连续梁桥—内力计算
第八章混凝土连续梁桥的计算
均布荷载q 集中荷载q
第五节 徐变、收缩次内力计算
一、徐变、收缩理论
– 收缩——与荷载无关 – 徐变——与荷载有关 – 收缩、徐变与材料、配合比、温度、湿度、
截面形式、护条件、混凝土龄期有关
1、混凝土变形过程
– 收缩 – 弹性变形 – 回复弹性变形 – 滞后弹性变形 – 屈服应变
b b 其中s和 f 为计算系数,可查图
mi
si
规范折减方法
•
3.当梁高
h
bi 0.3
时,翼缘
有效宽度取实际宽度.
• 4.预应力混凝土梁计算 预加力引起的应力时, 其轴向力部分按全宽计 算,偏心部分按有效宽 度计算。
• 5.对超静定结构进行作 用效应分析时,可取实 际宽度计算。
s
3.预应力混凝土梁计算预加力引起的应力时, 其轴向力部分按全宽计算,偏心部分按有效 宽度计算。 4.对超静定结构进行作用效应分析时,可取 实际宽度计算。
第四节 连续梁桥荷载横向分布计算
桥梁结构属空间受力,内力分析和计算复杂, 为简化计算常利用主梁的内力影响线和考 虑荷载横向分布相结合的分离变量方法计 算桥梁的空间受力作用。
– 该理论较符合新混凝土的特性
将Dinshinger公式应用与老化理论
• 先天理论
– 不同加载龄期的混 凝土徐变增长规律 都一样
– 混凝土的徐变终极值不因加载龄期不同而异, 而是一个常值
翼缘有效宽度法
t c x, ydy
be1
0
t max
• 1.截面内力计算
• 2.翼缘宽度折减
• 3.按折减后等效 截面计算应力并 配置钢筋
装配式预应力混凝土连续箱梁桥面板计算分析
b1=0.6m ;铺装层厚度 h=0.23m,板厚度 t=0.16m。
平行于板的跨径方向的荷载分布宽度 :b1 = b2 +
2h = 1.06(m)。
车 轮 在 顶 板 的 跨 中 处 时:
a=a1+2h+L/3=1.232m>2/3L=1.145m ;
a=1.232<1.4m( 不需要考虑车轮分布有重叠 )。
剪力 :1.2Vsg + 1.8Vsp = 110.17(kN) ;跨中断面弯矩 :
1.2Mcg + 1.8Mcp = 21.71(kN·m)。
三、截面设计、配筋与承载力验算 1. 基本组合 (1)腹板顶截面
183
JIAN SHE YAN JIU
①截面配筋计算
悬臂板及连续板支点采用相同的抗弯钢筋,故只需按
矩 :M sp = -15.34(kN·m), 支 点 断 面 剪 力 :Vsp =
55.74(kN) ;跨中断面弯矩 :Mcp = 10.96(kN·m)。
2.3 作用效应组合
承载能力极限状态作用效应基本组合如下,支点断面
弯矩 :1.2Msg + 1.8 Msp = -30.83(kN·m) ;支点断面
桥面板可看成 38.9cm 长的悬臂单向板。
连续板恒载效应如下 :
支点断面弯矩为 :Msg = -2.682(kN·m) ;支点断
面剪力为 :Vsg = 8.198(kN) ;跨中断面弯矩为 :Mcg =
1.654(kN·m).
2. 可变作用
桥梁结构局部加载时,汽车荷载采用车辆荷载。后
轮着地宽度 b1 及长度 a1 为 :车轮着地长度 a1=0.2m,
二、连续板荷载效应计算 对于梁肋间的行车道板,由于支承点并非完全固结, 行车道板为支承在一系列弹性支承上的多跨连续板,受力 很复杂。通常采用较简便的近似方法进行计算,弯矩计算 跨径取净跨径加板厚,但不大于支承点中距。
连续梁桥—内力计算
5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置; 6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效
应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下
极限状态的截面强度、应力、裂缝、变形等验
算;
5.例
有一联 30+45+30m 的预应力砼变截面连续梁桥,
按一次落架施工法,单元离散图如下:
(三)简支转连续施工
先架设预制主梁形成简支梁,再主梁在 墩顶连成整体形成连续梁体系。以4跨连续梁 桥为例,施工过程如下:
1.阶段1:架设主梁
2.阶段2:边跨合龙
3.阶段3:中跨合龙
4.阶段4:体系转换
1. 在桥梁一端搭设的台座上逐段预制、
逐段向桥另一端推进。结构体系经历悬臂梁、
简支梁、双跨连续梁、多跨连续梁直到成桥 连续梁体系。 2. 在顶推过程中,结构体系、梁体内力 不断发生变化,施工过程中的主梁各截面自 重内力比使用状态下自重内力更不利。
3. 主梁配筋由施工过程内力包络图和使
用阶段内力包络图共同决定。
(二)满堂支架施工
1.适用:桥墩不高、桥下地面适宜搭设支架中
小跨径连续梁桥。
2.该施工法无体系转换,一期、期恒载都按一
次落架方式作用在连续梁上,叠加两个施工阶段的
内力即为结构重力作用的内力;
3.结构自重内力可用力法、位移法、影响线法、 有限单元法计算; 4.采用有限单元法时,将各单元自重简化为均 布荷载,横隔板简化为集中力作用在横隔板中心线
主要步骤如下: 1.细化结构尺寸、确定材料类型; 2.模拟实际施工阶段,计算相关作用内力 3.将各作用内力进行持久状况承载能力和 正常使用极限状态效应组合即第一次效应组合
桥梁工程第二篇第6章 主梁内力计算
计算主梁支点或靠近支点截面的剪力时,荷载横向 分布系数在这一区段内是变化的。
当
时 , 为负值,这意味着剪力反而减小了
2 .计算示例 已知:五梁式桥,计算跨径 19.5m 。 荷载:公路 — Ⅱ级,人群: 3.0kN/m2 求:跨中最大弯矩和最大剪力,支点截面最大剪力
解: ( 1 )公路 — Ⅱ级车道荷载标准值计算 ( 2 )冲击系数: 《桥规》:
第六章 简支梁桥的计算
桥梁工程计算的内容
内力计算——桥梁工程、基础工程课解决 截面计算——混凝土结构原理、预应力混凝
土结构课程解决 变形计算
简支梁桥的计算构件
上部结构——主梁、横梁、桥面板 支座 下部结构——桥墩、桥台
计算过程
开始 拟定尺寸 内力计算 截面配筋验算
否
是否通过 是
计算结束
2、作用在横梁上的计算荷载Ps
1)集中荷载 当一个集中荷载P作用在跨中时, Ps=2P/l 2) 均布荷载
全跨布满荷载q时, Ps=4q/
第三节 桥面板计算
行车道板的作用——直接承受车轮荷载、 把荷载传递给主梁
一.行车道板的类型
板支承在纵梁和横梁上,按支承情况和板尺寸,从力学计算 角度分为以下几类:
wa wb Pala3 Pblb3 48EIa 48EIb
如
Ia Ib
Pb Pa
la lb
3
二、车轮荷载在板上分布 轮压一般作为分布荷载处理,以力求精确
车轮着地面积:a2×b2
桥面板荷载压力面:a1×b1 荷载在铺装层内按45°扩散。 沿纵向:a1=a2 +2H 沿横向:b1=b2+2H 桥面板的轮压局部分布荷载
横梁的作用与受力特点
组合梁桥课程设计计算书
目录钢-混凝土连续梁桥设计计算书 (1)1 工程结构概况 (1)2 结构设计参数及设计原理 (1)3 截面特性计算 (2)3.1钢梁截面特性 (3)3.2混凝土截面特性 (3)3.3组合截面特性 (4)4 横向连接系的设计 (5)4.1横向联结系的设计 (5)4.2钢主梁腹板加劲肋的设计 (6)4.3主梁荷载的横向分布系数计算 (7)5 内力计算 (10)5.1恒载内力计算 (10)5.2活载内力的计算 (11)6 主梁作用效应组合与应力验算 (13)6.1应力验算 (13)6.2最不利荷载组合及应力组合 (18)6.3负弯矩区混凝土板的配筋计算 (20)6.4剪力连接件的计算 (21)6.5横隔梁的内力计算 (23)7 有限元软件分析计算 (26)7.1有限元建模与计算 (26)7.2结构内力计算结果 (27)7.3结构挠度计算结果 (29)钢-混凝土连续梁桥设计计算书1 工程结构概况本设计桥梁为某高速公路跨线桥,设计车道数为双向四车道,设计车速为120km/h ,设计荷载采用1.3倍公路-Ⅰ级荷载。
桥梁为跨径布置50m+80m+50m 的连续梁桥,桥宽为25.5m 。
通过综合分析比较各类桥型,本桥梁采用钢-混凝土组合梁桥结构形式对跨线桥进行初步设计,并进行结构设计验算。
本文先后分别进行截面设计,抗弯强度计算,以及抗剪强度设计。
本文设计过程先采用手工计算,再运用有限元软件进行复核。
2 结构设计参数及设计原理结构形式:采用连续有承托焊接工字型板梁方案,横桥向为等间距并排9个焊接工字梁,钢主梁的上翼缘顶部通过栓钉与现浇混凝土桥面板相连接,形成钢-混凝土组合结构共同承受外荷载作用。
桥梁沿桥跨方向,主跨等间距布置14道横隔梁,边跨布置9道横隔梁,以提高钢主梁的整体稳定性,保证各根主梁整体承载,三跨的横隔梁标准间距为6.00m ,结构立面如图2.1所示,桥梁桥跨方向的横断面如图2.2所示,结构钢主梁及横隔梁布置形式如图2.3所示。
连续梁桥(T构)计算
计算方法
结果分析
采用有限元法进行计算,将主梁离散化为 多个单元,建立整体有限元模型。
通过计算和分析,得出主梁在各种工况下 的应力、应变和挠度等结果,验证主梁的 受力性能是否满足设计要求。
某高速公路的T构优化设计
工程概况
某高速公路连续梁桥(T构)需 要进行优化设计,以提高结构 的承载能力和稳定性。
优化内容
和意外事故。
提高施工质量
施工控制有助于提高桥梁的施工 质量,通过控制施工过程中的各 项参数,确保桥梁的线形、内力
和变形等指标符合设计要求。
节约成本
合理的施工控制可以避免施工过 程中的浪费和不必要的返工,从
而节约施工成本。
施工控制的主要内容
施工监控
对桥梁施工过程中的线形、内力和变形进行实时 监测,确保施工状态符合设计要求。
对主梁的截面尺寸、配筋和桥墩 的布置进行优化设计,降低结构 的自重和提高结构的刚度。
优化方法
采用有限元法进行计算和分析, 通过调整结构参数和材料属性, 对结构进行多方案比较和优化。
结果分析
经过优化设计,结构的承载能力 和稳定性得到了显著提高,同时
降低了结构的自重和造价。
某铁路桥的T构施工控制与监测
03
需要保证桥面平度的桥梁
连续梁桥(T构)的桥面平度较高,能够满足高速铁路、高速公路等对桥
面平度的要求。
02
T构的力学分析
静力学分析
1
计算T构在静力作用下的内力和变形,包括恒载 和活载。
2
分析T构在不同工况下的应力分布和最大、最小 应力值。
3
评估T构的承载能力和稳定性,确保满足设计要 求和使用安全。
在满足安全性和功能性 的前提下,降低T构的造
一座连续梁桥完整的设计计算书
侧面上看线条明 晰,与当地的地形 配合,显得美观大
方
跨径一般,线条明 晰,但比较单调, 与景观配合很不协
调。
跨径较大,线条非 常美,与环境和谐, 增加了城市的景观
养护维修量
小
小
较大
设计技术水平 施工技术 工期
经验较丰富,国内 先进水平
满堂支架法:结构 不发生体系转换, 不引起恒载徐变二 次矩,预应力筋可 以一次布置,集中 张拉等优点。施工
2
梁拱组合桥 软土地基上建造拱桥,存在桥台抵抗水平推力的薄弱环节。为此采用 大吨位预应力筋以承担拱的水平推力;预应力筋的寄体是系梁,即加劲纵 梁,从而以梁式桥为基体,按各种梁桥的弯矩包络图用拱来加强。这样可 以使桥梁结构轻型化,同时能提高这类桥梁的跨越能力。这类桥梁不仅技 术经济指标先进、造价低廉,同时桥型美观,反映出力与美的统一、结构 形式与环境的和谐,增加了城市的景观。 斜拉桥 斜拉桥的特点是依靠固定与索塔的斜拉索支撑梁跨,梁是多跨弹性支 撑梁,梁内弯矩与桥梁的跨度基本无关,而与拉索的间距有关。他们适用 于大跨、特大跨度桥梁,现在还没有其他类型的桥梁的跨度能超过他们。 斜拉桥与悬索桥不同之处是,斜拉桥直接锚于主梁上,称自锚体系, 拉索承受巨大的拉力,拉索的水平分力使主梁受压,因此塔、梁均为压弯 构件。由于斜拉桥的主梁通过拉紧的斜索与塔直接相连,增加了主梁抗弯、 抗扭刚度,在动力特性上一般远胜于悬索桥。悬索桥的主缆为承重索,它 通过吊索吊住加劲梁,索两端锚于地面,称地锚体系。 斜拉桥具有施工方便、桥型美观、用料省、主梁高度小、梁底直线容 易满足通航和排洪要求、动力性能好的优点,发展非常迅速,跨径不断增 大。但实际跨度不大,此桥型不予考虑。 目前我国城市轨道交通高架桥结构一般考虑简支梁和连续梁结构形 式。简支梁受力明确,受无缝钢轨因温度变化产生的附加力、特殊力的影 响小,设计施工易标准化、简单化;但其梁高较大,景观稍差,行车条件 也不如连续梁。连续梁结构与同等跨度的简支梁相比,可以降低梁高,节 省工程数量,有利于争取桥下净空,并改善景观;其结构刚度大,具有良 好的动力特性以及减震降噪作用,使行车平稳舒适,后期的维修养护工作 也较少。从城市美学效果来看,连续梁造型轻巧、平整、线路流畅,将给 城市争色不少。但连续梁对基础沉降要求严格,特别是由于联长较大,桥 上无缝钢轨因温度变化而产生的水平力很大,使得梁体与墩台之间的受力 十分复杂,加大了设计难度。考虑到天津地铁工程地质条件,综合考虑, 采用连续梁结构作为高架区间的标准型式。
第三章 连续梁桥内力次内力计算
• 实体截面:用于小跨度的桥梁(现浇)
• 空心板截面:常用于1530m的连续梁桥 (现浇)
• 肋式截面:常用跨度在1530m范围内, 常采用预制架设施工,并在梁段安装完 成之后,经体系转换形成连续梁。鱼腹 式
• 特点:构造简单,施工方便,适用于中、 小跨度的连续梁桥。
9
第三章 连续梁桥 第一节 概述
7
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-布置
(2)梁高的选择
等高度连续梁
变高度连续梁
等截面连续梁
VS
变截面连续梁
➢梁高不变。具有构造、制造和施 工简便的特点。适用于中等跨度 (4060m左右)的、较长的桥梁。 可按等跨或不等跨布置。长桥多采
用等跨布置,以简化构造,统一模
式,便于施工。
➢更能适应结构的内力分布规律。受 力状态与其施工时的内力状态基本吻 合。梁高变化规律可以是斜(直)线、 圆弧线或二次抛物线。箱型截面的底 板、腹板和顶板可作成变厚度,以适 应梁内各截面的不同受力要求。
箱内外,配以横隔板、转向块等构
特点-减小截
造,对梁体施加预应力。
面尺寸;提高混
凝土浇筑质量;
无须预留孔道,
减少孔道压浆等
工序;施工方便
迅速,钢束便于
更换;钢束线形
容易调整,减小
预应力损失;但
其对力筋防护和
结构构造等的要
求较高,抗腐蚀、
耐疲劳性能有待
提高。
在桥梁工程中
有所应用(新桥
设计和既有桥梁
加固)。
37
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-设计实例
38
第三章 连续梁桥 第一节 概述
混凝土连续梁桥概述-设计实例
连续梁桥—内力计算
7.主梁最小自重负弯矩发生在鼻梁刚过 前方支点或鼻梁刚接近前方支点时。
(六)悬臂施工
1.悬臂施工的连续梁桥最终结构自重内 力与合龙次序、预应力、砼收缩徐变有关。
2.例:一3跨预应力砼连续梁桥,上部结 构采用挂篮对称平衡悬臂法施工,分为 5个施 工阶段,合龙次序为先边跨后中跨。
(4)阶段4:中跨合龙 现浇合龙段自重与挂篮施工机具重力之 和R0施加单悬臂的悬臂端, R0产生的内力如e (5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成
(5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成 连续梁后,拆除施工机具,相当于对连续梁 施加一对反向力 R0,跨中合龙段自重则作用 与连续梁上,内力如f 以上为每个阶段的内力分析,某个阶段 的累计内力为该阶段内力与前几个阶段内力 叠加值。
5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置;
6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效 应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下 极限状态的截面强度、应力、裂缝、变形等验 算;
该施工法无体系转换一期期恒载都按一次落架方式作用在连续梁上叠加两个施工阶段的内力即为结构重力作用的内力
普通高等学校土木工程专业精编力计算
连续梁桥内力计算
本节内容
一、桥梁设计步骤 二、结构重力计算
3
一、桥梁设计步骤
桥梁设计一般分 总体设计(初步设计) 、 结构设计(施工图设计) 两步。前者工作: 选定桥位、桥型方案;确定桥长、跨径、桥 宽、主梁截面形式、梁高等关键要素。后者 工作:细化构造、明确作用(汽车荷载、人 群、温度、基础变位等)、确定材料、施工 方法、完成内力计算、配筋设计、验算,最 终形成施工图。
迈达斯桥梁计算示例
21.0000000.0000000.000000
32.0000000.0000000.000000
43.0000000.0000000.000000
54.0000000.0000000.000000
65.0250000.0000000.000000
5554.0000000.0000000.000000
5655.2750000.0000000.000000
5756.0000000.0000000.000000
5857.0000000.0000000.000000
5958.0000000.0000000.000000
6059.0000000.0000000.000000
0
0
-7.21
0
148.81
0
31
梁体自重
I[31]
0
0
-7.21
0
148.81
0
35
梁体自重
J[36]
0
0
44.57
0
54.94
0
36
梁体自重
I[36]
0
0
44.57
0
54.94
0
40
梁体自重
J[41]
0
0
96.35
0
-299.13
0
41
梁体自重
I[41]
0
0
-96.35
0
-299.13
0
45
梁体自重
1)结构重力引起主梁内力及变形计算(人行道荷载12.35KN/m)。
a.梁体自重情况下
梁体自重作用内力图如下
预应力混凝土连续梁桥
34
预应力混凝土连续梁桥的构造
竖向预应力筋
Ø 当腹板混凝土、普通钢筋、纵向下弯预应力筋等不足 以抵抗荷载剪力时,就需要在腹板内布置竖向预应力 筋。
Ø 竖向预应力筋一方面可以提高截面的抗剪能力,另一 方面也可以与挂篮施工配合,作为后锚钢筋。
Ø 竖向预应力筋比较短,直筋采用钢绞线、钢丝束,也 可以选用精轧螺纹钢筋。
Ø 为简化多肋T形梁的施工,也有宽矮肋的单 T断面,肋宽可达3~4m,外悬长翼板,称 为脊形梁(脊骨梁)或异形结构。
15
预应力混凝土连续梁桥的构造
箱形截面
Ø 当跨径超过40~60m或更大时,主梁多采用箱形截面, 适用于有支架现浇施工,逐孔施工、悬臂施工等多种 施工方法。
Ø 常用的截面形式:单箱单室、单箱双室、双箱单室
1 50
)l
11
预应力混凝土连续梁桥的构造
变截面连续梁适用范围
Ø 连续梁的主跨跨径大于70m 。 Ø 适合悬臂浇筑和悬臂拼装两种施工 。 Ø 大跨径预应力混凝土连续梁桥采用悬臂法施工
时,存在墩梁临时固结和体系转换的工序,结 构稳定性应予以重视,施工较为复杂;此外, 主墩需要布置大型橡胶支座,存在养护上甚至 更换上的麻烦。
悬臂(浇注/拼装)施工
Ø 梁部施工从桥中间墩处开始、按对称方式逐步接长并 悬出梁段至合龙的施工方法。
Ø 施工支架和临时设备少。 Ø 施工时不影响桥下通航、通车,也不受季节、河道水
位的影响。 Ø 能在大跨度桥上采用。
39
预应力混凝土连续梁桥的施工方法
简支变连续施工
40
预应力混凝土连续梁桥的施工方法
逐跨(浇注/拼装)施工
因素,一般采用2~5m,超过3m应布置横向预 应力筋。
连续刚构桥设计方法
连续刚构桥设计方法一、连续刚构桥的特点作为梁桥的一种,连续梁桥有着结构刚度大、变形小;动力性能好;无伸缩缝、行车平顺的优点。
而连续刚构桥是由t型刚构桥演变而来的,其结构特点是梁体连续、梁墩固结。
这样既保持了连续梁无伸缩缝、行车平顺的优点,又保持了t型刚构不设支座、不需转换体系的优点。
且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足大跨度桥梁的受力要求。
二、连续刚构桥的适用范围连续刚构桥上部主梁的受力与连续梁桥基本相似;下部桥墩由于结构的整体性,温度和收缩徐变造成的内力十分显著。
因此其桥墩应该有一定的柔度。
使用高强度、轻质混凝土是大跨度梁桥的发展方向之一。
目前世界上已建成的连续刚构桥最大单跨为挪威斯托尔马桥(stolma),主跨301米,国内最大单跨为虎门大桥辅航道桥,主跨270米。
三、设计时需收集的基础资料设计时应围绕桥位选择、桥墩位置、跨径、立面布置、结构体系、施工方法等因素,对桥梁建设的自然条件和功能要求有充分的了解。
1、自然条件包括(1)地形地貌、控制物等;(2)工程地质条件;(3)水文条件;(4)气象条件;(5)地震。
2、功能要求包括(1)桥梁本身使用功能,如铁路桥梁、公路桥梁、城市桥梁、轨道交通、人行桥等;(2)桥下功能要求,如通车、通航等。
四、桥型方案的选择设计时应根据桥梁建设条件,结合技术可行性、施工难度、工程风险与进度、经济合理性、景观协调性等因素,进行桥型比选,确定桥梁的跨径布置。
五、上部结构构造尺寸连续刚构桥设计时,可根据工程实践统计,初步拟定构造尺寸,再进行具体计算复核。
1、边、中跨跨径比一般在0.52~0.58之间。
当边、中跨比较小时,边跨现浇段较短,可减少边跨现浇段支架,对施工有利,但应保证各种工况下边墩处支座不出现负反力。
2、梁的截面形式连续刚构桥多采用箱形截面,其具有良好的抗弯和抗扭性能。
根据桥梁宽度,可采用单箱单室、单箱多室等截面形式。
3、梁高桥梁跨度在60米以内时,可考虑采用等截面高度,构造简单,施工快捷。
[PPT]桥梁(连续梁、简支梁)超静定结构次内力计算
应力应变公式
时刻的应力增量
在t时刻的应变
从0 时刻到 t 时刻的总应变
②
时效系数
利用中值定理计算应力增量引起的徐变
时效系数
从0 时刻到 t 时刻的总应变
③
松弛系数——通过实验计算时效系数
松弛实验
台座
实验构件
令 松弛系数通过实验数据拟合
近似拟合松弛系数
令折算系数
徐变应力增量
换算弹性模量
非线性温度梯度对结构的影响
温度梯度场
2)自应力计算
温差应变 平截面假定 温差自应变 温差自应力
T(y)=T(y) a(y)=0+y (y)=T(y)-a(y)=T(y)-(0+y) s0(y)=E(y)=E{T(y)-(0+y)}
调整预应力束筋在中间支点的位置, 使预应力筋重心线线性转换至压力线 位置上,预加力的总预矩不变,而次 力矩为零。 次力矩为零时的配束称吻合索
多跨连续梁在任意荷载作用下
结论: 按外荷载弯矩图形状布置预应力束及为 吻合束 吻合束有任意多条
均布荷载q
集中荷载q
3)等效荷载法求解总预矩
把预应力束筋和混凝 土视为相互独立的脱 离体,预加力对混凝 土的作用可以用等效 荷载代替
4. 预应力次内力计算
预应力初弯矩:
预应力次弯矩:
总预矩:
压力线:
简支梁压力线与预
应力筋位置重合 连续梁压力线与预 应力筋位置相差
1)用力法解预加力次力矩
(1) 直线配筋
力法方程
变位系数 赘余力
总预矩 压力线位置
(2)曲线配筋
梁端无偏心矩时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)移动模架逐孔浇筑施工
1.阶段1:悬臂梁体系 在支架上浇筑边跨砼,形成单悬臂梁状 态
2.阶段2:带悬臂连续梁体系 在支架上浇筑第 2跨砼,形成一次超静定 连续梁状态。以此类推,浇筑后面跨。
3.阶段3:连续梁体系 在支架上浇筑最后一跨砼,形成连续梁 体系。
(五)顶推施工
1.在桥梁一端搭设的台座上逐段预制、 逐段向桥另一端推进。结构体系经历悬臂梁、 简支梁、双跨连续梁、多跨连续梁直到成桥 连续梁体系。
三、可变作用内力计算
(一)计算公式
??=(1+??)ξ ????(????Ω +???????)?
(二)荷载横向分布系数的算法
影响横向分布系数因素:桥梁宽跨比、 主梁抗弯、搞扭刚度。
超静定连续板、梁桥横向分布系数:
可用等跨径等挠曲刚度即“等效刚度简 支板、梁法”代替连续板、梁求其横向分布 系数。
连续梁砼徐变变形,结构受多余约束而 产生次内力,称为徐变次内力。
普通高等学校土木工程专业精编系列规划教材
桥梁 工程
主编 赵青
连续梁桥内力计算
连续梁桥内力计算
本节内容
一、桥梁设计步骤 二、结构重力计算
3
一、桥梁设计步骤
桥梁设计一般分 总体设计(初步设计) 、 结构设计(施工图设计) 两步。前者工作: 选定桥位、桥型方案;确定桥长、跨径、桥 宽、主梁截面形式、梁高等关键要素。后者 工作:细化构造、明确作用(汽车荷载、人 群、温度、基础变位等)、确定材料、施工 方法、完成内力计算、配筋设计、验算,最 终形成施工图。
2.在顶推过程中,结构体系、梁体内力 不断发生变化,施工过程中的主梁各截面自 重内力比使用状态下自重内力更不利。
3.主梁配筋由施工过程内力包络图和使 用阶段内力包络图共同决定。
4.每顶出一段长度(一般取 5m)进行一 次自重内力分析,顶推施工时弯矩包络图如 下:
5.与鼻梁相接的第 1孔梁截面受力最不利; 其他孔截面内力约为固端梁在自重作用下的 弯矩。
预应力砼简支梁在预加力作用下只产生 自由挠曲和预应力偏心矩,不产生次力矩。
连续梁由于多余约束产生限制梁体自由 变形,在多余约束处产生垂直次内力,在梁 体内产生次力矩,如下图。
(三)徐变引起的次内力
砼在荷载作用下的变形分为:弹性变形 (与荷载有关)、收缩变形(与时间有关)、 徐变变形(与荷载和时间有关)
可将连续板、梁换算为不同跨径等挠度 即“等挠度跨径换算法”求其横向分布系数。
可用连续板、梁弯矩图反弯点之间的跨 径作为简支板梁跨径求其横向分布系数。
四、次内力计算
(一)次内力
连续梁结构受强迫变形时会在多余约束 处产生约束反力,从而产生附加内力,又称 结构次内力(或称二次力)。
(二)预加力引起的次内力
6.施工过程中,主梁最大自重弯矩发生 在鼻梁刚过前方支点。
7.主梁最小自重负弯矩发生在鼻梁刚过 前方支点或鼻梁刚接近前方支点时。
(六)悬臂施工
1.悬臂施工的连续梁桥最终结构自重内 力与合龙次序、预应力、砼收缩徐变有关。
2.例:一3跨预应力砼连续梁桥,上部结 构采用挂篮对称平衡悬臂法施工,分为 5个施 工阶段,合龙次序为先边跨后中跨。
5.例 有一联 30+45+30m 的预应力砼变截面连续梁桥, 按一次落架施工法,单元离散图如下:
(三)简支转连续施工
先架设预制主梁形成简支梁,再主梁在 墩顶连成整体形成连续梁体系。以 4跨连续梁 桥为例,施工过程如下:
1.阶段1:架设主梁
2.阶段2:边跨合龙 3.阶段3:中跨合龙
4.阶段4:体系转换 5.阶段5:桥面系施工
(4)阶段4:中跨合龙 现浇合龙段自重与挂篮施工机具重力之 和R0施加单悬臂的悬臂端, R0产生的内力如e (5)阶段5:拆除合龙段挂篮 跨中合 跨中合龙段砼凝固与两边单悬臂梁形成 连续梁后,拆除施工机具,相当于对连续梁 施加一对反向力 R0,跨中合龙段自重则作用 与连续梁上,内力如f 以上为每个阶段的内力分析,某个阶段 的累计内力为该阶段内力与前几个阶段内力 叠加值。
5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置;
6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效 应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下 极限状态的截面强度、应力、裂缝、变形等验 算;
(二)满堂支架施工
1.适用:桥墩不高、桥下地面适宜搭设支架中 小跨径连续梁桥。
2.该施工法无体系转换,一期、期恒载都按一 次落架方式作用在连续梁上,叠加两个施工阶段的 内力即为结构重力作用的内力;
3.结构自重内力可用力法、位移法、影响线法、 有限单元法计算;
4.采用有限单元法时,将各单元自重简化为均 布荷载,横隔板简化为集中力作用在横隔板中心线
(1)阶段1:在主墩上悬臂浇筑砼 在1号、2号墩顶浇筑 0号块梁段,后用挂 篮桥墩两侧分节段对称平衡悬臂施工,边跨 不对称梁段用支架施工,如上图b。 (2)阶段2:边跨合龙 此时形成单悬臂体系,主梁自重内力如 c (3)阶段3:拆除临时锚固 边跨合龙连成整体后,拆除临时锚固,
即对主梁施加一对方向相反的力 R,以释 放边跨合龙时在临时锚固中产生的力, R在悬 臂体系引起的内力如图d。
主要步骤如下: 1.细化结构尺寸、确定材料类型; 2.模拟实际施工阶段,计算相关作用内力 3.将各作用内力进行持久状况承载能力和 正常使用极限状态效应组合即第一次效应组合 4.据第一次效应组合值,按持久状况承载 能力和正常使用极限状态估算预应力筋。对 PC 连续梁桥,估算预应力筋时,一般将第一次组 合最大控制弯矩值的 20%~30%作为次内力计入。
8.若各项难处均满足桥规要求,则设计通 过;若有些截面不满足,则调整钢筋、甚至修 改截面尺寸重新计算,直至各项验算满足桥规 为止。
二、结构重力计算
(一)计算特点
结构重力作用包括一期恒载(主梁自重) 和二期恒载(结构附加重力:桥面铺装、人 行道、拉杆、灯柱等);
一期恒载内力与施工方法密切相关; 二期恒载模拟为均布荷载; 连续梁桥常用五种施工方法如下: