 成南(北)偏东(西)××度的形式. 特别地,西北方向指北偏西 45°,东北方向指北偏东 45°, 西南方向指南偏西 45°,东南方向指南偏东 45°.
解析:同角的余角相等.

余角和补角

余角和补角

B ∠BO AOD的补角是∠BO 的补角是_____ 1)∠AOD的补角是_____D __ ∠COD 2)∠AOD的余角是__ OD AOD的余角是__ ____ 的余角是 ∠C BOD的补角是∠AOD 的补角是______ 3)∠BOD的补角是∠AOD ______
牛刀小试
1、若∠1+∠2= 90 °,∠1+∠3=90°, ∠2= ∠3 则_____________。 2、若∠1+∠2=90°,∠3+∠4=90° ∠2= ∠4 且∠1=∠3,则___________。 3、若∠A=∠B,且∠A+∠1=180°, ∠1= ∠2 ∠B+∠2=180°,则____________。 4、∵∠1+∠2=180°,∠1 +∠3= 180° ∴____________。 ∠2= ∠3

● ●
B B
40° 40° 40° 40° 70° 70°
B
西


A
65° 65°
●B


B

如图.货轮O在航行过程中,发现灯塔A在它南偏东60 60° 例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方 向上,同时,在它北偏东40 40° 南偏西10 10° 西北(即北偏西45 45° 向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°) 方向上又分别发现了客轮B,货轮C和海岛D B,货轮 方向上又分别发现了客轮 B, 货轮 C 和海岛 D. 仿照表示灯塔方位 的方法,画出表示客轮B,货轮C和海岛D方向的射线. B,货轮 的方法,画出表示客轮B,货轮C和海岛D方向的射线. 所以: 射线OA OA的方向就是南偏 所以 : 射线 OA 的方向就是南偏 东 60° , 即灯塔A 所在的方向。 60° 即灯塔 A 所在的方向 。 射线OB的方向就是北偏东40° 射线OB的方向就是北偏东40°, OB的方向就是北偏东40 即客轮B所在的方向。 即客轮B所在的方向。

余角与补角的概念及性质

余角与补角的概念及性质
理由:
D O
3 4
理由:
3与AOB互为补角 4与AOB互为补角
3 AOB 90
4 AOB 90 3 4
①用一句话概括结论。
①用一句话概括结论。
同角的余角相等
同角的补角相等
3、如图,如果∠1与∠2互为余角, ∠3与∠4互为余角,且∠1=∠4, 那么∠2与∠3相等吗?为什么?请 尝试用几何语言来说理
①用一句话概括结论。
①用一句话概括结论。
等角的余角相等
等角的补角相等
余角的性质结论:
补角的性质结论:
同角的余角相等
同角的补角相等 等角的补角相等
等角的余角相等
总结成一句话:
同角或等角的余角相等;
同角或等角的补角相等。
1、在△ABC中,∠BCA=90°,CD⊥AB,垂足为D。
(1)图中有哪几对互余的角?
∠的补角是(180 °—∠ )
例1
若一个角的补角等于它的余角的
4 倍,求这个角的度数。
解: 设这个角是x °,则它的补角是 ( 180°-x°),余角是(90°-x°) 。 根据题意得:
(180°-x°)= 4 (90°-x°)
解得: x =60
答:这个角的度数是60 °。
2 1
4
若∠1 + ∠2 =180 °, 则 ∠1和∠2互补.(互补定义 ) 若∠1和∠2互补, ° 互补定义) 则∠1 + ∠2 =180 .( 若∠3 + ∠4 =90 °, 则 ∠3和∠4互余 .( 互余定义) 若∠3和∠4互余, ° 互余定义) 则 ∠3 + ∠4 =90 .(
1、如图,∠1和∠AOB互为余角, ∠2和∠AOB也互为余角,请问 ∠1 和∠2有什么数量关系?为 什么?请尝试用简单的几何语言 来说理。 A

什么是余角什么是补角

什么是余角什么是补角

什么是余角什么是补角
余角是指与一个角相加可以得到90度的角。

例如,对于一个60度的角度,其余角为30度,因为60度加上30度等于90度。

补角是指与一个角相加可以得到180度的角。

例如,对于一个60度的角度,其补角为120度,因为60度加上120度等于180度。

在三角函数中,余角和补角经常被用来简化计算。

例如,如果要计算正切函数的值,可以利用其与余切函数的关系,求出余角的正切值,然后再取倒数即可得到原始角的正切值。

总之,余角和补角是很有用的角度概念,在数学和物理学等领域中都有广泛的应用。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角与补角教学设计
教学目标
1、通过现实情境,掌握余角和补角的概念;
2、使学生能用简单的代数思想——方程思想来处理图形的数量关系;
3、培养学生的识图能力、发展空间观念和知识运用能力,进一步感受学习数学的意义。

教学重点
认识角的互余、互补关系
教学难点认识角的互余、互补关系
学情分析
本节内容是《4.3角》这一节中的第三节,在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。

具备了一定的图形认识能力和借助图形分析和解决问题的能力,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

我校学生学习基础比较薄弱,识图能力较差,基于以上原因,为更好的使学生理解余角和补角的概念,并为下一节性质作铺垫,特制定此教学内容。

学法指导
通过学生动脑想,勤钻研,主动地学习,增加学生主动参与的机会,增加学生的参与意识,教给学生获取知识的途径,思考问题的方法。

教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施w 修改意见
一、创设情境,引入新课:
二、新课:
三、巩固练习
四、课堂小结
五、作业布置
1、让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。

设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

提出问题:图中∠1与∠2、∠3与∠4有什么关系?
2、引出课题并板书:余角与补角
(一)、探究互余的定义:
1、操作多媒体演示。

引导观察图形的运动,得出结果:∠1+∠2=90°
2、定义:如果两个角的和等于90°(直角),就说这两个角互为余角. 简称互余。

其中一个角是另一个角的余角。

(二)、探究互为补角的定义:
1、操作多媒体演示。

引导观察图形的运动,得出结果:∠3+∠4=180°。

2、定义:如果两个角的和等于180°(平角),就说这两个角互为补角. 简称互补。

其中一个角是另一个角的补角。

(三)、练习(课件出示)
1、帮∠α找朋友。

小结1:互为余角、互为补角主要反映两个角之间的数量关系,与角的位置无关。

2、一个角的补角是它的余角的4倍,求这个角的余角是多少度?
3、如图两堵墙围一个角∠AOB ,但人不能进入围墙,我们如何去测量这个角的大小呢?
(四)、延伸(课件演示)
1 、等角的余角之间的关系
2、等角的补角之间的关系
课件出示巩固练习3小题,引导学生完成。

学生完成后引导评议
1、这节课我们主要学习了什么?(课件展示,引导小结)
P139习题第6题学生观察意大利著名建筑比萨斜塔。

思考提出的问题。

观察图形的运动,得出结果:∠1+∠2=90°
引导观察图形的运动,得出结果:∠3+∠4=180°
完成老师课件出示的练习题:先独立思考后小组交流
引导观察图形,得出:
1、等角的余角相等
2、等角的补角之间的关系相等
完成老师课件出示巩固练习3小题。

后交流评价。

相关文档
最新文档