成都市2015级高中毕业班第一次诊断性检测理科数学及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 1 3. 4 0; ㊀㊀1 4. 1 2; ㊀㊀1 5. 6; ㊀㊀1 6. 6. ( 三. 解答题 : 共7 0 分) ( ) 解: 设数列 { 1 7. 1 a n } 的公差为d . ȵ a2 =3, S4 =1 6,ʑ a1 +d =3, 4 a1 +6 d =1 6. ������������������4 分 解得 d =2, a1 =1. ������������������6 分 ʑ a 2 n 1 . - n = 1 1 1 1 ( ) ) ������������������8 分 由题意 , 2 b . = ( - n = ( ) ( ) 2 n -1 2 n +1 22 n -1 2 n +1 ������ ������ ������ ʑTn = b b +b 1+ 2+ n 1é 1 1 1 1 1 ù ú ( ) ������ ������ ������ 1- ) = ê +( - ) + +( - ê 2ë û 3 3 5 2 n -1 2 n +1 ú 1 1 n ) ������������������1 1- . 2分 = ( = 2 2 n +1 2 n +1 ( ) 解: 记 从这 1 至多有 1 天是用水量超标 为 1 8. 1 2 天的数据中随机抽取 3 个 , 事件 A . 1 2 3 C C 1 6 8 4 2 4C 8 8 ������������������4 分 则 P( A )= 3 + 3 = = . 2 2 0 5 5 C C 1 2 1 2 1 ( ) 以这 1 易知其概率为 2 2 天的样本数据中用水量超标的频率作为概率 , . 3 随机变量 X 表示未来三天用水量超标的天数 , ʑ X 的所有可能取值为 0, 1, 2, 3. 1 1 2 k k 3 k - , 易知 X ~ B ( 3, ) P( X= k) k =0, 1, 2, 3. =C 3 ( )( ) , 3 3 3 8 4 2 1 ) ) ) ) ������������������8 分 则 P( X =0 P( X =1 P( X =2 P( X =3 = , = , = , = . 2 7 9 9 2 7 ʑ 随机变量 X 的分布列为
3 ì ï x = y1 ï 1 4 . í 4 ï z = 1 1 y ï î 1 5
) 取平面 A B C 的一个法向量n2 = ( 0, 0, 1 .
������������������8 分 ������������������1 1分 ������������������1 2分
n1 ������ n2 1 5 3 1 0 , = 2 = 2 2 n1 n2 1 0 3 +4 +1 5
������������������4 分
x1 +3 ì-4 ң y1 =0 ï n1 ������B C =0 ï 由 ⇒í .解得 4 ң x1 -2 -4 y1 + z1 =0 n1 ������B Q =0 ï î 3
{
) 取z1 =1 5,则 n1 = ( 3, 4, 1 5 . ‹ ȵ c o s n1 , n2› =
3 1 0 . 1 0
a 2 2 ( )ȵ 解: 2 0. 1 c = 3, =2, a2 = b +c , b ʑ a =2, b =1. x2 2 ������������������5 分 ʑ 椭圆的标准方程为 +y =1. 4 ( ) ) , , 当直线l 的斜率存在时, 设直线l 的方程为y = k 2 x +m( m ʂ1 M( x N( x . 1, 1) 2, 2) y y
数学 ( 理科 ) 参考答案及评分标准
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. A 2. D 3. D 7. A 8. B 9. C 第 Ⅰ 卷( 选择题 , 共6 0 分) 4. C 1 0. C 5. C 1 1. B பைடு நூலகம். B 1 2. D
成都市 2 0 1 5 级高中毕业班第一次诊断性检测
ȵP B =4 2,㊀ ʑP O2 +O B2 =P B2 . ʑP O ʅO B. ȵB O ɘA C =O ,ʑP O ʅ 平面 A B C. , 平面 平面 ȵP O⊂ P A C ㊀ʑ A B C ʅ 平面 P A C. ( )ȵA 2 B =B C, ʑB O ʅA C. 易知 O B, O C, O P 两两相互垂直 . 以 O 为 坐 标 原 点, O B, O C, O P 所 在 直 线 分 别 为x 轴 , , 轴 轴建立如图所示的空间直角坐标系 z O x z. y y ) , ) , ) , ) 则 B( 4, 0, 0 C( 0, 3, 0 P( 0, 0, 4 A( 0, 0 . -3, , ) 设点 Q ( x, z . y 4 ң 1 ң ,得 ( , , 由A Q= A P Q 0 -2 ) . 3 3 4 ң ( , ,) ң ʑB C = -4 3 0 , B Q =( . -4, -2, ) 3 设 n1 = ( 为平面 B x1 , z1) C Q 的一个法向量 . y1 , ������������������6 分
第 Ⅱ 卷( 非选择题 , 共9 0 分)
X P
8 2 7

1 4 9
2 2 9
1 2 7 ������������������1 0分 ������������������1 2分

1 数学期望 E ( X) =3ˑ =1. 3
数学 ( 理科 ) 一诊 考试题答案第 ㊀ 共 4页) 1 页(
( ) 解: 取A 连接 P 1 9. 1 C 的中点 O , O, B O 得到 әP B O. , , 是菱形 ȵA B C D ʑP A =P C P O ʅA C. ȵD C =5, A C =6, ʑO C =3, P O =O B =4,
联立
ʑ 二面角 Q -B C -A 的余弦值为
k m 4 m2 -4 -8 , ʑΔ =4 k2 +1-m2 >0, x1 +x2 = 2 x1 x2 = 2 . 4 k +1 4 k +1 ȵ 点 B 在以 MN 为直径的圆上 , ң ң ʑ BM ������BN =0. ң ң ) ) ������( ȵ BM ������BN = ( x1 , k x1 +m -1 x2 , k x2 +m -1 2 2 ) ) ( ) =0, k +1 x1 x2 +k( m -1 x1 +x2) m -1 =( +(
相关文档
最新文档