高考数学选择题常考考点专练16
高考数学复习考点题型专题提升练习16 立体几何中的最值问题
高考数学复习考点题型专题提升练习专题16立体几何中的最值问题一、单项选择题1.[2021·湖北武汉模拟]某圆锥母线长为2,底面半径为3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.3C.2D.12.[2021·湖北黄冈模拟]在三棱锥S-ABC中,SA=SB=SC,AB⊥BC,O为AC中点,OS=OC=1,则三棱锥S-ABC体积最大值为()A.12B.34C.13D.163.[2021·山东日照模拟]在棱长为3+1的正方体ABCD-A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.O1B=2r1B.r1+r2=6C.这两个球的体积之和的最小值是3πD.这两个球的表面积之和的最小值是4π4.点M ,N 分别是棱长为2的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动.若P A 1∥平面AMN ,则P A 1的长度范围是()A .[2,5]B .⎣⎢⎡⎦⎥⎤322,5 C .⎣⎢⎡⎦⎥⎤322,3 D .[2,3] 二、多项选择题5.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,P 是A 1B 上的一动点,则下列选项正确的是()A .DP 的最小值为355B .DP 的最小值为 5C .AP +PC 1的最小值为 6D .AP +PC 1的最小值为17056.[2021·江苏常熟中学模拟]在正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别为棱BC ,CD ,CC 1的中点,P 是线段A 1C 1上的动点(含端点),则()A .PM ⊥BDB .AC 1∥平面EFMC .PE 与平面ABCD 所成角正切值的最大值为2 2D .当P 位于C 1时,三棱锥P -CEF 的外接球体积最小三、填空题7.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.8.[2021·广东珠海二模]正方体ABCD-A1B1C1D1的棱长为2,点E为平面AA1C1C内的动点,B1E=2,则AE长度的最小值为________.9.如图,在正方体ABCD-A1B1C1D1中,AA1=3,点M,N分别在棱AB和BB1上,且D1M⊥MN,则线段BN的长度的最大值为________,此时,三棱锥M-ACD1的体积为________.四、解答题10.[2021·山东济南市高三一模]已知正方体ABCD-A1B1C1D1和平面α,直线AC1∥平面α,直线BD∥平面α.(1)证明:平面α⊥平面B1CD1;(2)点P为线段AC1上的动点,求直线BP与平面α所成角的最大值.。
专题16 球的内切外接问题高考真题集锦(解析版)-2021年高考数学立体几何中必考知识专练
,则该球体积 V 的最大值是
,
,
,
A. 【答案】B 【解析】 试题分析:设
B.
C.
的内切圆半径为 ,则
考点:球及其性质.
,故选 B.
D. ,故球的最大半径为
4.2019 在球 O 的球面上,PA=PB=PC,△ABC 是边长为 2 的正三角 形,E,F 分别是 PA,AB 的中点,∠CEF=90°,则球 O 的体积为
专题 16:球的内切外接问题高考真题集锦(解析版)
一、单选题 1.2020 年全国统一高考数学试卷(文科)(新课标Ⅰ)
已知 A, B, C 为球 O 的球面上的三个点,⊙ O1 为 ABC 的外接圆,若⊙ O1 的面积为 4π ,
AB BC AC OO1 ,则球 O 的表面积为( )
A. 64π
PB AC ,又 E , F 分别为 PA 、 AB 中点, EF / /PB , EF AC ,又 EF CE , CE AC C, EF 平面 PAC , PB
平面 PAC ,APB PA PB PC 2 , P ABC 为正方体一部分,
2R 2 2 2 6 ,即 R 6 , V 4 R3 4 6 6 6 ,故选 D.
Q D 为 AC 中点, cos EAC AD 1 , x2 4 3 x2 1 ,
PA 2x
4x
2x
2x2 1 2 x2 1 x 2 , PA PB PC 2 ,又 AB=BC=AC=2 ,
2
2
PA , PB , PC 两两垂直,2R 2 2 2 6 , R 6 , 2
A. 8 6
B. 4 6
C. 2 6
D. 6
【答案】D 【分析】
先证得 PB 平面 PAC ,再求得 PA PB PC 2 ,从而得 P ABC 为正方体一部分,
高考数学总复习考点知识讲解与提升练习16 函数的零点与方程的解
高考数学总复习考点知识讲解与提升练习专题16 函数的零点与方程的解考点知识1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)用二分法求函数零点的近似值适合于变号零点.(√)教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()答案A解析由图象可知,B,D选项中函数无零点,A,C选项中函数有零点,C选项中函数零点两侧函数值符号相同,A选项中函数零点两侧函数值符号相反,故A选项中函数零点可以用二分法求近似值,C选项不能用二分法求零点.2.函数y=3x-ln x的零点所在区间是()A.(3,4) B.(2,3) C.(1,2) D.(0,1) 答案B解析因为函数的定义域为(0,+∞),且函数y=3x在(0,+∞)上单调递减;y=-ln x在(0,+∞)上单调递减,所以函数y=3x-ln x为定义在(0,+∞)上的连续减函数,又当x=2时,y=32-ln2>0;当x=3时,y=1-ln3<0,两函数值异号,所以函数y=3x-ln x的零点所在区间是(2,3).3.函数f(x)=e x+3x的零点个数是() A.0B.1C.2D.3答案B解析由f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=1e-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.题型一函数零点所在区间的判定例1(1)函数f(x)=ln x+2x-6的零点所在的区间是()A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案B解析由题意得,f(x)=ln x+2x-6,在定义域内单调递增,f(2)=ln2+4-6=ln2-2<0,f(3)=ln3+6-6=ln3>0,则f(2)f(3)<0,∴零点在区间(2,3)上.延伸探究用二分法求函数f(x)=ln x+2x-6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1()A.2B.3C.4D.5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n次操作后,区间长度变为12n ,故有12n≤0.1,解得n≥4,∴至少需要操作4次.(2)(2023·蚌埠模拟)已知x1+12x=0,x2+log2x2=0,33x--log2x3=0,则() A.x1<x2<x3B.x2<x1<x3C.x1<x3<x2D.x2<x3<x1答案A解析设函数f (x )=x +2x ,易知f (x )在R 上单调递增,f (-1)=-12,f (0)=1,即f (-1)f (0)<0, 由函数零点存在定理可知,-1<x 1<0. 设函数g (x )=x +log 2x ,易知g (x )在(0,+∞)上单调递增,g ⎝ ⎛⎭⎪⎫12=-12,g (1)=1,即g ⎝ ⎛⎭⎪⎫12g (1)<0,由函数零点存在定理可知,12<x 2<1,设函数h (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,易知h (x )在(0,+∞)上单调递减,h (1)=13,h (x 3)=0,因为h (1)>h (x 3), 由函数单调性可知,x 3>1, 即-1<x 1<0<x 2<1<x 3.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1(1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点() A .(-2,-1) B .(-1,0)C.(0,1) D.(1,2) 答案AD解析f(-2)=1e2>0,f(-1)=1e-1<0,f(0)=-1<0,f(1)=e-3<0,f(2)=e2-4>0,因为f(-2)·f(-1)<0,f(1)·f(2)<0,所以f(x)在(-2,-1)和(1,2)内存在零点.(2)若a<b<c,则函数f(x)=(x-a)·(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内答案A解析函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b<c,则a-b<0,a -c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c -b)>0.所以f(a)f(b)<0,f(b)f(c)<0,即f(x)在区间(a,b)和区间(b,c)内各有一个零点.题型二函数零点个数的判定例2(1)若函数f(x)=|x|,则函数y=f(x)-log|x|的零点个数是()12A.5B.4C.3D.2答案D解析在同一平面直角坐标系中作出f(x)=|x|,g(x)=log|x|的图象如图所示,则y=12f(x)-log|x|的零点个数,即f(x)与g(x)图象的交点个数,由图可知选D.12(2)已知在R上的函数f(x)满足对于任意实数x都有f(2+x)=f(2-x),f(7+x)=f(7-x),且在区间[0,7]上只有x=1和x=3两个零点,则f(x)=0在区间[0,2023]上根的个数为()A.404B.405C.406D.203答案C解析因为f(2+x)=f(2-x),f(x)关于直线x=2对称且f(5+x)=f(-x-1);因为f(7+x)=f(7-x),故可得f(5+x)=f(-x+9);故可得f(-x-1)=f(-x+9),则f(x)=f(x+10),故f(x)是以10为周期的函数.又f(x)在区间[0,7]上只有x=1和x=3两个零点,根据函数对称性可知,f(x)在一个周期[0,10]内也只有两个零点,又区间[0,2023]内包含202个周期,故f(x)在[0,2020]上的零点个数为202×2=404,又f (x )在(2020,2023]上的零点个数与在(0,3]上的零点个数相同,有2个. 故f (x )在[0,2023]上有406个零点, 即f (x )=0在区间[0,2023]上有406个根. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎨⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为() A .3B .7C .5D .6 答案B解析根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图如图所示,由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为7. (2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案6解析令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z , 又x ∈[-6,6],∴x 的取值为-3π2,-π2,π2,3π2. 故f (x )共有6个零点. 题型三函数零点的应用 命题点1根据零点个数求参数例3(2023·黄冈模拟)函数f (x )=⎩⎨⎧4-x 2,x ≤2,log 3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为() A .(22-6,0) B .(23-6,0) C .(-2,0) D .(25-6,0) 答案D解析作出函数f (x )=⎩⎨⎧4-x 2,x ≤2,log 3(x -1),x >2的图象,如图所示,设与y =4-x 2相切的直线为l , 且切点为P (x 0,4-x 20),因为y ′=-2x ,所以切线的斜率为k =-2x 0, 则切线方程为y -4+x 20=-2x 0(x -x 0),因为g (x )=kx -3k 过定点(3,0),且在切线l 上, 代入切线方程求得x 0=3-5或x 0=3+5(舍去), 所以切线的斜率为k =25-6,因为函数f (x )与g (x )的图象有三个交点, 由图象知,实数k 的取值范围为(25-6,0). 命题点2根据函数零点的范围求参数 例4(2023·北京模拟)已知函数f (x )=3x -1+axx.若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是() A.⎝ ⎛⎭⎪⎫-∞,43 B.⎝ ⎛⎭⎪⎫0,43C .(-∞,0) D.⎝ ⎛⎭⎪⎫43,+∞答案B解析由f (x )=3x -1+axx =0,可得a =3x -1x,令g (x )=3x-1x,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域. 由于函数y =3x ,y =-1x在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增. 当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝ ⎛⎭⎪⎫0,43.因此实数a 的取值范围是⎝⎛⎭⎪⎫0,43.思维升华 根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3(1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .0<a <3B .1<a <3C .1<a <2D .a ≥2 答案A解析因为函数y =2x ,y =-2x 在(0,+∞)上单调递增,所以函数f (x )=2x-2x-a 在(0,+∞)上单调递增,由函数f (x )=2x -2x-a 的一个零点在区间(1,2)内得,f (1)×f (2)=(2-2-a )(4-1-a )=(-a )×(3-a )<0,解得0<a <3.(2)(2023·唐山模拟)已知函数f (x )=⎩⎨⎧ln x x ,x >0,x 2+2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a 的取值范围为() A .(-1,0) B.⎝ ⎛⎭⎪⎫-1,1eC.⎣⎢⎡⎭⎪⎫0,1eD.⎝ ⎛⎭⎪⎫0,1e ∪{-1}答案B 解析设h (x )=ln x x(x >0),则h ′(x )=1-ln x x2, 令h ′(x )>0,得0<x <e , 令h ′(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以h (x )max =h (e)=1e.因为函数g (x )=f (x )-a 有3个零点, 所以方程f (x )=a 有3个解.作出函数y =f (x )和y =a 的图象如图所示,所以a 的取值范围为⎝⎛⎭⎪⎫-1,1e .课时精练1.(2022·焦作模拟)设函数f (x )=2x +x3的零点为x 0,则x 0所在的区间是()A .(-4,-2)B .(-2,-1)C .(1,2)D .(2,4) 答案B解析易知f (x )在R 上单调递增且连续,f (-2)=14-23<0,f (-1)=12-13>0,所以x 0∈(-2,-1).2.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在区间和第二次应计算的函数值分别为() A .(0,0.5),f (0.125) B .(0,0.5),f (0.375) C .(0.5,1),f (0.75) D .(0,0.5),f (0.25) 答案D解析因为f (0)f (0.5)<0,由函数零点存在定理知,零点x 0∈(0,0.5),根据二分法,第二次应计算f ⎝⎛⎭⎪⎫0+0.52,即f (0.25). 3.函数f (x )=⎩⎨⎧x 2-2x -3,x ≤0,log 2x -3x +4,x >0的零点个数为()A .1B .2C .3D .4 答案C解析当x ≤0时,令f (x )=x 2-2x -3=0, 得x =-1(x =3舍去),当x >0时,令f (x )=0,得log 2x =3x -4, 作出y =log 2x 与y =3x -4的图象,如图所示,由图可知,y =log 2x 与y =3x -4有两个交点, 所以当x >0时,f (x )=0有两个零点, 综上,f (x )有3个零点.4.已知函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则实数m 的取值范围为()A.⎝ ⎛⎭⎪⎫-53,0B.⎝ ⎛⎭⎪⎫-∞,-53∪(0,+∞)C.⎝⎛⎦⎥⎤-∞,-53∪(0,+∞) D.⎣⎢⎡⎭⎪⎫-53,0 答案D解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎨⎧f (1)<0,f (3)≥0,即⎩⎨⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-53,0.5.已知函数f (x )=⎩⎨⎧2-x,x <0,1+|x -1|,x ≥0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是()A .(1,2]B .(1,2)C .(0,1)D .[1,+∞) 答案A解析因为函数g (x )=f (x )-m 有三个零点,所以函数f (x )的图象与直线y =m 有三个不同的交点, 作出函数f (x )的图象,如图所示,由图可知,1<m ≤2,即m 的取值范围是(1,2].6.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 2 答案C解析函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点,即为y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的交点的横坐标,作出y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的图象,如图所示.可知x 2<x 3<x 1.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是()A .1B .2C .4D .6 答案ABC 解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π], f (x )=⎩⎨⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(多选)(2023·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲,就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f(x)=2x+x B.f(x)=x2-x-3C.f(x)=12x+1 D.f(x)=|log2x|-1答案BCD解析选项A,若f(x0)=x0,则02x=0,该方程无解,故该函数不是“不动点”函数;选项B,若f(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故该函数是“不动点”函数;选项C,若f(x0)=x0,则12x+1=x0,可得x20-3x0+1=0,且x0≥1,解得x0=3+52,故该函数是“不动点”函数;选项D,若f(x0)=x0,则|log2x0|-1=x0,即|log2x|=x0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0, 即存在x 0,使|log 2x 0|-1=x 0, 故该函数是“不动点”函数.9.已知指数函数为f (x )=4x ,则函数y =f (x )-2x +1的零点为________. 答案1解析由f (x )-2x +1=4x -2x +1=0,得2x (2x -2)=0,x =1.10.(2023·苏州质检)函数f (x )满足以下条件:①f (x )的定义域为R ,其图象是一条连续不断的曲线;②∀x ∈R ,f (x )=f (-x );③当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0;④f (x )恰有两个零点,请写出函数f (x )的一个解析式________. 答案f (x )=x 2-1 (答案不唯一)解析因为∀x ∈R ,f (x )=f (-x ),所以f (x )是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在(0,+∞)上单调递增, 因为f (x )恰有两个零点,所以f (x )图象与x 轴只有2个交点,所以函数f (x )的一个解析式可以为f (x )=x 2-1(答案不唯一). 11.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案(1,+∞)解析方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根, 即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.如图,在同一直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y 轴上的截距.由图可知,当a ≤1时,直线y =-x +a 与y =f (x )有两个交点, 当a >1时,直线y =-x +a 与y =f (x )只有一个交点. 故实数a 的取值范围是(1,+∞).12.已知函数f (x )=⎩⎨⎧|2x-1|,x ≤1,(x -2)2,x >1,函数y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则123422x x x x ++=________.答案12解析y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4, 即方程f (x )=a 有四个不同的解,即y =f (x )的图象与直线y =a 有四个交点.在同一平面直角坐标系中分别作出y =f (x )与y =a 的图象,如图所示,由二次函数的对称性可得,x 3+x 4=4.因为1-12x =22x -1,所以12x +22x =2,故123422x x x x ++=12.13.已知函数f (x )=|e x -1|+1,若函数g (x )=[f (x )]2+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 答案A解析令t =f (x ),则函数g (t )=t 2+(a -2)t -2a ,由t 2+(a -2)t -2a =0得,t =2或t =-a .f (x )=|e x-1|+1=⎩⎨⎧e x,x ≥0,2-e x,x <0,作出函数f (x )的图象,如图所示,由图可知,当t =2时,方程f (x )=|e x -1|+1=2有且仅有一个根,则方程f (x )=|e x -1|+1=-a 必有两个不同的实数根,此时由图可知,1<-a <2,即-2<a <-1.14.已知函数f (x )=x +1x-sin x -1,x ∈[-4π,0)∪(0,4π],则函数f (x )的所有零点之和为________.答案0解析因为函数f (x )=x +1x -sin x -1=1x-sin x , 所以f (x )的对称中心是(0,0),令f (x )=0,得1x=sin x , 在同一平面直角坐标系中作出函数y =1x,y =sin x 的图象,如图所示,由图象知,两个函数图象有8个交点,即函数f (x )有8个零点,由对称性可知,零点之和为0.15.(2023·南昌模拟)定义在R 上的偶函数f (x )满足f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=e x -1,若关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则实数m 的取值范围为()A.⎝ ⎛⎭⎪⎫e -16,e -15B.⎝ ⎛⎭⎪⎫e -16,e -14 C.⎝ ⎛⎭⎪⎫e -18,e -16 D .(0,e -1) 答案B解析∵f (x )=f (2-x ),∴函数f (x )关于直线x =1对称,又f (x )为定义在R 上的偶函数,∴函数f (x )关于直线x =0对称,作出函数y =f (x )与直线y =m (x +1)的图象,如图所示,要使关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则函数y =f (x )的图象与直线y =m (x +1)有5个交点,∴⎩⎨⎧ 6m >e -1,4m <e -1,即e -16<m <e -14. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案⎝ ⎛⎦⎥⎤1e ,4e 2 解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x , 则h ′(x )=2x -x 2e x =x (2-x )e x ,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2, h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点, 只需a ∈⎝ ⎛⎦⎥⎤1e ,4e 2.。
2022年高三毕业班数学考点归纳变式演练16 三角恒等变换(新高考解析版)
2022年高三毕业班数学考点归纳变式演练16 三角恒等变换(新高考解析版)1、专题16三角恒等变换专题导航名目常考点01两角和与差的正弦函数、余弦函数公式的应用1常考点02两角和与差的正切公式的应用4常考点03二倍〔半〕角公式的应用6常考点04简洁的三角恒等变换---化简与证明9常考点05三角函数模型的应用11常考点06函数的图象与性质的综合应用16易错点01忽视角的范围致误21专项训练〔全卷共22题〕22专项训练:按新高考真题的试题量和难度标准编写常考点01两角和与差的正弦函数、余弦函数公式的应用【典例1】〔2021·全国高考真题〔文〕〕已知,则〔〕A.B.C.D.【答案】B【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.【详解】由题意可得:,则:,,从而有:,即.应选:B2、.【点睛】此题主要考查两角和与差的正余弦公式及其应用,属于中等题.n【典例2】〔2021·全国高三其他模拟〕已知点,为坐标原点,线段绕原点逆时针旋转,到达线段,则点的坐标为〔〕A.B.C.D.【答案】D【解析】依据三角函数的定义确定出终边经过点的的三角函数值,然后依据位置关系推断出的终边经过,结合两角和的正、余公式求解出的坐标.【详解】由的坐标可知在单位圆上,设的终边经过点,所以,又因为由绕原点逆时针旋转得到,所以的终边经过点且也在单位圆上,所以,又因为,所以,应选:D.【技巧点拨】1.三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特别角的三角函数转化为特别角的三角函数.(2)给值求值:关键是找出已知式与待求式之3、间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而到达解题的目的.2.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号改变规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应留意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应留意配方法、因式分解和整体代换思想的应用.n3.给值求角问题,解题的一般步骤是:(1)先确定角α的范围,且使这个范围尽量小;(2)依据(1)所得范围来确定求tanα、sinα、cosα中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;(3)求α的一4、个三角函数值;(4)写出α的大小.【变式演练1】〔2021·全国高考真题〔文〕〕tan255°=A.-2-B.-2+C.2-D.2+【答案】D 【分析】此题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础学问、基本计算能力的考查.【详解】=【点睛】三角函数的诱导公式、两角和与差的三角函数、特别角的三角函数值、运算求解能力.【变式演练2】〔2021·山东聊城高三期中〕角的终边与单位圆的交点坐标为,将的终边绕原点顺时针旋转,得到角,则〔〕A.B.C.D.【答案】A 【解析】由角的终边经过点,得,因为角的终边是由角的终边顺时针旋转得到的,所以,应选:.n【变式演练3】〔2021·河南鹤壁5、高考模拟〕平面直角坐标系中,点是单位圆在第一象限内的点,,若,则为_____.【答案】【解析】由题意知:,,由,得,,故答案为:.常考点02两角和与差的正切公式的应用【典例1】〔2021·广东高三其他模拟〕我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长与太阳天顶距的对应数表,这是世界数学史上较早的一张正切函数表.依据三角学学问可知,晷影长度等于表高与太阳天顶距正切值的乘积,即.若对同一“表高”两次测量,“晷影长”分别是“表高”的2倍和3倍(所成角记,),则___________.【答案】【解析】依据题意得到,,结合两角差的正切公式,即可求解.【详解】由题意,“晷影长”分别是“表高”的2倍和3倍,可得,,所以.故答案为6、:.【典例2】〔2021·安徽高三其他模拟〕已知,为锐角,,,则n〔〕A.B.C.D.【答案】C【解析】由已知求出,再利用差的正切公式可求.【详解】因为,为锐角,所以.所以,,又,则.应选:C.【技巧点拨】1.运用两角和与差的三角函数公式时,不但要娴熟,精确,而且要熟识公式的逆用及变形,如tanα+tanβ=tan(α+β)·(1-tanαtanβ)和二倍角的余弦公式的多种变形等.2.应熟识公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往简单被忽视,公式的逆用和变形应用更能开拓思路,培育从正向思维向逆向思维转化的能力,只有熟识了公式的逆用和变形应用后,才能真正把握公式的应用.提示:在T(α+β)与T(α-β)中,α,β7、,α±β都不等于kπ+(k∈Z),即保证tanα,tanβ,tan(α+β)都有意义;若α,β中有一角是kπ+(k∈Z),可利用诱导公式化简.【变式演练1】〔2021·河南焦作市〕若,则【答案】【解析】因为,所以,解得,则应选:A.【变式演练2】〔2021·贵溪市试验中学高二期末〕的值是_______.【答案】n【解析】由进行转化,可得答案.【详解】解:由故答案为:.【变式演练3】〔2021·湖南衡阳市八中高三模拟〕已知为锐角,,则〔〕A.B.C.D.【答案】A【解析】由正切的二倍角公式求得,再由可求.【详解】因为,所以.应选:A.常考点03二倍〔半〕角公式的应用【典例1】〔2021·全国高考真题〔文〕〕若,则〔〕A.B.C.D.【答8、案】An【解析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.【详解】,,,,解得,,.应选:A.【典例2】〔2021·全国高考真题〕已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A.B.C.D.【答案】B【分析】首先依据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,应选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的学问点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,依据题中的条件,得到相应的等量关系式,从而求得结果.【技巧点拨】19、.转化思想是实施三角变换的主导思想,恒等变形前需清晰已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.留意三角函数公式逆用和变形用的2个问题(1)公式逆用时肯定要留意公式成立的条件和角之间的关系.(2)留意特别角的应用,当式子中出现,1,,等这些数值时,肯定要考虑引入特别角,把“值变角”构造适合公式的形式.n2.已知θ的某个三角函数值,求的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可【变式演练1】(2021年高考全国Ⅰ卷文)函数的最小值为___________.【答案】【解析】,,当时,,故函数的最小值为.【变式演练2】〔2021·全国高考真题〕已知∈〔0, 10、〕,2sin2α=cos2α+1,则sinα=A.B.C.D.【答案】B【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.【详解】,.,又,,又,,应选B.【点睛】此题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,推断正余弦正负,运算精确性是关键,题目不难,需细心,解决三角函数问题,讨论角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.【变式演练3】〔2021·河南高一月考〕已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.〔Ⅰ〕求的值;〔Ⅱ〕求的值.【答案】〔Ⅰ〕;〔Ⅱ〕2n【解析】〔Ⅰ〕由题意得:原式〔Ⅱ〕,=.常考点04简洁的三角恒等变换---化简与证明【典例1】〔11、2021·湖南·长郡中学〕设,,化简【答案】【解析】因为,,所以,【典例2】〔2021·重庆一中高三其他模拟〕已知,,,,则______.【答案】【解析】留意综合已知条件,进一步缩小的范围,以及的范围,利用同角三角函数关系和二倍角公式正确求出,,的值,由,利用两角差的正弦公式计算.【详解】,∴,,∴,又∵,n∴,∴,,,又∵,∴,又∵,∴,∴,故答案为:.【技巧点拨】1.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.2.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间12、的差异与联系,把角进行合理的变换,从而正确使用公式.(2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”.(3)三看“形”,分析结构特征,可以关心我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.3.三角恒等式的证明方法(1)从等式的比较冗杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提示:开平方时正负号的选取易出现错误,所以要依据已知和未知的角之间的关系,恰当地把角拆分,依据角的范围确定三角函数的符号.【变式演练1】〔2021·四川眉山市〕计13、算______.【答案】【解析】.故答案为:.【变式演练2】〔2021·千阳县中学高三其他模拟〕已知,则n__________.【答案】【解析】因为,所以,,故.故答案为:.【变式演练3】〔2021·陕西西安市·交大附中高三〕已知,则〔〕A.B.C.D.【答案】A【解析】因为,所以,即,则,.应选:A常考点05三角函数模型的应用【典例1】〔2021·重庆一中高三其他模拟〕筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.如图,一个半径为的筒车按逆时针方向每分钟转1.5圈,筒车的轴心距离水面的高度为2米.设筒车上的某个盛水筒到水面的距离为〔单位:〕〔在水面下则为负数〕,若以盛水筒刚浮出水面时开始计算时间,14、则与时间〔单位:〕之间的关系为n〔,,〕.则以下说法正确的有〔〕A.B.C.D.盛水筒出水后到达最高点的最小时间为【答案】ABD【解析】由已知可得的值,得到函数解析式,取求得t的值,从而得解.【详解】解:∵筒车按逆时针方向每分钟转1.5圈,,则,故B正确;振幅A为筒车的半径,即,故A正确;由题意,t=0时,d=0,,即,,∴,故C错误;,由d=6,得,得∴当k=0时,t取最小值为,故D正确.应选:ABD.【典例2】〔2021·山西临汾市·高三其他模拟〔理〕〕海水受日月的引力,在肯定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常状况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与15、水深关系表:时刻0:003:006:009:0012:0015:0018:0021:0024:00水深/米4.56.54.52.54.56.54.52.54.5〔1〕已知该港口的水深与时刻间的改变满足函数,n,画出函数图象,并求出函数解析式.〔2〕现有一艘货船的吃水深度〔船底与水面的距离〕为4米,安全条例规定至少要有2.2米的间隙〔船底与洋底的距离〕,该船何时能进入港口?在港口能呆多久?参考数据:【答案】〔1〕作图见解析,;〔2〕该船在2:00或14:00点可以进入港口,在港口可以停留2个小时.【解析】〔1〕由所给数据描点成图即可,可利用图象所过最高点求出即可;〔2〕由题意知货船需要的安全水深为米,解即可求解.【详解】〔1〕由图象可知16、,,则有又因为时取最大值 6.5,可得,所以〔2〕货船需要的安全水深为米,所以当时就可以进港.令,得得,即,当时,;当时,,所以,该船在2:00或14:00点可以进入港口,在港口可以停留2个小时.【技巧点拨】三角函数模型的应用表达在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关学问解决问题.n【变式演练1】〔2021·浙江高二期末〕健康成年人的收缩压和舒张压一般为和.心脏跳动时,血压在增加或减小,血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值.高三同学在参与高考之前需要参与统一的高考体检,其中血压、视力等对于高考报考有一些影响.某同学测17、得的血压满足函数式,其中为血压为时间,其函数图像如上图所示,则以下说法错误的选项是〔〕A.收缩压为B.C.舒张压为D.【答案】B【解析】通过观看图象得到该人的收缩压和舒张压,通过图象求出,,利用周期公式求出得解.【详解】由图象可知,函数的最大值为120,最小值为70,所以收缩压为,舒张压为,所以选项AC正确;周期,知,所以选项B错误;由题得,所以所以选项D正确.应选:B【变式演练2】〔2021·兰州市第二中学高三月考〔文〕〕筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的状况下,筒车的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如下图,圆的半径为4米,盛水筒从点处开始运动18、,与水平面的所成角为,且2分钟恰好转动1圈,则盛水筒距离水面的高度〔单位:米〕与时间〔单位:秒〕之间的函数关系式是〔〕nA.B.C.D.【答案】A【解析】有题意设,依据最高、最低高度,周期和初始高度,可得结果.【详解】设距离水面的高度H与时间t的函数关系式为,周期为120s,,最高点的纵坐标为,最低点的纵坐标为,所以,当t=0时,H=0,,所以.应选:A.【变式演练3】〔2021·广东深圳市·高三二模〕摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如下图,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转分钟,当时,游客随舱旋转至距离地面最远19、处.以下关于摩天轮的说法中,正确的为〔〕A.摩天轮离地面最近的距离为4米B.若旋转分钟后,游客距离地面的高度为米,则nC.若在,时刻,游客距离地面的高度相等,则的最小值为30D.,,使得游客在该时刻距离地面的高度均为90米【答案】BC【解析】易知摩天轮离地面最近的距离,从而可推断A;求出分钟后,转过的角度,即可求出关于的表达式,即可推断B;由余弦型函数的性质可求出的最小值即可推断C;求出在上的单调性,结合当时,即可推断D.【详解】解:由题意知,摩天轮离地面最近的距离为米,故A不正确;分钟后,转过的角度为,则,B正确;周期为,由余弦型函数的性质可知,若取最小值,则,又高度相等,则关于对称,则,则;令,解得,令,解得,则在上单调递增,在上20、单调递减,当时,,当时,,所以在只有一个解;应选:BC.常考点06函数的图象与性质的综合应用【典例1】〔2021·浙江高考真题〕设函数.〔1〕求函数的最小正周期;〔2〕求函数在上的最大值.【答案】〔1〕;〔2〕.【分析】〔1〕由题意结合三角恒等变换可得,再由三角函数最小正周期公式即可得解;〔2〕由三角恒等变换可得,再由三角函数的图象与性质即可得解.n【详解】〔1〕由帮助角公式得,则,所以该函数的最小正周期;〔2〕由题意,,由可得,所以当即时,函数取最大值.【典例2】〔2021·江西新余市·高三期末〕已知函数.〔1〕已知,求的值;〔2〕当时,不等式恒成立,求实数的取值范围.【答案】〔1〕;〔2〕.【解析】〔1〕结合三角恒等改变化简得,得21、到,然后将利用诱导公式,余弦的倍角公式转化计算;〔2〕依据〔1〕求出当时,进而,原不等式等价于n,看成关于的一次函数,其端点函数值大于等于0,得,化简即可.【详解】解:〔1〕,,.〔2〕当时,,可得,由,不等式可化为,有.令,,则,若不等式恒成立,则等价于,解得:.故实数的取值范围为.【技巧点拨】1.方程根的个数可转化为两个函数图象的交点个数.2.讨论y=Asin(ωx+φ)的性质时可将ωx+φ视为一个整体,利用换元法和数形结合思想进行解题.【变式演练1】〔2021·上海高考真题〕设常数,函数.〔1〕若为偶函数,求的值;〔2〕若,求方程在区间上的解.n【答案】(1);(2)或或.【分析】〔1〕依据函数的奇偶性和三角形的函数的性质即可22、求出,〔2〕先求出a的值,再依据三角形函数的性质即可求出.【详解】〔1〕∵,∴,∵为偶函数,∴,∴,∴,∴;〔2〕∵,∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【点睛】此题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.【变式演练2】〔2021·全国高三〔文〕〕已知,函数.〔Ⅰ〕若,求的单调递增区间;〔Ⅱ〕若的最大值是,求的值.【答案】〔Ⅰ〕,;〔Ⅱ〕.【解析】〔Ⅰ〕由题意由,得.n所以单调的单调递增区间为,.〔Ⅱ〕由题意,由于函数的最大值为,即,从而,又,故.【变式演练3】〔2021·重庆市蜀都中学校高三月考〕已知函数,将的图象向左平移个单位得到的图象,实数,满足,且,则的最小取值为〔〕A.B.C.D.【答案】A23、【解析】,,将的图象向左平移个单位得到,所以,因为实数,满足,所以中一个取最大值1,一个取最小值不妨取,所以,解得,,解得,所以,,当时,,所以时,,因为,所以,所以的最小取值为,应选:A.n易错点归纳易错点01忽视角的范围致误【例1】已知sinα=,sinβ=,且α,β为锐角,则α+β=________.【错解】∵α、β为锐角,∴cosα==,cosβ==.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.又0α+βπ.∴α+β=或α+β=π.【错因分析】没有留意到sinα=,sinβ=本身对角的范围的限制,造成错解.【正解】因为α,β为锐角,所以cosα==,cosβ==.所以cos(α+β)=co24、sαcosβ-sinαsinβ=×-×=,又因为0α+βπ,所以α+β=.【纠错笔记】依据三角函数值求角,一般是先求出该角的某一个三角函数值,再确定角的范围,确定角的范围时不仅要看已知条件中角的范围,还要挖掘隐含条件,依据三角函数值缩小角的范围;此题中(0,π)中的角和余弦值一一对应,最好在求角时选择计算cos(α+β)来避开增解.专项训练〔全卷共22题〕总分:150分完成时间:120分钟一、选择题:此题共8小题,每题5分,共40分.每题给出的四个选项中,只有一项是符合题目要求的.n1.〔2021·全国高考真题〕〔〕A.B.C.D.【答案】D【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.【详解】由题意,.25、应选:D.2.〔2021·全国高三其他模拟〕若,,则〔〕A.B.C.D.【答案】C【解析】依据正切三角函数值,求得二倍角的三角函数值,由正弦的两角和公式求得结果.【详解】由知,,或,则,由知,,或,则,,则应选:C3.〔2022·河南高三月考〕若,且,则〔〕A.-7B.C.D.-7或【答案】An【解析】利用二倍角公式及同角三角函数的基本关系将弦化切,再解方程即可;【详解】解:因为,所以,所以,得,则或,又,所以.应选:A4.〔2021·河北高三其他模拟〕已知函数()的最小正周期为,关于函数的性质,则以下命题不正确的选项是〔〕A.B.函数在上的值域为C.函数在上单调递增D.函数图象的对称轴方程为()【答案】D【解析】首先把函数的关系式进行恒26、等变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.【详解】解:函数,由于函数的最小正周期为,即,所以,故A正确;故.对于B:由于,所以函数的最小值为,函数的最大值为3,函数的值域,故B正确;对于C:当时,,故函数在该区间上单调递增,故C正确;对于D:当,时,整理得()为函数的对称轴,故D错误.应选:D.5.〔2021·广东佛山市·高三其他模拟〕〔〕A.2B.-2C.1D.-1【答案】D【解析】利用切化弦,三角恒等变换,逆用两角差的正弦公式,二倍角公式,诱导公式化简求值.【详解】n6.〔2021·海南枫叶国际学校高一期中〕若,则的值为()A.B.C.D.【答案】C【解析】因为,所以,,,因为,所以,所以,所以,27、两边平方得,所以,应选:C7.〔2021·沈阳市·辽宁试验中学高三二模〕n攒尖是古代中国建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.攒尖建筑的屋面在顶部交汇为一点,形成尖顶,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.辽宁省试验中学校内内的明心亭,为一个八角攒尖,它的主要部分的轮廓可近似看作一个正八棱锥,设正八棱锥的侧面等腰三角形的顶角为,它的侧棱与底面内切圆半径的长度之比为〔〕.A.B.C.D.【答案】A【解析】分别用和表示出的一半,得出侧棱与底面边长的比,再依据正八边形的结构特征求出底面内切圆的半径与边长的关系,即可求出结果.【详解】设为正八棱锥底面内切圆的圆心,连接,28、,取的中点,连接、,则是底面内切圆半径,如下图:设侧棱长为,底面边长为,由题意知,,则,解得;由底面为正八边形,其内切圆半径是底面中心到各边的距离,中,,所以,由,解得,所以,所以,解得,即侧棱与底面内切圆半径的长度之比为.应选:A.8.〔2021·四川高三月考〔理〕〕函数的图象在上恰有两个极大值点,则的取值范围为〔〕A.B.C.D.【答案】Dn【解析】,设,因为,所以,函数的图象在上恰有两个极大值点,则,∴,所以.应选:D.二、选择题:此题共4小题,每题5分,共20分.在每题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.〔2021·广东高三期末〕已知函数f〔x〕=sin〔ωx+〕﹣c29、os〔ωx+〕〔0<ω<6〕的图象关于直线x=1对称,则满足条件的ω的值为〔〕A.B.C.D.【答案】BC【解析】因为,由,,因为,所以,,由题意可得,,得,,因为,所以或.应选:BC.10.〔2021·湖南永州市·高三其他模拟〕已知函数,则以下结论中错误的选项是〔〕A.点是的一个对称中心点B.的图象是由的图象向右平移个单位长度得到C.在上单调递增nD.是方程的两个解,则【答案】BCD【解析】首先利用三角恒等改变将函数化为一个角的一种函数形式即,然后依据三角函数的性质进行推断.【详解】对于A:令,解得,当时,,所以点是的一个对称中心点,故A正确;对于B:的图象向右平移个单位长度得到的图象的函数解析式为,所以平移得到的图象不是的图象,故B错30、误;对于C:当时,,而函数在上单调递减,所以在上单调递减,故C错误;对于D:令,解得或,即或,所以,故D错误.应选:BCD.11.〔2021·福建高三三模〕已知函数的最小正周期为,则以下结论中正确的选项是〔〕A.对一切恒成立nB.在区间上不单调C.在区间上恰有1个零点D.将函数的图像向左平移个单位长度,所得图像关于原点对称【答案】AB【解析】由题意利用三角恒等变换,化简函数的解析式,再利用整弦函数的图象和性质,得出结论.【详解】解:∵函数的最小正周期为,∴,.令,求得为最大值,故有对一切恒成立,故A正确;在区间上,,函数没有单调性,故B正确;在区间上,,函数有2个零点,故C错误;将函数的图像向左平移个单位长度,所得的图像关于不原点对称,故31、D错误,应选:AB.12.〔2021·福建师大附中高三其他模拟〕如下图,函数,的部分图象与坐标轴分别交于点,,,且的面积为,以下结论正确的选项是〔〕nA.点的纵坐标为B.是的一个单调递增区间C.对任意,点都是图象的对称中心D.的图象可由图象上各点的横坐标缩短为原来的倍,纵坐标不变,再把得到的图象向左平移个单位得到【答案】BC【解析】首先求出函数的周期,再依据的面积,求出的纵坐标,即可求出函数解析式,再依据正切函数的性质一一推断即可;【详解】解:因为,所以最小正周期,即,又的面积为,所以,所以,即的纵坐标为,故A错误;因为,所以,所以,因为所以,所以,令,,解得,,所以函数的单调递增区间为,,故B正确;令,,解得,,所以函数的对称中心为,32、,故C正确;将图象上各点的横坐标缩短为原来的倍,得到,再将函数向左平移个单位,得到,故D错误;应选:BC三、填空题:此题共4小题,每题5分,共20分.13.〔2021·江苏高考真题〕已知=,则的值是____.【答案】【分析】直接根据两角和正弦公式展开,再平方即得结果.n【详解】故答案为:【点睛】此题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.14.〔2021·山东高三其他模拟〕若,则=__________________.【答案】﹣【解析】先用诱导公式化简,再依据二倍角及变形,再求值即可.【详解】解:因为tan〔π﹣α〕=﹣tanα=4,所以tanα=﹣4,则cos〔2α+〕=sin2α=2sinαcosα=33、==﹣.故答案为:﹣.15.〔2021·全国高三其他模拟〕已知函数在上恰有10个零点,则m的取值范围是________________.【答案】【解析】先用降幂公式和帮助角公式化简,再转化为图象与轴交点个数问题.【详解】∵,∴,∵在上恰有10个零点,∴在上恰有10个解,∴,解得,故答案为:.16.〔2021·上海复旦附中高三模拟〕已知函数.若存在,对任意,都有成立.给出以下两个命题:n〔1〕对任意,不等式都成立.〔2〕存在,使得在上单调递减.则其中真命题的序号是__________.〔写出全部真命题的序号〕【答案】〔1〕〔2〕【解析】由帮助角公式可得,由题意可得是的最小值点,关于对称,由三角函数的性质逐个分析各个选项,即可求得结论.【。
2024版高考复习A版数学考点考法练习题:基本不等式及不等式的应用
基本不等式及不等式的应用基础篇考点一基本不等式及其应用1.(2022广东深圳外国语学校月考,6)在下列函数中,最小值为2的是( )A.y=x+1xB.y=lg x+1lgx(1<x<10)C.y=x 2−2x+2x−1(x>1)D.y=sin x+1sinx (0<x<π2)答案C2.(2022重庆西南大学附中月考)已知x,y>0,x+9y+xy=7,则3xy的最大值为( )A.1B.2C.3D.4答案C3.(多选)(2023届山东潍坊五县联考,9)设a>0,b>0,a+b=1,则下列不等式中一定成立的是( )A.ab≤14B.√a+√b≥√2C.2a+2b≥2√2D.ba +4b≥8答案ACD4.(多选)(2022沈阳二中月考)已知a>0,b>0,且ab=4,则( )A.√a+√b≤2√2B.a 2b +b2a≥4C.log2a 2+b2a+b ≥1 D.2a(a-b)>18答案BC5.(多选)(2022新高考Ⅱ,12,5分)若x,y满足x2+y2-xy=1,则( )A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥1答案BC6.(2023届湖北摸底联考,14)若函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1)是偶函数,则1 a +4b的最小值为.答案47.(2018天津,13,5分)已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为.答案148.(2019天津理,13,5分)设x>0,y>0,x+2y=5,则√xy的最小值为. 答案4√39.(2021浙江湖州中学月考)函数y=√2x−1+√5−2x(12<x<52)的最大值是.答案2√2考点二应用基本不等式求解最值考向一配凑法求最值1.(2023届辽宁鞍山质量监测,8)权方和不等式作为基本不等式的一个变化,经常应用于高中数学竞赛,主要用来处理分式不等式.其表述如下:设a,b,x,y>0,则a 2x +b2 y ≥(a+b)2x+y,当且仅当ax=by时等号成立.根据权方和不等式可以比较容易得出,函数f(x)=2x +91−2x(0<x<12)的最小值为( )A.16B.25C.36D.49答案B2.(2022山东平邑一中开学考,6)实数a,b满足a>0,b>0,a+b=4,则a 2a+1+b2b+1的最小值是( )A.4B.6C.32D.83答案D3.(2023届福建龙岩一中月考,15)已知正实数a,b满足ab+a+b=3,则2a+b的最小值为.答案4√2-34.(2022天津南开中学模拟,13)若实数x,y满足x>y>0,且xy=4,则x−y(x+y)2的最大值为.答案185.(2022湖南湘潭三模,14)已知正数a,b满足a+b=5,则2a+1+12b的最小值为. 答案34考向二常数代换法求最值1.(2022河北邢台入学考,7)已知a>0,b>0,且a+b=2,则2a +12b的最小值是( )A.1B.2C.94D.92答案C2.(2022辽宁六校联考,7)已知定义在R上的偶函数f(x)=|x-m+1|-2,若正实数a、b满足f(a)+f(2b)=m,则2a +3b的最小值为( )A.85B.8+4√35C.8√35D.2√105答案B3.(多选)(2021山东潍坊四中检测,10)已知a>1,b>0,且1a−1+4b=1,则下列命题正确的是( )A.a>2B.ab-b的最小值为16C.a+b的最小值为9D.1a−2+9b的最小值为2答案ABD4.(2021天津二模,14)已知正实数x,y满足x+y=1x +9y+6,则x+y的最小值是. 答案85.(2020天津,14,5分)已知a>0,b>0,且ab=1,则12a +12b+8a+b的最小值为.答案4考向三两次及以上使用基本不等式求最值1.(2022河北邢台“五岳联盟”10月联考,7)函数f(x)=4x+12x +(√2)x( )A.2√2B.2√3C.4D.3√2答案C2.(多选)(2020新高考Ⅰ,11,5分)已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥-2D.√a+√b≤√2答案ABD3.(2021天津,13,5分)若a>0,b>0,则1a +ab2+b的最小值为.答案2√2综合篇考法不等式的恒成立、能成立、恰成立等问题的解题策略考向一恒成立与能成立共存问题1.(多选)(2022湖南衡阳八中模拟,11)已知函数f(x)=-x-1,x∈[-2,2],g(x)=x2-2x,x∈[-1,2],下列结论正确的是( )A.∀x∈[-2,2],f(x)>a恒成立,则实数a的取值范围是a<-3B.∃x∈[-2,2],f(x)>a,则实数a的取值范围是a<1C.∃x∈[-1,2],g(x)=a,则实数a的取值范围是-1≤a≤3D.∀x∈[-2,2],∃t∈[-1,2],f(x)=g(t)答案ABC2.(2022重庆巴南月考,14)已知函数f(x)=x+4x ,g(x)=2x+a,若∀x1∈[12,1],∃x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是. 答案[12,+∞)考向二函数最值与不等式结合问题1.(2022重庆名校联盟联考,5)已知x>0、y>0,且2x +1y=1,若2x+y>m2+8m恒成立,则实数m的取值范围为( ) A.(-1,9) B.(-9,1)C.[-9,1]D.(-∞,-1)∪(9,+∞)答案B2.(多选)(2023届重庆南开中学质检,10)已知正数x,y满足x+2y=4,若存在正数x,y使得12x +x≤t−2y−1y成立,则实数t的可能取值是( )A.2B.4C.6D.8答案CD3.(2021广东佛山南海石门中学模拟,5)已知x,y∈(0,+∞),且x+y=1,若不等式x2+y2+xy>12m2+14m恒成立,则实数m的取值范围是( )A.(−32,1)B.[−32,1]C.(-2,1)D.(−∞,−32)∪(1,+∞)答案A4.(2021浙江绍兴模拟,4)若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.(−235,+∞) B.[−235,1]C.(1,+∞)D.(−∞,−235)答案A5.(2021湖南师大附中月考,13)已知函数f(x)=x2+4,g(x)=ax,当x∈[1,4]时,f(x)的图象总在g(x)图象的上方,则a的取值范围为.答案(-∞,4)6.(2021广东云浮月考,15)已知f(x)=x2-2x+4,g(x)=a x(a>0且a≠1),若对任意的x1∈[1,2],都存在x2∈[-1,2],使得f(x1)<g(x2)成立,则实数a的取值范围是.答案(0,14)∪(2,+∞)专题综合检测一、单项选择题1.(2022石家庄二中月考,9)下列命题为真命题的是( )A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则1a >1b答案D2.(2022辽宁丹东五校联考,9)设1a <1b<0,则( )A.a2>b2B.ab>b2C.a+b≥2√abD.2a+2b>2√2a·2b 答案D3.(2022河北曲阳一中月考,4)已知函数f(x)=log2x2·log2x8,若f(x1)=f(x2)(其中x1≠x2),则1x1+9x2的最小值为( )A.34B.32C.2D.4答案B4.(2022石家庄二中月考,6)若正数x,y满足x+3y=5xy,当3x+4y取得最小值时,x+4y的值为( ) A.2 B.3 C.4 D.5答案B5.(2022重庆涪陵实验中学期中,6)已知x>0,y>-1,且4x +1y+1=3,则x+y的最小值为( )A.4B.3C.2D.1答案C二、多项选择题6.(2022广州执信中学月考,11)设a,b∈R,则下列结论正确的是( )A.若a<b<0,则(a-1)2<(b-1)2B.若a+b=2,则2a+2b≥4C.若2a-2b>2-a-2-b,则a>bD.若a>b>0,且a+b=1,则a b>b a答案BCD7.(2022辽宁六校协作体期中,10)下列说法正确的是( )A.当xÎ(0,1)时,x√1−x2≤12B.sin2x+2sin 2x的最小值为2√2C.x 2x4+2≤√24D.若a>1,b>12,则2√(log2a)·[log2(2b)]1+log2(ab)≤1答案ACD8.(2022辽宁省部分中学期末,11)三元均值不等式:“当a、b、c均为正实数时,a+b+c3≥√abc3,即三个正数的算术平均数不小于它们的几何平均数,当且仅当a=b=c时等号成立.”利用上面结论,判断下列不等式成立的有( ) A.若x>0,则x2+2x≥3B.若0<x<1,则x2(1-x)≤19C.若x>0,则2x+1x2≥3D.若0<x<1,则x(1-x)2≤19答案AC三、填空题9.(2022重庆七中期中,13)正数a,b满足1a +9b=1,若不等式a+b≥m对任意实数m恒成立,则实数m的最大值是.答案1610.(2022沈阳三十一中月考,15)已知a>b,关于x的不等式ax2+2x+b≥0对于一切实数x恒成立,又存在实数x0,使得a x02+2x0+b=0成立,则a 2+b2a−b的最小值为.答案2√211.(2022广东深圳实验学校月考,14)已知log2(a+4b)=2log2(2√ab),则a+b的最小值是.答案9412.(2022广东阳春一中月考,16)已知不等式ax2+bx+c<0的解集为{x|2<x<3},则b c =,b+c+25a+2的最小值为.答案-56813.(2022河北曲阳一中月考,14)已知a,b∈R,且a>b2>0,则a2+1(2a−b)b的最小值是. 答案2。
《常考题》数学高考题经典练习题(含答案解析)
一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( )A .B .C .D .2.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .173.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .134.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A .19B .29C .49D .718 5.函数2||()x x f x e -=的图象是( )A .B .C .D .6.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i7.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)8.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角 9.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( ) A . B .C .D .10.设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .511.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534 B .532 C .532 D .13212.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3213.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C .3D .2 14.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( ) A .12 B .122± C .1102± D .3222± 15.已知复数z 满足()12i z +=,则复数z 的虚部为( )A .1B .1-C .iD .i -二、填空题16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.17.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm . 18.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.19.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.20.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.21.若45100a b ==,则122()a b+=_____________.22.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.23.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.24.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 25.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题26.已知函数()ln f x x x =.(1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)27.选修4-5:不等式选讲:设函数()13f x x x a =++-.(1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.28.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.29.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC(Ⅱ)求二面角11A BB C --的余弦值.30.已知0,0a b >>.(1)211ab a b≥+ ;(2)若a b >,且2ab =,求证:224a b a b +≥-.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.B3.C4.C5.A6.B7.D8.B9.D10.A11.C12.B13.B14.A15.B二、填空题16.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主17.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为18.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A时直线19.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x)n的展开式中通项公式:Tr+1(3x)r=3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n=4故答案为4【点睛】本题考20.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小21.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基22.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H点则底面三角形的外接圆半径23.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图24.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率25.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据函数图象理解二分法的定义,函数f(x)在区间[a,b]上连续不断,并且有f(a)•f (b)<0.即函数图象连续并且穿过x轴.【详解】解:能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)•f(b)<0A、B中不存在f(x)<0,D中函数不连续.故选C.本题考查了二分法的定义,学生的识图能力,是基础题.2.B解析:B【解析】【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果.【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=,样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3.C解析:C【解析】【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键. 4.C解析:C【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算. 5.A【解析】【分析】通过(0)1f=,和函数f(x)>0恒成立排除法易得答案A.【详解】2||()x xf x e-=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.6.B解析:B【解析】【分析】利用复数的运算法则解得1iz=-+,结合共轭复数的概念即可得结果.【详解】∵复数z满足21iiz=-,∴()()()2121111i iiz ii i i+===---+,∴复数z的共轭复数等于1i--,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.7.D解析:D【解析】【分析】【详解】由已知α=-2p+2q=(-2,2)+(4,2)=(2,4),设α=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得2λμ=⎧⎨=⎩∴α=0m+2n,∴α在基底m, n下的坐标为(0,2).8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .9.D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于1a >,所以1x x a y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.10.A解析:A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.11.C解析:C【解析】试题分析:先求得M(2,32,3)点坐标,利用两点间距离公式计算得CM=532,故选C.考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算.12.B解析:B【解析】【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
圆的方程-2023届高考数学二轮专题必考点专练(含解析)
专专9.2圆的专专一、单选题1. 已知圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,a ,b为正实数,则ab 的最大值为 ( )A. B.94C.32D.22. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A. [2,6]B. [4,8]C.D.3. 已知圆2260x y x +-=,过点(1,2)D 的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 44. 已知圆M 的方程为22680x y x y +--=,过点(0,4)P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( )A. 30B. 40C. 60D. 805. 在平面直角坐标系xOy 中,已知点,,若动点M 满足||2||MA MO =,则OM ON ⋅的取值范围是( )A.B.C.D.6. 若平面内两定点A ,B 之间的距离为2,动点P 满足|||PB PA =,则tan ABP∠的最大值为( )A.2B. 1C.D. 7. 已知圆22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点,过点P 作圆M 的切线PA ,PB ,且切点为A ,B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++= 8. 已知圆221x y +=,点(1,0)A ,ABC 内接于圆,且60BAC ︒∠=,当B ,C 在圆上运动时,BC 中点的轨迹方程是( )A. 2212x y +=B. 2214x y +=C. 2211()22x y x +=<D. 2211()44x y x +=<9. 已知线段AB 是圆C :224x y +=上的一条动弦,且||23AB =,若点P 为直线40x y +-=上的任意一点,则的最小值为( )A. 1B. 1C. 2D. 2二、多选题10. 已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,||PB =D. 当PBA ∠最大时,||PB =11. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1:2,则圆C的方程为( )A. 224()33x y ++= B. 224(33x y +-=C. 224(3x y +=D. 224(3x y ++=12. 关于圆2221:2104C x y kx y k k +-++-+=,下列说法正确的是( ) A. k 的取值范围是0k >B. 若4k =,过(3,4)M 的直线与圆C 相交所得弦长为125160x y --=C. 若4k =,圆C 与圆221x y +=相交D. 若4k =,0m >,0n >,直线10mx ny --=恒过圆C 的圆心,则128m n+恒成立13. 圆C :224630x y x y ++--=,直线:3470l x y --=,点P 在圆C 上,点Q在直线l 上,则下列结论正确的是( )A. 直线l 与圆C 相交B. ||PQ 的最小值是1C. 若P 到直线l 的距离为2,则点P 有2个D. 从Q 点向圆C 引切线,切线长的最小值是314. 已知222{(,)|}A x y x y r =+=,222{(,)|()()}B x y x a y b r =-+-=,1122{(,),(,)}A B x y x y ⋂=,则( )A. 22202a b r <+<B. 1212()()0a x x b y y -+-=C. 1212,x x a y y b +=+=D. 221122a b ax by +=+三、填空题15. 已知P ,Q 分别为圆M :22(6)(3)4x y -+-=与圆N :22(4)(2)1x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为__________.16. 在平面直角坐标系xOy 中,A 为直线l :2y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点.D 若0AB CD ⋅=,则点A 的横坐标为__________.17. 已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________.18. 已知圆O :221x y +=和点(2,0)A -,若定点(,0)(2)B b b ≠-和常数λ满足,对圆O 上任意一点M ,都有||||MB MA λ=,则λ=__________.19. 在平面直角坐标系xOy 中,已知直角ABC 中,直角顶点A 在直线60x y -+=上,顶点B ,C 在圆2210x y +=上,则点A 横坐标的取值范围是__________. 四、解答题20. 已知两个定点(4,0)A -,(1,0)B -,动点P 满足||2||.PA PB =设动点P 的轨迹为曲线E ,直线l : 4.y kx =-()Ⅰ求曲线E 的轨迹方程;()Ⅱ若l 与曲线E 交于不同的C ,D 两点,且90(COD O ︒∠=为坐标原点),求直线l的斜率;()Ⅲ若12k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.答案和解析1.【答案】B解:由已知,得圆1C :22()(2)1x a y ++-=的圆心为1(,2)C a -,半径1 1.r = 圆2C :22()(2)4x b y -+-=的圆心为2(,2)C b ,半径2 2.r =圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,1212,||C C r r ∴=+即3a b +=, 由基本不等式,得29()24a b ab +=,取等号时32a b ==, 故选:.B2.【答案】A解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||4422AB =+=,点P 到直线20x y ++=的距离为ABP 的高h , 圆的圆心为(2,0),半径为2,圆心到直线的距离为:,所以点P 到直线的距离h 的最大值为22232+=,最小值为2222-=,则ABP 面积为,最大值为1223262⨯⨯=, 最小值为122222⨯⨯=, 所以ABP 面积的取值范围为[2,6]. 故选.A解:由圆的方程可得圆心坐标(3,0)C ,半径3r =,且点D 在圆内,设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ===所以最小的弦长||2AB ==, 故选.B4.【答案】B解:圆 M 的标准方程为 22(3)(4)25x y -+-=, 即圆是以 (3,4)M 为圆心,5为半径的圆,且由 22(03)(44)925-+-=<,即点 (0,4)P 在圆内, 则最短的弦是以 (0,4)P 为中点的弦, 所以 225()92AC =+,所以 8AC =, 过 (0,4)P 最长的弦 BD 为直径, 所以 10BD =,且 AC BD ⊥, 故而故选.B5.【答案】D解:设(,)M x y ,因为动点M 满足||||MA MO = 则222222(2)22(2)8x y x y x y ++=+⇒+-=,即(,)(1,0)[OM ON x y x ⋅=⋅=∈-, 故选.D解:以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系, 如图,则(1,0)A ,(1,0)B -,设,2222(1)2(1)x y x y ++=-+,整理得:2222610(3)8x y x x y +-+=⇒-+=,根据图象可知,当BP 为圆C 切线时,tan ABP ∠取得最大值, 此时BP == 则tan 1PC ABP PB ∠===, 故选:.B7.【答案】D解:圆M 方程的圆心(1,1)M ,半径2r =, 根据切线的性质及圆的对称性可知PM AB ⊥, 则||||42||||PAMPM AB SPA AM ⋅==⋅,要使||||PM AB ⋅最小,只需最小,即最小,此时PM l ⊥,min |212|||55PM ++∴==,22||||||1PA PM AM =-=, 过点M 且垂直于l 的方程为11(1)2y x -=-,将其与l 的方程联立,解得(1,0)P -, 以PM 为直径的圆的方程为,结合圆M 的方程两式相减可得直线AB 的方程为210x y ++=, 故选.D(,)P x y8.【答案】D解:设BC 中点是D ,圆周角等于圆心角的一半,120BOC ︒∴∠=,60BOD ︒∠=,在直角三角形BOD 中,有12OD =, 故中点D 的轨迹方程是:2214x y +=, 考虑A ,B 重合的极限情况,此时30OAC ︒∠=, 则直线AC 所在的方程为3333y x =-, 联立,得或故C 的横坐标为12-,AC 的中点横坐标为1.4因为A ,B 不重合,所以D 点横坐标14x <, 故选:.D9.【答案】C解:由题意,过圆心C 作CD AB ⊥交AB 于点D ,又圆C :224x y +=,圆心为(0,0)C ,半径2r =, 所以,则||||2||2||PA PB PC CA PC CB PC CD PD +=+++=+=, 当PC AB ⊥时,且D 在线段PC 上时,||PD 取最小值, 由点C 到直线40x y +-=的距离,所以,所以的最小值为42 2.-故选.C10.【答案】ACD解:由点(4,0)A ,(0,2)B , 可得直线AB 的方程为240.x y +-=则圆心(5,5)=,故P 到直线AB 410<,42<,所以A 正确,B 错误.由题意可知,当直线PB 与圆相切时,PBA ∠最大或最小, 由于圆心到B 的距离为,此时,故C ,D 都正确.故选.ACD11.【答案】AB解:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π, 设圆心(0,)a ,半径为 r , 则sin13r π=,cos||3r a π=,解得r =243r =,||3a =,即3a =±,故圆C 的方程为224(.33x y +±= 故选.AB12.【答案】ACD解:对于A ,若方程22212104x y kx y k k +-++-+=表示圆,则,化简得0k >,故A 正确;对于B ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.过(3,4)M 的直线的斜率不存在时,直线方程为3x =,圆心到直线3x =的距离为1,则过(3,4)M 的直线与圆 C 相交所得弦长为2222123-=; 过(3,4)M 的直线的斜率存在时,设直线的斜率为k , 则直线方程为,即430kx y k -+-=,设圆心到直线430kx y k -+-=的距离为d ,因为弦长为23,则222223d -=,解得1d =, 故,解得125k =, 所以直线方程为,即125160x y --=,故满足条件的直线方程为3x =或125160x y --=, 故B 错误;对于C ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.圆221x y +=的圆心为,半径为1,所以两圆心间的距离为,又21521-<<+,故两圆相交,故C 正确;对于D ,若4k =,则圆C 的圆心为,又直线10mx ny --=恒过圆C 的圆心,则21m n +=,又0m >,0n >, 则444248m n m n m n m=++⨯= 当且仅当224n m =,即11,42m n ==时等号成立, 故D 正确. 故选.ACD13.【答案】BCD解:圆的方程化为标准形式为,圆心为,半径 4.r =圆心C 到直线l 的距离为22|3(2)437|543(4)d ⨯--⨯-==>+-,∴直线l 与圆C 相离,不相交,故选项A 错误;||PQ 的最小值为541-=,故选项B 正确;圆C 上的点到l 的距离最小值为541-=,最大值为549+=,2(1,9)∈,∴圆C 上到直线l 的距离为2的点P 有2个,故选项C 正确;Q 到圆C 的切线QT ,T 为切点,则,当||QC 最小时||QT 最小,||QC 的最小值等于C 到直线l 的距离5d =,22||543QT ∴=-=最小值,故选项D 正确.故选.BCD14.【答案】BCD解:设两圆相交于111(,)P x y ,222(,)P x y ,圆,圆C :222()()x a y b r -+-=,则02||OC r <<,即22204a b r <+<,故A 错误,两圆方程相减可得直线12P P 的方程为:22220a b ax by +--=,即2222ax by a b +=+, 分别把111(,)P x y ,222(,)P x y 两点代入2222ax by a b +=+得:221122ax by a b +=+,222222ax by a b +=+,两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,故BD 正确; 由圆的性质可知:线段12P P 与线段OC 互相平分,12x x a ∴+=,12y y b +=,故C 正确,故选:.BCD15.【答案】3解:如图所示,因为圆N :22(4)(2)1x y ++-=关于x 轴对称的圆为圆G :22(4)(2)1x y +++=, 则||||AP AQ +的最小值为22||12105355 3.MG --=+-=-故答案为55 3.-16.【答案】3解:设(,2)A a a ,0a >,(5,0)B ,5(,)2a C a +∴, 则圆C 的方程为(5)()(2)0.x x a y y a --+-=联立2(5)()(2)0y x x x a y y a =⎧⎨--+-=⎩,解得(1,2).D223215(5,2)(,2)240.22a a a AB CD a a a a a ----∴⋅=--⋅-=+-= 解得:3a =或 1.a =-又0a >, 3.a ∴=即A 的横坐标为3.故答案为:3.17.【答案】22(1)(2)4x y -+-=解:圆C 的圆心在第一象限,且在直线2y x =上,故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故有|1||2|a a +=,解得1a =,或1(3a =-舍去),故半径为2, 则圆C 的方程为22(1)(2)4x y -+-=,故答案为:22(1)(2) 4.x y -+-=18.【答案】12解:根据题意,设(,)M x y ,若||||MB MA λ=,变形可得222||||MB MA λ=,即222222()(2)x b y x y λλ-+=++,又由221x y +=,则变形可得:2221245b bx x λλ+-=+, 则有2225142b bλλ⎧=+⎨=-⎩, 解可得1(2λ=负值舍去),12b =-; 故答案为:1.219.【答案】[4,2]--解:如图过直线60x y -+=上点P 作圆2210x y +=的切线,当两条切线垂直时,根据,得4OPB π∠=, 所以, 则由题意得,设(,6)A x x +,则22(6)25x x ++,即2680x x ++,解得42x --,所以点A 横坐标的取值范围是[4,2].--故答案为[4,2].--20.【答案】解:(1)设点P 坐标为(,)x y ,由||2||PA PB ==, 平方可得22228164(21)x y x x y x +++=+++,整理得:曲线E 的轨迹方程为224x y +=; (2)直线l 的方程为4y kx =-,依题意可得三角形COD 为等腰直角三角形,圆心到直线的距离为1||2CD =则d ==,k ∴=;(3)由题意可知:O ,Q ,M ,N 四点共圆且在以OQ 为直径的圆上, 设1(,4)2Q t t -,以OQ 为直径的圆的方程为1()(4)02x x t y y t -+-+=, 即:22(4)02t x tx y y -+--=,又M ,N 在曲线E :224x y +=上,可得MN 的方程为1(4)402tx t y +--=, 即()4(1)02y x t y +-+=,由0210y x y ⎧+=⎪⎨⎪+=⎩得121x y ⎧=⎪⎨⎪=-⎩, ∴直线MN 过定点1(,1).2-。
高考数学拔尖必刷压轴题(选择题、填空题)专题16取对数(新高考地区专用)含解析
1专题16 取对数【巩固训练】1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b 2. 设实数0m >,若对任意的x e ≥,不等式2ln 0m x x x me -≥恒成立,则m 的最大值是( ).1.A e .3e B .C e .2D e 3.若存在正实数x ,y ,z 满足223310y z yz +≤,且ln ln ey x z z -=,则x y 的最小值为 .4.若函数()x f x a =(0a >且1a ≠)的定义域[m ,n ] 上的值域是[m 2,n 2](1<m <n ),则实数a 的取值范围是 .5. 若函数2()x f x a x =-(1a >)有且只有三个零点,则实数a 的取值范围是 .6.已知变量12,(0,)x x m ∈(0m >),且12x x <,若2112x x x x <恒成立,则实数m 的最大值是 .2 【答案与提示】1.【答案】A2. 【答案】C 【提示一】2ln 0m x x x me -≥变形为ln ln mx x m x e e x⋅≥⋅,构造函数()()0x g x xe x =>,等价转化为ln m x x≥,即ln m x x ≤,只需()min ln m x x e ≤=,答案为C . 【提示二】2ln 0mx x x me -≥变形为ln ln mx x m x e e x⋅≥⋅,两边取对数ln(ln )ln ln m m x x x x+≥+,构造函数()()ln 0g x x x x =+>,该函数单增,故等价转化为ln m x x≥,即ln m x x ≤,只需()min ln m x x e ≤=,答案为C . 3 【答案】 【提示】133y z ≤≤,ln x ey z z =,令y t z =,133t ≤≤,ln ln ln ln x x z et t y z y =+=-.4.【答案】2(1,)e e【提示】方法同例1.5. 【答案】2(1,)e e【提示】2x a x =,取对数得ln 2ln ax x =,即2ln ln x a x =,分离函数转化为2ln x y x=、ln y a =有三个交点.6.【答案】e 【提示】211212211212ln ln ln ln x x x x x x x x x x x x <⇔<⇔<,则ln ()x f x x=单增. 2e。
{高中试卷}高考数学选择题常考考点专练[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高考数学选择题常考考点专练161、若{a n }是等比数列,a 4a 7=-512, a 3+a 8=124, 且公比q 是整数,则a 10等于( )。
(A )256 (B )-256 (C )512 (D )-512 2、已知数列{2n -11},那么有最小值的S n 是( )。
(A )S 1 (B )S 5 (C )S 6 (D )S 113、如果x n =(1-21)(1-31)(1-41)……(1-n1),则∞→n lim x n 等于( )。
(A )0 (B )1 (C )21(D )不确定4、数列的通项公式是a n =(1-2x)n ,若∞→n lim a n 存在,则x 的取值范围是( )。
(A )[0,21] (B )[0, -21] (C )[0, 1] (D )[0,- 1] 5、不等式x 2-x +1>0的解集是( )。
(A ){x| x<231i-或x>231i +} (B )R (C )ο/(D )以上都不对6、已知方程x 2+(k +2i)x +2+ki =0至少有一个实根,那么实数k 的取值范围是( )。
(A )k ≥22或k ≤-22(B )-22≤k ≤22 (C )k =±22 (D )k =227、已知集合P ={x| (x -1)(x -4)≥0},Q ={n| (n +1)(n -5)≤0, n ∈N}与集合S ,且S ∩P ={1, 4},S ∩Q =S ,那么集合S 的元素的个数是( )。
(A )2个(B )2个或4个(C )2个或3个或4个(D )无穷多个 8、有四位司机,四位售票员分配到四辆公共汽车上,使每辆车分别有一位司机和一名售票员,则可能的分配方案数是( )。
(A )88A (B )48A (C )4444A A ⋅(D )44A9、有4个学生和3名教师排成一行照相,规定两端不排教师,那么排法的种数是( )。
高考数学《集合》专项练习(选择题含答案)
《集合》专项练习参考答案1.(2019全国Ⅰ卷, 文1, 5分)设集合, , 则A ∩B =( )(A ){1, 3} (B ){3, 5} (C ){5, 7} (D ){1, 7}【解析】集合A 与集合B 的公共元素有3, 5, 故}5,3{=B A I , 故选B .2.(2019全国Ⅱ卷, 文1, 5分)已知集合, 则A ∩B =( )(A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<, 所以{|33}B x x =-<<, 因为{1,2,3}A =, 所以{1,2}A B =I , 故选D .3.(2019全国Ⅲ卷, 文1, 5分)设集合{0,2,4,6,8,10},{4,8}A B ==, 则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念, 得{0,2,6,10}A B =ð, 故选C .4.(2019全国Ⅰ卷, 理1, 5分)设集合, , 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得, x 1=1, x 2=3, 所以A ={x |1<x <3}(大于取两边, 小于取中间).对于集合B :2x -3>0, 解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2019全国Ⅱ卷, 理1, 5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限, 则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限, 应满足3010m m +>⎧⎨-<⎩, 解得31m -<<,故选A .6.(2019全国Ⅲ卷, 理1, 5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>, 则S ∩T =( )(A) [2, 3] (B)(-∞ , 2]U [3, +∞) (C) [3, +∞) (D)(0, 2]U [3, +∞)7.(2019北京, 文1, 5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或, 则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2【解析】画数轴得, , 所以, 故选C .8.(2019北京, 理1, 5分)已知集合, , 则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2, 两边同时平方得x 2<4, 解方程x 2=4得, x 1=-2, x 2=2, 所以A ={x |-2<x <2}(大于取两边, 小于取中间).所以A ∩B ={-1, 0, 1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1, 0, 1}.故选C . 9.(2019上海, 文理1, 5分)设x ∈R , 则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x , 故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1, 两边同时平方得(x -3)2<1, 解方程(x -3)2=1得, x 1=2, x 2=4, 所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1, 解得2<x <4).A ={x |2<x <4}. 10.(2019山东, 文1, 5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===, 则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2019山东, 理2, 5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0, ∴A ={y |y >0}.对于集合B :∵x 2-1=0, 解得x =±1, ∴B ={x |-1<x <1}(大于取两边, 小于取中间).∴A ∪B =(1,)-+∞12.(2019四川, 文2, 5分)设集合A ={x |1≤x ≤5}, Z 为整数集, 则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z I , 由Z 为整数集得Z ={…-3, -2, -1, 0, 1, 2, 3…}.故A Z I 中元素的个数为5, 选B .13.(2019四川, 理1, 5分)设集合{|22}A x x =-≤≤, Z 为整数集, 则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-【答案】C【解析】由题意, 知{2,1,0,1,2}A =--Z I , 由Z 为整数集得Z ={…-3, -2, -1, 0, 1, 2, 3…}.故A I Z 中元素的个数为5, 选C .14.(2019天津, 文1, 5分)已知集合}3,2,1{=A , },12|{A x x y y B ∈-==, 则A B I =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A 【解析】∵},12|{A x x y y B ∈-==, ∴当x =1时, y =2×1-1=1;当x =2时, y =2×2-1=3;当x =3时, y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2019天津, 理1, 5分)已知集合}{4,3,2,1=A , }{A x x y y B ∈-==,23, 则=B A I(A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23, ∴当x =1时, y =3×1-2=1;当x =2时, y=3×2-2=4;当x =3时, y =3×3-2=7;当x =4时, y =4×3-2=10. ∴{14710}{14}B =A B =I ,,,,,.选D .16.(2019浙江, 文1, 5分)已知全集U ={1, 2, 3, 4, 5, 6}, 集合P={1, 3, 5}, Q ={1, 2, 4}, 则U P Q U ()ð=( ) A .{1} B .{3, 5} C .{1, 2, 4, 6} D .{1, 2, 3, 4, 5}【答案】C17.(2019浙江, 理1, 5分)已知集合P ={x ∈R |1≤x ≤3}, Q ={x ∈R |x 2≥4}, 则P ∪(C R Q )=( )A .[2, 3]B .(-2, 3]C .[1, 2)D .(−∞, −2]∪[1, +∞)【答案】B 【解析】对于集合Q :∵x 2=4, 解得x =±2, ∴B ={x |x ≤-2或x ≥2}(大于取两边, 小于取中间). 18.(2019江苏, 文理1, 5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______. 【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I.故答案应填:{}1,2-19.(2015全国Ⅰ卷, 文1, 5分)已知集合A ={x |x =3n +2, n ∈N}, B ={6, 8,10, 12, 14}, 则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2, 5, 8, 11, 14, 17, …}, 又B ={6, 8, 10, 12, 14}, 所以A∩B ={8, 14}.20.(2015全国Ⅱ卷, 文1, 5分)已知集合A ={x |-1<x <2}, B ={x |0<x <3}, 则A ∪B =( )A .(-1, 3)B .(-1, 0)C .(0, 2)D .(2, 3) 【答案】A【解析】因为A =(-1, 2), B =(0, 3), 所以A ∪B =(-1, 3), 故选A . 21.(2014全国Ⅰ卷, 文1, 5分)已知集合M ={x |-1<x <3}, N ={x |-2<x <1},则M∩N =( )A .(-2, 1)B .(-1, 1)C .(1, 3)D .(-2, 3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷, 文1, 5分)已知集合A ={-2, 0, 2}, B ={x |x 2-x -2=0}, 则A∩B =( )A .∅B .{2}C .{0}D .{-2} 【答案】B【解析】∵集合A ={-2, 0, 2}, B ={x |x 2-x -2=0}={2, -1}, ∴A∩B ={2}, 故选B . 23.(2013全国Ⅰ卷, 文1, 5分)已知集合A ={1, 2, 3, 4}, B ={x |x =n 2,n ∈A}, 则A∩B =( ) A .{1, 4} B .{2, 3} C .{9, 16} D .{1, 2} 【答案】A 【解析】∵B ={x |x =n 2, n ∈A}={1, 4, 9, 16}, ∴A∩B ={1, 4}, 故选A . 24.(2013全国Ⅱ卷, 文1, 5分)已知集合M ={x |-3<x <1}, N ={-3, -2, -1, 0, 1}, 则M∩N =( )A .{-2, -1, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1} 【答案】C【解析】由题意得M∩N ={-2, -1, 0}.选C . 25.(2018全国卷, 文1, 5分)已知集合A ={x |x 2-x -2<0}, B ={x |-1<x <1}, 则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2}, B ={x |-1<x <1}, 则B ⊂≠A, 故选B . 26.(2018全国卷, 文1, 5分)已知集合M ={0, 1, 2, 3, 4}, N ={1, 3,5}, P =M∩N , 则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个 【答案】B 【解析】由题意得P =M∩N ={1, 3}, ∴P 的子集为⌀, {1}, {3}, {1, 3}, 共4个.27.(2018全国卷, 文1, 5分)已知集合, 则(A )(0, 2)(B )[0, 2](C )|0, 2|(D )|0, 1, 2|【解析】, , 选D2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I30.(2007全国卷, 文1, 5分)设{|210}S x x =+>, {|350}T x x =-<, 则S T ⋂=A .∅B .1{|}2x x < C .5{|}3x x > D .15{|}23x x -<< 【答案】D .28.(2009全国卷, 文2, 5分)设集合A ={4, 5, 7, 9}, B ={3, 4, 7, 8, 9}, 全集, 则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】, .故选A . 29.(2008全国卷, 文1, 5分)已知集合M ={x |(x +2)(x -1)<0}, N ={x |x +1<0}, 则M∩N =( )A.(-1, 1)B.(-2, 1)C.(-2, -1)D.(1, 2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x xU A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。
高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 3,右焦点到一条渐近 线的距离为 2,则此双曲线的焦距等于( ) A. 3 B.2 3 C.3 D.6
答案 B
|bc+0| 解析 由题意,得焦点 F(c,0)到渐近线 bx+ay=0 的距离为 d= a2+b2 =bcc=b= 2,又ac= 3,c2=a2+b2,解得 c= 3,所以该双曲线的焦距为 2c=2 3,故选 B.
A.若 x1+x2=6,则|PQ|=8 B.以 PQ 为直径的圆与准线 l 相切 C.设 M(0,1),则|PM|+|PP1|≥ 2 D.过点 M(0,1)与抛物线 C 有且仅有一个公共点的直线至多有 2 条 答案 ABC
解析 对于 A,因为 p=2,所以 x1+x2+2=|PQ|,则|PQ|=8,故 A 正 确;对于 B,设 N 为 PQ 的中点,点 N 在 l 上的射影为 N1,点 Q 在 l 上的射 影为 Q1,则由梯形性质可得|NN1|=|PP1|+2 |QQ1|=|PF|+2 |QF|=|P2Q|,故 B 正 确;对于 C,因为 F(1,0),所以|PM|+|PP1|=|PM|+|PF|≥|MF|= 2,故 C 正确;对于 D,显然直线 x=0,y=1 与抛物线只有一个公共点,设过 M 斜 率存在的直线的方程为 y=kx+1,联立yy= 2=k4xx+,1,可得 k2x2+(2k-4)x+1 =0,令 Δ=0,则 k=1,所以直线 y=x+1 与抛物线也只有一个公共点,此 时有三条直线符合题意,故 D 错误.故选 ABC.
三、填空题 9.若直线 2x+4y+m=0 经过抛物线 y=2x2 的焦点,则 m=________.
2022年高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 16 Word版含答案
考点测试16 导数的应用(二)一、基础小题1.函数f(x)=x3-3x2+2在区间上的最大值是( )A.-2 B.0C.2 D.4答案 C解析令f′(x)=3x2-6x=0,得x=0,x=2(舍去).比较f(-1),f(0),f(1)的大小知f(x)max=f(0)=2.2.已知对任意实数x,都有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0答案 B解析由题意知f(x)是奇函数,g(x)是偶函数.当x>0时,f(x),g(x)都单调递增,则当x<0时,f(x)单调递增,g(x)单调递减,即f′(x)>0,g′(x)<0.3.若曲线f(x)=x,g(x)=xα在点P (1,1)处的切线分别为l1,l2,且l1⊥l2,则实数α的值为( ) A.-2 B.2C.12D.-12答案 A解析f′(x)=12x,g′(x)=αxα-1,所以在点P处的斜率分别为k1=12,k2=α,由于l1⊥l2,所以k1k2=α2=-1,所以α=-2,选A.4.若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )A.上单调递增,在(0,+∞)上单调递减,又f(-2)=1,f(3)=1,∴f(x2-6)>1可化为-2<x2-6<3,∴2<x<3或-3<x<-2.7.若0<x1<x2<1,则( )A.e x2-e x1>ln x2-ln x1B.e x2-e x1<ln x2-ln x1C.x2e x1>x1e x2D.x2e x1<x1e x2答案 C解析构造函数f(x)=e x-ln x,则f′(x)=e x-1x,故f(x)=e x-ln x在(0,1)上有一个极值点,即f(x)=e x-ln x在(0,1)上不是单调函数,无法推断f(x1)与f(x2)的大小,故A、B错;构造函数g(x)=e xx,则g′(x)=x e x-e xx2=e x x-1x2,故函数g(x)=e xx在(0,1)上单调递减,故g(x1)>g(x2),x2e x1>x1e x2,故选C.8.已知f(x)=ln x-x4+34x,g(x)=-x2-2ax+4,若对任意的x1∈(0,2],存在x2∈,使得f(x1)≥g(x2)成立,则a的取值范围是( )A.⎣⎢⎡⎭⎪⎫54,+∞B.⎣⎢⎡⎭⎪⎫-18,+∞C.⎣⎢⎡⎦⎥⎤-18,54D.⎝⎛⎦⎥⎤-∞,-54答案 A解析 由于f ′(x )=1x -34×1x 2-14=-x 2+4x -34x 2=-x -1x -34x 2,易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,2]上单调递增,故f (x )min =f (1)=12.对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下,所以其在区间上的最小值在端点处取得,即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈,使得f (x 1)≥g (x 2)成立,只需f (x 1)min ≥g (x 2)min ,即12≥g (1)且12≥g (2),所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54. 二、高考小题9.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中肯定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.10.设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-32e ,1B .⎣⎢⎡⎭⎪⎫-32e ,34 C .⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由f (x 0)<0,即e x0 (2x 0-1)-a (x 0-1)<0, 得e x0 (2x 0-1)<a (x 0-1).当x 0=1时,得e<0,明显不成立,所以x 0≠1.若x 0>1,则a >ex2x 0-1x 0-1.令g (x )=ex2x -1x -1,则g ′(x )=2x e x ⎝ ⎛⎭⎪⎫x -32x -12.当x ∈⎝ ⎛⎭⎪⎫1,32时,g ′(x )<0,g (x )为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,g ′(x )>0,g (x )为增函数, 要满足题意,则x 0=2,此时需满足g (2)<a ≤g (3),得3e 2<a ≤52e 3,与a <1冲突,所以x 0<1.由于x 0<1,所以a <ex 02x 0-1x 0-1.易知,当x ∈(-∞,0)时,g ′(x )>0,g (x )为增函数, 当x ∈(0,1)时,g ′(x )<0,g (x )为减函数,要满足题意,则x 0=0,此时需满足g (-1)≤a <g (0), 得32e≤a <1(满足a <1).故选D. 11.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开头下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35xB .y =2125x 3-45x C .y =3125x 3-xD .y =-3125x 3+15x答案 A解析 依据题意知,所求函数在(-5,5)上单调递减.对于A ,y =1125x 3-35x ,∴y ′=3125x 2-35=3125(x 2-25),∴∀x ∈(-5,5),y ′<0,∴y =1125x 3-35x 在(-5,5)内为减函数,同理可验证B 、C 、D 均不满足此条件,故选A.12.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案 C解析 f ′(x )=3πm cos πxm,∵f (x )的极值点为x 0, ∴f ′(x 0)=0,∴3πmcos πx 0m=0,∴πmx 0=k π+π2,k ∈Z ,∴x 0=mk +m2,k ∈Z .又∵x 20+2<m 2,∴⎝ ⎛⎭⎪⎫mk +m 22+⎣⎢⎡⎦⎥⎤3sin ⎝⎛⎭⎪⎫k π+π22<m 2,k ∈Z , 即m 2⎝ ⎛⎭⎪⎫k +122+3<m 2,k ∈Z .∵m ≠0,∴⎝ ⎛⎭⎪⎫k +122<m 2-3m2,k ∈Z .又∵存在x 0满足x 20+2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k +122min ,∴m 2-3m 2>⎝ ⎛⎭⎪⎫122,∴m 2-3>m 24, ∴m 2>4,∴m >2或m <-2,故选C.13.设x 3+ax +b =0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是____________.(写出全部正确条件的编号)①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2. 答案 ①③④⑤解析 设f (x )=x 3+ax +b .当a =-3,b =-3时,f (x )=x 3-3x -3,f ′(x )=3x 2-3,令f ′(x )>0,得x >1或x <-1;令f ′(x )<0,得-1<x <1,故f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=-1,f (1)=-5,f (3)=15,故方程f (x )=0只有一个实根,故①正确.当a =-3,b =2时,f (x )=x 3-3x +2,易知f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=4,f (1)=0,x →-∞时,f (x )→-∞,从而方程f (x )=0有两个根,故②错.当a =-3,b >2时,f (x )=x 3-3x +b ,易知f (x )的极大值为f (-1)=2+b >0,微小值为f (1)=b -2>0,x →-∞时,f (x )→-∞,故方程f (x )=0有且仅有一个实根,故③正确.当a =0,b =2时,f (x )=x 3+2,明显方程f (x )=0有且仅有一个实根,故④正确.当a =1,b =2时,f (x )=x 3+x +2,f ′(x )=3x 2+1>0,则f (x )在(-∞,+∞)上为增函数,易知f (x )的值域为R ,故f (x )=0有且仅有一个实根,故⑤正确.综上,正确条件的编号有①③④⑤. 三、模拟小题14.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m 的取值范围为( )A .(-∞,2]B .(-∞,3]C .已知函数f (x )=m -1-x 2(e≤x ≤2e)(e 为自然对数的底数)与g (x )=2-5ln x 的图象上存在关于x 轴对称的点,则实数m 的取值范围是( )A . D .答案 D解析 由题意可知,方程m -1-x 2=5ln x -2在上有解,即m =x 2+5ln x -1在上有解.令h (x )=x 2+5ln x -1,h ′(x )=2x +5x,易知h (x )在上单调递增,所以h (x )在上的最小值为e 2+5-1=e 2+4,最大值为(2e)2+5ln 2e -1=4e 2+5ln 2+4.所以实数m 的取值范围是.故选D.16.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ∈,b ∈(2,3],函数f (x )在区间上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .上单调递减,则有f ′(x )≤0在上恒成立,即不等式3x 2-2tx +3≤0在上恒成立,即有t ≥32⎝ ⎛⎭⎪⎫x +1x 在上恒成立,而函数y =32⎝ ⎛⎭⎪⎫x +1x 在上单调递增,由于a ∈,b ∈(2,3],当b =3时,函数y =32⎝ ⎛⎭⎪⎫x +1x 取得最大值,即y max =32⎝ ⎛⎭⎪⎫3+13=5,所以t ≥5,故选D.17.已知f (x )=12x 2+b x +c (b ,c 是常数)和g (x )=14x +1x 是定义在M ={x |1≤x ≤4}上的函数,对于任意的x ∈M ,存在x 0∈M 使得f (x )≥f (x 0),g (x )≥g (x 0),且f (x 0)=g (x 0),则f (x )在M 上的最大值为( )A .72 B .5 C .6D .8答案 B解析 由于g (x )=14x +1x≥214=1(当且仅当x =2时等号成立),所以f (2)=2+b2+c =g (2)=1,c =-1-b2,所以f (x )=12x 2+b x -1-b 2,f ′(x )=x -b x 2=x 3-bx 2.由于f (x )在x =2处有最小值,所以f ′(2)=0,即b =8,所以c =-5,f (x )=12x 2+8x -5,f ′(x )=x 3-8x 2,所以f (x )在上单调递减,在上单调递增,而f (1)=12+8-5=72,f (4)=8+2-5=5,所以函数f (x )的最大值为5,故选B. 18.已知函数f (x )=ax 3+x 2-ax (a ∈R ,且a ≠0).假如存在实数a ∈(-∞,-1],使得函数g (x )=f (x )+f ′(x ),x ∈(b >-1)在x =-1处取得最小值,则实数b 的最大值为________.答案17-12解析 依题意,f ′(x )=3ax 2+2x -a ,g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(2-a )x -a ,则g (x )≥g (-1)在区间上恒成立,即(x +1)≥0 ①,当x =-1时,不等式①成立,当-1<x ≤b 时,不等式①可化为ax 2+(2a +1)x +1-3a ≥0 ②,令h (x )=ax 2+(2a +1)x +1-3a ,由a ∈(-∞,-1]知其图象是开口向下的抛物线,故h (x )在闭区间上的最小值必在端点处取得,又h (-1)=-4a >0,则不等式②成立的充要条件是h (b )≥0,整理得b 2+2b -3b +1≤-1a ,则该不等式在a ∈(-∞,-1]上有解,即b 2+2b -3b +1≤⎝ ⎛⎭⎪⎫-1a max =1,得-1<b ≤17-12,故实数b 的最大值为17-12.一、高考大题1.设函数f (x )=αcos2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解 (1)f ′(x )=-2αsin2x -(α-1)sin x . (2)当α≥1时,|f (x )|=|αcos2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)·cos x -1. 设t =cos x ,则t ∈,令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得最小值,最小值为g ⎝ ⎛⎭⎪⎫1-α4α=-α-128α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去),或α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-α4α. 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-α4α-|g (-1)|=1-α1+7α8α>0, 所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-α4α=α2+6α+18α.综上,A =⎩⎪⎨⎪⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34>1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .2.已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)争辩f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈成立.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=ax 2-2x -1x3. 当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a x -1x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时, f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③a >2时,0<2a<1,当x ∈⎝ ⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝ ⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3 =x -ln x +3x +1x 2-2x3-1,x ∈.设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈.则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0,可得g (x )≥g (1)=1. 当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈内单调递减.由于φ(1)=1,φ(2)=-10, 所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号. 所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈成立.3.已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),争辩h (x )零点的个数. 解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0.解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3上单调递减,在⎝⎛⎭⎪⎫-a3,1上单调递增,故在(0,1)中,当x =-a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a3-a 3+14. a .若f ⎝⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)上无零点;b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点;c .若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.二、模拟大题 4.已知函数f (x )=x ln xx -1-a (a <0). (1)当x ∈(0,1)时,求f (x )的单调性;(2)若h (x )=(x 2-x )·f (x ),且方程h (x )=m 有两个不相等的实数根x 1,x 2.求证:x 1+x 2>1. 解 (1)f ′(x )=x -1-ln xx -12,设g (x )=x -1-ln x ,则g ′(x )=1-1x,∴当x ∈(0,1)时,g ′(x )<0,∴g (x )>g (1)=0,∴f ′(x )>0,∴f (x )在(0,1)上单调递增. (2)证明:∵h (x )=x 2ln x -ax 2+ax (a <0),∴h ′(x )=2x ln x +x -2ax +a ,设g (x )=2x ln x +x -2ax +a , ∴g ′(x )=2ln x -2a +3,∵y =g ′(x )在(0,+∞)上单调递增, 当x →0时,g ′(0)<0,g ′(1)=3-2a >0,∴必存在t ∈(0,1),使得g ′(t )=0,即2ln t -2a +3=0, ∴y =h ′(x )在(0,t )上单调递减,在(t ,+∞)上单调递增.又当x →0时,h ′(0)<0,h ′(1)=1-a >0. 设h ′(x 0)=0,则x 0∈(0,1),∴y =h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 又h (1)=0,不妨设x 1<x 2则0<x 1<x 0,x 0<x 2<1,由(1)知⎩⎪⎨⎪⎧fx 1<f x 0,fx 2>f x 0⇒⎩⎪⎨⎪⎧h x 1>f x 0x 21-x 1,hx 2<f x 0x 22-x 2,∴f (x 0)(x 22-x 2)>h (x 2)=h (x 1)>f (x 0)(x 21-x 1), ∴(x 22-x 2)-(x 21-x 1)=(x 2-x 1)(x 2+x 1-1)>0, ∴x 1+x 2>1.5.已知函数f (x )=e x-ax 2,曲线y =f (x )在x =1处的切线方程为y =bx +1. (1)求a ,b 的值;(2)求函数f (x )在上的最大值;(3)证明:当x >0时,e x +(1-e)x -x ln x -1≥0.解 (1)f ′(x )=e x-2ax ,由题意,得f ′(1)=e -2a =b ,f (1)=e -a =b +1,解得a =1,b =e -2.(2)解法一:由(1)知,f (x )=e x -x 2,∴f ′(x )=e x-2x ≥x +1-2x ≥1-x ≥0,x ∈, 故f (x )在上单调递增,f (x )max =f (1)=e -1. 解法二:由(1)知,f (x )=e x-x 2,∴f ′(x )=e x -2x ,令g (x )=f ′(x ),则g ′(x )=e x-2. 由g ′(x )>0,得x >ln 2;由g ′(x )<0,得0<x <ln 2.∴g (x )=f ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, ∴f ′(x )≥f ′(ln 2)=2-2ln 2 >0, ∴f (x )在上单调递增,∴f (x )max =f (1)=e -1.(3)证明:∵f (0)=1,又由(2)知,f (x )的图象过点(1,e -1),且y =f (x )在x =1处的切线方程为y =(e -2)x +1,故可猜想:当x >0,x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方.下面证明:当x >0时,f (x )≥(e-2)x +1.设m (x )=f (x )-(e -2)x -1,x >0,则m ′(x )=e x-2x -(e -2),设h (x )=e x-2x -(e -2),则h ′(x )=e x-2.由(2)知,m ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增. 又m ′(0)=3-e>0,m ′(1)=0,0<ln 2<1, ∴m ′(ln 2)<0.∴存在x 0∈(0,1),使得m ′(x 0)=0,∴当x ∈(0,x 0)∪(1,+∞)时,m ′(x )>0; 当x ∈(x 0 ,1)时,m ′(x )<0.故m (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增. 又m (0)=m (1)=0,∴m (x )=e x-x 2-(e -2)x -1≥0(当且仅当x =1时取等号). ∴e x+2-e x -1x≥x ,x >0.由(2)知,e x≥x +1,∴x ≥ln (x +1),∴x -1≥ln x ,当且仅当x =1时取等号. ∴e x+2-e x -1x ≥x ≥ln x +1,即e x+2-e x -1x≥ln x +1.∴e x +(2-e)x -1≥x ln x +x ,即e x+(1-e)x -x ln x -1≥0成立,当且仅当x =1时等号成立. 6.已知函数f (x )=e x-x +122,g (x )=2ln (x +1)+e -x.(1)x ∈(-1,+∞)时,证明:f (x )>0; (2)a >0,若g (x )≤ax +1,求a 的取值范围.解 (1)证明:令p (x )=f ′(x )=e x -x -1,则p ′(x )=e x-1,在(-1,0)上,p ′(x )<0,p (x )单调递减;在(0,+∞)上,p ′(x )>0,p (x )单调递增. 所以p (x )的最小值为p (0)=0,即f ′(x )≥0,所以f (x )在(-1,+∞)上单调递增,即f (x )>f (-1)>0. (2)令h (x )=g (x )-(ax +1),则h ′(x )=2x +1-e -x-a , 令q (x )=2x +1-e -x-a ,则q ′(x )=1ex -2x +12.由(1)得q ′(x )<0,则q (x )在(-1,+∞)上单调递减. ①当a =1时,q (0)=h ′(0)=0且h (0)=0.在(-1,0)上,h ′(x )>0,h (x )单调递增;在(0,+∞)上,h ′(x )<0,h (x )单调递减. 所以h (x )的最大值为h (0),即h (x )≤0恒成立. ②当a >1时,h ′(0)<0, 在(-1,0)上,h ′(x )=2x +1-e -x-a <2x +1-1-a , 令2x +1-1-a =0,解得x =1-aa +1∈(-1,0). 在⎝⎛⎭⎪⎫1-a a +1,0上,h ′(x )<0,h (x )单调递减,又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立冲突. ③当0<a <1时,h ′(0)>0, 在(0,+∞)上,h ′(x )=2x +1-e -x-a >2x +1-1-a , 令2x +1-1-a =0,解得x =1-a a +1∈(0,+∞). 即在⎝ ⎛⎭⎪⎫0,1-a a +1上,h ′(x )>0,h (x )单调递增, 又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立冲突. 综上,a 的取值为1.。
高中数学经典高考难题集锦(解析版) (3)
2015年10月18日姚杰的高中数学组卷一.选择题(共16小题)1.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1 B.C.2 D.32.(2010•四川)半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是()A.B.C.D.3.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P ﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关4.(2009•宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A.48+12 B.48+24 C.36+12 D.36+245.(2003•天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π6.(2013秋•禄劝县校级期中)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.27.(2010•安徽模拟)如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=()A.10 B.15 C.20 D.258.(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()A.1:1 B.1:2 C.2:1 D.3:29.(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C10.(2007•安徽)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为()A.B.πC.D.11.(2006•浙江)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是()A.B.C.D.12.(2006•江苏)两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()A.1个B.2个C.3个D.无穷多个13.(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对14.(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.28015.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)16.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.0二.填空题(共4小题)17.(2010•江西)如图,在三棱锥O﹣ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为.18.(2011•河北)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.19.(2012•贾汪区校级模拟)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.20.(2004•黑龙江)下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是(写出所有真命题的编号).三.解答题(共10小题)21.(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.22.(2009•山东)两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.23.(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.24.(2005•上海)已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.(1)求a的值.(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.25.(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.26.(2001•北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?27.由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.28.有一直圆锥,另外有一与它同底同高的直圆柱,假设a是圆锥的全面积,a′是圆柱的全面积,试求圆锥的高与母线的比值.29.(2004•上海)如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P﹣ABC为正四面体;(2)若PD=DA=求二面角D﹣BC﹣A的大小;(结果用反三角函数值表示)(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.30.如图,长方形框架ABCD﹣A′B′C′D′,三边AB、AD、AA′的长分别为6、8、3.6,AE 与底面的对角线B′D′垂直于E.(1)证明A′E⊥B′D′;(2)求AE的长.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共16小题)1.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()h==a,﹣h=2.(2010•四川)半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是()A.B.C.D.BAC=BAC=BAC=AN=RMN=MON=.3.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P ﹣EFQ的体积()A.与x,y都有关B.与x,y都无关4.(2009•宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()6=54=12,另两个侧面三角形的面积都是15+12=48+125.(2003•天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()题考查的知识点是球的体积和表面积公式,由棱长都为R=R=的正方体,内接正四面体的棱长为6.(2013秋•禄劝县校级期中)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()7.(2010•安徽模拟)如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=()r=8.(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()AB9.(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2C,则由此可得10.(2007•安徽)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为()A.B.πC.D.BOD=,.11.(2006•浙江)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是()A.B.C.D.在该球面上的球面距离为12.(2006•江苏)两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()13.(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()14.(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()15.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是(),SD=,则有2+)16.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()二.填空题(共4小题)17.(2010•江西)如图,在三棱锥O﹣ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为S3<S2<S1.18.(2011•河北)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.;由此可以求得球心到圆锥底面的距离是,所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:故答案为:19.(2012•贾汪区校级模拟)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.DG=..20.(2004•黑龙江)下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是②④(写出所有真命题的编号).三.解答题(共10小题)21.(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.,解得.的取值范围是(﹣,22.(2009•山东)两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.,再根据当,将函数转化为:)由题意得时,,当且仅当上存在一点,的距离为23.(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.表示出来,转化为求函数在上有解,问题转化为求函数[,,的取值范围是⇔∈24.(2005•上海)已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.(1)求a的值.(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.=2+求解+=2+=2+,=,即t=(+++x()≥.1+25.(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.,,且时,只需,矛盾,舍去.时,只需..的取值范围为26.(2001•北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(解不等式得27.由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.,,28.有一直圆锥,另外有一与它同底同高的直圆柱,假设a是圆锥的全面积,a′是圆柱的全面积,试求圆锥的高与母线的比值.,消去,R=,代入可得=a'L这个关于29.(2004•上海)如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P﹣ABC为正四面体;(2)若PD=DA=求二面角D﹣BC﹣A的大小;(结果用反三角函数值表示)(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.PD=DA=设直平行六面体的棱长均为,,体积为sinPM=AM=,由DMA=arcsin设直平行六面体的棱长均为,体积为sin的体积是,∴<,底面相邻两边夹角为30.如图,长方形框架ABCD﹣A′B′C′D′,三边AB、AD、AA′的长分别为6、8、3.6,AE 与底面的对角线B′D′垂直于E.(1)证明A′E⊥B′D′;(2)求AE的长.×,.。
通用版2020版高考数学大二轮复习专题突破练16热点小专题二球与多面体的内切外接理
专题突破练16 热点小专题二球与多面体的内切、外接一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.πC.8πD.4π2.(2019江西九江一模,文9)《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺(如图).”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球的表面上,则该球体的表面积为()A.46π平方尺B.41π平方尺C.40π平方尺D.36π平方尺3.(2019山东济宁一模,理9)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为()A.πB.πC.6πD.8π4.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为()A.13B.4C.2D.25.(2019山东潍坊二模,理8)一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A.6πB.12πC.32πD.48π6.(2019北京朝阳一模,理7改编)某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的外接球的体积为()A.4πB.2πC.6πD.4π7.已知A,B是球O的球面上两点,∠AOB=9 °,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π8.如图②,需在正方体的盒子内镶嵌一个小球,使得镶嵌后三视图均为图①所示,且面A1C1B截得小球的截面面积为,则该小球的体积为()A. B. C. D.9.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A.32πB.48πC.24πD.16π10.(2019四川第二次诊断,理10)已知一个几何体的正视图,侧视图和俯视图均是直径为10的圆(如图),这个几何体内接一个圆锥,圆锥的体积为27π,则该圆锥的侧面积为()A.9πB.12πC.10πD.11.(2019山西吕梁一模,文12)四棱锥S-ABCD中,底面ABCD为矩形,AD=4,AB=2,且SA+SD=8,当该四棱锥的体积最大时,其外接球的表面积为() A.20π B.25πC.πD.π12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A. B. C. D.二、填空题13.(2019四川成都二模,理14)已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为.14.(2019河北唐山一模,理15)在四面体ABCD中,AB=BC=1,AC=,且AD⊥CD,该四面体外接球的表面积为.15.(2019湖南六校联考,理15)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD为阳马,侧棱PA⊥底面ABCD,且PA=3,BC=AB=4,设该阳马的外接球半径为R,内切球半径为r,则=.16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.参考答案专题突破练16热点小专题二球与多面体的内切、外接1.A解析设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=,则r=所以该球的表面积为4π×()2=12π,故选A.2.B解析由已知得球心在几何体的外部,设球心到几何体下底面的距离为x,则R2=x2+2=(x+1)2+2,解得x=2,∴R2=,∴该球的表面积S=41π.故选B.3.A解析根据几何体的三视图可知几何体为底面为腰长为 的直角等腰三角形,高为2的直三棱柱.设外接球的半径为R,则(2R)2=()2+()2+22,解得R=,所以V=()3=故选A.4.A解析由题意可知,直三棱柱ABC-A1B1C1的外接球O的半径R=,故球O的直径为13.故选A.5.B解析如图,在四面体ABCD中,∠ABD=∠ABC=∠BCD=∠ACD=9 °,AB=BC=CD=2,可得BD=2,AD=2,设AD的中点为O,连接OB,OC,则OB=OC=OA=OD,所以AD的中点O即为外接球的球心,故球O半径为,其表面积为12π,故选B.6.D解析由三视图得该几何体的直观图如图所示.将该三棱锥补形为正方体,如图所示.所以该三棱锥的外接球的体积等于补形后正方体外接球的体积,所以球的直径等于正方体的体对角线长,即2R==2,所以球的体积为V=()3=47.C解析由△AOB的面积确定可知,若三棱锥O-ABC的底面OAB上的高最大,则其体积最大.因为高最大为半径R,所以V O-ABC=R2×R=36,解得R=6,故S球=4πR2=144π.8.B解析设正方体盒子的棱长为2a,则内切球的半径为a,平面A1BC1是边长为2a的正三角形,且球与以点B1为公共点的三个面的切点恰为△A1BC1三边的中点,∴所求截面的面积是该正三角形的内切圆的面积,则由图得,△A1BC1内切圆的半径是a×tan °=a,则所求的截面圆的面积是π·a2=a2=,故a=1,∴该小球的体积为V球=13=9.A解析由题意画出几何体的直观图如图,把A,B,C,D扩展为三棱柱,上下底面中心的中点与A的距离为球的半径,AD=2AB=6,OE=3,△ABC是正三角形,AE=3=,AO==2故所求球的体积为(2)3=3210.A解析几何体的轴截面如图所示,设圆锥的底面半径为r,由题意可得π×r2×(-+5)=27π,解得r=3,所以该圆锥的侧面积为6π9=9故选A.11.D解析当点S到底面ABCD的距离最大时,四棱锥的体积最大,这时△SAD为等边三角形,S到底面ABCD的距离为2 且平面SAD⊥平面ABCD.设球心O到平面ABCD的距离OE=x,则由OD=OS,得x2+5=(2-x)2+1,所以x=,所以四棱锥外接球的半径R= 9,所以四棱锥外接球的表面积为S=4πR2=故选D.12.A解析∵SC是球O的直径,∴∠CAS=∠CBS=9 °.∵BA=BC=AC=1,SC=2,∴AS=BS=取AB的中点D,显然AB⊥CD,AB⊥SD,∴AB⊥平面SCD.=-, 在△CDS中,CD=,DS=,SC=2,利用余弦定理可得cos∠CDS=-·∴sin∠CDS=,∴S△CDS=,故V=V B-CDS+V A-CDS=S△CDS×BD+S△CDS×AD=S△CDS×BA=1=13.3π解析(法一)如图,取CD的中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=-设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即R2=2+-R2,解得R=∴球O的表面积为4πR2=3π.(法二)∵AB=AC=AD=1,BC=CD=BD=,∴由勾股定理的逆定理得三棱锥的三个侧面都是全等的直角三角形,将三棱锥补形为正方体,则其外接球的直径为正方体的体对角线,∴2R=,故球O的表面积为4πR2=3π.14.2π解析如图所示,由AB=BC=1,AC=,得AB⊥BC,所以△ABC和△DAC都是直角三角形.△ABC 外接圆的圆心是AC的中点,△DAC外接圆的圆心也是AC的中点,且两个三角形的外接圆都是球的大圆,所以球半径R=AC=,所以S球=4πR2=2π.15解析易知该阳马补形所得到的长方体的体对角线为外接球的直径,所以(2R)2=AB2+AD2+AP2=42+42+32=41,R=因为侧棱PA⊥底面ABCD,且底面为正方形,所以内切球O1在侧面PAD内的正视图是△PAD的内切圆,则内切球半径为1,故16.36π解析取SC的中点O,连接OA,OB.因为SA=AC,SB=BC,所以OA⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,且OA⊂平面SAC,所以OA⊥平面SBC.设OA=r,则V A-SBC=S△SBC×OA=2r×r×r=r3,所以r3=9,解得r=3.所以球O的表面积为4πr2=36π.。
2023年高考数学二轮复习讲练测专题16 函数与导数常见经典压轴小题全归类(原卷版)
专题16函数与导数常见经典压轴小题全归类【命题规律】1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.【核心考点目录】核心考点一:函数零点问题之分段分析法模型核心考点二:函数嵌套问题核心考点三:函数整数解问题核心考点四:唯一零点求值问题核心考点五:等高线问题核心考点六:分段函数零点问题核心考点七:函数对称问题核心考点八:零点嵌套问题核心考点九:函数零点问题之三变量问题核心考点十:倍值函数核心考点十一:函数不动点问题核心考点十二:函数的旋转问题核心考点十三:构造函数解不等式核心考点十四:导数中的距离问题核心考点十五:导数的同构思想核心考点十六:不等式恒成立之分离参数、分离函数、放缩法核心考点十七:三次函数问题核心考点十八:切线问题核心考点十九:任意存在性问题核心考点二十:双参数最值问题核心考点二十一:切线斜率与割线斜率核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离)核心考点二十三:两边夹问题和零点相同问题核心考点二十四:函数的伸缩变换问题【真题回归】1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .12.(2022·全国·统考高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 3.(多选题)(2022·全国·统考高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.5.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.6.(2022·全国·统考高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2022·浙江·统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.8.(2022·全国·统考高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 9.(2022·北京·统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【方法技巧与总结】1、求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、含有抽象函数的分段函数,在处理时首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响).3、含分段函数的不等式在处理上通常有两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解;另一种是通过作出分段函数的图象,数形结合,利用图象的特点解不等式.4、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5、动态二次函数中静态的值:解决这类问题主要考虑二次函数的有关性质及式子变形,注意二次函数的系数、图象的开口、对称轴是否存在不变的性质,二次函数的图象是否过定点,从而简化解题.6、动态二次函数零点个数和分布问题:通常转化为相应二次函数的图象与x 轴交点的个数问题,结合二次函数的图象,通过对称轴,根的判别式,相应区间端点函数值等来考虑.7、求二次函数最值问题,应结合二次函数的图象求解,有三种常见类型: (1)对称轴变动,区间固定; (2)对称轴固定,区间变动; (3)对称轴变动,区间也变动.这时要讨论对称轴何时在区间之内,何时在区间之外.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.8、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点…具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.增区间:(), x -∞,0∆≤恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223b x x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d=+++的两个不相等的极值点,那么:① 若()()120f x f x ⋅>,则()f x 有且只有1个零点; ② 若()()120f x f x ⋅<,则()f x 有3个零点; ③ 若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.9、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.10、对于三次函数图象的切线问题,和一般函数的研究方法相同.导数的几何意义就是求图象在该店处切线的斜率,利用导数研究函数的切线问题,要区分“在”与“过”的不同,如果是过某一点,一定要设切点坐标,然后根据具体的条件得到方程,然后解出参数即可.11、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.12、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.13、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.14、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.15、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 16、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.【核心考点】核心考点一:函数零点问题之分段分析法模型 【典型例题】例1.(2023·浙江奉化·高二期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭例2.(2023·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦例3.(2023·湖南·长沙一中高三月考(文))设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1]e+B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+核心考点二:函数嵌套问题 【典型例题】例4.(2023·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6例5.(2023·全国·高三专题练习(文))已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( ) A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1例6.(2023·河南·高三月考(文))已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -核心考点三:函数整数解问题 【典型例题】例7.(2023·福建宁德·高三)当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的最大值为( ) A .2-B .1-C .0D .1例8.(2023·江苏·苏州大学附属中学高三月考)已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .21C .26D .30例9.(2023·江苏宿迁·高一月考)用符号[x ]表示不超过x 的最大整数(称为x 的整数部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,设函数f (x )=(1﹣ln x )(ln x ﹣ax )有三个不同的零点x 1,x 2,x 3,若[x 1]+[x 2]+[x 3]=6,则实数a 的取值范围是( ) A .10,e ⎛⎫⎪⎝⎭B .ln 31,3e ⎛⎫⎪⎝⎭ C .ln 21,2e ⎡⎫⎪⎢⎣⎭ D .ln 2ln 3,23⎡⎫⎪⎢⎣⎭ 核心考点四:唯一零点求值问题 【典型例题】例10.(2023·安徽蚌埠·模拟预测(理))已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则a =( )A .0B .12-C .1D .2例11.(2023·辽宁沈阳·模拟预测)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3例12.(2023·新疆·莎车县第一中学高三期中)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或1核心考点五:等高线问题 【典型例题】例13.(2023·陕西·千阳县中学模拟预测(理))已知函数2()log 1f x x =-,若方程()f x a =(0)a >的4个不同实根从小到大依次为1x ,2x ,3x ,4x ,有以下三个结论:①142x x +=且232x x +=;②当1a =时,12111x x +=且34111x x +=;③21340x x x x +=.其中正确的结论个数为( ) A .0 B .1 C .2 D .3例14.(2023·江苏省天一中学高三月考)已知函数2()(2)x f x x x e =-,若方程()f x a =有3个不同的实根()123123x x x x x x <<,,,则22ax -的取值范围为( ) A .10e⎡⎫-⎪⎢⎣⎭,B.1e⎡-⎢⎣⎭C.()D.(例15.(2023·浙江·高一单元测试)已知函数(){}2max ,32f x x x =-,其中{},max ,,p p q p q q p q ≥⎧=⎨<⎩,若方程()()302f x ax a =+>有四个不同的实根1x 、2x 、3x 、()41234x x x x x <<<,则1423x x x x ++的取值范围是( )A .93,102⎫⎛-- ⎪⎝⎭B .193,102⎫⎛-- ⎪⎝⎭C .39,210⎫⎛- ⎪⎝⎭D .319,210⎫⎛- ⎪⎝⎭核心考点六:分段函数零点问题 【典型例题】例16.(2023·山东青岛·高三期末)已知函数2|ln(1),1()(2),1x x f x x x ⎧+-=⎨+≤-⎩,若方程()0f x m -=有4个不相同的解,则实数m 的取值范围为( ) A .(0,1]B .[0,1)C .(0,1)D .[0,1]例17.(2023·全国·高三专题练习)已知函数2log ,1()11,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()()g x f x kx =-,若函数()g x 有两个零点,则k 的取值范围是( ) A .10,4⎛⎤⎥⎝⎦B .10,ln 2e ⎛⎫ ⎪⎝⎭C .10,e ⎡⎫⎪⎢⎣⎭D .11,42eln ⎡⎫⎪⎢⎣⎭例18.(2023·江苏·高三专题练习)已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ). A .[1,)-+∞B .(,1]-∞-C .[0,)+∞D .[1,0)-核心考点七:函数对称问题 【典型例题】例19.(2023·安徽省滁州中学高三月考(文))已知函数()22ln ,03,02x x x x f x x x x ->⎧⎪=⎨--≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在10kx y +-=的图象上,则实数k 的取值范围是A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭例20.(2023·全国·高一课时练习)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数()f x 的图象上;②P ,Q 关于原点对称,则称点对[],P Q 是函数()f x 的一个“友好点对”(注:点对[],P Q 与[],Q P 看作同一个“友好点对”).已知函数()22log ,04,0x x f x x x x >⎧=⎨--≤⎩,则此函数的“友好点对”有( )A .0个B .1个C .2个D .3个例21.(2023·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有( )A .0对B .1对C .2对D .3对核心考点八:零点嵌套问题 【典型例题】例22.(2023·湖北武汉·高三月考)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e ---的值为( )A .1B .2(1)a -C .1-D .1a -例23.(2023·全国·模拟预测(理))已知函数2()e e x x x ax f x a ⎛⎫=+- ⎪⎝⎭有三个不同的零点123,,x x x (其中123x x x <<),则3122312111e e ex x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1B .1-C .aD .a -例24.(2023·浙江省杭州第二中学高三开学考试)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1a - B .1a - C .-1 D .1核心考点九:函数零点问题之三变量问题 【典型例题】例25.(2023·全国·高三)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e,D .3[)2e+∞, 例26.(2023·山东枣庄·高二期末)对于任意的实数[1,e]x ∈,总存在三个不同的实数y ,使得ln 0ye xy x ay y--=成立,其中e 为自然对数的底数,则实数a 的取值范围是A .2(,)4e -∞-B .2(,0)4e -C .2[,)4e -+∞D .2(,)4e -+∞例27.(2023·四川省新津中学高三月考(理))若存在两个正实数,x y ,使得等式330yx x e ay -=成立,其中e 为自然对数的底数,则实数a 的取值范围为A .2[,)8e +∞B .3(0,]27eC .3[,)27e +∞D .2(0,]8e核心考点十:倍值函数 【典型例题】例28.(河南省郑州市第一中学2022-2023学年高三上学期期中考试数学(理)试题)对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k倍值函数,则实数k 的取值范围是( ) A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭例29.(2023·四川·内江市教育科学研究所高二期末(文))对于函数()y f x =,若存在区间,a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()xf x e =是k 倍值函数,则k 的取值范围为( )A .10,e ⎛⎫⎪⎝⎭B .()1,eC .(),e +∞D .1,e ⎛⎫+∞ ⎪⎝⎭例30.(2023·吉林·长春十一高高二期中(理))对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则k 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .11,1e ⎛⎫+ ⎪⎝⎭D .11,e ⎛⎫++∞ ⎪⎝⎭核心考点十一:函数不动点问题 【典型例题】例31.(2023·广东海珠·高三期末)设函数()f x a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是( ) A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]例32.(2023·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭例33.(2023·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦核心考点十二:函数的旋转问题 【典型例题】例34.(2023·上海市建平中学高三期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数f (x )的图象,关于此函数f (x )有如下四个命题,其中真命题的个数为( ) ①f (x )是奇函数;②f (x )的图象过点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭; ③f (x )的值域是33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;④函数y =f (x )-x 有两个零点. A .4个B .3个C .2个D .1个例35.(2023·山东青岛·高三开学考试)将函数2([3,3])y x =∈-的图象绕点(3,0)-逆时针旋转(0)ααθ≤≤,得到曲线C ,对于每一个旋转角α,曲线C 都是一个函数的图象,则θ最大时的正切值为( )A .32B .23C .1D 例36.(2023·浙江·高三期末)将函数π2sin 0,22x y x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图像绕着原点逆时针旋转角α得到曲线T ,当(]0,αθ∈时都能使T 成为某个函数的图像,则θ的最大值是( )A .π6B .π4C .3π4D .2π3核心考点十三:构造函数解不等式 【典型例题】例37.(2023·江西赣州·高三期中(文))已知函数()()f x x R ∈满足(1)1f =,且()f x 的导数1()2f x '>,则不等式||1(||)22x f x <+的解集为( ) A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1][1,)-∞-+∞例38.(2023·全国·高二课时练习)设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,例39.(2023·全国·高二课时练习)已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,核心考点十四:导数中的距离问题 【典型例题】例40.(2023春•荔湾区期末)设函数22()()(22)f x x a lnx a =-+-,其中0x >,a R ∈,存在0x 使得04()5f x 成立,则实数a 的值是( ) A .15B .25C .12D .1例41.(2023•龙岩模拟)若对任意的正实数t ,函数33()()()3f x x t x lnt ax =-+--在R 上都是增函数,则实数a 的取值范围是( )A .1(,]2-∞B .(-∞C .(-∞D .(-∞,2]例42.(2023•淮北一模)若存在实数x 使得关于x 的不等式2221()22x e a x ax a -+-+成立,则实数a 的取值范围是( ) A .1{}2B .1{}4C .1[2,)+∞D .1[4,)+∞核心考点十五:导数的同构思想 【典型例题】例43.(2023·全国·高三专题练习)已知关于x 的不等式ln ln(1)0x e mx x m ---+≥在(0,)+∞恒成立,则m 的取值范围是( ) A .(]1,1-B .(]1,1e --C .(]1,1e -D .(]1,e例44.(2023·安徽·合肥一中高三月考(理))设实数0m >,若对任意的()1,x ∈+∞,不等式2ln 20mxxe m-≥恒成立,则实数m 的取值范围是( ) A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .[),e +∞例45.(2023·宁夏·石嘴山市第一中学高二月考(理))若对任意()0,x ∈+∞,不等式ln 0ax ae x ->恒成立,则实数a 的取值范围为( )A .1,e e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .1e e ⎛⎫ ⎪⎝⎭,D .(),e +∞核心考点十六:不等式恒成立之分离参数、分离函数、放缩法 【典型例题】例46.(2023·浙江·高三月考)已知函数2()1x f x xe =-,不等式()ln f x mx x ≥+对任意(0,)x ∈+∞恒成立,则实数m 的取值范围是( ) A .(,2]-∞B .[0,2]C .(2,e 1⎤-∞-⎦D .20,1e ⎡⎤-⎣⎦例47.(2023·四川省资中县第二中学高二月考(理))关于x 的不等式()32ln 113x x a x xe x+++-≥对任意0x >恒成立,则a 的取值范围是( ). A .(],1-∞-B .(){},1e -∞⋃C .[],1e --D .(],0-∞例48.(2023·全国·高三专题练习)已知,a b ∈R ,若关于x 的不等式2ln 0x a x a b -+-≥恒成立,则ab 的最大值为_______.核心考点十七:三次函数问题 【典型例题】例49.(2023·全国·高三课时练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例50.(2023·安徽·东至县第二中学高三月考(理))人们在研究学习过程中,发现:三次整式函数()f x 都有对称中心,其对称中心为00(,())x f x (其中0''()0f x =).已知函数32()345f x x x x =-++.若()4,()10f m f n ==,则m n +=( ) A .1B .32C .2D .3例51.(2023·全国·高三月考(文))已知m ,n ,p ∈R ,若三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()3112f f -=<,()()022f f =>,则111a b c ++的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭核心考点十八:切线问题 【典型例题】例52.(2023·云南红河·高三月考(理))下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( )①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠-时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠-时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④例53.(2023·江西·南昌二中高三月考(文))若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为 A .220,e ⎛⎤ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭例54.(2023·全国·高二单元测试)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a <B .e b a >C .0e b a <<D .0e a b <<核心考点十九:任意存在性问题 【典型例题】例55.(2023·河南·郑州外国语中学高三月考(理))若不等式()()()221212log 1log 3,,13x xa x x ++-≥-∈-∞恒成立,则实数a 的范围是( ) A .[0,)+∞B .[1,)+∞C .(,0]-∞D .(,1]-∞.例56.(2023·全国·高三专题练习)已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m≥成立,则m 的范围是( ) A .5,2⎛⎤-∞ ⎥⎝⎦B .(,2]-∞C .(,3]-∞D .(,4]-∞例57.(2023·全国·高二课时练习)已知()()1ln f x x x =+,若k ∈Z ,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( ) A .3B .4C .5D .6核心考点二十:双参数最值问题 【典型例题】例58.(2023·浙江·宁波市北仑中学高三开学考试)已知,a b ∈R ,且0ab ≠,对任意0x >均有()()(ln )0x a b x a x b ----≥,则( ) A .0,0a b <<B .0,0a b <>C .0,0a b ><D .0,0a b >>例59.(2023·山西运城·高三期中(理))已知在函数()()0,0f x ax b a b =+>>,()()ln 2g x x =+,若对2x ∀>-,()()f x g x ≥恒成立,则实数ba的取值范围为( )A .[)0,+∞B .[)1,+∞C .[)2,+∞D .[),e +∞例60.(2023·黑龙江·鹤岗一中高三月考(理))当(1,)x ∈+∞时,不等式ln(1)230(x ax b a --+,b R ∈,0)a ≠恒成立,则ba 的最大值为( )A .1eB .2C .43D .2e核心考点二十一:切线斜率与割线斜率 【典型例题】例61.(2023·广东·佛山一中高三月考)已知函数2()ln (1)1h x a x a x =+-+(0)a < ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( )A .(,0)-∞B .⎛-∞ ⎝⎦C .,⎛-∞ ⎝⎦D .⎫⎪⎪⎝⎭例62.(2023·山西大同·高一期中)已知函数(),()f x g x 是定义在R 上的函数,且()f x 是奇函数,()g x 是偶函数,()()f x g x +=2x ax +,记2()()()g x h x xf x x =+,若对于任意的1212x x <<<,都有()()12120h x h x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭B .(0,)+∞C .(,1]-∞-D .(0,2]例63.(2023·全国·高一课时练习)已知函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,若对任意的1x ,2x ,且12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( )A .()1,+∞B .[)1,8C .()4,8D .[)4,8核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离) 【典型例题】例64.设二次函数2()(2)32f x a x ax =-++在R 上有最大值,最大值为m (a ),当m (a )取最小值时,(a =) A .0B .1C .12D例65.(2023春•绍兴期末)已知函数2()||||f x x a x b =+++,[0x ∈,1],设()f x 的最大值为M ,若M 的最小值为1时,则a 的值可以是( ) AB .0 CD .1例66.(2023•济南模拟)已知函数2()||2x f x ax b x -=--+,若对任意的实数a ,b ,总存在0[1x ∈-,2],使得0()f x m 成立,则实数m 的取值范围是( ) A .1(,]4-∞B .(-∞,1]2C .(-∞,2]3D .(-∞,1]核心考点二十三:两边夹问题和零点相同问题 【典型例题】例67.(2023春•湖州期末)若存在正实数x ,y 使得不等式22414lnx x lny ln y -++-成立,则(xy += ) ABCD 例68.(2023•上饶二模)已知实数x ,y 满足2(436)326x y ln x y e x y +-+--+-,则x y +的值为( ) A .2B .1C .0D .1-例69.(2023•崇明区期末)若不等式(||)sin()06x a b x ππ--+对[1x ∈-,1]恒成立,则a b +的值等于() A .23B .56C .1D .2核心考点二十四:函数的伸缩变换问题 【典型例题】例70.(2023·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( ) A .[]2,3 B .[]1,3 C .[]1,4D .[]2,4例71.(2023·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例72.(2023届山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( ) A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤【新题速递】一、单选题1.(2023·广西南宁·南宁二中校考一模)已知函数()2,01,011x x f x x x x ⎧≤⎪=-≤<⎨≥,若函数()()()22231g x m f x mf x =-+,存在5个零点,则m =( ) A .1B .12C .1或12D .1-2.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .53.(2023·江西景德镇·统考模拟预测)已知函数()11,041,0x xf x x x ⎧+<⎪⎪=⎨⎪->⎪⎩,若()()12f x f x =,则12x x -的最小值为( ) A .4B .92C .143D .54.(2023春·内蒙古赤峰·高三统考阶段练习)已知实数0a >,0b >,1a b +=,则下列说法中,正确的是( ). A .114a b+≤B .存在a ,b ,使得223a b +≥C .22log log 1a b ⋅≤D .存在a ,b ,使得直线10ax by 与圆224x y +=相切5.(2023·全国·高三专题练习)已知()0,2A ,()(),00B t t <,动点C 在曲线T :()2401y x x =≤≤上,若△ABC 面积的最小值为1,则t 不可能为( ) A .4-B .3-C .2-D .1-6.(2023·浙江温州·统考模拟预测)已知P 为直线=1y x --上一动点,过点P 作抛物线2:2C x y =的两条切线,切点记为A ,B ,则原点到直线AB 距离的最大值为( ) A .1BCD .27.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知0a >,0b >,直线2e y x b -=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .48.(2023春·江苏苏州·高三苏州中学校考阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1二、多选题9.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()e xg 在()0,∞+上是增函数B .1x ∀>,不等式()()2ln f ax f x ≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e10.(2023春·重庆·高三统考阶段练习)已知函数32()e 3xf x ax =-有三个不同的极值点1x ,2x ,3x ,且123x x x <<,则下列结论正确的是( )A .2e 8a >B .11x <-C .2x 为函数()f x 的极大值点D .()23e 3f x <11.(2023春·福建宁德·高三校考阶段练习)已知函数()3f x x ax b =++,其中a ,b 为实数,则下列条件能使函数()f x 仅有一个零点的是( ) A .3a =-,3b =-B .3a =-,2b =C .0a =,3b =-D .1a =,2b =12.(2023春·山东潍坊·高三统考期中)定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()e ()x f x f x -=,且满足22()()21e x f x f x x -'+=+-,则( )A .函数()e ()x F x f x =为偶函数B .(0)0f =C .不等式e ()e e x xxf x +<的解集为(1,)+∞ D .若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 13.(2023·浙江温州·统考模拟预测)若函数()y f x =的图象上存在两个不同的点P ,Q ,使得()f x 在这两点处的切线重合,则称函数()y f x =为“切线重合函数”,下列函数中是“切线重合函数”的是( ) A .sin cos y x x =+ B .(sin c s )o y x = C .sin y x x =+D .2sin y x x =+14.(2023春·江苏南京·高三统考阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 三、填空题15.(2023·河南郑州·高三阶段练习)正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________. 16.(2023·全国·高三校联考阶段练习)已知函数()234202312342023x x x x f x x =+-+-++,()234202312342023x x x x g x x =-+-+--,设()()()53F x f x g x =+⋅-,且函数()F x 的零点均在区间[](a b a b <,,a ,)b Z ∈内,则b a -的最小值为__________.17.(2023春·广东广州·高三统考阶段练习)方程e 0x ax a -+=有唯一的实数解,实数a 的取值范围为__________.18.(2023春·山东·高三山东省实验中学校考阶段练习)已知函数()()23e ,? 0e ,? 0x x xf x x a x ⎧->=⎨-≤⎩,若()()12f x f x =,且12x x -的最大值为4,则实数a 的值为_______.19.(2023·全国·高三专题练习)若存在0a >,0b >,满足(2e )ln (2e )ln a t b a b t b a a +-=-,其中e 为自然对数的底数,则实数t 的取值范围是___________.20.(2023·四川资阳·统考模拟预测)若2224ln x ax a x ->,则a 的取值范围是______.。
【精品】备战2020年高考理科数学之高频考点专题专题16 空间向量与立体几何(学生版)
专题16 空间向量与立体几何考点1 利用空间向量证明平行与垂直调研1 如图,在正方体1111ABCD A B C D-中,O是AC的中点,E是线段1D O上一点,且1D E EOλ=⋅u u u u r u u u r.(1)求证:11DB CD O⊥平面;(2)若平面CDE ⊥平面1CD O ,求λ的值. 【答案】(1)证明见解析;(2)2λ=.【解析】(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,则1111(0,0,0),(1,1,1),(,,0),(0,1,0),(0,0,1)22D B O C D ,于是1111(1,1,1),(,,0),(0,1,1)22DB OC CD ==-=-u u u u r u u u u r u u u r ,因为1110,0DB CD DB OC ⋅=⋅=u u u r u u u r u u u u u u ru r ,所以111,DB CD DB OC ⊥⊥, 故11DB CD O ⊥平面.(2)由(1)可知1CD O 平面的一个法向量为1(1,1,1)DB ==u u u u rm , 由1D E EO λ=⋅u u u u r u u u r,则1(,,)2(1)2(1)(1)E λλλλλ+++,设平面CDE 的法向量为(,,)x y z =n ,由·0,0CD DE =⋅=u u u r u u u r n n ,得0,02(1)2(1)(1)y x y zλλλλλ=⎧⎪⎨++=⎪+++⎩∴可取(2,0,)λ=-n ,因为1CD O CED ⊥平面平面,所以·0,2λ=∴=m n .☆技巧点拨☆直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.考点2 求空间角题组一 求异面直线所成的角调研1 如图所示,在三棱锥P –ABC 中,P A ⊥平面ABC ,D 是棱PB 的中点,已知P A =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .−3010 B .−305 C .305D .3010【答案】D【解析】因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP uu r =(−4,2,2),AD uuu r =(2,0,1).所以cos 〈AD uuu r ,CP uu r 〉=||||AD CPAD CP ⋅⋅uuu r uu ruuur uu r =-65×26=−3010. 设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD uuu r ,CP uu r〉|=3010.调研 2 在正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是ABCD 【答案】D【解析】以点D 为原点,DA 、DC 、1DD 所在直线分别为x y z 、、轴建立空间直角坐标系,设正方体棱长为1,点P 坐标为(),1,x x x -,则()()11,,,1,0,1BP x x x BC =--=-u u u r u u u u r ,设1BP BC u u u ru u u u r、的夹角为α,则所以当13x =时,cos α取最大值当1x =时,cos α因为11BC AD ∥,所以BP 与1AD 所成角的取值范围是故选D. 【名师点睛】空间向量的引入为求空间角带来了方便,解题时只需通过代数运算便可达到解题的目的,由于两向量夹角的范围为[0,π],因此向量的夹角不一定等于所求的空间角,因此在解题时求得两向量的夹角(或其余弦值)后还要分析向量的夹角和空间角大小间的关系.解题时要根据所求的角的类型得到空间角的范围,并在此范围下确定出所求角(或其三角函数值).☆技巧点拨☆利用向量求异面直线所成的角一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.题组二 求线面角调研3 如图,四棱锥P –ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值. 【答案】(1)见解析;(2) 35.【解析】(1)因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE . 又△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD , 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E −xyz . 则E (0,0,0),C (1,−1,0),D (2,1,0),P (0,0,3). 所以ED →=(2,1,0),EP →=(0,0,3),PC →=(1,−1,−3). 设n =(x ,y ,z )为平面PDE 的法向量.由,得⎩⎨⎧2x +y =0,3z =0.令x =1,可得n =(1,−2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|||||PC PC ⋅⋅uu u ruu ur n n |=35. 所以PC 与平面PDE 所成角的正弦值为35.调研4 如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,AD =M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r.(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBCAD 与直线CN 所成角的余弦值. 【答案】(1)见解析;(2. 【解析】(114PN PB =u u u r u u u r .在P A 上取点EEN ,DE ,Q 1444PN PB PE PA AB ===u u u r u u u r u u r ,,,∴EN ∥AB ,且14EN AB ==,Q M 为CD 的中点,CD=2,∴112DM CD ==,又AB ∥CD ,∴EN ∥DM ,EN =DM ,∴四边形DMNE 是平行四边形,∴MN ∥DE ,又DE ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD .(2)如图所示,过点D 作DH ⊥AB 于H ,则DH ⊥CD .以D 为坐标原点建立空间直角坐标系D −xyz . 则D (0,0,0),M (0,1,0),C (0,2,0),B (2,2,0),A (2,−2,0),P (0,0,4),∴()()2,0,0,0,2,4CB CP ==-u u u r u u u r ,()()2,2,42,2,4AN AP PN AP PB λλ=+=+=-+-u u u r u u u r u u u r u u u r u u u r()22,22,44λλλ=-+-.该平面PBC 的法向量为(),,x y z =n ,则由20240CB x CP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩u u u r u u u r n n ,得02x y z =⎧⎨=⎩,令z =1,得()0,2,1=n .该直线AN 与平面PBC 所成的角为θ,则 ,解得1,3λ=∴()228248,,,,2,2,0333333N CN AD ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r ,,, 设直线AD 与直线CN 所成的角为α所以直线AD 与直线CN.☆技巧点拨☆利用向量求直线与平面所成的角①分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); ②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.直线与平面的夹角计算设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a·μ||a ||μ|=|cos 〈a ,μ〉|.题组三 求二面角调研5 二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB =,3AC =,4BD =,CD = A .45︒ B .60︒ C .120︒D .150︒【答案】B【解析】由已知可得:0,0AB AC AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CD CA AB BD =++u u u r u u u u r u u r u u u r,,∴cos CA 12,即CA ,∴二面角的大小为60°,故选B.【名师点睛】这个题目考查的是立体几何中空间角的求法;解决立体几何的小题,通常有以下几种方法:一是建系法,二是用传统的方法,利用定义直接在图中找到要求的角;还有就是利用空间向量法来解决问题.注意向量夹角必须是共起点的,还有就是异面直线夹角必须是锐角或直角.调研6 如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,BC AD ∥,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PHPC的值. 【答案】(1)23;(2【思路分析】(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各平面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果;(2)设PH PC λ=u u u v u u u v,根据向量坐标表示距离,再根据距离相等解得λ,即为PHPC的值. 【解析】以{},,A AB AP D u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()4,0,0B ,()4,2,0C ,()0,4,0D ,()0,0,4P .(1)易知()0,4,4DP =-u u u r ,()4,2,0DC =-u u u r.设平面PCD 的法向量为()1,,x y z =n ,则1100DP DC ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u v n n ,即440420y z x y -+=⎧⎨-=⎩,令1x =,则2y =,2z =.所以()11,2,2=n .易知平面ACD 的法向量为()20,0,1=n ,P CD A --的余弦值为23. (2)由题意可知,()4,2,4PC =-u u u r ,()4,2,0DC =-u u u r ,设()4,2,4PH PC λλλλ==-u u u r u u u r,则DH DP PH =+=u u u u r u u u r u u u r()4,24,44λλλ--, 因为DC DH ==,化简得23410λλ-+=,所以1λ=或13λ=.点H 异于点C ,所以13λ=调研7 如图,在三棱柱111ABC A B C -中,侧棱1CC ⊥底面ABC ,且122,CC AC BC AC BC ==⊥,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证:CD ∥平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角11A MB C --的余弦值.【答案】(1)见解析;(2)14-. 【思路分析】(1)取线段1AB 的中点E ,连接,DE EM ,可得四边形CDEM 是平行四边形,CD EM ∥,即可证明CD ∥平面1MAB ;(2)以C 为原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求二面角11A MB C --的余弦值. 【解析】(1)取线段1AB 的中点E ,连接,DE EM . ∵1,AD DB AE EB ==,∴1DE BB ∥,且112DE BB =. 又M 为1CC 的中点,∴1CM BB ∥,且112CM BB =, ∴CM DE ∥,且CM DE =,∴四边形CDEM 是平行四边形,∴CD EM ∥. 又EM ⊂平面1,AB M CD ⊄平面1AB M ,∴CD ∥平面1MAB .(2)∵1,,CA CB CC 两两垂直,∴以C 为原点,1,,CA CB CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系C xyz -,如图,∵三棱柱111ABC A B C -中,1CC ⊥平面ABC ,∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1AC =,则由3tanMAC ∠=,得3CM =.设平面1AMB 的一个法向量为(),,x y z =n ,2z =,得3,1x y ==-,即()3,1,2=-n .又平面11BCC B 的一个法向量为()1,0,0CA =u u ur,∴,又二面角11A MB C --的平面角为钝角,∴二面角11A MB C --的余弦值为14-.☆技巧点拨☆利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.题组四 解决探索性问题调研8 如图,在五面体ABCDPE 中,PD ⊥平面ABCD ,∠ADC =∠BAD =90°,F 为棱P A 的中点,PD =BC =2,AB =AD =1,且四边形CDPE 为平行四边形.(1)判断AC 与平面DEF 的位置关系,并给予证明;(2)在线段EF 上是否存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36?若存在,请求出QE 的长;若不存在,请说明理由.【答案】(1) AC ∥平面DEF ,证明见解析;(2) 在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36,此时QE =194. 【解析】(1)AC ∥平面DEF .理由如下: 设线段PC 交DE 于点N ,连接FN ,如图所示,因为四边形PDCE 为平行四边形,所以点N 为PC 的中点, 又点F 为P A 的中点,所以FN ∥AC , 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .(2)假设在线段EF 上存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36,设FQ →=λFE →(0≤λ≤1),如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为PD =BC =2,AB =AD =1,所以CD =2,所以P (0,0,2),B (1,1,0),C (0,2,0),A (1,0,0),所以PB →=(1,1,−2),BC →=(−1,1,0). 设平面PBC 的法向量为m =(x ,y ,z ),则,即⎩⎨⎧ x +y -2z =0,-x +y =0,解得⎩⎨⎧x =y ,z =2x ,令x =1,得平面PBC 的一个法向量为m =(1,1,2). 假设存在点Q 满足条件.由F ⎝⎛⎭⎫12,0,22,E (0,2,2),可得FE →=⎝⎛⎭⎫-12,2,22.由FQ→=λFE →(0≤λ≤1),整理得1)(,2,)22Q λλλ-+,则BQ →=1)(,21,)22λλλ-+--, 因为直线BQ 与平面PBC 所成角的正弦值为36,所以|cos 〈BQ →,m 〉|=|||||BQ BQ ⋅⋅uu u ruu ur m m |=|5λ-1|219λ2-10λ+7=36, 化简可得14λ2-5λ-1=0, 又0≤λ≤1,所以λ=12,故在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36, 且QE=194.调研9 棱台1111ABCD A B C D -的三视图与直观图如图所示. (1)求证:平面11ACC A ⊥平面11BDD B ;(2)在线段1DD 上是否存在一点Q ,使CQ 与平面11BDDB ?若存在,指出点Q 的位置;若不存在,说明理由.【答案】(1)见解析;(2)存在,点Q 在1DD 的中点位置,理由见解析.【思路分析】(1)首先根据三视图特征可得1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥.再由1AA BD ⊥即可得线面垂直,从而得出面面垂直;(2)直接建立空间直角坐标系写出各点坐标求出法向量,再根据向量的夹角公式列等式求出12λ=. 【解析】(1)根据三视图可知1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥. 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 又1AA AC A =I ,所以BD ⊥平面11ACC A .因为BD ⊂平面11BDD B ,所以平面11ACC A ⊥平面11BDD B .(2)以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,根据三视图可知四边形ABCD 为边长为2的正方形,四边形1111A B C D 为边长为1的正方形,1AA ⊥平面ABCD ,且11AA =.所以()11,0,1B ,()10,1,1D ,()2,0,0B ,()0,2,0D ,()2,2,0C . 因为Q 在1DD 上,所以可设()101DQ DD λλ=≤≤u u u r u u u u r.因为()10,1,1DD =-u u u u r ,所以1AQ AD DQ AD DD λ=+=+u u u r u u u u u r u u r u u u r u u u r()()()0,2,00,1,10,2,λλλ=+-=-. 所以()0,2,Q λλ-,()2,,CQ λλ=--u u u r.设平面11BDD B 的法向量为(),,x y z =n ,根据()()()()1,,2,2,00,0,,0,1,10,0x y z BD x y z DD ⎧⎧⋅-=⋅=⎪⎪⇒⎨⎨⋅-=⋅=⎪⎪⎩⎩u u u r u u u ur n n令1x =,可得1y z ==,所以()1,1,1=n .设CQ 与平面11BDD B 所成的角为θ,9==. 所以12λ=,即点Q 在1DD 的中点位置. 调研10 如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E −A 1B −C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB 的值;若不存在,说明理由.【答案】(1)见解析;(2) −77;(3)在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 【解析】(1)∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE ,∴DC ⊥A 1E . 又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE . (2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴1BA uuu r =(−2,0,2),BC uu u r=(2,23,0),易知平面A 1BE 的一个法向量为n =(0,1,0).设平面A1BC的法向量为m =(x ,y ,z ),由1BA uuu r ·m =0,BC uu u r·m =0,得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(−3,1,−3),∴cos 〈m ,n 〉=m·n|m |·|n |=17×1=77.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−77.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t ,0,0)(0≤t ≤2),则1A P uuu r =(t ,0,−2),1A D uuu r=(0,23,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由得⎩⎨⎧23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝⎛⎭⎫2,t 3,t .∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23−t3+3t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .☆技巧点拨☆用向量解决探索性问题的方法1.确定点在线段上的位置时,通常利用向量共线来求.2.确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标. 3.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)已知(2,1,3)=-a ,(1,4,2)=--b ,(7,5,)x =c ,若a ,b ,c 三向量共面,则实数x =A .627 B .637C .607D .6572.(四川省成都市树德中学2019-2020学年高三11月阶段性检测数学试题)如图三棱锥S ABC -中,SA ⊥底面ABC ,AB BC ⊥,2AB BC ==,SA =SC 与AB 所成角的大小为A .90︒B .60︒C .45︒D .30°3.(甘肃省天水市第一中学2020年高三上学期12月月考数学试题)如图1四边形ABCD 与四边形ADEF分别为正方形和等腰梯形,,AD EF AF =∥4,2AD EF ==,沿AD 边将四边形ADEF 折起,使得平面ADEF ⊥平面ABCD ,如图2,动点M 在线段EF 上,,N G 分别是,AB BC 的中点,设异面直线MN 与AG 所成的角为α,则cos α的最大值为A BC D 4.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)在正方体1111ABCD A B C D -中,点M 是1AA 的中点,已知AB =u u u r a ,AD =u u u rb ,1AA =u u u r c ,用a ,b ,c 表示CM u u u u r ,则CM =u u u u r ______. 5.(河南省天一大联考2019-2020学年高三阶段性测试(三)数学试题)在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60BAD ∠=o ,1122AB AA ==,E 、F 分别是线段1AA 、11C D 的中点.(1)求证:BD CE ⊥;(2)求平面ABCD 与平面CEF 所成锐二面角的余弦值.6.(四川省南充市高中2019-2020学年高三第一次高考适应性考试数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,2AB =,BC a =,PA ABCD 底面⊥.(1)当a 为何值时,BD PAC ⊥平面?证明你的结论; (2)当122PA a ==时,求面PDC 与面PAB 所成二面角的正弦值.7.(河北省承德市第一中学2019-2020学年高三上学期12月月考数学试题)如图,已知点H 在正方体1111ABCD A B C D -的对角线11B D 上,∠HDA =60︒.(1)求DH 与1CC 所成角的大小;(2)求DH 与平面1A BD 所成角的正弦值.8.(湖北省“荆、荆、襄、宜四地七校考试联盟2019-2020学年高三上学期10月联考数学试题)已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60o ,求二面角B AD C --的余弦值.9.(广东省广州市番禺区广东仲元中学2019-2020年高三上学期11月月考数学试题)如图1,PAD △是以AD 为斜边的直角三角形,1PA =,BC AD ∥,CD AD ⊥,22AD DC ==,12BC =,将PAD △沿着AD 折起,如图2,使得2PC =.(1)证明:平面PAD ⊥平面ABCD ; (2)求二面角A PB C --大小的余弦值.10.(天津市部分区2019-2020学年高三上学期期末数学试题)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C 的中点,11PA PC ==1111A B B C =1PB ==114A C =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =u u u u r u u u u r,求线段PH 的长度.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15 BC .5D .22.(2017新课标全国Ⅲ理科)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________________.(填写所有正确结论的编号)3.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4.(2018新课标全国Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.5.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017新课标全国Ⅰ理科)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o . (1)证明:平面P AB ⊥平面P AD ;C(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7.(2017新课标全国Ⅱ理科)如图,四棱锥P −ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.8.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.9.(2019年高考全国Ⅰ卷理数)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.10.(2019年高考全国Ⅱ卷理数)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.11.(2019年高考全国Ⅲ卷理数)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。
高考数学总复习考点知识专题讲解16 圆锥曲线光学性质
高考数学总复习考点知识专题讲解专题16 圆锥曲线光学性质知识点一:光学性质概念椭圆的光学性质:从一个焦点发出的照射到椭圆上其反射光线会经过另一个焦点。
双曲线有一个光学性质:从一个焦点发出的照射到双曲线上其反射光线的反向延长线会经过另一个焦点。
抛物线有一个光学性质:从焦点发出的照射到抛物线上其反射光线平行于抛物线开口方向。
知识点二:光学性质定理定理1点P 为椭圆上任一点,1F 、2F 为椭圆的两焦点,则椭圆在P 点处的切线与12F PF ∠的平分线垂直.由于本题证明方法很多,如果是解决小题,我们按照小题小作来解读,根据物理学的反射原理,反射光线等于入射光线,即把椭圆上的点P 处切线看成镜面,那么法线就是12F PF ∠的平分线,所以它们垂直就自然而然了,同理也能推导双曲线.推论1:设椭圆22221x y a b+=(0a >,0b >)的两焦点为1F ,2F ,00(,)P x y (0x ,00y ≠)为椭圆上一点,则12F PF ∠的角平分线所在直线l 的方程为22220000(0)a y x b x y a b x y ---=.根据光学性质可知00(,)P x y 处切线方程为12020=+b yy a xx ,由于P 点处的切线与12F PF ∠的平分线垂直,故12F PF ∠的角平分线所在直线l 的方程为000022()a y b x y y x x =--,即22220000(0)a y x b x ya b x y ---=.【例1】已知点P 为椭圆上任一点,1F 、2F 为椭圆的两焦点,求证椭圆在P 点处的切线与12F PF ∠的平分线垂直.定理2点P 为双曲线上任一点.1F 、2F 为双曲线的两焦点,则双曲线在P 点处的切线与12F PF ∠的平分线重合.推论2 设双曲线22221x y a b-=±(0a >,0b >)的两焦点为1F ,2F ,00(,)P x y (0x ,00y ≠)为双曲线上一点,则12F PF ∠的角平分线所在直线l 的方程.为222200b x x a y y a b -=±. 【例2】已知点P 为双曲线上任一点,1F 、2F 为椭圆的两焦点,求证双曲线在P 点处的切线与12F PF ∠的平分线重合.定理3点P 为抛物线上任一点,F 为拋物线的焦点,过P 作拋物线的准线的垂线,垂足为P ',则拋物线在点P 处的切线与FPP ∠'的平分线重合.证明:设拋物线的方程为22y px =,200(,)2y P y p.利用导数知识易得抛物线在P 点处的切线斜率存在时为0PQ P k y =.又(,0)2pF ,则02202PP py k y p'=-,0PP k '=.由夹角公式可得:0tan ||||1PP PQ PP PQk k PQPP k k y ∠''-=+'=,0220002202tan ||||121PP PQ PP PQ py pk k y y p FPQ py p k k y y p ''---∠==++⋅-2222232000022222220000021||||()2py p py y p p py y y y p y p p y p -----=⋅=⋅--++22022000()1||||p p y p y y y p -+=⋅=+. 即有tan tan QPP FPQ ∠∠'=,所以PQ 为FPP ∠'的平分线.【例3】(2011年高考全国卷II 理15)已知1F 、2F 分别为双曲线C :221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF =________.【例4】(2023•东莞市期末)如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是.【例5】(2023•老唐说题教师群探讨)如图,椭圆焦点三角形的1290F AF ∠=︒,AB 为12F AF ∠的角平分线且2AB BD =,则椭圆离心率为.【例6】(2023•广东期末)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:1F 、2F 是双曲线的左、右焦点,从2F 发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过1F ;当P 异于双曲线顶点时,双曲线在点P 处的切线平分12F PF ∠.若双曲线C 的方程为221916x y -=,则下列结论不正确的是()A .射线n 所在直线的斜率为k ,则44(,)33k ∈-B .当m n ⊥时,12||||32PF PF ⋅= C .当n 过点(7,5)Q 时,光线由2F 到P 再到Q 所经过的路程为13 D .若点T 坐标为(1,0),直线PT 与C 相切,则2||12PF =【例7】(2023•阳信期末)已知椭圆22143x y +=上一点P 位于第一象限,左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,12F PF ∠的角平分线与x 轴交于点G ,与y 轴交于点1(0,)2H -,则()A .四边形12HF PF 的周长为4+.直线1A P ,2A P 的斜率之积为34- C .12||:||3:2FG F G =D .四边形12HF PF 的面积为2【例8】(2023•天河区期末)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线2:C y x =,O 为坐标原点.一束平行于x 轴的光线1l 从点(P m ,1)(1)m >射入,经过C 上的点1(A x ,1)y 反射后,再经C 上另一点2(B x ,2)y 反射后,沿直线2l 射出,经过点Q ,则()A .121y y =-B .延长AO 交直线14x =-于点D ,则D ,B ,Q 三点共线 C .25||16AB =D .若PB 平分ABQ ∠,则4116m =知识点三:光学定理与内心旁心 定理一:椭圆焦点三角形内心如图,I 为12PF F △内切圆的圆心,PI 和12F F 相交于点N (区分切点M ),则①INe IP=.②121212IF F PF F IF F S e S S =-△△△证明:法一(利用角平分线定理+等比定理):1212121222F N F N F N F N IN c e IP F P F P F P F P a+=====+. 法二:(光学定理+中垂线)PI 是)(00y x P ,处切线(切点弦)的中垂线(考虑极限情况,切点看为两个交点的中点),根据中垂线截距定理202ax c x N =,再根据角平分线定理可知e ex a c a x c P F N F IP IN =++==020211,根据等面积法,121212IF F N N P NP NPF F IF F S y c y IN IPy y c y y S S ===---△△△.中垂线截距定理:若B A 、关于直线PQ 对称,可以知道线段AB 被直线PQ 垂直平分,其中(0)P n ,,(0)Q m ,则能得出以下定理(不妨设焦点在x 轴上): 202y c m b =-(椭圆),202y c m b =(双曲线);202x c n a =(椭圆),202x c n a=(双曲线).因为22AB OM b k ak =-⋅(点差法),1AB PQ k k =-⋅,所以22OMPQb a k k =,故220000b a y x y m x =-,即202y c m b =-;同理220000b a y x y x n=-,即202x c n a =.定理二:双曲线焦点三角形旁心旁心定理:I 是12PF F △的旁心,1F I 、2F I 分别是1PF D ∠、2PF D ∠的角平分线.如图,则:ID e IP =,11IF D PF IS e S =△△.证明:法一:(利用外角平分线定理+等比定理):111212121222DIF PIF S ID DF F D DF F D ce S PIPF PF PF PF a -======-△△,法二:(光学定理+中垂线)PD 是)(00y x P ,处切线(切点弦)的中垂线,根据中垂线截距定理202ax c x D =,再根据角平分线定理可知,e a ex c a x c PF DF IP ID =--==020222 【例9】(2023•思明区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1(,0)F c -和2(,0)F c,1(M x 为C 上一点,且△12MF F 的内心为2(I x ,1),则椭圆C 的离心率为()A .35B .25C .13D .12【例10】(2023哈三中高三一模16题)如图,椭圆)0(12222>>=+b a by a x与双曲线)00(12222>>=-n m ny m x ,有公共焦点)0(1,c F -,)0(2,c F ,椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,︒=∠6021PF F ,则=+222131e e ;I 为21F PF ∆的内心,G I F 、、1三点共线,且0=⋅IP GP ,x 轴上点A 、B 满足IP AI λ=,GP BG μ=,则22μλ+的最小值为.知识点四:光学定理与大圆小圆问题1. 椭圆的大圆焦点作椭圆切线的垂线,垂足轨迹是以长轴为直径的圆.这个圆我们称之为大圆.如图,已知椭圆()222210x y a b a b+=>>上点P 处的切线为l ,则过焦点12F F 、作直线l 的垂线,垂足H 的轨迹是以长轴为直径的圆,即为222x y a +=.证明: 如图,作2F H l ⊥,1F H l '⊥.当点P 不在长轴的两个端点时,延长1F P 交2F H 于点Q ,根据椭圆的光学性质可知:切线l 平分2F PQ ∠,故2PQF △是等腰三角形,点H是线段2F Q 的中点.因此,在12F F Q 中,1112222FQ F P PQF P PF OH a ++====,故点H 的轨迹是222()x y a x a +=≠±,同理,H`的轨迹也符合此轨迹方程,当点P 在长轴的两个端点时,此时的射影点(,0)a ±亦满足上述方程.【例11】(2023•连城县月考)如图所示,已知1F ,2F 是椭圆2222:1(0)x y a b a bΓ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A .直线B .圆C .椭圆D .双曲线2.大圆性质拓展如图,已知椭圆()222210x y C a b a b+=>>:上点P 处的切线为l ,且焦点12F F 、在直线l 上的垂足分别为G 、H ,设12F PF θ∠=,椭圆的上顶点为B ,左右顶点分别为1A 、2A ,则:(1) 212FG F H b =; (2)直角梯形12F F GH 的面积的为2sin S a θ=,又12F BF θ≤∠,故212max12,22,02a F BF S bc F BF ⎧π⎛⎫∠≥ ⎪⎪⎪⎝⎭=⎨π⎛⎫⎪<∠< ⎪⎪⎝⎭⎩;证明(1) 法一:设1F P m =,2F P n =,则2cos 11θPF G F =,2cos 22θPF H F =222222212411cos ()42cos 2224m n c m n c mn FG F H mn mn mn b θθ+-+++-=====.法二延长1MF 交大圆222x y a +=于点I ,根据对称性,有21F H F I =,再利用相交弦定理,则212111112()()FG F H FG F I A F F A a c a c b ===-+=.(2) 利用椭圆的光学性质,如图所示,延长1F P 交2F H 于点N ,过点N 作//GH MN 交G F 1延长线于点M,因此,2121111111()()sin cos 222222S FG F H MN FG MG MN F M MN F N θθ=+=+==,又1122F N F P PF a =+=,则2214sin cos sin 222S a a θθθ==. 注意:大题在证明光学性质时比较麻烦,建议参考例题方式书写大题,那样其实也不难.【例12】已知椭圆22143x y +=,圆224x y +=,直线2y x =与椭圆交于点A ,过A 作椭圆的切线交圆于M 、N 两点(M 在N 的左侧),则12MF NF =.【例13】(2023•南充模拟)设点1(,0)F c -,2(,0)F c 分别是椭圆222:1(1)x C y a a+=>的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅的最小值为0. (1)求椭圆C 的方程;(2)如图,动直线:l y kx m =+与椭圆C 有且仅有一个公共点,点M ,N 是直线l 上的两点,且1F M l ⊥,2F N l ⊥,求四边形12F MNF 面积S 的最大值.3.双曲线的小圆焦点在双曲线切线上的垂足轨迹是以实轴为直径的圆,我们称之为小圆.如图,已知双曲线()222210,0x y a b a b-=>>上点P 处的切线为l ,则焦点12F F 、在直线l上的射影点H 的轨迹是以实轴为直径的圆,即为222x y a +=.【例14】已知双曲线221916x y -=的两焦点分别为12F F 、,P 为双曲线上一动点,过点1F 作12F PF ∠平分线所在直线的垂线,则垂足M 的轨迹方程为( ).A .229x y +=B .2216x y +=C .229x y -=D .2216x y -=【例15】(多选)设双曲线22:14x C y -=左右焦点分别为1F ,2F ,设右支上一点P 与2F 所连接的线段为直径的圆为圆1O ,以实轴为直径的圆为圆2O ,则下列结论正确的有() A .圆1O 与圆2O 始终外切B .若2F P 与渐近线垂直,则2F P 与圆2O 相切 C .12F PF ∠的角平分线与圆1O 相切D .三角形12F PF 的内心和外心最短距离为2【例16】(2023•江苏模拟)已知椭圆22:143y x C +=,点0(P x ,0)y 为椭圆C 在第一象限的点,12F F 为椭圆的左、右焦点,点P 关于原点的对称点为Q . (1)设点Q 到直线1PF ,2PF 的距离分别为1d ,2d ,求12d d 取值范围; (2)已知椭圆在0(P x ,0)y 处的切线l 的方程为:00143x x y y+=,射线1QF 交l 于点R .求证:11F RP RPF ∠=∠.【例17】(2022•湖北21校)平面直角坐标系xOy 中,已知点(2,0)M -,(2,0)N 点A 满足||||AM AN -=A 的轨迹C . (1)求C 的方程;(2)设点T 与点A 关于原点O 对称,MTN ∠的角平分线为直线l ,过点A 作l 的垂线,垂足为H ,交C 于另一点B ,求:||||AH BH 的最大值.【例18】(2023•闵行区期中)如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.【例19】(2023•上海模拟)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是点1F ,2F ,过点1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1,点2F 与短轴两个顶点构成等边三角形.(1)求椭圆C 的方程;(2)已知过椭圆上点0(M x ,0)y 的椭圆的切线方程为00221xx yy a b+=.求证:过椭圆C 上任一点0(M x ,0)y 的切线与直线1MF 和2MF 所成角都相等;(3)点P 是椭圆C 上除长轴端点外的任一点连接1PF ,2PF ,设12F PF ∠的角平分线PQ 交C 的长轴于点(,0)Q q ,求q 的取值范围.同步训练1.(2022•怀化二模)若点P 是椭圆22221(0)4x y b b b+=>上的点,且点I 是焦点三角形△12PF F 的内心,12F PF ∠的角平分线交线段12F F 于点M ,则||PIIM等于()A C .122.(2023•贵州模拟)根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为() A..CD3.(2022•南昌三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的动点,I 和G 分别是△12PF F 的内心和重心,若IG 与x 轴平行,则椭圆的离心率为() A .12B3.(2022•焦作一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,M 为C 上一点,且△12MF F 的内心为0(I x ,2),若△12MF F 的面积为4b ,则1212||||(||MF MF F F +=) A .32B .53C.434.(2023•建邺区期中)已知抛物线24y x =的焦点为F ,直线l 过点F 且与抛物线交于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,MAF ∠的角平分线与抛物线的准线交于点P ,线段AB 的中点为Q .若||16AB =,则||(PQ =) A .2B .4C .6D .85.(2022•衡阳二模)圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点、由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角、请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,点P 为C 在第一象限上的点,点M 在1F P 延长线上,点Q的坐标为,且PQ 为12F PF ∠的平分线,则下列正确的是() A .12||2||PF PF =B .12||23PF PF +=C .点P到x .2F PM ∠的角平分线所在直线的倾斜角为150︒6.(2023•阳信县期末)已知椭圆22143x y +=上一点P 位于第一象限,左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,12F PF ∠的角平分线与x 轴交于点G ,与y 轴交于点1(0,)2H -,则()A .四边形12HFPF 的周长为4+.直线1A P ,2A P 的斜率之积为34- C .12||:||3:2FG F G =D .四边形12HF PF 的面积为2 7.(2023•佛山期末)圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点.如图,胶片电影放映机的聚光灯有一个反射镜.它的形状是旋转椭圆.为了使影片门(电影胶片通过的地方)处获得最强的光线,灯丝2F ,与影片门1F 应位于椭圆的两个焦点处.已知椭圆22:143x y C +=,椭圆的左右焦点分别为1F ,2F ,一束光线从2F 发出,射向椭圆位于第一象限上的P 点后反射光线经过点1F ,且124tan 3F PF ∠=,则12F PF ∠的角平分线所在直线方程为.8.(2023•诸暨市期末)圆锥曲线有着令人惊奇的光学性质,这些性质均与它们的焦点有关.如:从椭圆的一个焦点处出发的光线照射到椭圆上,经过反射后通过椭圆的另一个焦点;从抛物线的焦点处出发的光线照射到抛物线上,经反射后的光线平行于抛物线的轴.某次科技展览中某展品的一个截面由抛物线的一部分1C 和一个“双孔”的椭圆2C 构成(小孔在椭圆的右上方).如图,椭圆22212:1,,43x y C F F +=为2C 的焦点,B 为下顶点,2F 也为1C 的焦点,若由1F 发出一条光线经过点B 反射后穿过一个小孔再经抛物线上的点D 反射后平行于x 轴射出,由1F 发出的另一条光线经由椭圆2C 上的点P 反射后穿过另一个小孔再经抛物线上的点E 反射后平行于x轴射出,若两条平行光线间隔,则1cos BF P ∠=.11.已知P是双曲线221168x y -=右支上一点,12F F 、分别是双曲线的左、右焦点,O 为坐标原点,1(0)F P PM λλ=>,22PF PM PN PM PF μ⎛⎫⎪=+⎪⎝⎭,20PN F N =.若22PF =,则ON =.12.已知双曲线22221x y a b-=的左右焦点分别为12F F 、,O 为双曲线的中心,P 是双曲线右支上的点,12PF F △的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过2F 作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( ).A .OB e OA =B .OA e OB=C .OA OB =D .OA 与OB 关系不确定。
2023年高考数学微专题练习专练16高考大题专练一导数的应用含解析理
专练16 高考大题专练(一) 导数的应用命题范围:导数的应用、导数的几何意义.1.[2022·云南省昆明市检测]已知函数f (x )=1-ax 2ex,a ≠0(1)讨论f (x )的单调性;(2)当x >0,a >0时,e xf (x )≥bx ,证明:ab ≤2e327.2.[2022·全国甲卷(理),21]已知函数f (x )=exx-ln x +x -a .(1)若f (x )≥0,求a 的取值范围;(2)证明:若f (x )有两个零点x 1,x 2,则x 1x 2<1.3.[2022·河南省郑州市质检]已知函数f(x)=ln (x+1)-x+1.(1)求函数f(x)的单调区间;(2)设函数g(x)=a e x-x+ln a,若函数F(x)=f(x)-g(x)有两个零点,求实数a的取值范围.4.[2022·全国乙卷(理),21]已知函数f(x)=ln (1+x)+ax e-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.5.[2022·江西省二模]已知函数f (x )=a ln x +x 22-(a +1)x +a +12(a ∈R )有一个大于1的零点x 0.(1)求实数a 的取值范围;(2)证明:对任意的x ∈(1,x 0],都有a ln x -x +1>0恒成立.专练16 高考大题专练(一) 导数的应用1.解析:(1)f(x)的定义域为R ,f ′(x )=-2ax e x -ax 2e x(e x )2=ax (x -2)e x. ①a >0时,当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增; 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减.②a <0时,当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,2)时,f ′(x )>0,f (x )单调递增.(2)由e xf (x )≥bx ,得e x-ax 2-bx ≥0,因为x >0,所以e xx-ax 2-bx ≥0,令g (x )=e x x -ax -b (x >0),则g ′(x )=(x -1)exx2-a , 设h (x )=(x -1)e x x 2-a (x >0),则h ′(x )=(x 2-2x +2)e xx3>0,所以h (x )在(0,+∞)上单调递增,又因为h (1)=-a <0,h (1+a )=a e 1+a (1+a )2-a >a ·(1+a )2(1+a )2-a =a -a =0,(由(1)知当a =1时,f (x )≥f (2)=1-4e 2>0,所以当x >0时,1-x 2e x >0,即e x >x 2.)所以,存在x 0∈(1,1+a ),使得h (x 0)=0, 即a =(x 0-1)e x 0x 2. 所以,当x ∈(0,x 0)时,g ′(x )<0,g (x )单调递减;当x ∈(x 0,+∞)时,g ′(x )>0,g (x )单调递增,所以g (x )≥g (x 0)=e x 0x 0-ax 0-b ≥0,所以b ≤e x 0x 0-(x 0-1)e x 0x 0=(2-x 0)e x 0x 0.所以ab ≤(x 0-1)(2-x 0)e2x 0x 30 =(-x 20 +3x 0-2)e2x 0x 3.设F (x )=(-x 2+3x -2)e2xx3(x >1),则 F (x )=-2x 3-7x 2+10x -6x4·e 2x =-(2x -3)(x 2-2x +2)x4·e 2x , 当1<x <32时,F ′(x )>0,F (x )单调递增;当x >32时,F ′(x )<0,F (x )单调递减.所以F (x )≤F (32)=2e 327,所以ab ≤2e327.2.解析:(1)由题意可知函数f (x )的定义域为(0,+∞),f ′(x )=e x(x -1)x 2-1x+1=(e x+x )(x -1)x2. 令f ′(x )=0,解得x =1.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )min =f (1)=e +1-a .若f (x )≥0,则f (x )min =e +1-a ≥0,解得a ≤e+1. 故a 的取值范围为(-∞,e +1].(2)证明:由(1)可知,要使f (x )有两个零点,则f (x )min =f (1)=e +1-a <0,即a >1+e.假设0<x 1<1<x 2,要证明x 1x 2<1,即需证明1<x 2<1x 1.又因为f (x )在x ∈(1,+∞)上单调递增,所以要证明1<x 2<1x 1,则需证明f (x 2)<f ⎝ ⎛⎭⎪⎫1x 1,即f (x 1)<f ⎝ ⎛⎭⎪⎫1x1.令F (x )=f (x )-f ⎝ ⎛⎭⎪⎫1x ,0<x <1,则F ′(x )=f ′(x )+f ′⎝ ⎛⎭⎪⎫1x ·1x2=(x -1)(e x+x -x e 1x -1)x2.因为e x在x ∈(0,1)上单调递增,所以e x<e ,所以当x ∈(0,1)时,e x+x <e +1.又函数y =x e 1x 在(0,1)上单调递减,所以x e 1x >e ,所以-x e 1x -1<-e -1,所以e x+x-x e 1x -1<e +1-e -1=0,所以当x ∈(0,1)时,F ′(x )>0,则F (x )在(0,1)上单调递增.因为F (1)=f (1)-f (1)=0,所以F (x )<0,即f (x )<f ⎝ ⎛⎭⎪⎫1x ,所以若f (x )有两个零点x 1,x 2,则x 1x 2<1.3.解析:(1)函数的定义域为{x |x >-1},f ′(x )=1x +1-1=-xx +1,f ′(x )>0,-1<x <0;f ′(x )<0,x >0.函数f (x )的单调递增区间为(-1,0);单调递减区间为(0,+∞). (2)要使函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根, 即ln (x +1)-x +1=a e x-x +ln a 有两个实根.即e x +ln a+x +ln a =ln (x +1)+x +1.整理为ex +ln a+x +ln a =eln (x +1)+ln (x +1),设函数h (x )=e x+x ,则上式为h (x +ln a )=h (ln (x +1)),因为h ′(x )=e x +1>0恒成立,所以h (x )=e x+x 单调递增,所以x +ln a =ln (x +1). 所以只需使ln a =ln (x +1)-x 有两个根, 设M (x )=ln (x +1)-x .由(1)可知,函数M (x )的单调递增区间为(-1,0);单调递减区间为(0,+∞), 故函数M (x )在x =0处取得极大值,M (x )max =M (0)=0. 当x →-1时,M (x )→-∞;当x →+∞时,M (x )→-∞, 要想ln a =ln (x +1)-x 有两个根,只需ln a <0, 解得0<a <1.所以a 的取值范围是(0,1).4.解析:(1)当a =1时,f (x )=ln (1+x )+x e -x, 则f ′(x )=11+x +1-xex ,∴f (0)=0,f ′(0)=2,∴曲线y =f (x )在点(0,f (0))处的切线方程为y =2x ,即2x -y =0. (2)(方法一)函数f (x )的定义域为(-1,+∞).①当a ≥0时,对于∀x >0,f (x )>0,则f (x )在(0,+∞)上不存在零点,故不符合题意. ②当a <0时,f ′(x )=1x +1+a e -x(1-x )=1+a e -x(1-x 2)x +1.令g (x )=1+a e -x(1-x 2),则g ′(x )=a e -x(-2x +x 2-1)=a e -x(x -1-2)(x -1+2).对于∀x >-1,e -x >0,∵a <0,∴g (x )在(-1,1-2)和(1+2,+∞)上单调递减,在(1-2,1+2)上单调递增.由已知,得g (-1)=1,g (1-2)=1+a e2-1·2(2-1),g (0)=1+a ,g (1)=1.(ⅰ)若-1≤a ≤0,则有:当0<x ≤1时,g (x )单调递增,g (x )>g (0)=1+a ≥0;当x >1时,由于1-x 2<0,a e -x<0,故g (x )=1+a e -x(1-x 2)>1>0. 综上可知,当x >0时,都有g (x )>0,则f ′(x )=g (x )x +1>0, ∴f (x )在(0,+∞)上单调递增.∴对于∀x >0,f (x )>f (0)=0,f (x )在(0,+∞)上不存在零点,符合题意. (ⅱ)当a <-1时,g (1-2)<g (0)=1+a <0.又∵g (-1)=1>0,∴∃x 0∈(-1,0),满足g (x 0)=0, 且∀x ∈(-1,x 0),都有g (x )>0,则f ′(x )=g (x )x +1>0, ∀x ∈(x 0,0),都有g (x )<0,则f ′(x )=g (x )x +1<0, ∴f (x )在(-1,x 0)上单调递增,在(x 0,0)上单调递减. 又∵f (0)=0,∴f (x 0)>0. 又∵当x →-1时,f (x )→-∞, ∴f (x )在(-1,0)上恰有一个零点.∵g (0)=1+a <0,g (1)=1>0,g (x )在(0,1+2)上单调递增,在[1+2,+∞)上单调递减,∴∃x 1∈(0,1),满足g (x 1)=0,且当x ∈(0,x 1)时,g (x )<0,则f ′(x )=g (x )x +1<0,当x ∈(x 1,1)时,g (x )>0,则f ′(x )=g (x )x +1>0. 又∵当x ≥1时,a e -x<0,1-x 2≤0, ∴g (x )=1+a e -x·(1-x 2)>0,∴f ′(x )=g (x )x +1>0, ∴f (x )在(0,x 1)上单调递减,在[x 1,+∞)上单调递增. 又∵f (0)=0,∴∀x ∈(0,x 1),f (x )<0,则f (x 1)<0. 又∵当x →+∞时,ln (1+x )→+∞,ax e -x→0, ∴f (x )→+∞,∴f (x )在(x 1,+∞)上存在零点,且仅有一个. 故f (x )在(0,+∞)上恰有一个零点.综上可知,满足题意的a 的取值范围是(-∞,-1). (方法二)令g (x )=e xln (1+x )x.f (x )在区间(-1,0),(0,+∞)上各恰有一个零点等价于g (x )=e xln (1+x )x=-a在(-1,0),(0,+∞)上各恰有一解.g ′(x )=e x[x ln (1+x )+x1+x-ln (1+x )]x2. 令h (x )=(x -1)ln (1+x )+x1+x,则h ′(x )=ln (1+x )+x -11+x +1(1+x )2.令φ(x )=ln (1+x )+x -11+x +1(1+x )2,则φ′(x )=(1+x )2+2x(1+x )3. ①当x ∈(0,+∞)时,φ′(x )>0,则h ′(x )>h ′(0)=0,∴h (x )>h (0)=0,∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增.又∵当x →0时,g (x )=lim x →0e xln (1+x )x=1,当x →+∞时,g (x )→+∞,∴a ∈(-∞,-1).②当x ∈(-1,3-2)时,φ′(x )<0;当x ∈(3-2,0)时,φ′(x )>0. ∵当x →-1时,φ(x )=h ′(x )→+∞,h ′(0)=0, ∴存在a 1∈(-1,0)使h ′(a 1)=0,∴h (x )在(-1,a 1)上单调递增,在(a 1,0)上单调递减. 当x →-1时,h (x )→-∞. 又h (0)=0,∴存在a 2∈(-1,a 1),使得h (a 2)=0,即g (x )在(-1,a 2)上单调递减,在(a 2,0)上单调递增. 当x →-1时,g (x )→+∞;当x →0时,g (x )→1,g (x )的大致图像如图.故当a ∈(-∞,-1)∪{-g (a 2)}时,g (x )=-a 仅有一解;当a ∈(-1,-g (a 2))时,g (x )=-a 有两解.综上可知,a ∈(-∞,-1).5.解析:(1)f ′(x )=a x +x -(a +1)=x 2-(a +1)x +a x =(x -1)(x -a )x.①若a ≤1,则f ′(x )>0在(1,+∞)恒成立,即f (x )在(1,+∞)上单调递增, 当x >1时,f (x )>f (1)=0,与f (x )有一个大于1的零点x 0矛盾.②若a >1,令f ′(x )>0,解得0<x <1或x >a ,令f ′(x )<0,解得1<x <a . 所以f (x )在(0,1)和(a ,+∞)上单调递增,在(1,a )上单调递减.所以f (a )<f (1)=0,当x →+∞时,f (x )→+∞,由零点存在性定理,f (x )在(a ,+∞)上存在一个零点x 0.综上,a >1.(2)令g (x )=a ln x -x +1,g ′(x )=ax -1=a -xx,由(1)知1<a <x 0,令g ′(x )>0, 解得1<x <a ,令g ′(x )<0,解得a <x <x 0,故g (x )在(1,a )上单调递增,在(a ,x 0)上单调递减.g (1)=0,g (x 0)=a ln x 0-x 0+1,因为x 0为函数f (x )的零点,故f (x 0)=a ln x 0+x 22-(a +1)x 0+a +12=0,即 a ln x 0=-x 22+(a +1)x 0-a -12, 所以g (x 0)=a ln x 0-x 0+1=-x 202+(a +1)x 0-a -12-x 0+1=-x 20 2+ax 0-a +12=12(1-x 0)(x 0-2a +1). 又因为f (2a -1)=a ln (2a -1)+(2a -1)22-(a +1)(2a -1)+a +12=a ln (2a -1)-2a +2,令h (a )=a ln (2a -1)-2a +2,则h ′(a )=ln (2a -1)+2a 2a -1-2=ln (2a -1)+12a -1-1, 令m (a )=ln (2a -1)+12a -1-1,m ′(a )=22a -1-2(2a -1)2=4(a -1)(2a -1)2>0恒成立, 所以h ′(a )在(1,+∞)上单调递增,h ′(a )>h ′(1)=0,所以h (a )在(1,+∞)上单调递增,h (a )>h (1)=0,即f (2a -1)>0,由(1)可知f (a )<0,所以a <x 0<2a -1,因为1-x 0<0,x 0-2a +1<0,所以g (x 0)=12(1-x 0)·(x 0-2a +1)>0,所以g (x )>0在x ∈(1,x 0]恒成立,故对任意的x ∈(1,x 0],都有a ln x -x +1>0恒成立.。
理科高考数学立体几何选择填空压轴题专练
立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。
高考专题专题16不等式选讲-高考数学高频考点与最新模拟(解析版)
高中数学学习材料金戈铁骑整理制作专题16 不等式选讲高频考点一绝对值不等式的解法及其应用例1、不等式|x+3|-|x-2|≥3的解集为________.(2)设函数f(x)=|x-1|+|x-2|.①画出函数y=f(x)的图象;②若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的取值范围.(2)①f (x )=⎩⎪⎨⎪⎧ 2x -3 x ≥2,1 1<x <2,3-2x x ≤1.其图象如图所示.②由|a +b |+|a -b |≥|a |f (x ),得|a +b |+|a -b ||a |≥f (x ). 又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2, 则有2≥f (x ),即2≥|x -1|+|x -2|.解得12≤x ≤52. 即x 的取值范围为⎣⎡⎦⎤12,52.【规律方法】零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.高频考点二 不等式的证明例2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥63,并确定a 、b 、c 为何值时,等号成立.【方法规律】1.证明不等式的传统方法有:比较法、综合法、分析法.2.不等式证明还有一些常用方法:拆项法、添项法、逆代法、换元法、放缩法、反证法、函数的单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩法是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.存在性、惟一性等问题或题目中带有“至少有一个”、“至多有一个”、“不能都”等字样的问题,都可以用反证法.高频考点三不等式的应用例3、设函数f(x)=|x-1|+|x-a|.(1)若a=-1,解不等式f(x)≥3;(2)如果∀x∈R,f(x)≥2,求a的取值范围.点评:a≤f(x),当x∈R时恒成立,只需a≤f(x)min;a>f(x),当x∈R时恒成立,只需a>f(x)max.高频考点四柯西不等式的应用例4、已知实数x、y、z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是1,求a的值.1.不等式的基本性质(1)对于任意两个实数a ,b 有且只有以下三种情况之一成立:a >b ⇔a -b >0,a <b ⇔a -b <0,a =b ⇔a -b =0.(2)不等式的基本性质对称性:a >b ⇔b <a .传递性:a >b ,b >c ⇒a >c .加(减):a >b ⇒a +c >b +c .乘(除):a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc .乘方:a >b >0⇒a n >b n >0(n ∈N *,n ≥2).开方:a >b >0⇒n a >n b >0(n ∈N *,n ≥2).2.基本不等式(1)如果a ,b 都是正数,那么a +b 2≥ab ,当且仅当a =b 时取等号.同时,我们称a +b 2为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,该定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.(2)已知x ,y 都是正数,①如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ;②如果和x +y是定值S ,那么当x =y 时,积xy 有最大值S 24. 3.绝对值不等式(1)设a ,b 为实数,则加法性质:|a |-|b |≤|a +b |≤|a |+|b |.(2)设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |.(3)若a >0,且|x |>a ,则x >a 或x <-a ;若a >0,且|x |<a ,则-a <x <a .设a 1,a 2,b 1,b 2均为实数,则(a +a )(b +b )≥(a 1b 1+a 2b 2)2(等号当且仅当a 1b 2=a 2b 1时成立).4.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、数学归纳法等. (2013·新课标I 理)(24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g(x )=x +3.(Ⅰ)当a =-2时,求不等式f (x )<g(x )的解集;(Ⅱ)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g(x ),求a 的取值范围. 【答案】当2a =-时,令15,21212232,1236,1x x y x x x x x x x ⎧-≤⎪⎪⎪=-+---=--≤≤⎨⎪->⎪⎪⎩,,做出函数图像可知,当(0,2)x ∈时,0y <,故原不等式的解集为}{02x x <<;(2013·陕西理)A. (不等式选做题) 已知a, b, m, n 均为正数, 且a +b =1, mn =2, 则(am +bn)(bm +an)的最小值为 .(2)(不等式选做题)在实数范围内,不等式211x --≤的解集为___________. 【答案】[]0,4【解析】2111211,222,0 4.x x x x --≤∴-≤--≤∴-≤-≤∴≤≤,因此解集为[]0,4.【学科网考点定位】本题主要考查绝对值不等式的解法,考查运用能力.(2013·福建理)(3).(本小题满分7分) 选修4-5:不等式选讲 设不等式*)(2N a a x ∈<-的解集为A,且A A ∉∈21,23 (Ⅰ)求a 的值 (Ⅱ)求函数2)(-++=x a x x f 的最小值 【答案】(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3【解析】 不等式选讲如果如此题只考查绝对值不等式就算比较容易的题目,注意绝对值的三角不等式即可,当然也可通过讨论去掉绝对值号,当然还要注意学科网均值和柯西不等式的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、有四位司机,四位售票员分配到四辆公共汽车上,使每辆车分别 有一位司机和一名售票员,则可能的分配方案数是( )。
(A) A88
(B) A84
(C)
A
4 4
A44
(D) A44
9、有 4 个学生和 3 名教师排成一行照相,规定两端不排教师,那么
排法的种数是( )。
(A) A77
(B) A44 A33
n (n 1)
A (D) 1
nm
Anm 1 =
m n
12、在(1+2x-x2)4 展开式中,x7 的系数是( )。
(A)-8 (B)12 (C)6 (D)-12
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B A C B C C C C A B A
3、如果
xn=(1-
1 2
)(1-
1 3
)(1-
1 4
)……(1-
1 n
),则
lim
n
xn
等于(
)。
(A)0 (B)1 (C) 1 (D)不确定
2
4、数列的通项公式是
an=(1-2x)n,若
lim
n
an 存在,则
x
的取值范围Leabharlann 是( )。(A)[0, 1 ] (B)[0, - 1 ] (C)[0, 1]
2
2
5、不等式 x2-x+1>0 的解集是( )。
(D)[0,- 1]
(A){x| x< 1 3i 或 x> 1 3i } (B)R
2
2
(C)
(D)以上都不对
6、已知方程 x2+(k+2i)x+2+ki=0 至少有一个实根,那么实数 k 的
取值范围是( )。
(A)k≥2 2 或 k≤-2 2 (B)-2 2 ≤k≤2 2
(C)k=±2 2
(D)k=2 2
7、已知集合 P={x| (x-1)(x-4)≥0},Q={n| (n+1)(n-5)≤0,
n∈N}与集合 S,且 S∩P={1, 4},S∩Q=S,那么集合 S 的元素的
个数是( )。
(A)2 个(B)2 个或 4 个(C)2 个或 3 个或 4 个(D)无穷多个
(C) A42 A55
(D) A73 A74
10、在 1,2,3,4,9 中任取两个数分别作对数的底和真数,可得不
同的对数值的个数是( )。
(A)9 (B)12 (C)16 (D)20
11、下列等式中,不正确的是( )。
(A)(n+1)
Anm
=
A m 1 n 1
(B)
C
m n
Anm n!
n!
(C)
=(n-2)!
高考数学选择题常考考点专练 16
1、若{an}是等比数列,a4a7=-512, a3+a8=124, 且公比 q 是整数,
则 a10 等于( )。
(A)256 (B)-256 (C)512 (D)-512
2、已知数列{2n-11},那么有最小值的 Sn 是( )。
(A)S1
(B)S5
(C)S6
(D)S11