两线段长度和最小值的求法
二次函数的最值问题——求线段,三角形周长及面积的最值
二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。
在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。
关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。
小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。
变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。
分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。
,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。
分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。
变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。
初三数学两之间线段最短求最值四大类型
两之间线段最短求最值四大类型【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。
【方法技巧】模型一“一线两点”型(一动+两定)类型一异侧线段和最小值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.【解题思路】根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.类型二同侧线段和最小值问题(将军饮马模型)问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.【解题思路】将两定点同侧转化为异侧问题,同类型一即可解决.作点B关于l 的对称点B′,连接AB′,与直线l的交点即为点P.类型三同侧差最大值问题问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B,P 三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延长,与直线l的交点即为点P.类型四异侧差最大值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】将异侧点转化为同侧,同类型三即可解决.模型二“一点两线”型(两动+一定)问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN周长最小.【解题思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之间线段最短,将三条线段转化到同一直线上即可.模型三“两点两线”型(两动+两定)问题:点P,Q是∠AOB的内部两定点,在OA上找点M,在OB上找点N,使得四边形PQNM周长最小.【解题思路】要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上,因此想到作点P关于OA的对称点,点Q关于OB的对称点.【典例分析】【典例1-1】基本模型问题:如图,定点A,B位于动点P所在直线l同侧试确定点P的位置,使AP+BP的值最小.解题思路:一找:作点B关于直线l的对称点B',连接AB′,与直线l交于点P;二证:验证当A,P,B'三点共线时,AP+BP取得最小值.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例1-2】模型演变问题:如图,定点A,B位于动点P所在直线l同侧,在直线l上确定点P的位置,使|P A ﹣PB|的值最大.解题思路:一找:连接AB并延长,交直线l于点P;二证:验证当A,B,P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-3】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使AP+BP 的值最小.解题思路:一找:连接AB交直线l于点P;二证:验证当A,P,B三点共线时,AP+BP取得最小值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-4】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使|P A﹣PB|的值最大.解题思路:一找:作点B关于直线l的对称点B',连接AB'并延长,交直线于点P;二证:验证当A,B',P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式1-1】如图,已知菱形ABCD的边长为4,∠ABC=60°,点N为BC的中点,点M是对角线AC上一点,则MB+MN的最小值为.【变式1-2】如图,在矩形ABCD中,AB=4,BC=6,点O是对角线BD的中点,E是AB 边上一点,且AE=1,P是CD边上一点,则|PE﹣PO|的最大值为.【变式1-3】如图,在菱形ABCD中,AB=12,∠DAB=60°,对角线AC,BD交于点O,点E,F分别在BD,AB上,且BF=DE=4.点P为AC上一点,则|PF﹣PE|的最大值为.【变式1-4】结论:如图,抛物线y=ax2﹣bx﹣4与x轴交于,A(﹣1,0),B(4,0)两点,与y轴交于点C,直线l为该抛物线的对称轴,点M为直线l上的一点,则MA+MC 的最小值为.【典例2】模型分析问题:点P是∠AOB内的一定点,点M,N分别为OA,OB上的动点,试确定点M,N 的位置,使△PMN的周长最小.解题思路:一找:分别作点P关于OA,OB的对称点P′,P“,连接P'P“,分别交OA,OB于点M,N;二证:验证当P′,M,N,P″四点共线时,△PMN的周长最小.三计算.注:当三个点均为动点时,先假定一个点为定点,再将其特化为“一定两动“问题请写出【模型分析】中解题思路“二证”的过程.【变式2-1】如图,在四边形ABCD中,∠BAD=121°,∠B=∠D=90°,点M、N分别在BC、CD上,(1)当∠MAN=∠C时,∠AMN+∠ANM=°;(2)当△AMN周长最小时,∠AMN+∠ANM=°.【变式2-2】如图,在边长为2的等边△ABC中,点P,M,N分别是BC,AB,AC上的动点,则△PMN周长的最小值为.【典例3】模型分析问题:点P,Q是∠AOB内部的两定点,点M,N分别是OA,OB上的动点,试确定点M,N的位置,使四边形PMNQ的周长最小.解题思路:一找:作点P关于OA的对称点P',点Q关于OB的对称点Q′,连接P′Q′,分别交OA,OB于点M,N;二证:验证当P′,M,N,Q′四点共线时,四边形PQNM的周长最小.三计算.请写出【模型分析】中解题思路“二证”的过程.【变式3-1】如图,已知正方形ABCD的边长为5,AE=2DF=2,点G,H分别在CD,BC 边上,则四边形EFGH周长的最小值为.【变式3-2】如图,在矩形ABCD中,AB=6,BC=3,点E是AB的中点,若点P,Q分别是边BC,CD上的动点,则四边形AEPQ周长的最小值为.【典例4-1】基本模型问题:如图,点A,B为直线l同侧两定点,M,N为直线l上的动点,且MN的长度为定值,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边.构造▱AMNA′,作点A′关于直线l的对称点A“,连接A “B,交直线l于点N,再确定点M;二证:验证当A“,N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例4-2】模型演变问题:如图,直线a∥b,定点A,B分别位于直线a的上方和直线b的下方,M,N分别为直线a,b上的动点,且MN⊥a,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边构造▱AMNA′,连接A'B;二证:验证当A',N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式4-1】如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AM+CN的最小值为.【变式4-2】如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB方向平移得到△A'B'D',连接B'C,D'C,求B'C+D'C的最小值.专题12 两之间线段最短求最值(四大类型含将军饮马)(知识解读)【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。
初中几何中线段和差最大值最小值典型分析最全
初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
mmm mABm(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:nmnnmnnnm(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )1、两点在直线两侧:2、两点在直线同侧:m nmnmnm(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度mmmm恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解) (1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直线m 同侧:QQP练习题1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值为.Q2、如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.3、如图,在锐角三角形ABC中,AB=52,∠BAC=45,BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点.若AE=2,EM+CM的最小值为 .5、如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.6、如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF 直线上的一点,则PA+PB的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N 分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC 上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC 上一动点,连接PB、PQ,则△PBQ周长的最小值为 cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2(B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC 绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.6.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x 轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)基本图形解析:1、在一条直线m 上,求一点P ,使PA 与PB 的差最大;(1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
初中几何中线段和差的最大值与最小值典型分析(最全)
初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:m m mmABmn m nnmn(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:nnm Bnn2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解) (1)点A 、B 在直线m 两侧:mnmmmmm过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直线m 同侧: 练习题1.如图,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 .2、 如图1,在锐角三角形ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图,在锐角三角形ABC 中 ,AB=52,∠BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是多少mABB'EQ PmABQPQ4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.5、如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB 上一个动点,当PC+PD的和最小时,PB的长为__________.6、如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式; (2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.6.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x 轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.v1.0 可编辑可修改二、求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
两线段长度和最小值的求法word精品文档6页
“求两线段长度值和最小”问题全解析在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2019 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4,∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE=二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2019江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC+PD 和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF 直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA +PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC =60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE +PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN +MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P 为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2019年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2019山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2019年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2019年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以 BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E 的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x轴交于点E,在EA上截EF=2.因为 GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又 DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以 BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。
-动点问题中的最值、最短路径问题(解析版)
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直、N即为所求.线的交点M5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )A .817 B . 717 C . 49 D . 59例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).例4. (2019·天津)已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +2QM +时,求b 的值.例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·巴中)如图,在菱形ABCD中,连接BD、AC交于点O,过点O作OH⊥BC于点H,以O为圆心,OH为半径的半圆交AC于点M.(1)求证:DC是圆O的切线;(2)若AC=4MC,且AC=8,求图中阴影部分面积;(3)在(2)的前提下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.B D专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A.817B.717C.49D.59【答案】B.【解析】解:S△ABE=142BE OA BE ⨯⨯=,当BE取最小值时,△ABE面积为最小值.设x=-5与x轴交于点G,连接DG,因为D为CF中点,△CFG为直角三角形,所以DG=15 2CD=,∴D点的运动轨迹为以G为圆心,以5半径的圆上,如图所示由图可知:当AD与圆G相切时,BE的长度最小,如下图,过点E作EH⊥AB于H,∵OG=5,OA=8,DG=5,在Rt△ADG中,由勾股定理得:AD=12,△AOE∽△ADG,∴AO AD OE DG=,求得:OE=103,由OB=OA=8,得:BE=143,∠B=45°,AB=∴EH=BH=23BE=,AH=AB-BH=3,∴tan ∠BAD=717EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12, 即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确; 连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,可得:25DF OD ==, 即:1225EG DF =, 512AF AD EG AE ==, 即:51125AF EG DF ==, 设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26, 在Rt △ODF 中,由勾股定理得:OF =26即点D 的坐标为)2626125,262625(,故③正确. 综上所述,答案为:②③.例4. (2019·天津)已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +2QM +时,求b 的值.【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0), ∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,222QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出AM QM ⎫+⎪⎝⎭2QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =2AM ,即当G 、M 、Q 三点共线时,GM +MQ 2QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM 324b ⎫+⎪⎭,GM =2AM =)12m +()322=2122244b QM AM QM m ⎛⎫⎤⎫+=++++= ⎪⎥⎪⎭⎝⎭⎣⎦① ∵QH =MH ,∴324b +=12b m +-,解得:m =124b - ② 联立①②得:m =74,b =4.2QM +的最小值为4时,b =4.2QM +转化为22AM QM ⎛⎫+ ⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为2cm .【答案】- 【解析】解:如图1所示,当E 运动至E ’,F 滑动到F ’时,图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;D '图2∵∠BAC =30°,AC =12,DE =CD∴BC=CD =DE=,由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD=12-,D 点运动路程为2DD ’=24-图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不BD'BD'失难度.例6. (2019·巴中)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,BD∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°,OD =OC tan 30°, 即PD =OP +OD=B D。
中考数学疑难问题教学设计——线段之和最短
中考数学疑难问题教学设计——线段之和最短一、课题分析最短路径问题是中考热点问题之一,也是学生的一大难点。
本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的探讨,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.主要是运用数形结合思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,该问题的解决为我们提供了一种解题的思路和线索,构建模型,触类旁通,由此产生了一系列问题的解题思路.使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣.二、教学目标(一)知识与技能:1.以将军饮马为情境问题,引出两种最短线路的模型,理解并会利用“两点之间线段最短”和“三角形任意两边之和大于第三边”原理解决问题;2.通过三角形、四边形、圆、立体图形及函数题的训练,让学生能利用转化思想,将问题抽象出两点一线,并利用模型解决问题.(二)过程与方法:培养学生的探究、归纳、分析、解决问题的能力.(三)情感与态度:进一步培养探究心理,体会数学知识在生活中的应用.三、教学重难点教学重点:利用“两点一线”模型解决数学中的实际问题.教学难点:模型中,两点在线异侧,利用“三角形任意两边之和大于第三边”这一原理作图;具体问题中,判断是否为两点一线问题,并利用模型作图,根据实际条件解决问题.四、教学关键运用数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,形成模型,以便准确理解本节课的内容,实现多题通解.五、教学策略利用教学资源,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展.六、学法指导:自主学习,小组合作、交流探究七、教学过程:环节师生活动设计意图创设情景相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能用所学的知识解决这个问题吗?BAl【学生活动】学生思考教师展示问题,并观察图片获得感性认识.以故事的方式,引出问题,激发学生的学习兴趣及探索欲望.知识回顾1. 两点之间线段最短; 2.轴对称的性质,如何作轴对称;3.勾股定理;4.三角形任意两边之和大于第三边.【学生活动】在教师的引导下回顾旧知识.为本节课的学习扫清知识障碍.合作交流1.如图,要在燃气管道l 上修建一个泵站,分别向A、B 两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?活动(1):观察思考,如何抽象为数学问题?【师生活动】学生思考,教师引导学生将A,B 两地抽象为两个点 ,将河抽象为一条直线l ,从而总结得到:两点之间线段最短。
三维空间两直线线段最短距离线段计算算法
三维空间两直线线段最短距离线段计算算法三维空间中,线段是由两个端点确定的有限长度线段。
求解两个线段之间的最短距离是一个常见的问题,可以通过计算几何的方法来解决。
下面将介绍求解两条线段最短距离的算法。
算法思路:1.首先,我们需要确定两个线段的端点坐标。
2.利用端点坐标计算线段的向量表示。
3.计算两个线段向量之间的夹角。
4.如果夹角为零,即两个线段平行重合,那么最短距离为零。
如果夹角为180°,即两个线段共线但方向相反,那么最短距离为两线段之间的距离。
5.如果夹角为90°,即两个线段垂直交叉,那么最短距离为两线段端点距离的最小值。
6.对于其他夹角情况,我们需要在计算两线段端点距离的同时,计算两线段的垂直向量,并计算两线段之间的投影距离。
7.最终,两个线段的最短距离即为投影距离的最小值。
算法具体步骤:1.输入两个线段的端点坐标:A1,A2,B1,B22. 利用端点坐标计算线段的向量表示:vectorA = A2 - A1, vectorB = B2 - B13. 计算两个向量的模长:lengthA = ,vectorA,, lengthB = ,vectorB。
4. 判断两个向量是否共线:若vectorA与vectorB共线,则计算线段A和线段B之间的距离dist = ,A1 - B15. 若向量A与向量B不共线,则计算两个向量的夹角cosTheta = dot(vectorA, vectorB) / (lengthA * lengthB),其中dot表示点积运算。
6. 根据夹角cosTheta的值进行分类讨论:- 若cosTheta = 0,即夹角为90°,线段A和线段B垂直交叉。
计算两个线段的端点距离dist = ,A1 - B1- 若cosTheta = 1,即夹角为0°,线段A和线段B平行重合。
最短距离为零。
- 若cosTheta = -1,即夹角为180°,线段A和线段B平行但方向相反。
初中数学求线段最值的方法
初中数学求线段最值的方法初中数学中,求解线段的最值是一个基本的问题,它可以用来优化一些实际问题的解法,例如最短路径、最大收益、最小支出等。
本文将为大家介绍在初中数学中求解线段最值的方法,包括整体流程和每个环节的详细描述。
一、问题描述和基本概念假设有一条直线段AB,其中A(x1,y1)和B(x2,y2)是已知的点。
我们的问题是如何求出该直线段上某个点P(x,y)的函数值的最大值或最小值。
我们需要了解一些基本的概念和知识:1. 直线段:由两个端点确定的线段,其中端点A是起点,端点B是终点。
2. 函数:将一个集合中的每个元素都对应到另一个集合中的唯一元素的规则。
通常用f(x)表示函数。
3. 函数的最值:给定一个函数f(x),若存在x1,x2∈D,使得f(x1)≥f(x) ∀x∈D 或f(x2)≤f(x) ∀x∈D,则称f(x)在D上取得最大值或最小值。
4. 坐标系:用于描述点或图形位置的平面直角坐标系,由x轴和y轴组成、原点为(0,0)。
5. 勾股定理:在直角三角形ABC中,设直角边分别为a,b,斜边为c,则有c²=a²+b²。
二、分析求解思路和方法对于我们的问题,我们可以用函数来描述直线段AB上每个点P(x,y)的值。
为了方便,我们通常称这个函数为f(x)。
如果我们要求f(x)的最大值,则需要寻找使得f(x)取得最大值的点x值。
同理,如果我们要求f(x)的最小值,则需要寻找使得f(x)取得最小值的点x值。
基于这个思路,我们可以考虑用以下的方法来求解线段最值:1. 明确问题:首先需要明确问题的具体描述和目标,即要求线段上某个点P(x,y)的函数值的最大值或最小值。
2. 理解数据:仔细查看题目给定的图形或数据,注意理解每个点的坐标和重要的约束条件。
3. 定义函数:用函数f(x)来描述线段上每个点P(x,y)的值,需要注意函数的定义域D,即x的取值范围。
4. 求解方法:根据问题的不同,可以选用合适的求解方法来求解线段的最值。
初中线段最值问题的常用解法
初中线段最值问题的常用解法初中线段最值问题可以通过几种常用解法来解决,其中包括暴力法、排序法、差分法、前缀和法和优先队列法等。
下面将逐一介绍这些常用解法。
一、暴力法:暴力法是最简单直接的解法,通过计算所有可能的情况,找到线段的最大最小值。
具体步骤如下:1.遍历线段的所有可能点对,计算它们之间的长度,并根据需求记录最大值或最小值。
2.对于含有n个点的线段,总共有C(n, 2) = n(n-1)/2个点对,因此时间复杂度为O(n^2)。
二、排序法:排序法首先将线段的所有点按照坐标大小进行排序,然后在有序的序列中找到最大最小值。
具体步骤如下:1.将线段的所有点按照坐标大小进行排序,可使用快速排序或归并排序等算法。
2.排序后的序列中,最小值为第一个点的坐标,最大值为最后一个点的坐标。
3.时间复杂度主要花在排序过程上,一般为O(nlogn)。
三、差分法:差分法是一种巧妙的解法,通过对坐标进行映射,将求最大最小值的问题转化为求差分数组的最大最小值。
具体步骤如下:1.首先对坐标进行离散化处理,将所有的线段点映射到一个连续段上,每个点的映射值对应它在离散化后的序列中的位置。
2.创建一个差分数组,将映射后的位置上的数值标记为1,其他位置上的值为0。
3.对差分数组进行前缀和处理,得到一个前缀和数组。
4.判断差分数组的最小值和最大值所对应的位置,即为原线段的最小值和最大值在映射后的序列中的位置。
5.根据离散化的映射关系,可将得到的位置映射回原线段上。
6.时间复杂度为O(n)。
四、前缀和法:前缀和法是一种相对简单高效的解法,通过对坐标进行前缀和处理,快速计算出每个位置的前缀和值,从而得到最值。
具体步骤如下:1.先计算出原始线段上每个点的前缀和,得到一个前缀和数组。
2.通过计算前缀和数组的差分,得到一个差分数组。
3.对差分数组求前缀和,得到一个二次前缀和数组。
4.遍历二次前缀和数组,记录最大最小值所对应的位置。
5.时间复杂度为O(n)。
初中数学线段最值问题解题技巧
初中数学线段最值问题解题技巧(最新版4篇)目录(篇1)1.线段最值问题的定义和特点2.解题思路和方法3.具体解题步骤和技巧正文(篇1)一、线段最值问题的定义和特点线段最值问题是指在已知线段长度范围内,求取最大或最小值的问题。
此类问题在数学中较为常见,尤其是在几何学和代数中的应用广泛。
其特点在于,通常需要结合线段长度、角度、边长等几何要素进行求解。
二、解题思路和方法1.转化:将问题转化为具体几何模型或代数方程。
2.寻找最大值点:通过观察线段或几何图形,找到最大值点。
3.应用数学知识:利用数学知识求解最大值,如三角函数、勾股定理等。
4.运用数学公式:运用特定数学公式,如辅助线公式、几何倍增等,来寻找最大值。
三、具体解题步骤和技巧1.分析问题:首先需要认真阅读问题,理解问题的要求。
2.构建模型:根据问题建立几何模型或代数方程。
3.寻找最大值点:根据题目中的条件,找到最大值点。
这可能需要对几何图形或代数方程进行深入分析。
4.应用数学知识:使用所学的数学知识求解最大值,例如:三角函数、勾股定理等。
5.验证结果:验证所求得的解是否符合题目要求,必要时进行修正。
总之,解决线段最值问题需要灵活运用数学知识,同时注意分析问题、建立模型、寻找最大值点和应用数学知识等多个步骤。
目录(篇2)一、初中数学线段最值问题解题技巧概述1.解题技巧简介2.解题技巧的应用范围和优势3.解题技巧的适用条件和限制二、初中数学线段最值问题解题技巧详解1.寻找临界点法2.构造辅助线法3.转化角度法4.函数思想法三、初中数学线段最值问题解题技巧的实际应用案例1.题目类型:线段和的最值问题2.题目类型:线段长的最值问题3.题目类型:线段差的的最值问题4.题目类型:三角形中的最值问题正文(篇2)初中数学线段最值问题解题技巧是解决线段相关问题的有效工具。
它通过寻找临界点、构造辅助线、转化角度以及运用函数思想等方法,将复杂的问题简单化,从而快速准确地求解。
七年级最值问题——线段和最小值问题
• C'D = 2√2 求直线C'D的解析式,由C'(-1,0),D(1,2) • 所以,有0 = -k b 2 = k b • 解得 k = 1,b = 1,所以 y = x 1 当x = 0时,y =1,则P(0,1)
• 3、如下图,一次函数y=kx b的图象与x、y轴分别交于点A(2,0),B(0,4). • (1)求该函数的解析式;
• 4、作法:(假设P'Q'就是在直线L上移动的定长线段) • 1)过点B作直线L的平行线,并在这条平行线上截取线段BB',使它等于定
长P'Q'; • 2)作出点A关于直线L的对称点A',连接A'B',交直线L于P; • 3)在直线L上截取线段PQ=P'Q.. • 略证:由作法可知PQ=P'Q'=BB',四边形PQBB'与P'Q'BB'均为平行四
• 解析: 这是一个实际问题,需要把它转化为数学问题, 经过分析,知道此题是求运油车所走路程最短,OA与OB 相交,点P在∠AOB内部,通常我们会用轴对称模型,分 别做点P关于直线OA和OB的对称点P₁、P₂ ,连结P₁P₂分 别交OA、OB于C、D,C、D两点就是使运油车所走路程 最短的地点.
• 3、如下图,村庄A、B位于一条小河的两侧, 若河岸a、b彼此平行,现在要建设一座与 河岸垂直的桥CD,问桥址应如何选择,才 能使A村到B村的路程最近?
• 这一类问题也是当今中考的热点题型之一,通常会以角、 三角形、四边形、圆、坐标轴、抛物线为载体出题。
• 还有一种类型是固定长度线段MN在直线l上滑动,求AM MN BN的最小值。这时需平移BN(或AM),转化为求解 决,如下图所示.
“求两线段长度之和的最小值”问题全解析
“求两线段长度值和最小”问题全解析在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以∠AME∠∠AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE 取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边∠ABC的边长为6,AD是BC边上的中线,M 是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边∠ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF∠BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∠BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC +PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∠BC,所以∠EAP =90°.因为∠APE=∠BPC,所以∠APE∠∠BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA+PB和最小,为线段BD.过点D作DG∠BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC=60°,AD∠BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE+PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE∠AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN+MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,果不取近似值).分析:在这里∠PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC 于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt∠CDQ中,DQ==,所以∠PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的∠O的直径,点A在∠O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为()(A)2(B) (C)1(D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN 弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),∠AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使∠AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里∠AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时∠AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为∠BCE∠∠BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当∠CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以∠的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x 轴交于点E,在EA上截EF=2.因为GC∠EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。
“求两线段长度之和的最小值”问题全解析
“求两线段长度值和最小”问题全解析山东沂源县徐家庄中心学校左进祥在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE 取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M 是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD =4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC +PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA+PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC=60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC 上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE+PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN+MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为 cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC 于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN =30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2(B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN 弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以, 所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E 的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x 轴交于点E,在EA上截EF=2.因为GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。
初中数学线段最值问题解题技巧
初中数学线段最值问题解题技巧
一、确定目标
解决线段最值问题,首先要明确目标,即要找出线段之间的关系,并确定所要解决的问题。
例如,求两条线段之和的最小值,就要先找到这两条线段的关系,并确定它们的和。
二、定义变量
定义变量是解决线段最值问题的关键步骤。
要明确各线段的长度,并以此作为变量。
例如,在求两条线段之和的最小值时,可以将其中一条线段的长度定义为x,另一条线段的长度定义为y。
三、建立模型
建立模型是解决线段最值问题的核心步骤。
要根据问题建立数学模型,如使用不等式、函数或几何知识等。
例如,在求两条线段之和的最小值时,可以使用不等式或函数关系来表示线段之和,并找到最小值。
四、确定限制条件
解决线段最值问题时,要明确限制条件。
限制条件可以是线段的长度、角度等。
例如,在求两条线段之和的最小值时,限制条件可能是线段x和y的长度之和不能超过某个值。
五、求解最值
求解最值是解决线段最值问题的关键步骤。
要根据建立的模型和限制条件,使用适当的数学方法来求解最值。
例如,在求两条线段之和的最小值时,可以使用不等式的性质或求导方法来求解最值。
六、整合答案
整合答案是解决线段最值问题的最后一步。
要根据求解结果,整合答案。
答案可以是具体的数值或解决问题的策略。
例如,在求两条线段之和的最小值时,结果可能是x+y的最小值为3单位长度,此时可以采取的策略是将两条线段按照这个长度进行调整。
专题复习--线段之和最短的问题
A B 、
2 17
17
8 、17
17
C、 4 17 17
D、3
四、能力拓展 如图,D是∠ABC内的一点,在AB上找 一点E,在AC上找一点F,使△EFD的 周长最短.
A
EF
D
B
C
课堂小结
本节课我们学习了 两线段和的最小值 问题,
这类问题的解题方法是怎样的?
不管在什么背景下,有关两线段之和最小问题, 总是化归到“两点之间的所有连线中,线段最 短”,而转化的方法大都是借助于“轴对称 点”,实现“折”化“直”
a
b
B
-----垂线段最短”
3.相传,古希腊有一位久负盛名 的学者,名叫海伦.有一天,一 位将军专程拜访海伦,求教一个 百思不得其解的问题:
从图中的A 地出发,到一条 笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使 他所走的路线全程最短?
B A
l
一、基本要求:
在直线 a外同侧有两个点A、B,在直线 a 上找一点P,使点P到A、B两个点的距离之 和最短 .
ABCD
(1)求C、M两点坐标; D
C
(2)在x轴上是否存在 一点Q,使得的△QMC 周长最小?若存在,
求出点Q的坐标; 若不存在,说明理由.
M
AO P
B
5、如图,已知二次函数y=ax2-4x+c 的图象
与坐标轴交于点A(-1, 0)和点B(0,-5).
(1)求该二次函数的解析式;y x 2 4x 5
将实际问题中A,B两地与 笔直的河L抽象成点A.点B 和直线a,b如图8
A
M
b
NB
图8
③作图过程:
将A点往直线a的垂直方向平移MN个单位后到 A′,连结A′,B,与直线b相交的一点为N点,再过N点 作NM⊥ a,与直线a的交点为M. 即MN为所求 AM+MN+NB最短的位置(如图).
中考线段最小值问题四种常见解法
方法一:利用几何性质解决问题知识点1:垂线段最短(点到直线的距离,垂线段最短)知识点2:两点之间线段最短(即“将军饮马”问题)知识点3:利用“画圆”来确定动点问题解决最值问题运用画圆解决问题有两种情况:情况1:动点到某一定点的距离是定值(圆上的点到圆心的距离恒等于半径)情况2:动点为90°固定角的顶点(直径所对的圆周角恒定为90°)在中考中最常用的是“知识点2”、“知识点3”方法二:利用代数法直接证明知识点1:利用配方法求三次二项式的最值知识点2:运用二次函数中顶点求最值代数方法较为常见,所以我们本篇暂时不会涉及.接下来,我们来简单看一下每个几何知识点对应的问题知识点1:垂线段最短常出现几何图形问题中,通常在初二会见到,中考中不会涉及。
例:如图,在△ABC中有一点D在AC上移动,若AB=AC=5,BC=6则AD+BD+CD的最小值为_______.分析:题目中问“AD+BD+CD”的最小值,通过图形我们可以知道“AD+CD”是定值,所以问题可以转换为求BD的最小值.那么求BD的最小值即为求一点B到某一直线AC上的最小值,所以可以利用“垂线段最短”的性质来求解.过点B作AC垂线即可解决问题.知识点2:两点之间线段最短这类问题常出现在函数的大题中,考生如果函数知识不过关也不能拿到满分,因为仅作出图形别不能得出答案,还需要利用函数知识进行求点坐标.解题思路:通常做定点关于动点所在直线的对称点(两个动点所在直线就做两个对称点),然后连接对称点与另一点与动点所在直线的交点即为动点位置。
例1.如图,在直角坐标系中,点A、B的坐标分别为(1,3)和(2,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是______.分析:典型的“将军饮马”问题。
通过作点B关于y轴的对称点即可解决问题.例2:如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C 是OB的中点,D、E分别是直线AB、y轴上的动点,则△CDE周长的最小值是_______.分析:本题中存在两个动点,分别是点D、点E所以我们只需要做点C关于直线AB、关于y轴的对称点即可解决问题.知识点3:利用“画圆”来确定动点问题解决最值问题例1:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.分析:由翻折得到,DF=DB=3.所以点F在以点D为圆心以3为半径的圆上.连接A与圆心D,AD与圆的交点即为F'所以AF的最小值是AD-DF'=5-3=2.例2:如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°.所以点H在以AB为直径的圆上,所以以AB中点为圆心,以AB长的一半为半径画圆,连接D与圆心交点即为点H.所以DH'=OD-OH'中考中常见的求最值方法就是上面所提到的这些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求两线段长度值和最小”问题全解析在近几年的中考中,经常遇到求 PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小” 问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1在锐角三角形中探求线段和的最小值例 1 如图 1,在锐角三角形 ABC中, AB=4 , ∠BAC=45°,∠ BAC的平分线交 BC 于点 D, M,N分别是 AD和 AB 上的动点,则 BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图 1,在 AC上截取 AE=AN,连接 BE.因为∠ BAC的平分线交 BC于点D,所以∠ EAM=∠ NAM,又因为 AM=AM,所以△ AME≌△ AMN,所以 ME=M.N所以 BM+MN=BM+≥MEBE.因为 BM+MN有最小值.当 BE是点 B 到直线 AC的距离时, BE 取最小值为 4,以 BM+MN的最小值是 4.故填 4 .1.2在等边三角形中探求线段和的最小值例 2( 2010 山东滨州)如图 4 所示,等边△ ABC的边长为 6,AD 是 BC边上的中线 ,M 是 AD上的动点 ,E 是 AC边上一点 .若 AE=2,EM+CM的最小值为.分析 :要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段, 的知识求出这条线段的长度即可. 解:因为等边△ ABC 的边长为 6,AD 是 BC 边上的中线 , 所以点 C 与点 B 关于 AD 对称,连 接 BE 交 AD 于点 M ,这就是 EM+CM 最小时的位置, 如图 5 所示, 因为 CM=BM ,所以 EM+CM=B ,E 过点 E 作 EF ⊥BC ,垂足为 F ,因为 AE=2,AC=6,所以 EC=4,在直角三角形 EFC 中,因为 EC=4,∠ECF=60°,∠ FEC=30°,所以 FC=2,EF=因为 BC=6,FC=2,所以 BF=4.在直角三角形 =.、在四边形背景下探求线段和的最小值2.1 在直角梯形中探求线段和的最小值例 3(2010 江苏扬州)如图 3,在直角梯形 ABCD 中,∠ ABC =90°, AD ∥BC ,AD =4,分析 :在这里有一个动点, 两个定点符合对称点法求线段和最小的思路, 所以解答时可 以用对称法.解:如图 3 所示,作点 D 关于直线 AB 的对称点 E ,连接 CE ,交 AB 于点 P ,此时 后应用所学BEF 中, BE=AB =5,BC =6,点 P 是 AB 上一个动点,当 PC +PD 的和最小时, PB 的长为PC+PD 和最小,为线段 CE.因为 AD=4,所以 AE=4.因为∠ ABC=90°,AD∥ BC,所以∠ EAP=90°.因为∠ APE =∠ BPC,所以△ APE ∽△ BPC ,所以 . 因为 AE=4, BC = 6,所以2.2 在等腰梯形中探求线段和的最小值例 4 如图 4,等腰梯形 ABCD 中, AB=AD=CD=,1∠ ABC=60°, P 是上底,下底中点 EF 直线上的一点,则 PA+PB 的最小值为 .2.3 在菱形中探求线段和的最小值例 5 如图 5 菱形 ABCD 中, AB=2,∠ BAD=60°, E 是 AB 的中点, P 是对角线 AC 上的一 个动点,则 PE+PB 的最小值为 .,所以 ,所以, 因为 AB = 5,所以 PB=3.分析 :根据等腰梯形的性质知道,点 A 的对称点是点 运用好直角三角形的性质是解题的又一个关键.D ,这是解题的一个关键点.其次 解:如图 4 所示,因为点 D 关于直线 EF 的对称点为 +PB 和最小,为线段 BD .过点 D 作 DG ⊥BC ,垂足为 G , A ,连接 BD ,交 EF 于点 P ,此时 PA 因为四边形 ABCD 是等腰梯形,且AB=AD=CD=,1∠ ABC=60°,所以∠ C=60°,∠ GDC=30°, 所以GC= ,DG= .因为∠ ABC =60°,AD ∥BC ,所以∠ BAD =120°.因为 AB=AD ,所以∠ ABD=∠ ADB=30°,所以∠ ADBC=30°,所以 BD=2DG=×2 .所以 PA+PB 的最小值为分析 :根据菱形的性质知道,点 B 的对称点是点 D ,这是解题的一个关键点.解:如图 5所示,因为点 B 关于直线 AC 的对称点为 D ,连接 DE ,交AC 于点 P ,此时 PE +PB 和最小,为线段 ED .因为四边形 ABCD 是菱形, 且∠ BAD=60°,所以三角形 ABD 是等边三角形.因为 E 是 AB 的中点,AB=2,所以 AE=1,DE ⊥AB ,所以 ED== .所以 PE + PB 的最小值为 .2.4 在正方形中探求线段和的最小值例 6 如图 6 所示,已知正方形 ABCD 的边长为 8,点 M 在 DC 上,且 DM=2,N 是 AC 上的 一个动点,则 DN+MN 的最小值为 .分析 :根据正方形的性质知道,点 B 的对称点是点 D ,这是解题的一个关键点. 解:如图 6所示,因为点 D 关于直线 AC 的对称点为 B ,连接 BM ,交AC 于点N ,此时 DN +MN 和最小,为线段 BM .因为四边形 ABCD 是正方形, 所以BC=CD=.8因为 DM=2,所以 MC=6,例 7( 2009?达州)如图 7,在边长为 2cm 的正方形 ABCD 中,点 Q 为 BC 边的中点,点 P 为对角线 AC 上一动点,连接 PB 、 PQ ,则△ PBQ 周长的最小值为 cm .(结果不取近似值).所以 BM= 10.分析:在这里△ PBQ周长等于 PB+PQ+B,Q而 BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得 PB+PQ的和最小问题.因为题目中有一个动点 P,两个定点 B,Q 符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图 7所示,根据正方形的性质知道点 B与点 D关于 AC对称,连接 DQ,交AC于点P,连接 PB.所以 BP=DP,所以 BP+PQ=DP+PQ=.D在Q Rt△ CDQ中,DQ=+1.,所以△ PBQ的周长的最小值为: BP+PQ+BQ=DQ+BQ= +1.故答案为三、在圆背景下探求线段和的最小值例 8( 2010年荆门) 如图 8,MN是半径为 1 的⊙ O的直径,点 A在⊙ O上,∠AMN=30°, B 为 AN弧的中点, P 是直径 MN上一动点,则 PA+PB 的最小值为 ( )(C)1 (D)2分析:根据圆的对称性,A 的对称点D,连接 DB,则线段和的最小值就是线段作出点 DB的长度.解:如图 8,作出点 A 的对D,连接 DB,OB,OD.因为∠ AMN=30°,B 为 AN弧的中称点点,所以弧 AB 的度数为 30°,弧 AB 的度数为 30°,弧 圆周角的关系定理得到:∠ BON = 30°.由垂径定理得:弧∠BON +∠ DON= 30°+60° =90°.所以 DB= = .所以选择 B .AN 的度数为 60 °.根据圆心角与四、在反比例函数图象背景下探求线段和的最小值例 9(2010 山东济宁)如图 9,正比例函数 y= x 的图象与反比例函数 y= ( k ≠ 0) 在第一象限的图象交于 A 点,过 A 点作 x 轴的垂线, 垂足为 M ,已知三角形 OAM 的面积为 1.1)求反比例函数的解析式;(2)如果 B 为反比例函数在第一象限图象上的点(点 坐标为 1,在 x 轴上求一点 P ,使 PA+PB 最小 .分析 :利用三角形的面积和交点坐标的意义,确定出点 要想确定出 PA+PB 的最小值, 关键是明白怎样才能保证 想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解: (1)设点 A 的坐标为( x , y ),且点 A 在第一象限,所以 OM=x,AM=y . 因为三角形 OAM 的面积为 1,所以所以 xy=2,所以反比例函数的解 析式为 y= .B 与点 A 不重合),且 B 点的横 A 的坐标是解题的第一个关键.PA+PB 的和最小, 同学们可以联( 2)因为 y= x 与 y= 相交于点 A,所以 = x,解得 x=2,或 x=-2. 因为 x> 0,所以x=2,所以 y=1,即点 A 的坐标为( 2,1).因为点 B 的横坐标为 1,且点 B在反比例函数的图像上,所以点 B的纵坐标为 2,所点 B的坐标为( 1,2),所以点 B关于 x 轴的对称-2 ).设直线 AD的解析式为 y=kx+b ,所以点 D 的坐标为( 1,解得 k=3, b=-5 ,所以函数的解析式为 y=3x-5 ,当 y=0 时, x= ,所以当点 P 在(,0)时, PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例 10(2010年玉溪改编)如图 10,在平面直角坐标系中,点 A的坐标为(1,),△AOB的面积是.(1)求点 B 的坐标;( 2)求过点 A、O、 B的抛物线的解析式;( 3)在( 2)中抛物线的对称轴上是否存在点C,使△ AOC的周长最小?若存在,求出点 C 的坐标;若不存在,请说明理由;分析:在这里△ AOC周长等于 AC+CO+A,O而 A,O 是定点,所以 AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得 AC+CO的和最小问题.因为题目中有一个动点 C,两个定点 A,O 符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:1)由题意得 : 所以 OB=2.因为点 B 在 x 轴的负半轴上,所以点B的坐标为( -2 ,);(2)因为 B(-2,0),O(0,0), 所以设抛物线的解析式为: y=ax ( x+2),将点A 的坐标为(1,)代入解析式得: 3a= ,所以 a= ,所以函数的解析式为 y= + x.( 3)存在点 C. 如图 10,根据抛物线的性质知道点 B 与点 O 是对称点,所以连接AB与抛物线的对称轴 x= - 1 交 AC于点 C,此时△ AOC的周长最小 . 设对称轴与 x 轴的交点为 E.过点 A作AF垂直于 x轴于点 F,则 BE=EO=EF=1因. 为△ BCE∽△ BAF,所以,所以,所以 CE= .因为点 C 在第二象限,所以点C 的坐标为( -1 ,)六、在平面直角坐标系背景下探求线段和的最小值例 11(2010 年天津)如图 11,在平面直角坐标系中,矩形的顶点 O在坐标原点,顶点 A、 B分别在 x轴、y 轴的正半轴上, OA=3,OB=4,D为边 OB的中点.(1)若 E为边 OA上的一个动点,当△ CDE的周长最小时,求点 E 的坐标;(2)若 E、F 为边 OA上的两个动点,且 EF=2,当四边形 CDEF的周长最小时,求点 E、F 的坐标 .分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,很好的运用到平面直角坐标系中.解:(1)如图 12,作点 D 关于 x 轴的对称点,连接 C 与 x 轴交于点 E,连接 DE.若在边 OA上任取点(与点 E 不重合),连接 C 、D 、 .由 D + C = + C >C = D +CE=DE+C,E所以△的周长最小 .因为在矩形 OACB中, OA=3,OB=4, D 为 OB的中点,所以 BC=3, DO= O=2.所以点 C的坐标为( 3,4),点的坐标为(0,-2 ),设直线 C 的解析式为y=kx+b,则,解得 k=2, b=-2 ,所以函数的解析式为 y=2x-2 ,令 y=0,则 x=1,所以点 E 的坐标为( 1, 0);( 2)如图 13,作点 D 关于 x 轴的对称点,在 CB 边上截取 CG=2,连接 G与 x 轴交于点 E,在 EA上截 EF=2.因为 GC∥ EF,GC=E,F所以四边形 GEFC为平行四边形,有 GE=CF.又 DC、 EF的长为定值,所以此时得到的点E、F 使四边形 CDEF的周长最小因为 在矩形 OACB 中,OA=3,OB=4, D 为 OB 的中点, CG=2,所以 BC=3,DO= O=2,BG=1.所以点 G 的坐标为 ( 1,4),点的坐标为 (0,-2 ),设直线 G 的解析式为则 ,解得 k=6, b=-2 ,所以函数的解析式为 y=6x-2 ,令 y=0 ,则x= 的坐标为( ,0), 所以点 F 的坐标为( +2, 0)即 F 的坐标为( ,0)y=kx+b , 所以点 E。