计算方法龙格库塔方法概要

合集下载

龙格-库塔(Runge-Kutta)法

龙格-库塔(Runge-Kutta)法
数值计算方法
龙格-库塔(Runge-Kutta)法 1.1 龙格-库塔(Runge-Kutta)法的基本思想
Euler公式可改写成
yi1 yi hK1 K1 f ( xi , yi )
则yi+1的表达式y(xi+1)与的Taylor展开式的前两项 完全相同,即局部截断误差为 O(h 2 ) 。
为了进一步提高精度,设除 xi p 外再增加一点
xiq xi qh ( p q 1)
并用三个点 xi ,xi p , xiq 的斜率k1,k2,k3加权平均
得出平均斜率k*的近似值,这时计算格式具有形式:
yi1 yi h(1 )k1 k2 k3
k1 f (xi , yi ) k2 f (xi ph, yi phk1 )
格式。
若取 1 0 ,则 2 法的计算公式为
1,
p
1 2
,此时二阶龙格-库塔
ky1i
1
f
yi hk2 ( xi , yi )
k
2
h
f
(
x
i
1
,
yi
2
2 k1 )
i 0,1,2, n 1
此计算公式称为变形的二阶龙格—库塔法。式中
x 1 i 2
为区间
xi , xi1
的中点。
1.3 三阶龙格-库塔法
拉法,将 xi p 视为 xi1,即可得
k2 f (xi ph, yi phk1 ) 对常微分方程初值问题(7.1)式的解 y=y(x),根据微 分中值定理,存在点 (xi , xi1 ) ,使得
也即
y(xi1 ) y(xi ) y( )( xi1 xi )
y( xi1 ) y( xi ) hK

龙格库塔法

龙格库塔法
§9-3
一、高阶泰勒法
假设初值问题
龙格—库塔法 龙格 库塔法
dy = f (t , y ) dt y (a) = α 的解y (t)及f (t , y )足够光滑.
将y (ti +1 )在ti处作n阶泰勒展开, 得
a≤t ≤b
(1)
y′′(ti ) 2 y ( n ) (ti ) n y ( n +1) (ξ i ) n +1 y (ti +1 ) = y (ti ) + y′(ti )h + h +L+ h + h n! 2! (n + 1)! 其中, ti < ξ i < ti +1.
2
i
i
1
3
i
i
2
4
i
i
3
i +1
i
6123 Nhomakorabea4
作业 教材P198 习题3
(2)
(3)
首先将y (ti +1 )在ti处展成幂级数 h2 y (ti +1 ) = y (ti ) + hy′(ti ) + y′′(ti ) + O(h 3 ) 2 将 y′(t ) = f (t , y (t )) y′′(t ) = f t′(t , y (t )) + f y (t , y (t )) f (t , y (t )) 代入上式, 得 h2 y (ti +1 ) = y (ti ) + hf + ( f t + ff y ) + O(h 3 ) (3) 2 其中f , f t , f y′分别表示相应函数在点(ti , y (ti ))处的函数值.

龙格库塔

龙格库塔

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。

这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

经典四阶龙格库塔法龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。

令初值问题表述如下。

则,对于该问题的RK4由如下方程给出:其中这样,下一个值(y n+1)由现在的值(y n)加上时间间隔(h)和一个估算的斜率的乘积决定。

该斜率是以下斜率的加权平均:∙k1是时间段开始时的斜率;∙k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点t n + h/2的值;∙k3也是中点的斜率,但是这次采用斜率k2决定y值;∙k4是时间段终点的斜率,其y值用k3决定。

当四个斜率取平均时,中点的斜率有更大的权值:RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。

注意上述公式对于标量或者向量函数(y可以是向量)都适用。

显式龙格库塔法显示龙格-库塔法是上述RK4法的一个推广。

它由下式给出其中如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(h p+1)时的条件。

这些可以从舍入误差本身的定义中导出。

例如,一个2阶精度的2段方法要求b1 + b2 = 1, b2c2 = 1/2, 以及b2a21 = 1/2。

在Matlab下输入:edit,然后将下面两行百分号之间的内容,复制进去,保存%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%function dxdt=ode_Miss_ghost(t,x)%分别用x(1),x(2),x(3),x(4)代替N1,P1,N2,P2N1=x(1);P1=x(2);N2=x(3);P2=x(4);K=2;tau_c=3e-9;tan_p=6e-12;beta =5e-5;delta=0.692;eta =0.0001;fm =8e6;Ith =26e-3;Ib =1.5*Ith;Im =0.3*Ith;I1=Ib+Im*sin(2*pi*fm*t)+K*P2;I2=Ib+Im*sin(2*pi*fm*t)+K*P1;dxdt=[(I1/Ith-N1-(N1-delta)/(1-delta)*P1)/tau_e;((N1-delta)/(1-delta)*(1-eta*P1)*P1-P1+beta*N1)/tau_p;(I2/Ith-N2-(N2-delta)/(1-delta)*P2)/tau_e;((N2-delta)/(1-delta)*(1-eta*P2)*P2-P2+beta*N2)/tau_p;]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%在Matlab下面输入:t_start=0;t_end=2e-9;y0=[1e-3;1e-4;0;0]; %初值[x,y]=ode15s('ode_Miss_ghost',[0,t_end],y0);plot(x,y);legend('N1','P1','N2','P2');xlabel('x');Mathlab定步长龙格-库塔法[345阶]、自适应步长rkf45经常看到很多朋友问定步长的龙格库塔法设置问题,下面吧定步长三阶、四阶、五阶龙格库塔程序贴出来,有需要的可以看看ODE3 三阶龙格-库塔法CODE:function Y = ode3(odefun,tspan,y0,varargin)%ODE3 Solve differential equations with a non-adaptive method of order 3.% Y = ODE3(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates% the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE3(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN% but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the Bogacki-Shampine Runge-Kutta method of order 3.%% Example% tspan = 0:0.1:20;% y = ode3(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1, % and plots the first component of the solution.%if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);F = zeros(neq,3);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);F(:,1) = feval(odefun,ti,yi,varargin{:});F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});F(:,3) = feval(odefun,ti+0.75*hi,yi+0.75*hi*F(:,2),varargin{:});Y(:,i) = yi + (hi/9)*(2*F(:,1) + 3*F(:,2) + 4*F(:,3));endY = Y.';ODE4 四阶龙格-库塔法CODE:function Y = ode4(odefun,tspan,y0,varargin)%ODE4 Solve differential equations with a non-adaptive method of order 4.% Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates % the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN % but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the classical Runge-Kutta method of order 4.%% Example% tspan = 0:0.1:20;% y = ode4(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1,% and plots the first component of the solution.%if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr]; error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);F = zeros(neq,4);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);F(:,1) = feval(odefun,ti,yi,varargin{:});F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:}); F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:}); F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));endY = Y.';定步长RK4(自编):CODE:function Y=RungeKutta4(f,xn,y0)% xn=0:.1:1;% y0=1;% y_n=[];% f=@(X1,Y1) Y1-2*X1/Y1;y_n=[];h=diff(xn(1:2));for i=1:length(xn)-1K1=f(xn(i),y0);K2=f(xn(i)+h/2,y0+h*K1/2);K3=f(xn(i)+h/2,y0+h*K2/2);K4=f(xn(i)+h,y0+h*K3);y_n=[y_n;y0+h/6*(K1+2*K2+2*K3+K4)];y0=y_n(end);endY=y_n;ODE5 五阶龙格-库塔法CODE:function Y = ode5(odefun,tspan,y0,varargin)%ODE5 Solve differential equations with a non-adaptive method of order 5.% Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates % the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN % but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the Dormand-Prince method of order 5 in a general % framework of explicit Runge-Kutta methods.%% Example% tspan = 0:0.1:20;% y = ode5(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1,% and plots the first component of the solution.if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);% Method coefficients -- Butcher's tableau%% C | A% --+---% | BC = [1/5; 3/10; 4/5; 8/9; 1];A = [ 1/5, 0, 0, 0, 03/40, 9/40, 0, 0, 044/45 -56/15, 32/9, 0, 019372/6561, -25360/2187, 64448/6561, -212/729, 0 9017/3168, -355/33, 46732/5247, 49/176, -5103/18656];B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84]; % More convenient storageA = A.';B = B(:);nstages = length(B);F = zeros(neq,nstages);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);% General explicit Runge-Kutta frameworkF(:,1) = feval(odefun,ti,yi,varargin{:});for stage = 2:nstageststage = ti + C(stage-1)*hi;ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1));F(:,stage) = feval(odefun,tstage,ystage,varargin{:});endY(:,i) = yi + F*(hi*B);endY = Y.';-------------------------------------------------------------------------------------------------------------------自适应步长RKF45(相当于ode45)ODE45 是4阶方法提供候选解,5阶方法控制误差。

matlab龙格库塔法程序,给出实例

matlab龙格库塔法程序,给出实例

一、介绍龙格库塔法龙格库塔法(Runge-Kutta method)是一种数值计算方法,用于求解常微分方程的数值解。

它通过多步迭代的方式逼近微分方程的解,并且具有较高的精度和稳定性。

二、龙格库塔法的原理龙格库塔法采用迭代的方式来逼近微分方程的解。

在每一步迭代中,计算出当前时刻的斜率,然后根据这个斜率来求解下一个时刻的值。

通过多步迭代,可以得到微分方程的数值解。

三、龙格库塔法的公式龙格库塔法可以表示为以下形式:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,k1、k2、k3、k4为斜率,h为步长,tn为当前时刻,yn为当前时刻的解,yn+1为下一个时刻的解。

四、使用matlab实现龙格库塔法在MATLAB中,可以通过编写函数来实现龙格库塔法。

下面是一个用MATLAB实现龙格库塔法的简单例子:```matlabfunction [t, y] = runge_kutta(f, tspan, y0, h)t0 = tspan(1);tf = tspan(2);t = t0:h:tf;n = length(t);y = zeros(1, n);y(1) = y0;for i = 1:n-1k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2 * k1);k3 = f(t(i) + h/2, y(i) + h/2 * k2);k4 = f(t(i) + h, y(i) + h * k3);y(i+1) = y(i) + h/6 * (k1 + 2*k2 + 2*k3 + k4);endend```以上就是一个简单的MATLAB函数,可以利用该函数求解给定的微分方程。

四阶龙格—库塔法的原理及其应用

四阶龙格—库塔法的原理及其应用

《四阶龙格—库塔法的原理及其应用》
龙格—库塔法(又称龙格库塔法)是由一系列有限的、独立的可能解组成的无穷序列,这些解中每个都与原来的数列相差一个常数。

它是20世纪30年代由匈牙利著名数学家龙格和库塔提出的,故得此名。

1.它的基本思想是:在n 阶方阵M 上定义一个函数,使得当n 趋于无穷时,它在m 中所表示的数值为M 的某种特征值,从而构造出一族具有某种特性的可计算函数f (x)= Mx+ C (其中C 为任意正整数)。

例如,若f (x)=(a-1) x+ C,则称之为(a-1) x 的龙格—库塔法。

2.它的应用很广泛,可以求解各类问题,且能将大量的未知数变换成少数几个已知数,因此它是近似计算的一种重要工具。

3.
它的优点主要有:(1)可以将多项式或不等式化成比较简单的形式;(2)对于同一问题可以用不同的方法来解决,并取得同样的结果;(3)适合处理高次多项式或者不等式,尤其适合处理多元函数的二次型。

第三部分龙格-库塔方法

第三部分龙格-库塔方法

内江师范学院数学与信息科学学院 吴开腾 制作
于是有
其中
y ( xn +1 ) − y ( xn ) = y '(ξ ), ξ ∈ ( xn , xn +1 ) h y ( xn +1 ) = y ( xn ) + hf (ξ , y (ξ ))
k * = f (ξ , y (ξ )) 称作区间 [ xn , xn +1 ] 上的平均斜率。 上的平均斜率 平均斜率。 问题:计算近似值y ( xn +1 ) 的关键是如何选择算法确定平均斜率 k *
(15)
f ( xn +1 , yn + h ( − k1 + 2 k 2 ))
内江师范学院数学与信息科学学院 吴开腾 制作
注释1 可以用Taylor展示证明格式(14) 注释1:可以用Taylor展示证明格式(14)具有三阶精 展示证明格式
度,并且还可以用类似的方法得到四阶及其以上的更高 阶精度的Runge-Kutta格式 阶精度的Runge-Kutta格式。 Runge 格式。
内江师范学院数学与信息科学学院 吴开腾 制作
h yn + ( k1 + 2 k 2 + 2 k3 +k 4) 6 f ( xn , y n ) h f ( x 1 , yn + k1 ) n+ 2 2 h f ( x 1 , yn + k 2 ) n+ 2 2 f ( xn +1 , yn + hk3 ) (16)
四阶龙格- 四阶龙格-库塔格式计算结果
xn
0.1 0.2 0.3 0.4 0.5
yn
欧拉格式计算结果 xn yn y ( xn )

龙格库塔法介绍

龙格库塔法介绍

yn
hf
(xn, yn ))],
(x, y,h) 1[ f (x, y) f (x h, y hf (x, y))],
2
|
( x,
y1,
h)


(x,
y2 ,
h)
|
[L
2

L 2
(1
hL)]
|
y1

y2
|,
L

L(1
h0L),h 2

h0.
类似地,不难验证其他龙格 库塔方法的收敛性.
这里c1,c2,c3,2,3, 21, 31, 32均为待定参数.
Tn1 y(xn1) yn1 O(h4 )
(3.11)
c1 c2 c3 1

2

21
3 31 32
c22

c33

1 2
cc232223c2332
将步长折半,从xn用两步求xn1处的近似值,则有
y(xn1)

h
yn21

2c
h 2
5
.
从而
h
y ( xn 1) y ( xn 1)

yn21 ynh1

1, 16
得到事后估计式:
y ( xn 1)

h
yn21

1 15
(
h
yn21

ynh1).
通过检查步长折半前后计算结果的偏差,
y(x) (x, y(x),0) 0 p 1 单步法(4.1)收敛. 定义4 若单步法(4.1)增量函数(x, y,h)是否满足

龙格-库塔法

龙格-库塔法

四阶龙格-库塔法求解常微分方程的初值问题1.算法原理对于一阶常微分方程组的初值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋯⋯==⋯⋯=⋯⋯⋯⋯=⋯⋯=0020********'212'2211'1)(,,)(,)())(,),(),(,()())(,),(),(,()())(,),(),(,()(n n n n n n n y x y y x y y x y x y x y x y x f x y x y x y x y x f x y x y x y x y x f x y , 其中b x a ≤≤。

若记Tn Tn Tn y x f y x f y x f y x f y y y y x y x y x y y x y )),(,),,(),,((),(),,,())(),(),(()(2102010021⋯⋯=⋯⋯=⋯⋯=,,则可将微分方程组写成向量形式⎩⎨⎧=≤≤=0')()),(,()(y a y b x a x y x f x y微分方程组初值问题在形式上和单个微分方程处置问题完全相同,只是数量函数在此变成了向量函数。

因此建立的单个一阶微分方程初值问题的数值解法,可以完全平移到求解一阶微分方程组的初值问题中,只不过是将单个方程中的函数转向向量函数即可。

标准4阶R-K 法的向量形式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()21,2()21,2(),()22(61342312143211K y h x hf K K y h x hf K K y h x hf K y x hf K K K K K y y n n n n n n n n n n 其分量形式为n j K y K y K y h x hf K K y K y K y h x hf K K y K y K y h x hf K y y y x hf K K K K K y y n ni i i i j j n nii i i j j n nii i i j j ni i i i j j j j j j i j i j ,,2,1).,,,;(),2,2,2;2(),2,2,2;2(),,,,;(),22(6132321314222212131212111221143211,1,⋯⋯=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+⋯⋯+++=+⋯⋯+++=+⋯⋯+++=⋯⋯=++++=++,,2.程序框图3.源代码%该函数为四阶龙格-库塔法function [x,y]=method(df,xspan,y0,h)%df为常微分方程,xspan为取值区间,y0为初值向量,h为步长x=xspan(1):h:xspan(2);m=length(y0);n=length(x);y=zeros(m,n);y(:,1)=y0(:);for i=1:n-1k1=feval(df,x(i),y(:,i));k2=feval(df,x(i)+h/2,y(:,i)+h*k1/2);k3=feval(df,x(i)+h/2,y(:,i)+h*k2/2);k4=feval(df,x(i)+h,y(:,i)+h*k3);y(:,i+1)=y(:,i)+h*(k1+2*k2+2*k3+k4)/6;end%习题9.2clear;xspan=[0,1];%取值区间h=0.05;%步长y0=[-1,3,2];%初值df=@(x,y)[y(2);y(3);y(3)+y(2)-y(1)+2*x-3];[xt,y]=method(df,xspan,y0,h)syms t;yp=t*exp(t)+2*t-1;%微分方程的解析解yp1=xt.*exp(xt)+2*xt-1%计算区间内取值点上的精确解[xt',y(1,:)',yp1']%y(1,:)为数值解,yp1为精确解ezplot(yp,[0,1]);%画出解析解的图像hold on;plot(xt,y(1,:),'r');%画出数值解的图像4.计算结果。

四阶龙格-库塔法求解常微分方程的初值问题

四阶龙格-库塔法求解常微分方程的初值问题
实验 4 四阶龙格-库塔法求解常微分方程的初值问题
1. 算法原理 龙格—库塔法是一种求其准确解 y( x) 在一系列点 xi 处 y ( xi ) 的近似值 yi 的方 法, yi 称为数值解。 经典的四阶龙格—库塔公式为:
K1 hf ( xi , yi ) K 2 hf ( xi h , yi 1 K1 ) 2 2 h 1 K 3 hf ( xi , yi K 2 ) 2 2 K 4 hf ( xi h, yi K 3 ) yi 1 yi 1 ( K1 2 K 2 2 K 3 K 4 ) 6
2. 程序框图
开始
输入函数 f ,初始点 x0,初始向量 y0,步 长 h, 矩阵的等分数 N
N
xi = x0 ih
计算 K1,K2,K3,
i=i+1 否
K4,yi+1
i=N

输出一系列点 xi 和 对应的数值解 yi
结束
3. 程序使用说明 本程序使用 MATLAB 利用四阶龙格—库塔法来求解常微分方程的初值问题。 源程序文件 “RK.m”为龙格—库塔法的源程序,x为一系列点 xi = x0 ih 组成 的向量,y为数值解 yi 组成的矩阵,f为1阶微分方程的函数,x0为初始点,y0为 初始向量(列向量) ,h为步长,N为矩阵的等分数。 输入1阶微分方程的函数f,初始点x0,初始向量y0,步长h,矩阵的等分数N 后, 在命令窗口输入[x,y]=RK(f,x0,y0,h,N), 回车后即可算出一系列点 xi 和对应的 数值解 yi 。 源程序文件 “RK2.m”是计算实习 9.2 算例的程序, 直接运行后, 在命令窗口 输入 t1,t2,回车后即可得到算例结果,其中 t1 表示 y (1) 的近似值,t2 表示 y (1) 的精确值。 4. 算例计算结果 此算例为课本 304 页计算实习 9.2. 将算例的高阶常微分方程转化为如下一阶微分方程组。

滤波算法 龙格库塔算法-概述说明以及解释

滤波算法 龙格库塔算法-概述说明以及解释

滤波算法龙格库塔算法-概述说明以及解释1.引言1.1 概述概述:滤波算法和龙格库塔算法是计算机科学领域中常用的算法之一,它们在数据处理和数值计算中有着重要的应用价值。

滤波算法被广泛应用于信号处理、图像处理、通信系统等领域,用于消除信号中的噪声和提高数据的质量。

而龙格库塔算法则是一种常用的数值求解微分方程的方法,能够有效地对复杂的数学模型进行数值求解,具有较高的准确性和稳定性。

本文将分别介绍滤波算法和龙格库塔算法的原理、优缺点以及应用领域,希望读者通过本文能够对这两种算法有更深入的了解,并在实际应用中能够灵活运用。

1.2 文章结构本文将分为四个部分来探讨滤波算法和龙格库塔算法。

首先在引言部分,对滤波算法和龙格库塔算法进行简要介绍,并说明本文的结构和目的。

接着在第二部分,详细介绍滤波算法的概念、常见算法和应用场景,以便读者对滤波算法有个全面的了解。

然后在第三部分,深入探讨龙格库塔算法的简介、原理和优缺点,帮助读者更好地理解这一种数值计算方法。

最后,在结论部分对两种算法进行总结,并展望未来可能的发展方向,以及得出结论。

通过以上四个部分的内容,读者能够全面了解和掌握滤波算法和龙格库塔算法的相关知识。

1.3 目的本文的主要目的是介绍和探讨滤波算法和龙格库塔算法这两种在计算机科学和工程领域中广泛应用的算法。

通过对这两种算法的概述、原理和应用进行详细分析,能够帮助读者全面了解它们的工作原理和特点。

同时,通过对这两种算法的比较和讨论,可以帮助读者更好地理解它们在不同应用场景下的适用性和优缺点。

此外,本文还旨在为读者提供一个深入学习和掌握这两种算法的基础知识和入门指南。

通过本文的学习,读者可以加深对滤波算法和龙格库塔算法的理解,为进一步的研究和实践打下坚实的基础。

同时,希望本文能够激发读者对算法领域的兴趣,促使他们深入研究和探索更多先进的算法及其应用。

2.滤波算法2.1 滤波算法概述滤波算法是一种用于处理信号或数据的技术,其主要目的是通过去除噪声或不需要的信息,从而提取出所需的信号或数据。

第7-3龙格-库塔方法

第7-3龙格-库塔方法
§7.3 龙格-库塔方法
一、Taylor展开法
设 y f ( x, y)Βιβλιοθήκη y( x0 ) y0
(1)
在[a,b]上有解 y( x),将y( xn1 )在xn处泰勒展开
y( xn1 )
y( xn )
hy( xn )
h2 2!
y( xn )
h3 3!
y( xn )
截取有限项作为 y( xn1 ) 的近似值,有
四、三阶及四阶龙格-库塔公式
三阶龙格—库塔公式有:
yn1 k1 k2
f f
h yn 6 (k1 ( xn , yn )
1 ( xn 2 h,
4k2 k3 h
yn 2 k1 )
)
k3 f ( xn h, yn hk1 2hk2 )
yn1 k1 k2
f f
1 (h n! x
k )n y
f ( x0, y0 )
(n
1 (h 1)! x
k
)n1 y
f
( x0
h,
y0
k)
(0 1)
其中记号
(h
x
k
y
)
f
(
x0
,
y0
)=hf
x
(
x0
,
y0
)
kf
y
(
x0
,
y0
)
(h
x
k
)2 y
f
(
x0 ,
y0
)
h2
f
xx (
x0 ,
y0
)
2hkf
f ( xn , yn ) h(c2 f x ( xn , yn ) a21k1 f y ( xn , yn )) O(h2 ) f ( xn , yn ) h(c2 f x ( xn , yn ) a21 f y ( xn , yn ) f ( xn , yn )) O(h2 )

(完整版)第二节龙格-库塔方法

(完整版)第二节龙格-库塔方法
en1 en h[( xn , y( xn ), h) ( xn , yn , h)] Tn1
因为单步法是 p阶的:h0 , 0 h h0 满足| Tn1 | Chp1
| en1 || en | hL | en | Ch p1 | en |
其中 1 hL, Ch p1
en O(hp )
即取
K * 1K1 2 K2 yi1 yi h(1K1 2 K2 )
其中1 和 2 是待定常数。若取 K1 f ( xi , yi ) ,则
问题在于如何确定 xi p 处的斜率 K2 和常数 1 和 2 。
仿照改进的欧拉方法,用欧拉方法预测 y( xi p ) 的值,
yi p yi phK1
k2
f ( xn
h 2
,
yn
h 2 k1)
hh k3 f ( xn 2 , yn 2 k2 )
k4 f ( xn h, yn hk3 )
例2:用经典的龙格-库塔方法
求解下列初值问题 h 0.1
dy 。 dx
y
2x y
x (0,1)
解:经典的四阶龙格-库塔公式: y(0) 1
E(h) 1 h
绝对稳定域: 1 h 1
当 R 时, 1 h 1 2 h 0
绝对稳定区间:(2, 0)
❖经典的R-K公式:yn1
yn
h 6
(k1
2k2
2k3
k4 )
k1 f ( xn , yn ) yn
k2
f
(
yn1 yn hf ( xn , yn )
n1 yn1 yn1
n1 n h[ f ( xn , yn ) f ( xn , yn )] [1 hf y ( xn , )]n

龙格-库塔方法

龙格-库塔方法

h 按照数学学 习一般方法, yn 1 yn (k1 2k 2 2k3 +k 4) 6 继续上面的 做法,经过 k1 f ( xn , yn ) 较复杂的数 h 学推理和计 k (16) 2 f ( xn 1 , yn k1 ) 算,可以导 2 2 出四阶龙格 h -库塔格式, k f ( x 1 , yn k 2 ) 这里有一个 3 n 2 2 较有用的四 k f ( x , y hk ) 阶格式。 n 1 n 3 4

3、欧拉格式
yn 1 yn hf ( xn , yn ),
取点 xn 的斜率 k
*
(3)
n 0,1, 2,
f ( xn , yn )作为区间 [ xn , xn1 ] 上的平均斜率,精度低。
4、改进的欧拉格式
于是:
h yn 1 yn [ f ( xn , yn ) f ( xn 1 , yn hf ( xn , yn ))] 2 h yn 1 yn [k1 k2 ] 2
龙格-库塔方法
考虑一维经典初值问题
dy f ( x , y ) , y( x0 ) y0 , x [a, b] dx
(1)
龙格-库塔方法
一、设计思想
加权平均斜率。
1、微分中值定理
如果 f (x) 在 [a, b]上连续,在 ( a, b) 内可导,则在( a, b) 内至 少存在一点 ,有 f (b) f (a) f ' ( ) ba
xnq xn qh, 0 p q 1

yn1 yn h[(1 )k1 k2 k3 ] (14)
k1 , k 2

第二节_龙格_库塔方法

第二节_龙格_库塔方法

yn1 yn hf ( xn , yn )
n1 yn1 yn1
n1 n h[ f ( xn , yn ) f ( xn , yn )] [1 hf y ( xn , )]n
如果 |1 hf y | 1,则误差是不增的,故可认为是稳定的
例如:对于初值问题
y y
y(
x0
)
a
精确解为
k2
f ( xn
h 2
,
yn
h 2 k1)
hh k3 f ( xn 2 , yn 2 k2 )
k4 f ( xn h, yn hk3 )
例2:用经典的龙格-库塔方法
求解下列初值问题 h 0.1
dy 。 dx
y
2x y
x
(0,1)
解:经典的四阶龙格-库塔公式: y(0) 1
h
y
ae x x0
y y
而实际求解的初值问题为
y(
x0
)
a
a
精确解为 y (a a)e x x0在 xn 处的误差为ae xn x0
可见误差随着 xn的增加呈指数函数增长
y y
如果初值问题为
y( x0 ) a
精确解为 y ae x0 x
y y
实际求解的初值问题为
y( x0 )
2C( h)5 2
y( xn1)
y(h/ 2) n1
y( xn1)
y(h) n1
1 16

|
y(h/ 2) n1
y(h) n1
|
16( y( xn1)
y(h/ 2) n1
)
y( xn1)
y(h) n1
y( xn1)
y(h/ 2) n1

龙格-库塔(Runge-Kutta)方法

龙格-库塔(Runge-Kutta)方法
证明:
( )
dy dy y′ = = f, y′′ = f x + f y = f x + ffy = F dx dx F F dy F F y′′′ = + = +f x y dx x y F = f xx + f x f y + ffyx = f xx + f x f y + ffxy x F 2 2 f = f(fxy + f y f y + ffyy ) = ffxy + ffy + f f yy y
y ( x) = e

x2

x
0
e dt
t2

x
0
e dt 难以求积
t2
ODE数值解的基本思想和方法特点 数值解的基本思想和方法特点
1. 离散化 级数、 用Taylor级数、数值积分和差商逼近导数, 级数 数值积分和差商逼近导数, 将 ODE转化为离散的代数方程 称差分方程 。 转化为离散的代数方程(称差分方程 转化为离散的代数方程 称差分方程)。
(ha2 ) + (ha3 ) +
f 2 2! x
2 2 2
(ha f ) +
2
2
K3 f + ha3 f x + h (a3 b32 ) f + b32 K2 f y 2! 2! + h2a3 (a3 b32 ) f + b32 K2 f xy f xx + h (a3 b32 ) f + b32 K2
2
Euler法 后退 法 ym+1 = ym + hK2 + O(h2 ) K2 = f ( xm + h, ym+1 )

第3讲(龙格-库塔方法)

第3讲(龙格-库塔方法)
h f yi [ f ( x i , yi ) f ( xi , yi ) ( x i , yi ) h 2 x f ( xi , yi ) h f ( xi , yi ) O( h2 )] y
易见,它与二阶泰勒级数方法仅相差 O( h3 )!
这一分析给我们提供了一个重要信息,那就是 我们所遇到的泰勒级数方法中求导数的困难是可以 克服的,改进的欧拉方法就没有用到导数,而是借 助于函数在某些点处的值 (复合函数的思想)。
又 y( x ) df ( x , y( x )) f x f y y f x f y f dx
故二阶泰勒级数方法为 h2 yi 1 yi h f ( xi , yi ) ( f x ( xi , yi ) f ( xi , yi ) f y ( xi , yi )) 2! 更高阶方法更复杂,主要是求导复杂!
yi 1
h2 hk ( k ) yi h y y yi i i 2! k!
这样的数值方法称为k 阶泰勒级数方法。
yi 1
h2 hk ( k ) yi h y y yi i i 2! k!
泰勒级数方法也是单步法,且其局部截断误差为
h2 hk ( k ) LTE y( xi 1 ) y( xi ) hy( xi ) y( xi ) y ( x i ) 2! k!
第二节 龙格-库塔方法
(Runge-Kutta)
根据局部截断误差与整体误差的关系可知, 局部截断误差的阶是衡量一个方法优劣的重要依据。 考虑用提高局部截断误差的阶来提高数值方法的 精度。 泰勒级数法 龙格―库塔方法
一、泰勒级数方法
d y f ( x, y ), x I 如果初值问题 d x 的精确解 y(x) 在 I y( x ) y 0 0

数值分析9-3(龙格-库塔方法)

数值分析9-3(龙格-库塔方法)
语言实现龙格-库塔方法
总结词
除了Python和MATLAB,还有许多其他编 程语言可以用于实现龙格-库塔方法。
详细描述
例如C、Java和R等编程语言也提供了相应 的数值计算库或框架,可以实现龙格-库塔 方法。使用这些语言实现龙格-库塔方法需 要一定的编程基础和对相应语言的数值计算 库的了解。
龙格-库塔方法可以用于求解偏微分方程的数值解,通过将偏微分方程转化为常微分方程组,利用龙格 -库塔方法进行迭代求解,能够得到较为精确的结果。
积分方程的数值解
积分方程是描述函数与积分之间的关 系的数学模型,常见于物理、工程等 领域。
VS
龙格-库塔方法也可以用于求解积分 方程的数值解,通过将积分方程转化 为常微分方程组,利用龙格-库塔方 法进行迭代求解,能够得到较为精确 的结果。
重要性及应用领域
龙格-库塔方法是数值分析中非常重要的内容, 它为解决常微分方程提供了一种有效的数值方 法。
在科学、工程和经济学等领域中,许多问题都 可以转化为求解常微分方程的问题,因此龙格库塔方法具有广泛的应用价值。
例如,在物理学、化学、生物学、金融学等领 域中,龙格-库塔方法被广泛应用于模拟和预测 各种动态系统的行为。
数值分析9-3:龙格-库塔方法
目录
• 引言 • 龙格-库塔方法概述 • 龙格-库塔方法在数值分析中的应用 • 龙格-库塔方法的实现与编程 • 龙格-库塔方法的改进与优化 • 结论与展望
01 引言
主题简介
龙格-库塔方法是一种用于求解常微 分方程的数值方法。
它通过构造一个离散化的时间序列来 逼近微分方程的解,并利用已知的离 散点来计算新的离散点,逐步逼近微 分方程的真实解。
02 龙格-库塔方法概述
定义与原理

龙格库塔法

龙格库塔法

一、基本原理:龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

该算法是构建在数学支持的基础之上的。

对于一阶精度的欧拉公式有:yi+1=yi+h*K1K1=f(xi,yi)当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:yi+1=yi+h*( K1+ K2)/2K1=f(xi,yi)K2=f(xi+h,yi+h*K1)依次类推,如果在区间[xi,xi+1]内多预估几个点上的斜率值K1、K2、……Km,并用他们的加权平均数作为平均斜率K*的近似值,显然能构造出具有很高精度的高阶计算公式。

经数学推导、求解,可以得出四阶龙格-库塔公式,也就是在工程中应用广泛的经典龙格-库塔算法:yi+1=yi+h*( K1+ 2*K2 +2*K3+ K4)/6K1=f(xi,yi)K2=f(xi+h/2,yi+h*K1/2)K3=f(xi+h/2,yi+h*K2/2)K4=f(xi+h,yi+h*K3)通常所说的龙格-库塔法是指四阶而言的,我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格-库塔法公式(1)计算公式(1)的局部截断误差是。

龙格-库塔法具有精度高,收敛,稳定(在一定条件下),计算过程中可以改变步长,不需要计算高阶导数等优点,但仍需计算在一些点上的值,如四阶龙格-库塔法每计算一步需要计算四次的值,这给实际计算带来一定的复杂性,因此,多用来计算“表头”。

二、小程序#include<stdio.h>#include<math.h>#define f(x,y) (-1*(x)*(y)*(y))void main(void){double a,b,x0,y0,k1,k2,k3,k4,h;int n,i;printf("input a,b,x0,y0,n:");scanf("%lf%lf%lf%lf%d",&a,&b,&x0,&y0,&n);printf("x0\ty0\tk1\tk2\tk3\tk4\n");for(h=(b-a)/n,i=0;i!=n;i++){k1=f(x0,y0);k2=f(x0+h/2,y0+k1*h/2);k3=f(x0+h/2,y0+k2*h/2);k4=f(x0+h,y0+h*k3);printf("%lf\t%lf\t",x0,y0);printf("%lf\t%lf\t",k1,k2);printf("%lf\t%lf\n",k3,k4);y0+=h*(k1+2*k2+2*k3+k4)/6;x0+=h;}printf("xn=%lf\tyn=%lf\n",x0,y0);}运行结果:input a,b,x0,y0,n:0 5 0 2 20x0 y0 k1 k2 k3 k40.000000 2.000000 -0.000000 -0.500000 -0.469238 -0.8861310.250000 1.882308 -0.885771 -1.176945 -1.129082 -1.2800600.500000 1.599896 -1.279834 -1.295851 -1.292250 -1.2227280.750000 1.279948 -1.228700 -1.110102 -1.139515 -0.9901621.000000 1.000027 -1.000054 -0.861368 -0.895837 -0.7528521.250000 0.780556 -0.761584 -0.645858 -0.673410 -0.5621891.500000 0.615459 -0.568185 -0.481668 -0.500993 -0.4205371.750000 0.492374 -0.424257 -0.361915 -0.374868 -0.3178552.000000 0.400054 -0.320087 -0.275466 -0.284067 -0.2435982.250000 0.329940 -0.244935 -0.212786 -0.218538 -0.1894822.500000 0.275895 -0.190295 -0.166841 -0.170744 -0.1495632.750000 0.233602 -0.150068 -0.132704 -0.135399 -0.1197033.000000 0.200020 -0.120024 -0.106973 -0.108868 -0.0970483.250000 0.172989 -0.097256 -0.087300 -0.088657 -0.0796183.500000 0.150956 -0.079757 -0.072054 -0.073042 -0.0660303.750000 0.132790 -0.066124 -0.060087 -0.060818 -0.0553054.000000 0.117655 -0.055371 -0.050580 -0.051129 -0.0467434.250000 0.104924 -0.046789 -0.042945 -0.043363 -0.0398334.500000 0.094123 -0.039866 -0.036750 -0.037072 -0.0342024.750000 0.084885 -0.034226 -0.031675 -0.031926 -0.029571xn=5.000000 yn=0.076927。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/9 4
同理,改进Euler公式可改写成
1 1 yi 1 yi 2 K1 2 K 2 K1 hf ( xi , yi ) K hf ( x h, y K ) i i 1 2
局部截断误差为O(h3)
上述两组公式在形式上共同点:都是用f(x,y)在某 些点上值的线性组合得出y(xi+1)的近似值yi+1, 且增 加计算的次数f(x,y)的次数,可提高截断误差的阶。如 欧拉法:每步计算一次f(x,y)的值,为一阶方法。改进 欧拉法需计算两次f(x,y)的值,为二阶方法。
K hy(i ) hf i , y (i )
yi 1 yi K
K可以认为是y y( x)在区间 [ xi , xi 1 ]上的平均斜率
y
只要使用适当的方法求 出y ( x)在区 间[ xi , xi 1 ]上平均斜率的近似值K
y y( x)
K
就可得到相应的Runge-Kutta方法
2018/11/9 5
于是可考虑用函数f(x,y)在若干点上的函数值的 线性组合来构造近似公式,构造时要求近似公式在 (xi,yi)处的Taylor展开式与解y(x)在xi处的Taylor展开式 的前面几项重合,从而使近似公式达到所需要的阶数。 既避免求高阶导数,又提高了计算方法精度的阶数。 或者说,在[xi,xi+1]这一步内多计算几个点的斜率值, 然后将其进行加权平均作为平均斜率,则可构造出更 高精度的计算格式,这就是龙格—库塔(RungeKutta)法的基本思想。
称为P阶龙格-库塔方法。 其中ai,bij,ci为待定参数,要求上式yi+1在点(xi,yi)处作 Tailor展开,通过相同项的系数确定参数。
2018/11/9 7
Runge-Kutta方法的推导思想 对于常微分方程的初值问题
y f ( x , y ) y( a ) y0 a xb
的解y=y(x),在区间[xi, xi+1]上使用微分中值定理,有
y( xi 1 ) y( xi ) y ( i )( xi 1 xi )
其中 i ( xi , xi 1 )

2018/11/9
y( xi 1 ) y( xi ) hy( i )
8
引入记号
y ( xi 1) y ( xi ) K
2018/11/9
xi
xi 1
x
9
如果以y( x)在xi处的斜率作为y( x)在[ xi , xi 1 ]上的平均斜率K

K hy( xi ) hf [ xi , y ( xi )]
hf ( xi , yi )
如下图
y
则上式化为
yi 1 yi hf ( xi , yi )
2018/11/9
6
一般龙格-库塔方法的形式为
yi 1 yi c1K1 c2 K 2 c p K p K1 hf ( xi , yi ) K 2 hf ( xi a2h, yi b21K1 ) • • • • • • • • • • • K p hf ( xi a p h, yi b p1K1 b p , p 1K p 1 )
h2 y( xi 1 ) y( xi ) hy( xi ) y( xi ) O(h3 ) 2 yi hf ( xi , yi )
h2 ( xi , yi ) O(h 3 ) f x ( xi , yi ) f ( xi , yi ) f y 2
类似地,若取前P+1项作为y(xi+1)的近似值,便得到
2018/11/9 2
显然p=1时,
y i+1=y i+hf(xi,y i)
它即为我们熟悉的Euler方法。 当p≥2时,要利用泰勒方法就需要计算f(x,y)的高 阶微商。这个计算量是很大的,尤其当f(x,y)较复 杂时,其高阶导数会很复杂。因此,利用泰勒公 式构造高阶公式是不实用的。但是泰勒级数展开 法的基本思想是许多数值方法的基础。 R-K方法不是直接使用Taylor级数,而是利用它的思想
§
9.4 龙格-库塔方法
得到高精度方法的一个直接想法是利用Taylor展开
假设式 y' =f(x,y) (a≤x≤b) 中的 f(x,y) 充分光滑,将y(xi+1)在x i点作Taylor展开,若 取右端不同的有限项作为y(xi+1)的近似值,就可得到 计算y(xi+1)的各种不同截断误差的数值公式。
例如:取前两项可得到
y( xi 1 ) y( xi ) hy( xi ) O(h 2 )
y( xi ) hf ( xi , y( xi )) O(h 2 ) yi hf ( xi , yi ) O(h 2 )
2018/11/9 1
若取前三项,可得到截断误 P ( P) yi hyi yi yi 2! P!
P阶泰勒方法
其中 yi f , yi f ( xi , yi ) x f x ff y )x f xx 2 f xy f f yy f 2 f x f y ( fy )2 f yi ( f x ff y
2018/11/9 3
Runge-Kutta 方法是一种高精度的单步法,简称R-K法
9.4.1 龙格-库塔(R-K)法的基本思想
Euler公式可改写成
yi 1 yi K K hf ( xi , yi )
则 yi+1 的表达式与 y(xi+1) 的 Taylor 展开式的前两项 完全相同,即局部截断误差为O(h2)。
y y( x)
K
K
即Euler方法
xi
xi 1
x
Euler方法也称为一阶Runge-Kutta方法
2018/11/9 10
9.4.2
相关文档
最新文档