最新C语言常用算法集合汇总

合集下载

非常全C语言常用算法

非常全C语言常用算法

一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。

main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。

假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。

其中t为中间变量,起到“空杯子”的作用。

注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。

main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/*以下两个if语句使得a中存放的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/*以下if语句使得b中存放的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。

“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。

例1、求1+2+3+……+100的和。

main(){int i,s;s=0; i=1;while(i<=100){s=s+i; /*累加式*/i=i+1; /*特殊的累加式*/}printf("1+2+3+...+100=%d\n",s);}【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。

C语言经典算法大全

C语言经典算法大全

C语言经典算法大全1.冒泡排序算法冒泡排序是一种简单但低效的排序算法,它通过多次遍历列表,比较相邻元素并交换位置,直到整个列表有序。

冒泡排序的时间复杂度为O(n^2)。

```void bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])//交换元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单但高效的排序算法,它通过多次遍历列表,找到最小元素并将其放置在正确的位置上。

选择排序的时间复杂度也为O(n^2)。

```void selectionSort(int arr[], int n)int minIndex, temp;for (int i = 0; i < n-1; i++)minIndex = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[minIndex])minIndex = j;}}//交换元素temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}```3.插入排序算法插入排序是一种简单但高效的排序算法,它通过将未排序的元素插入到已排序的列表中,逐步构建排序好的列表。

插入排序的时间复杂度为O(n^2)。

```void insertionSort(int arr[], int n)int i, key, j;for (i = 1; i < n; i++)key = arr[i];j=i-1;while (j >= 0 && arr[j] > key)arr[j + 1] = arr[j];j=j-1;}arr[j + 1] = key;}```4.快速排序算法快速排序是一种高效的排序算法,它通过选择一个主元,将列表分割为两个子列表,其中一个子列表的所有元素都小于主元,另一个子列表的所有元素都大于主元。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳应当掌握的一般算法一、基本算法:交换、累加、累乘二、非数值计算常用经典算法:穷举、排序(冒泡,选择)、查找(顺序即线性)三、数值计算常用经典算法:级数计算(直接、简接即递推)、一元非线性方程求根(牛顿迭代法、二分法)、定积分计算(矩形法、梯形法)四、其他:迭代、进制转换、矩阵转置、字符处理(统计、数字串、字母大小写转换、加密等)、整数各数位上数字的获取、辗转相除法求最大公约数(最小公倍数)、求最值、判断素数(各种变形)、数组元素的插入(删除)、二维数组的其他典型问题(方阵的特点、杨辉三角形)详细讲解一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。

main(){ int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。

假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。

其中t为中间变量,起到“空杯子”的作用。

注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。

main(){ int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/*以下两个if语句使得a中存放的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/*以下if语句使得b中存放的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。

C语言常用算法集合

C语言常用算法集合

1.定积分近似计算:/*梯形法*/double integral(double a,double b,long n) { long i;double s,h,x;h=(b-a)/n;s=h*(f(a)+f(b))/2;x=a;for(i=1;i<n;i++){x+=h;s+=h*f(x) ;}return(s);}/*矩形法*/double integral(double a,double b,long n) { long i;double t=0,h,x;h=(b-a)/n;x=a;for(i=0;i<n;i++){t+=h*f(x);x+=h;}return(t);}2. 生成斐波那契数列:/*直接计算*/int fib(int n){ int i,f1=1,f2=1,f;for(i=3;i<=n;i++){f=f1+f2;f1=f2;f2=f;}if(n==1||n==2) return 1;else return f;}/*递归调用*/void fib(int n,int*s){ int f1,f2;if(n==1||n==2) *s=1;else{ fib(n-1,&f1);fib(n-2,&f2);*s=f1+f2;}}3.素数的判断:/*方法一*/for (t=1,i=2;i<n; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法二*/for (t=1,i=2;i<n&&t; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法三*/for (i=2;i<n; i++)if(n%i==0) break;if(i==n) printf("%d is prime",n); /*方法四*/for(t=1,i=2; i<=(int)sqrt(n); i++)if(n%i==0){t=0;break;}if(t) printf("%d is prime",n);4.反序数:/*求反序数*/long fan(long n){ long k;for(k=0;n>0;n/=10)k=10*k+n%10;return k;}/*求回文数*/int f(long n){ long k,m=n;for(k=0;n>0;n/=10)k=10*k+n%10;if(m==k) return 1;return 0;}/*求整数位数*/int f(long n){ int count;for(count=0;n>0;n/=10)count++;return count;}5.求最大公约数:/*方法一*/int gcd(int x,int y){ int z;z=x<y?x:y;while(!(x%z==0&&y%z==0))/*x%z||y%z*/ z--;return z;}/*方法二*/int gcd(int x,int y){int r;while((r=x%y)!=0){x=y;y=r;}return y;}/*方法三*/int gcd(int a ,int b){ int r ;if((r=a%b)==0)return b;elsereturn gcd(b,r);}6.数组常用算法:查找:/*线性查找*/int find(int num,int x[],int key){ int i,m=-1;for(i=0;i<num;i++)if(x[i]==key){m=i;break;}return m;}/*折半查找*/int find(int x[],int num,int key){ int m=-1,low=0,high=num-1,mid;while(low<=high){mid=(low+high)/2;if(x[mid]==key){m=mid;break;}else if(x[mid]>key) high=mid-1;else low=mid+1;}return m;}/*折半查找(递归)*/int b_search(int x[ ],int low,int high,int key) {int mid;mid=(low+high)/2;if(x[mid]==key) return mid;if(low>=high) return -1;else if(key<x[mid])return b_search(x,low,mid-1,key);elsereturn b_search(x,mid+1,high,key); }/*寻找子串*/int find(char *s1,char *s2){ int i,k=0;while(s1[i]==s2[i]) i++;if(s2[i]==0) return k;s1++;k++;return -1;}分词:/*方法一*/void fen(char s[][10],char str){ int i,j,k;for(i=0,j=0,k=0;str[i]!=0;i++)if(isalpha(a[i]))s[j][k++]=str[i];else {s[j][k]=0;k=0;j++;}}}/*方法二*/#include<stdio.h>#include<string.h>void main(){ int i=0,n=0;char s[80],*p;strcpy(s,"It is a book.");for(p=s;p!='\0';p++)if(*p=='')i=0;elseif(i==0){n++;i=1;}printf("%d\n",n);getch();}排序:/*插入法排序*/void sort(int a[],int n){ int i,j,t;for(i=1;i<n;i++){t=a[i];for(j=i-1;j>=0&&t<a[j];j--)a[j+1]=a[j];a[j]=t;}}/*归并排序*/#define x 10#define y 10void com(int *a,int *b,int *c){ int i,j,k;for(i=0,j=0,k=0;i<=x&&j<=y;){if(a[i]<b[j]){c[k++]=a[i];i++;}else{c[k++]=b[j];j++;}}if(i<x) for(k=k-1;i<x;i++)c[k++]=a[i];if(j<x) for(k=k-1;j<y;j++)c[k++]=a[j]; }/*交换法排序1 冒泡排序*/void sort(int a[],int n){ int i,j,t,flag;for(i=0;i<n-1;i++){flag=1;for(j=0;j<n-1-i;j++)if(a[j]>a[j+1]){t=a[j];a[j]=a[j+1];a[j+1]=t;flag=0;}if(flag) break;}}/*交换法排序2*/void sort(int a[],int n){ int i,j,t;for(i=0;i<n-1;i++)for(j=i+1;j<n;j++)if(a[i]>a[j]){t=a[i];a[i]=a[j];a[j]=t;}}/*选择法排序*/void sort(int a[],int n){ int i,j,point,t;for(i=0;i<n-1;i++){point=i;for(j=i+1;j<n;j++)if(a[point]<a[j]) point=j;if(point!=i){t=a[point];a[point]=a[i];a[i]=t;}}}7.一元非线性方程求根:/*牛顿迭代法求函数跟*/#include <stdio.h>#include <math.h>int main(void){ double x,x1,eps=1e-6,f,f1; /*误差为eps*/x=1.0; /*x=1.0是初值*/do{x1=x;f=6-x1*(5-x1*(4-3*x1)); /*f为f(x)函数*/f1=-5+x1*(8-9*x1); /*f1为f(x)的导函数*/x=x1-f/f1;f=6-x*(5-x*(4-3*x));}while(fabs(f)>=eps &&fabs(x-x1)>=eps);printf("x=%f",x);}/*二分法求函数跟*/#include <stdio.h>#include <math.h>double f(double x){ return 6-x*(5-x*(4-3*x)); /*f(x)函数*/}int main(void){ double a,b,c,x,eps=1e-6;do{scanf("%lf%lf",&a,&b);}while(f(a)*f(b)>0);if(fabs(f(a))<1e-6)x=a;else if (fabs(f(b))<1e-6)x=b;else {c=(b+a)/2;while(fabs(f(c))>eps&&fabs(b-a)>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(b+a)/2;}x=c;}printf("x=%f",x);}/*弦截法求函数跟*/c=(a*f(b)-b*f(a))/ (f(b)-f(a));while(fabs(f(c))>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(a*f(b)-b*f(a))/ (f(b)-f(a));}#include <stdio.h>void f();int main(void){ int x, loop=0;do{for(x=1;x<5;x++) {int x=2;printf("%d",x);}printf("%d ",x);f();loop++;}while(loop<1);getch();}void f(){ printf("%d",x++); }8.汉诺塔:#include<stdio.h>void Hanoi(int n, char A, char B, char C){if(n==1)printf("\n move %d from %c to %c",n,A,C);else{Hanoi(n-1,A,C,B);printf("\nmove %d from %c to %c",n,A,C);Hanoi(n-1,B, A, C);}}int main(void){ Hanoi(3,'A','B','C');getch();}9.建立链表:NODE *creat(void) /* void表示无参函数*/{NODE *head=NULL,*p1=NULL,*p2=NULL;long num;unsigned score;int n=0;do{scanf(“%ld%u”,&num,&score);if(num==0) break;n++;p1=(NODE *)malloc(sizeof(NODE));p1->data.num=num,p1->data.score=score;p1->next=NULL;if(n==1)head=p2=p1;else{p2->next=p1;p2=p1;}}while(1);return head;}10.级数的近似计算:#include <stdio.h>#include <math.h>int main(void){ double s=1,a=1,x,eps,f;int n,m;printf("input x and eps:");scanf ("%lf%lf",&x,&eps);for(n=1;fabs(a)>eps; n++){for(f=1,m=1;m<=n;m++)f*=m;a=pow(x,n)/f;s+=a;}printf("%f",s);}。

C语言常用算法程序汇总

C语言常用算法程序汇总

C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。

在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。

以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。

-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。

-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。

-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。

2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。

-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。

-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。

3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。

-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。

-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。

4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。

-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。

- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。

5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。

-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。

-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。

以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。

通过学习这些算法,可以更好地理解C语言的应用和开发。

C语言常用算法

C语言常用算法

1.迭代法:
一般的一元五次方程或更高次的方程,以及几乎所有的微分方程、超越方程问题都无法用解析方法通过求根公式来求解,人们只能用数值方法求其近似值。

用事先估计的一个根的初始值X0,通过迭代算式X K+1=G(X K)求出一个近似的X1,再由求出X2,从而或得一个求解序列{ X0, X1, X2,…..X n,…}来逼近方程f(x)=0根。

这种求解过程成为迭代。

X1 x2=G(x1)
X3=G(x2)
X4=G(x3)
………
Xn=G(XN-1)
fabs(xn- xn-1)<1e-6
Xn+1=G(XN)
2.递归法:
递归是指一个过程直接或间接的调用它自身,递归过程必须有一个终止条件
3.递推法:
算法从递推的初始条件出发,应用递推公式对问题进行求解。

如Fibonacci 数列存在递推关系:
F(1)=1, F(2)=1, F(3)=2,
F(n)= F(n-1)+ F(n-2), (n>2)
若需求第30项的值,则依据公式,从初始条件F(1)=1,F(2)=1出发,逐步求出F(3),F(4),……,直到求出F(30)。

c语言常用算法集

c语言常用算法集

c语言常用算法集
以下是一些常用的C语言算法集合:
1. 排序算法:
- 冒泡排序(Bubble Sort)
- 选择排序(Selection Sort)
- 插入排序(Insertion Sort)
- 归并排序(Merge Sort)
- 快速排序(Quick Sort)
2. 搜索算法:
- 二分查找(Binary Search)
- 线性搜索(Linear Search)
3. 图算法:
- 深度优先搜索(Depth First Search, DFS)
- 广度优先搜索(Breadth First Search, BFS)
- 最短路径算法(例如:Dijkstra算法、Floyd-Warshall算法) - 最小生成树算法(例如:Prim算法、Kruskal算法)
4. 动态规划:
- 背包问题(Knapsack Problem)
- 最长公共子序列(Longest Common Subsequence)
- 最长递增子序列(Longest Increasing Subsequence)
5. 数学算法:
- 斐波那契数列(Fibonacci Sequence)
- 素数判断(Prime Number Check)
- 阶乘(Factorial)
- 快速幂算法(Fast Exponentiation)
这些算法只是常用的一部分,还有很多其他种类的算法。

掌握这些基本的算法可以帮助你更好地理解和解决各种问题。

C语言常用算法总结

C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。

时间复杂度为O(n^2)。

2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。

时间复杂度为O(nlogn)。

3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。

时间复杂度为O(n^2)。

4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。

时间复杂度为O(n^2)。

5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。

时间复杂度为O(nlogn)。

6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。

时间复杂度为O(nlogn)。

7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。

时间复杂度为O(logn)。

8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。

时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。

9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。

动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。

时间复杂度取决于问题规模。

10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。

时间复杂度取决于问题规模。

11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。

C语言常用算法大全

C语言常用算法大全

case'2': do{ system("cls"); if(password1!=password) //如果在case1中密码输入不正确将无法进行后面操作 { printf("please logging in,press any key to continue..."); getch(); break; } else { printf("******************************\n"); printf(" Please select:\n"); printf("* 1.$100 *\n"); printf("* 2.$200 *\n"); printf("* 3.$300 *\n"); printf("* 4.Return *\n"); printf("******************************\n"); CMoney=getch(); } }while(CMoney!='1'&&CMoney!='2'&&CMoney!='3'&&CMoney!='4'); //当输入值不是1,2,3,4中任意数将继续执行do循环体中语句 switch(CMoney) { case'1': system("cls"); a=a-100; printf("**********************************************\n"); printf("* Your Credit money is $100,Thank you! *\n"); printf("* The balance is $%d. *\n",a); printf("* Press any key to return... *\n"); getch(); break; case'2': system("cls");

C语言常用算法程序汇总

C语言常用算法程序汇总

C程序设计的常用算法算法(Algorithm):计算机解题的基本思想方法和步骤。

算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。

通常使用自然语言、结构化流程图、伪代码等来描述算法。

一、简单数值类算法此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。

1、求阶乘:n!=1*2*384…..*n; n!= n*(n-1)!=下列程序用于求n的阶乘.在累乘之前,一定要将用于存放乘积的变量的值初始化为1.long func(int n){int i;long t=1;for(i=2;i<=n;i++)t*=i;return t;}printf("\n");}main(){ int n;scanf("%d", &n);printf("n!=%ld\n", fac(n));}2、整数拆分问题:把一个整数各个位上的数字存到数组中#define N 4 /* N代表整数位数*/viod split(int n, int a[ ])/* 1478: a[ 3]=8, a[2 ]=7, a[1 ]=4…*/{int i;for(i=N-1;i!=0; i--){ a[i]=n%10;n=n/10;}}main(){int i,m=1478,b[N-1];split(m, b);for(i=0;i<4; i++)printf(“%5d”, b[i]);}3、求整数的因子之和12=1*2*3*4 long factor(int n){int i;long sum=0;for(i=1;i<=n;i++)if(n%i= =0)sum+=i;return sum;}注意:因子包括1和自身。

C语言常用算法总结

C语言常用算法总结

C语言常用算法模块的总结一、最大值,最小值问题教材page13/1.6、page36/2.4(2)、(3)、page98例5.1、5.2二、连乘连加问题 page113、114、115 page129/6.3 page129/6.4、6.5三、闰年算法 page17、 page107四、连续小数相加减 page18、 page124五、素数、整除问题 page18、 page124、 page126、 page127六、大小写字母转换、密码问题 page51、 page87、 page89/4.9、 page104、 page67、 page128七、格式化字符提醒起于page 76八、三角形面积问题 page86九、一元二次方程 page87、 page89/4.8、 page108十、分段一元函数 page100、 page110、 page111/5.5、5.6十一、位运算 page112/5.7、 page129/6.2、6.3十二、公约数公倍数 page129/6.1十三、迭代法、二分法 page129-130/6.11-13C语言常用算法模块的总结一、最大值,最小值问题教材page13/1.6、page36/2.4(2)、(3)、page98例5.1、5.2主要思想:替换+中转关联习语: if句int a,b,c,max; 多余的一个max是承载中转的容器scanf(“%d,%d,%d”,&a,&b,&c);max=a; 定初值if(max<b)Max=b; 分别取a、 b、c相互比较,由于只需输if(max<c) 出最大或者最小值,所以只需将最大值存Max=c; 储在max中即可printf(“……”);如果需要依次输出所给的数值,则须在比较大小之后进行替换赋值int a,b,t;scanf(“%d,%d”,&a,&b)if(a>b){ 此步的依次赋值体现了赋值运算自右向左的结合次序t=a; 先将a的值赋给t,此时a的值空出a=b; 将b的值赋给a,b值空出b=t; 将t中存储的a的值赋给b,此时t仍回复空值} 若混淆其中赋值规律则产生混乱printf(“……”);二、连乘连加问题page113、114、115 page129/6.3 page129/6.4、6.5主要思想:容器+循环关联习语:while(do……while)、for、(goto)int i,sum=0; 循环第一步,定初值,sum可视作是承载运算结果的容器,初为空i=1;while(i<=100) 构设循环条件,注意必须是有限循环,否则程序无终止{sum=sum+I; 循环第二步,累计结果i++; 循环第三步,循环量自增。

C语言常用算法大全

C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。

C语言经典算法大全精选

C语言经典算法大全精选

C语言经典算法大全精选1.排序算法1.1冒泡排序:通过不断交换相邻元素的位置,将最大(最小)值“冒泡”到序列的末尾(开头)。

1.2插入排序:将未排序的元素逐个插入已排序的序列中,保持序列始终有序。

1.3选择排序:每次从未排序的元素中选择最小(最大)的元素,放到已排序序列的末尾(开头)。

1.4快速排序:通过递归地将序列分割为较小和较大的两部分,然后分别对两部分进行排序。

1.5归并排序:将序列递归地分割为两个子序列,分别排序后再将结果合并。

1.6堆排序:构建最大(最小)堆,然后逐步将堆顶元素与最后一个元素交换,并调整堆结构。

2.查找算法2.1顺序查找:逐个比较元素,直到找到目标元素或遍历完整个序列。

2.2二分查找:在有序序列中,通过不断缩小查找范围,找到目标元素。

2.3插值查找:根据目标元素与序列中最大、最小元素的关系,按比例选择查找范围。

2.4哈希查找:利用哈希函数将目标元素映射到一个唯一的位置,从而快速定位目标元素。

3.字符串算法3.1字符串匹配算法:在文本串中查找给定的模式串,并返回匹配位置。

3.2字符串翻转:将一个字符串逆序输出。

3.3字符串压缩:将连续出现多次的字符压缩为一个字符,并输出压缩后的字符串。

3.4字符串拆分:按照指定的分隔符将字符串拆分为多个子串,并返回子串列表。

3.5字符串反转单词:将一个句子中的单词顺序逆序输出。

4.图算法4.1深度优先:从起始顶点出发,递归地访问所有能到达的未访问顶点。

4.2广度优先:从起始顶点出发,逐层地访问与当前层相邻的未访问顶点。

4.3最小生成树:找到连接所有顶点的具有最小权值的无环边集合。

4.4最短路径:找到两个顶点之间最短路径的权值和。

4.5拓扑排序:找到一个顶点的线性序列,满足所有有向边的起点在终点之前。

5.数学算法5.1质数判断:判断一个数是否为质数(只能被1和自身整除)。

5.2求最大公约数:找到两个数的最大公约数。

5.3求最小公倍数:找到两个数的最小公倍数。

c常用算法程序集

c常用算法程序集

c常用算法程序集C常用算法程序集一、排序算法排序算法是计算机科学中最基本、最常用的算法之一,常用于按照一定的规则将一组数据进行有序排列。

常见的排序算法有:冒泡排序、插入排序、选择排序、快速排序、归并排序等。

1. 冒泡排序:通过相邻元素的比较和交换来实现排序。

每一轮将最大的元素逐渐“冒泡”到末尾。

时间复杂度为O(n^2)。

2. 插入排序:将待排序的元素插入已排好序的部分,从而达到排序的目的。

时间复杂度为O(n^2),但在部分有序的情况下表现较好。

3. 选择排序:每一轮从待排序的元素中选出最小(或最大)的元素放到已排序的末尾。

时间复杂度为O(n^2),性能较差。

4. 快速排序:通过一趟排序将待排序的序列分割成两部分,其中一部分的所有元素都比另一部分小。

再分别对两部分进行排序,递归地进行下去。

时间复杂度为O(nlogn),性能较好。

5. 归并排序:将待排序的序列分成若干个子序列,分别进行排序,然后再将排好序的子序列合并。

时间复杂度为O(nlogn),稳定且效率较高。

二、查找算法查找算法是在给定的数据集中寻找特定元素的过程,常用于在大规模数据中快速定位目标元素。

常见的查找算法有:顺序查找、二分查找、哈希查找等。

1. 顺序查找:逐个遍历待查找的元素,直到找到目标元素或遍历完整个数据集。

时间复杂度为O(n),适用于小规模数据集。

2. 二分查找:在有序的数据集中,将目标元素与中间元素进行比较,缩小查找范围,直到找到目标元素或范围为空。

时间复杂度为O(logn),适用于大规模数据集。

3. 哈希查找:利用哈希函数将元素映射到一个确定的位置,通过该位置快速查找目标元素。

时间复杂度为O(1),但需要额外的空间存储哈希表。

三、图算法图算法用于解决图论中的问题,常用于描述事物之间的关系和网络结构。

常见的图算法有:深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)等。

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全一、排序算法1、冒泡排序它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

设数组为a[0…n-1]C语言实现如下://冒泡排序void bubbleSort(int arr[], int n)int i, j, temp;bool flag;//表示n次排序过程for(i = 0; i < n - 1; i++)//每次排序将最大的数放到最右边flag = false;for(j= 0; j< n-1-i; j++)if(arr[j] > arr[j+1])temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;flag = true;}}//如果趟排序没有进行数据交换,说明数据已经有序if (flag == false)break;}}2、快速排序它采用了分治法的思想,基于快速排序的思想,可以对数组进行非常快速的排序。

设数组为a[0…n-1]C语言实现如下://快速排序// arr[left] 为起始值,arr[right] 为末尾值void quickSort(int arr[], int left, int right)int i, j, base;if (left > right)return;}i = left;j = right;base = arr[left];//定义基准值,可以是数组的第一个值while (i != j)// 因为基准值是 arr[left],所以左边右移,直到找到小于基准值的值while (arr[j] >= base && i < j)j--;}// 因为基准值是 arr[left],所以右边左移while (arr[i] <= base && i < j)i++;}//如果i<j,表示找到了,交换位置if (i < j)int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}//将基准值放到i位置arr[left] = arr[i];。

单片机常用的14个C语言算法2024

单片机常用的14个C语言算法2024

引言概述:在单片机的开发中,C语言是最常用的编程语言之一。

掌握一些常用的C语言算法对于单片机的开发非常重要。

本文将介绍单片机常用的14个C语言算法之二,包括排序算法、查找算法、递归算法、动态规划算法和图算法。

正文内容:一、排序算法1. 冒泡排序:通过不断地交换相邻元素的位置,将大的元素冒泡到数组的末尾。

2. 快速排序:通过选择一个基准元素,将小于基准元素的数移动到基准元素左边,将大于基准元素的数移动到基准元素右边,然后分别对左右两部分递归地进行快速排序。

3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分取一个元素,将其插入已排序部分的合适位置。

4. 选择排序:每次从未排序部分选择最小的元素,将其放在已排序部分的末尾。

5. 归并排序:将数组不断划分为更小的子数组,然后将子数组合并为有序数组。

二、查找算法1. 顺序查找:逐个比较数组中的元素,直到找到目标元素或者遍历完整个数组。

2. 二分查找:对于已排序的数组,通过不断将目标值与中间元素比较,并缩小搜索范围,最终找到目标元素的位置。

3. 插值查找:与二分查找类似,不同之处在于确定中间元素的位置时使用插值公式,使得查找范围更接近目标元素。

4. 哈希查找:使用哈希函数将关键字映射到一个唯一的哈希值,通过查找哈希值对应的位置来获取关键字。

5. 递归查找:通过递归地划分问题的规模,从而减小查找范围,最终找到目标元素。

三、递归算法1. 递归定义:在函数的定义中使用函数本身的方式称为递归。

2. 递归函数的特点:包含一个递归结束的条件和一个递归调用的表达式。

3. 递归算法的实现:通过不断把原问题转化为更小规模的子问题,直到满足递归结束的条件。

4. 递归算法的应用:在树、图等数据结构的遍历、搜索等问题中,递归算法被广泛使用。

5. 递归算法的优化:如尾递归优化、记忆化搜索等方法可以避免递归算法中的重复计算。

四、动态规划算法1. 动态规划的思想:将一个问题划分为多个子问题,并保存每个子问题的解,避免重复计算。

c语言常见算法

c语言常见算法

c语言常见算法C语言是一种非常流行的编程语言,广泛应用于软件开发和计算机科学领域。

在C语言中,算法是解决问题的关键步骤。

本文将介绍一些常见的C语言算法,包括排序算法、搜索算法和递归算法。

一、排序算法1. 冒泡排序算法冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的两个元素,并交换它们的位置,直到整个列表排序完成。

2. 插入排序算法插入排序算法通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3. 快速排序算法快速排序是一种高效的排序算法,它通过选择一个元素作为基准,将列表分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。

二、搜索算法1. 线性搜索算法线性搜索算法逐个地检查列表中的元素,直到找到目标元素或者遍历完整个列表。

2. 二分搜索算法二分搜索算法适用于已排序的列表。

它通过比较目标元素和列表的中间元素,将列表分为两部分,然后在适当的部分继续搜索,直到找到目标元素或者确定目标元素不存在。

三、递归算法递归算法是一种自我调用的算法,它将问题分解成更小的子问题,然后在子问题上递归地调用自身,直到达到基本情况。

对于C语言中的算法来说,递归函数的编写非常重要。

需要确保递归的终止条件,并正确处理递归调用中传递的参数。

四、其他常见算法1. 图算法图算法是解决与图相关的问题的算法。

它可以解决最短路径问题、最小生成树问题等。

2. 动态规划算法动态规划算法是一种通过将问题分解成更小的子问题来解决复杂问题的算法。

它通常用于解决最优化问题。

3. 贪心算法贪心算法通过每一步选择当前最优解来构建问题的解决方案。

它通常不能保证找到全局最优解,但在某些情况下可以得到较好的近似解。

总结C语言常见算法涵盖了排序算法、搜索算法、递归算法以及其他常用的算法。

对于每个算法,我们都介绍了其基本原理和应用场景。

在实际编程中,根据具体的问题,选择合适的算法是非常重要的。

熟悉C语言中的常见算法,可以帮助程序员更好地解决问题,提高代码的效率与质量。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言是一种常用的编程语言,广泛应用于各种计算机领域。

在C语言中,算法是一种解决问题的方法论,是实现程序的关键所在。

本文将介绍C语言常用的算法,并对其进行归纳总结。

1.排序算法排序算法是将一组数据按照一定的顺序重新排列的过程。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

-冒泡排序:该算法比较相邻的两个元素,并将较大的元素向后移动,重复此过程直到序列有序。

-选择排序:该算法通过不断选择最小的元素,并放到已排序部分的末尾,重复此过程直到整个序列有序。

-插入排序:该算法将元素逐个插入到已排好序的序列中,重复此过程直到整个序列有序。

-快速排序:该算法通过选择一个基准元素,将元素分为两个分区,并对每个分区递归地快速排序,最终将整个序列有序。

-归并排序:该算法将序列分为两个部分,并对每个部分递归地归并排序,最后将两个有序的部分归并。

上述排序算法中,冒泡排序和选择排序的时间复杂度为O(n^2),插入排序的时间复杂度为O(n^2)或O(n),快速排序和归并排序的平均时间复杂度为O(nlogn)。

2.查找算法查找算法是在一组数据中找到指定的元素的过程。

常见的查找算法包括线性查找、二分查找、哈希查找等。

-线性查找:该算法从序列的首个元素开始,逐个比较元素,直到找到指定元素或遍历完整个序列。

-二分查找:该算法通过比较中间元素和目标元素的大小关系,逐渐缩小查找范围,最终找到目标元素。

-哈希查找:该算法通过将元素与哈希函数的运算结果关联,将元素存储在哈希表中;查询时,通过哈希函数确定元素的位置,从而快速查找。

二分查找的时间复杂度为O(logn),哈希查找的平均时间复杂度为O(1)。

3.字符串算法字符串算法是对字符串进行处理和操作的一系列算法。

常见的字符串算法包括字符串复制、字符串连接、字符串比较、字符串截取等。

- 字符串复制:可以使用strcpy函数实现字符串复制。

例如,strcpy(dest, src)将将src字符串复制到dest字符串中。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言作为一种非常流行的编程语言,拥有丰富的算法库和常用算法。

在本篇文章中,我将为您介绍C语言中常用的算法分类,以及每个分类中的常用算法。

希望这篇文章能对您学习C语言算法有所帮助。

1.排序算法:排序算法用于将一组数据按照一定的顺序进行排列。

C语言中常用的排序算法有以下几种:-冒泡排序:通过依次比较相邻元素的大小,将较大的元素逐渐向后移动,实现排序。

-插入排序:将未排序的元素一个个插入到已经排序的序列中,使得整个序列有序。

-选择排序:每次从待排序的序列中选择最小(或最大)的元素,放到已排序序列的末尾。

-快速排序:通过一趟排序将待排序的数据分割成独立的两部分,然后再按照该方法对两部分数据分别进行快速排序,递归实现排序。

-归并排序:将待排序的数据递归地分成两部分,分别进行排序,然后将两个有序的子序列合并成一个有序的序列。

2.查找算法:查找算法用于在一组数据中寻找指定的元素。

C语言中常用的查找算法有以下几种:-顺序查找:从序列的起始位置依次遍历,直到找到目标元素。

-二分查找:对于已经排序的序列,通过每次将查找范围减半的方式进行查找,提高查找效率。

-插值查找:对于有序的序列,根据目标元素在序列中的分布情况,通过插值计算来确定查找位置。

3.字符串处理算法:字符串处理算法用于对字符串进行处理和操作。

C语言中常用的字符串处理算法有以下几种:-字符串比较:用于比较两个字符串是否相等。

-字符串拼接:将两个字符串合并成一个字符串。

-字符串查找:在一个字符串中寻找指定的子串。

-字符串替换:将字符串中指定的子串替换为新的子串。

4.图算法:图算法用于研究图结构的相关问题。

C语言中常用的图算法有以下几种:-广度优先:从图的其中一个顶点开始,按广度优先的原则依次访问与该顶点相邻的未访问的顶点。

-深度优先:从图的其中一个顶点开始,按深度优先的原则访问与该顶点相邻的未访问的顶点,直到无法继续访问为止。

- 最短路径算法:用于寻找两个顶点之间最短路径的算法,常见的最短路径算法有Dijkstra算法和Floyd算法。

C语言算法大全

C语言算法大全

C语言经典算法目录一、单元加.................................... 错误!未定义书签。

1.erre ...................................... 错误!未定义书签。

2. erre2 ................................... 错误!未定义书签。

3. 数组完全单元........................ 错误!未定义书签。

4. 栈单元加.............................. 错误!未定义书签。

二、底层编程 ................................ 错误!未定义书签。

1. asm ..................................... 错误!未定义书签。

2. C标志符命名源程序............... 错误!未定义书签。

3. ping .................................... 错误!未定义书签。

4. winsock2 ............................. 错误!未定义书签。

5. 检测鼠标.............................. 错误!未定义书签。

6. 检出错误.............................. 错误!未定义书签。

7. 时间陷阱.............................. 错误!未定义书签。

三、汉诺塔.................................... 错误!未定义书签。

1. 非递归................................. 错误!未定义书签。

2. 汉诺塔................................. 错误!未定义书签。

3. 汉诺塔2 .............................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C语言常用算法集合1.定积分近似计算:/*梯形法*/double integral(double a,double b,long n) { long i;double s,h,x;h=(b-a)/n;s=h*(f(a)+f(b))/2;x=a;for(i=1;i<n;i++){x+=h;s+=h*f(x) ;}return(s);}/*矩形法*/double integral(double a,double b,long n) { long i;double t=0,h,x;h=(b-a)/n;x=a;for(i=0;i<n;i++){t+=h*f(x);x+=h;}return(t);}2. 生成斐波那契数列:/*直接计算*/int fib(int n){ int i,f1=1,f2=1,f;for(i=3;i<=n;i++){f=f1+f2;f1=f2;f2=f;}if(n==1||n==2) return 1;else return f;}/*递归调用*/void fib(int n,int*s)if(n==1||n==2) *s=1;else{ fib(n-1,&f1);fib(n-2,&f2);*s=f1+f2;}}3.素数的判断:/*方法一*/for (t=1,i=2;i<n; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法二*/for (t=1,i=2;i<n&&t; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法三*/for (i=2;i<n; i++)if(n%i==0) break;if(i==n) printf("%d is prime",n); /*方法四*/for(t=1,i=2; i<=(int)sqrt(n); i++) if(n%i==0){t=0;break;}if(t) printf("%d is prime",n);4.反序数:/*求反序数*/long fan(long n){ long k;for(k=0;n>0;n/=10)k=10*k+n%10;return k;}/*求回文数*/{ long k,m=n;for(k=0;n>0;n/=10)k=10*k+n%10;if(m==k) return 1;return 0;}/*求整数位数*/int f(long n){ int count;for(count=0;n>0;n/=10)count++;return count;}5.求最大公约数:/*方法一*/int gcd(int x,int y){ int z;z=x<y?x:y;while(!(x%z==0&&y%z==0))/*x%z||y%z*/ z--;return z;}/*方法二*/int gcd(int x,int y){int r;while((r=x%y)!=0){x=y;y=r;}return y;}/*方法三*/int gcd(int a ,int b){ int r ;if((r=a%b)==0)return b;elsereturn gcd(b,r);}6.数组常用算法:查找:/*线性查找*/int find(int num,int x[],int key){ int i,m=-1;for(i=0;i<num;i++)if(x[i]==key){m=i;break;}return m;}/*折半查找*/int find(int x[],int num,int key){ int m=-1,low=0,high=num-1,mid;while(low<=high){mid=(low+high)/2;if(x[mid]==key){m=mid;break;}else if(x[mid]>key) high=mid-1;else low=mid+1;}return m;}/*折半查找(递归)*/int b_search(int x[ ],int low,int high,int key) {int mid;mid=(low+high)/2;if(x[mid]==key) return mid;if(low>=high) return -1;else if(key<x[mid])return b_search(x,low,mid-1,key);elsereturn b_search(x,mid+1,high,key);}/*寻找子串*/int find(char *s1,char *s2) { int i,k=0;while(s1[i]==s2[i]) i++;if(s2[i]==0) return k;s1++;k++;return -1;}分词:/*方法一*/void fen(char s[][10],char str) { int i,j,k;for(i=0,j=0,k=0;str[i]!=0;i++) if(isalpha(a[i]))s[j][k++]=str[i];else {s[j][k]=0;k=0;j++;}}}/*方法二*/#include<stdio.h>#include<string.h>void main(){ int i=0,n=0;char s[80],*p;strcpy(s,"It is a book.");for(p=s;p!='\0';p++)if(*p=='')i=0;elseif(i==0){n++;i=1;}printf("%d\n",n);getch();}排序:/*插入法排序*/void sort(int a[],int n){ int i,j,t;for(i=1;i<n;i++){t=a[i];for(j=i-1;j>=0&&t<a[j];j--)a[j+1]=a[j];a[j]=t;}}/*归并排序*/#define x 10#define y 10void com(int *a,int *b,int *c) { int i,j,k;for(i=0,j=0,k=0;i<=x&&j<=y;){ if(a[i]<b[j]){c[k++]=a[i];i++;}else{c[k++]=b[j];j++;}}if(i<x) for(k=k-1;i<x;i++)c[k++]=a[i];if(j<x) for(k=k-1;j<y;j++)c[k++]=a[j];}/*交换法排序1 冒泡排序*/ void sort(int a[],int n){ int i,j,t,flag;for(i=0;i<n-1;i++){flag=1;for(j=0;j<n-1-i;j++)if(a[j]>a[j+1]){t=a[j];a[j]=a[j+1];a[j+1]=t;flag=0;}if(flag) break;}}/*交换法排序2*/void sort(int a[],int n){ int i,j,t;for(i=0;i<n-1;i++)for(j=i+1;j<n;j++)if(a[i]>a[j]){t=a[i];a[i]=a[j];a[j]=t;}}/*选择法排序*/void sort(int a[],int n){ int i,j,point,t;for(i=0;i<n-1;i++){point=i;for(j=i+1;j<n;j++)if(a[point]<a[j]) point=j;if(point!=i){t=a[point];a[point]=a[i];a[i]=t;}}}7.一元非线性方程求根:/*牛顿迭代法求函数跟*/#include <stdio.h>#include <math.h>int main(void){ double x,x1,eps=1e-6,f,f1; /*误差为eps*/x=1.0; /*x=1.0是初值*/do{x1=x;f=6-x1*(5-x1*(4-3*x1)); /*f为f(x)函数*/f1=-5+x1*(8-9*x1); /*f1为f(x)的导函数*/x=x1-f/f1;f=6-x*(5-x*(4-3*x));}while(fabs(f)>=eps &&fabs(x-x1)>=eps);printf("x=%f",x);}/*二分法求函数跟*/#include <stdio.h>#include <math.h>double f(double x){ return 6-x*(5-x*(4-3*x)); /*f(x)函数*/ }int main(void){ double a,b,c,x,eps=1e-6;do{scanf("%lf%lf",&a,&b);}while(f(a)*f(b)>0);if(fabs(f(a))<1e-6)x=a;else if (fabs(f(b))<1e-6)x=b;else {c=(b+a)/2;while(fabs(f(c))>eps&&fabs(b-a)>eps){ if(f(a)*f(c)<0)b=c;elsea=c;c=(b+a)/2;}x=c;}printf("x=%f",x);}/*弦截法求函数跟*/c=(a*f(b)-b*f(a))/ (f(b)-f(a));while(fabs(f(c))>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(a*f(b)-b*f(a))/ (f(b)-f(a));}#include <stdio.h>void f();int main(void){ int x, loop=0;do{for(x=1;x<5;x++) {int x=2;printf("%d",x);}printf("%d ",x);f();loop++;}while(loop<1);getch();}void f(){ printf("%d",x++); }8.汉诺塔:#include<stdio.h>void Hanoi(int n, char A, char B, char C){if(n==1)printf("\n move %d from %c to %c",n,A,C); else{Hanoi(n-1,A,C,B);printf("\nmove %d from %c to %c",n,A,C); Hanoi(n-1,B, A, C);}}int main(void){ Hanoi(3,'A','B','C');getch();}9.建立链表:NODE *creat(void) /* void表示无参函数 */ {NODE *head=NULL,*p1=NULL,*p2=NULL; long num;unsigned score;int n=0;do{scanf(“%ld%u”,&num,&score);if(num==0) break;n++;p1=(NODE *)malloc(sizeof(NODE)); p1->data.num=num,p1->data.score=score;p1->next=NULL;if(n==1)head=p2=p1;else{p2->next=p1;p2=p1;}}while(1);return head;}10.级数的近似计算:#include <stdio.h>#include <math.h>int main(void){ double s=1,a=1,x,eps,f;int n,m;printf("input x and eps:");scanf ("%lf%lf",&x,&eps);for(n=1;fabs(a)>eps; n++){for(f=1,m=1;m<=n;m++)f*=m;a=pow(x,n)/f;s+=a;}printf("%f",s);}。

相关文档
最新文档