《高等流体力学》习题集与基本知识
高等流体力学各章习题汇总
式中是 u 速度, dS 是流动方向的微元弧长. 7. 试证明对于滞止焓 h0 有以下方程成立
t ( h0 ) x j ( u j h0 ) p t x j ( ij u i k T x j ) fiu i
滞止焓
h0 h
1 u u 2
8.一个物质体系V 分为V1和V2 两部分, Σ 是V1和V2的分界面, S 是V的 边界曲面, 设交界面Σ以速度 u 运动,在 Σ 两侧物理量 F 有一个跃变. 试导出推广的雷诺输运公式
Dt
V
D
FdV
V
F t
dV
S
F V nd S
第五章 教科书 5.5, 5.6, 5.7 4. 证明在球坐标系下 (
A r
2
co s B r ) sin
2 2
可表示不可压缩流体
某轴对称无旋流动中的流函数,并求其速度势.
5. 已知流体绕流圆球的势函数
的力.
( r , ) U ( r
a
3 2
) co s
2r
, 式中 a 是
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求
n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。
u i t u
j
t
u j
x
ij j
x k
流体力学 大学考试复习资料 知识点总结
第一章流体及流场的基本特性1、流体定义——受任何微小剪切力作用都会连续变形的物质。
2、流体的特性——流动性、连续性3、流体的主要物理性质【惯性:密度(单位体积流体内所具有的质量)、比容(单位质量的流体所占有的体积)、重度(单位体积的流体所具有的重量)、关系(流体的密度与比体积之间互为倒数)、密度影响因素(流体种类、温度、压力)】【压缩性(流体的体积随压力增大而缩小的性质)、膨胀性(流体的体积随温度升高而增大的性质)、不可压缩流体(当压力与温度变化时,体积变化不大,密度可以看作是常数的流体)】【粘性定义(流体流动时在流体层与层之间产生内摩擦力的特性)、影响因素(流体的种类、温度、压力)、粘度(动力黏度,运动黏度)、理想流体粘性】(理想流体——假想的没有黏性的流体、实际流体——自然界中存在的具有黏性的流体)(表面张力——液体自由表面存在的力、毛细现象——表面张力可以引起相当显著的液面上升或下降,形成上凸或下凹的曲面)4、水力要素(有效截面面积、湿周——有效截面上液体与固体壁接触线的长度、水力半径——有效截面面积与断面湿周的比值、当量直径——在非圆形的有效截面中,水力半径的四倍)(工程圆管——原因:1.在有效截面面积相等的条件下,湿周愈小,流体与管壁的接触线长度愈小,所引起的流动阻力损失也愈小。
2.节省材料.)5、运动要素(动压力——作用在运动液体内部单位面积上的压力、流速——该质点在空间中移动的速度、流量——单位时间内通过有效截面的流体数量、平均流速——假设在有效截面上的各点均以相同的假象速度流过时,通过的流量与实际力量相等,那么这个假想的流速为平均流速.)第二章流体静力学1、作用在流体上的力表面力:作用在流体表面上的力,与面积成正比。
(包括:压力、内摩擦力)质量力:作用在流体质点上的力,与质量成正比。
(包括:重力、惯性力、离心力)2、静压力概念:静压力(作用在质点上,流体力学)平均静压力(作用在面上,物理学)3、静压力特性:①静压力方向总是垂直并且指向作用面。
高等流体力学各章习题汇总
(1). 证明圆周 x 2
y a
2
2
上的任意一点的速度都与 y 轴平行,且此
速度大小与 y 成反比. (2). 求 y 轴上的速度最大点;
(3). 证明 y 轴是一条流线.
7. 已知速度势φ, 求相应流函数ψ. (1). (2).
xy
x x y
2 2
b
b
U p
8. 求图示不脱体绕流平板上下表面压强, 压强系数和速度分布.
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求
n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。
u i t u
j
t
u j
x
ij j
x k
u j u k
ij
xi
f
j
可简化为
u i x
j
fi
6. 流体在弯曲的变截面细管中流动,设 A 为细管的横断面积, 在 A 断面上的流动物理量是均匀的,试证明连续方程具有下述形式,
L1
C
L2
第四章 教科书 4.1, 4.4, 4.7, 4.12 5. 设复位势为
F ( z ) m ln ( z 1 z )
(1). 问流动是由哪些基本流动组成; (2). 求流线方程;
(3). 求通过 z i 和 z
1 2
两点连线的流体体积流量.
6. 在点 (a, 0), ( -a, 0) 上放置等强度的点源,
高等流体力学课后习题
【1.4】 理想流体的特征是: a )黏度是常数; ( (b)不可压缩; (c)无黏性; (d)符合 解:不考虑黏性的流体称为理想流体。 【1.5】 当 水 的 压 强 增 加 一 个 大 气 压 时 ,水 的 密 度 增 大 约 为 : ( 000; d) 1/2 000。 (
解:牛顿内摩擦定律是
dv dv d d dy ,而且速度梯度 dy 是流体微团的剪切变形速度 dt ,故 dt 。
(b )
【1.3】 流体运动黏度 υ 的国际单位是: a )m2/s; ( (b)N/m2; (c)kg/m; (d)N· 2。 s/m 解:流体的运动黏度 υ 的国际单位是 m /s 。
。
(c)
a )1/20 000; b)1/1 000; c)1/4 ( (
1 20 000 。
d
解:当水的压强增加一个大气压时,其密度增大约 (a) 【1.6】 从力学的角度分析, 一般流体和固体的区别在于流体: a ) ( 能承受拉力, 平衡时不能承受切应力; (b) 不能承受拉力,平衡时能承受切应力; (c)不能承受拉力,平衡时不能承受切应力; (d)能承受拉力, 平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。 (c) 【1.7】下 列 流 体 哪 个 属 牛 顿 流 体 : a ) 汽 油 ; b) 纸 浆 ; c) 血 液 ; d) 沥 青 。 ( ( ( ( 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a) 【1.8】 15 C 时空气和水的运动黏度 空气 15.2 10 m /s ,水 1.146 10 m /s , 这说明: 在运动中 a ) ( 空气比水的黏性力大; (b)空气比水的黏性力小; (c)空气与水的黏性力接近; (d)不能直接比较。 解:空气的运动黏度比水大近 10 倍,但由于水的密度是空气的近 800 倍,因此水的黏度反而比空气 大近 50 倍,而 黏性力除了同 流体的黏度 有关,还和 速度梯度有 关,因此它们 不能直接比 较。
高等流体力学习题
真诚为您提供优质参考资料,若有不当之处,请指正。
1 / 71、 柱坐标下V V ⋅∇的表达式(112233V V e V e V e =++):()()()()()()2211i i i i i i ji i j i i j j j j j j i j j i j j i i i i i i ii i j j j j j i i j j i j i i iV e V e V V V e e V e e e V h q h q q V VV V VV h V e V e V V e e i j i j e e i j h q h q h q h q h h q h q ⎡⎤⎡⎤∂⎛⎫∂∂⎢⎥⋅∇=⋅=⋅+⎢⎥ ⎪ ⎪∂∂∂⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦∂∂∂∂∂∂=+≠+==+≠+∂∂∂∂∂∂1321231,;,,h h h r q r q q zε======2121122222121311323332133dV V dV dV V dV V dVdV V V =V ++V e +V ++V +e dr r d dz r dr r d dz r dV dVdV V +V ++V e dr d dz V V r εεε∴⋅∇⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭2、 利用哈密尔顿算子证明以下各式: (1)()a =0∇⋅∇⨯()()2222221233132231121222331213a j ji i i j i j ijk k i ii j i j i j ae x aaaa =e e e e e e e e x x x x x x x x a a a e e e e e e x x x x x x a e ⎛⎫∂∂⨯ ⎪ ⎪∂∇⨯∂⎛⎫⎛⎫∂∂∂⎝⎭∇⋅∇⨯⋅=⋅=⋅⨯=⨯⋅=⋅ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂=⋅+⋅+⋅∂∂∂∂∂∂∂+223312321212131320a ae e e e e x x x x x x ∂∂⋅+⋅+⋅=∂∂∂∂∂∂(2) ()0ψ∇⨯∇=()()22222123313223213232121311121222213331323212i i jijk k i i j i j =e e e e e x x x x x e e e e e e x x x x x x e e e e e e x x x x x x ψψψψψψψψψψ⎛⎫∂∇⨯∂∂∇⨯∇⨯=⨯= ⎪ ⎪∂∂∂∂∂⎝⎭∂∂∂=++∂∂∂∂∂∂∂∂∂+++=∂∂∂∂∂∂(3)()()()a b a b b a∇⋅⨯=∇⨯⋅-∇⨯⋅()()()()i iiiii iiia b a b a b a b e e b a e b e a a b b ax x x x dx ∂⨯⎛⎫∂∂∂∂∇⋅⨯=⋅=⋅⨯+⨯=⨯⋅-⨯⋅=∇⨯⋅-∇⨯⋅⎪∂∂∂∂⎝⎭(4)()()()a b a b a b b a b a∇⋅=⨯∇⨯+⋅∇+⋅∇+⨯∇⨯()()iiiiiia b a b a b e e b e a a b b ax x x ⋅∇⋅=⋅∂∂∂=∂∂∂+⋅=∇⋅+∇⋅()()b b b b ba a i i ii i i i i i i a b e e a e e a a e b a a b x x x x x ⎛⎫⎛⎫⎛⎫∂∂∂∂∂⨯∇⨯=⨯⨯=⋅-⋅=⋅-⋅=∇⋅-⋅∇ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭()()i i ii i i i i i i a a a a ab a b e b e b e e b b e a b b a x x x x x ⎛⎫⎛⎫⎛⎫∂∂∂∂∂⨯∇⨯=⨯⨯=⋅-⋅=⋅-⋅=∇⋅-⋅∇ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭3、 如果n 为闭曲面A 上的微元面dA 的单位外法线向量,12,ϕϕ是闭曲面满足20ϕ∇=的两个不同的解,试证明:(38页,6)(1)AndA=0⎰⎰(2)2112AAdA dA nn ϕϕϕϕ∂∂=∂∂⎰⎰⎰⎰证明:(1)1AndA=d 0ττ∇=⎰⎰⎰⎰⎰()()()()()()211221122112212212122121221221120AAAAdA dA n n dAn n n n dA d d d τττϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕτϕϕϕϕϕϕϕϕτϕϕϕϕτ∂∂-=⋅∇-⋅∇∂∂⎡⎤=⋅∇-⋅∇=∇⋅∇-∇⎣⎦=∇+∇∇-∇-∇∇=⋅⋅=∇-∇⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有两族平面正交曲线()(),,,x y c x y dζη==,已知22,2x y y ζ=-=时4x η=,求()x,y η,(40页,10)解:,ηζ正交=0x x y y ζηζη∂∂∂∂∴+∂∂∂∂即2x 2y =0x y ηη∂∂-∂∂40y y =22x 4-22x ηη∂∂=⋅⨯=∂∂当时,,代入得22y x xy cηη∂∴=⇒=+∂ 240y x c η===由时,知2xy η∴=求半径为a 的四分之一圆的垂直平面上流体的总的作用力F 和压力中心C 的位置,已知0x 与流体自由水平面重合,自由面上压力为零。
高等流体力学复习总结
m y 2 x 2 y 2
四、倒数函数-偶极子
m 1 m x yi w( z ) i 2 2 2 x yi 2 x y
m 1 w( z ) 2 z
m是实数
dw m 1 iQ dw dz dz 0 2 c c dz c 2 z
正压流体
流体在流动过程中,若流体的密度仅
是压力的函数,则该流动是正压的。或
者,若等密度面与等压面重合,则流动 正压。
d ( )v ( v) dt
1 1 F p v ( v) 3
直角坐标系中的形式
u 2 u v w p xx p 2 x y z x 3 v 2 u v w p yy p 2 x y z y 3 w 2 u v w p zz p 2 x y z z 3
w( z ) a ln z
a是实数
i
w( z ) i a ln(re ) a ln r i
Q a 2 Q w( z ) ln z 2
点源 若点源不在坐标原点而在z0点,则复位势为: 点汇
Q w( z ) ln( z z0 ) 2
w( z) ib ln z b是实数 z re i w( z ) i bi ln(re ) bi(ln r i ) b bi ln r
第二章 流体力学的基本概念
一 流体的定义和特征
二、流体连续介质假设
三 描述流体运动的两种方 法
四 迹线与流线 P104 例题 P140习题 五 速度分解定理 变形速度二阶张量
高等流体力学-习题集
由题可得速度场 ,则由 得 ,解微分方程得 ,即为流体质点运动的拉格朗日表达式,其中 为任意常数。
则 ,
得速度的拉格朗日表达式为:
得加速度的拉格朗日表达式为:
4、已知质点的位置表示如下:
求:(1)速度的欧拉表示;
(2)加速度的欧拉表示及拉格朗日表示,并分别求 及 的值;
(3)过点 的流线及 在 这一质点的迹线;
由迹线微分方程为 ,将 代入得质点轨迹方程为
(4)散度
旋度
涡线微分方程为 ,又因为 ,涡线微分方程转化为 ,即
涡线方程为
(5)速度梯度 = ,
∴应变率张量
∴旋转张量
5、已知拉格朗日描述为
(1)问运动是否定常,是否是不可压缩流体,是否为无旋流场;
(2)求t=1时在点(1,1,1)的加速度;
(3)求过点(1,1,1)的流线。
解:
6、已知 ,求
(1)速度的拉格朗日描述;
(2)质点加速度;
(3)散度及旋度;运动是否有旋;流体是否不可压;
(4)迹线及流线。
解:
(1)由 ,又由 得 ,由 得 。再由初始条件 得 ,则速度的拉格朗日描述为
(2)质点加速度为
(3)散度
(4)散度、旋度及涡线;
(5)应变率张量及旋转张量。
解:
(1)由 得
由题得 ,则速度的欧拉表示为
(2)加速度分量为 ,
则加速度的欧拉表示为 ;
则加速度的拉格朗日表示为 ;
当 时,
(3)流线微分方程式为 ,因为 所以,流线微分方程转化为 ,消去中间变量积分得 ,又因为 ,当 时,得到 =0, ,即过点(1,0,0)的流线为
高等流体力学
1、流体的运动用
大学科目《流体力学》习题及答案
一、选择题1.按连续介质的概念,流体质点是指A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
2.作用在流体的质量力包括A. 压力;B. 摩擦力;C. 重力;D. 惯性力。
3.单位质量力的国际单位是:A . N ; B. m/s ; C. N/kg ; D. m/s 2。
4.与牛顿内摩擦定律直接有关系的因素是A. 切应力和压强; B. 切应力和剪切变形速率; C. 切应力和剪切变形。
5.水的粘性随温度升高而A . 增大; B. 减小; C. 不变。
6.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。
7.流体的运动粘度υ的国际单位是A. m 2/s ;B. N/m 2 ; C. kg/m ;D. N ·s/m2 8.理想流体的特征是A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT 。
9.当水的压强增加1个大气压时,水的密度增大约为A. 200001; B. 100001;C. 40001 。
10.水力学中,单位质量力是指作用在A. 单位面积液体上的质量力;B. 单位体积液体上的质量力; C. 单位质量液体上的质量力;D. 单位重量液体上的质量力 11.以下关于流体粘性的说法中不正确的是A. 粘性是流体的固有属性;B. 粘性是在运动状态下流体具有抵抗剪切变形速率能力的量度C. 流体的粘性具有传递运动和阻滞运动的双重作用;D. 流体的粘性随温度的升高而增大。
12.已知液体中的流速分布µ-y 如图所示,其切应力分布为 A.τ=0;B.τ=常数; C. τ=ky (k 为常数)。
13.以下关于液体质点和液体微团的正确论述是A. 液体微团比液体质点大;B. 液体微团包括有很多液体的质点; C. 液体质点没有大小,没有质量;D. 液体质点又称液体微团。
14.液体的汽化压强随温度升高而 A. 增大;B. 减小;C. 不变;15.一封闭容器盛以水,当其从空中自由下落时(不计空气阻力),其单位质量力为 A. 0 ; B. -g ; C. mg ;D. –mg 。
高等流体力学考试大纲及试题
高等流体力学考试大纲第一章流体力学的基本概念连续介质欧拉法质点加速度质点随体导数体积分的随体导数变形率张量旋转角速度判断有旋流与无旋流涡量与速度环量的关系应力张量的概念(包括切应力的特性、压应力的特性)牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)第二章流体运动的基本方程微分形式的连续方程的表达形式不可压缩流体的确切定义、理解其含义。
N-S方程的各种表示形式流体的能量包括哪几种形式,并对各种形式进行解释,写出单位质量流体能量的表达式流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤第三章势流运动势流运动控制方程及求解步骤;势流求解常用的方法有哪些。
速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。
第四章粘性流体运动基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)。
小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。
第五章紊流运动紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。
紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。
紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。
第六章涡旋运动涡旋的运动学性质涡旋运动的基本方程;涡旋的形成高等流体力学2009级考试题1、 涡量速度概念、矢量表达式速度环量的概念、一般表达式说明二者之间的关系2、 为什么引入紊流方程3、 保角变换法的思路4、 简述涡旋形成的根源5、 解释相似性解的概念6、 猝发现象7、 推导泊松方程8、 理想不可压缩均质流体的有势运动的控制方程推导div 0v = 20ϕ⇒∇=21()2du v p f p gz f t dt t ϕρρ∂=-∇⇒+++=∂ 9、 紊流雷诺方程的推导11()i i i j i j i j i j ju u u p u u u f t x x x x μρρρ∂∂∂∂''+=-+-+∂∂∂∂∂ 10、 相似性解表达式000(,)(,)()()()()x i x i i y y u x u x g x g x U x U x = 2010年考试题中有有关平面势流及其叠加中的无环量圆柱绕流的叠加的相关内容。
流体力学习题集
第1章 绪 论习 题1-1 从力学分析意义上说流体和固体有何不同? 1-2 量纲与单位是同一概念吗? 1-3 流体的容重和密度有何区别与联系?1-4水的密度为1000 kg/m 3,2升的水的质量和重量是多少? 1-5 体积为0.5m 3的油料,重量为4410N ,该油料的密度是多少?1-6 水的容重g = 9.71 kN/m 3,m = 0.599 ´ 10-3Pa×s,求它的运动粘滞系数。
1-7 如图所示为一0.8 ´ 0.2m 的平板,在油面上作水平运动,已知运动速度u = 1m/s ,平板与固定边界的距离d = 1mm ,油的动力粘滞系数为m = 1.15 Pa×s,由平板所带动的油的速度成直线分布,求平板所受的阻力。
1-8 旋转圆筒粘度计,悬挂着的内圆筒半径r = 20cm ,高度h = 40cm ,内筒不动,外圆筒以角速度w = 10 rad/s 旋转,两筒间距d = 0.3cm ,内盛待测液体。
此时测得内筒所受力矩M = 4.905 N×m。
求油的动力粘滞系数。
(内筒底部与油的相互作用不计)1-9 一圆锥体绕其中心轴作等角速度w = 16 rad/s 旋转,锥体与固定壁面的间隙d = 1mm ,其间充满m = 0.1 Pa×s 的润滑油,锥体半径R = 0.3m ,高R = 0.5m ,求作用于圆锥体的阻力矩。
1-10 如图所示为一水暖系统,为了防止水温升高时体积膨胀将水管胀裂,在系统顶部设一膨胀水箱。
若系统内水的总体积为8m 3,加温前后温差为50°C,在其温度范围内水的膨胀系数为,求膨胀水箱的最小容积。
(水的膨胀系数为0.0005 /°C)1-11 水在常温下,由5at 压强增加到10at 压强时,密度改变多少?1-12 容积为4的水,当压强增加了5at 时容积减少1升,该水的体积弹性系数为多少?为了使水的体积相对压缩1/1000,需要增大多少压强?题1-7图u题1-8图第2章 流体运动学基础习 题2-1 给定速度场u x = x + y ,u y = x - y ,u z = 0,且令t = 0时x = a ,y = b ,z = c ,求质点空间分布。
(完整)《高等流体力学》复习题
《高等流体力学》复习题一、基本概念1. 什么是流体,什么是流体质点?2. 什么是流体粘性,静止的流体是否具有粘性,在一定压强条件下,水和空气的粘性随着温度的升高是如何变化的?3. 什么是连续介质模型?在流体力学中为什么要建立连续介质这一理论模型?4. 给出流体压缩性系数和膨胀性系数的定义及表达式。
5. 简述系统与控制体的主要区别。
6. 流体静压强的特性是什么?绝对压强s p 、计示压强(压力表表压)p 、真空v p 及环境压强(一般为大气压)a p 之间有什么关系?7. 什么是理想流体,正压流体,不可压缩流体?8. 什么是定常场,均匀场,并用数学形式表达。
9. 分别用数学表达式给出拉格朗日法和欧拉法的流体加速度表达式。
10. 流线和迹线有何区别,在什么条件下流场中的流线和迹线相重合?11. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么?12. 试述伯努利方程()22p V Z C g gψρ++=中各项的物理意义,并说明该方程的适用条件。
13. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系?14. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?)15. 平面流动中用复变位势描述的流体具有哪些条件(性质)?16. 伯努利方程22p V Z Const g gρ++=对于全流场均成立需要基于那些基本假设? 17. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?stokes 假设的基本事实依据是什么?18. 为推出牛顿流体的本构方程,Skokes 提出了3条基本假设,分为是什么?19. 作用在流体微团上的力分为那两种?表面应力ij τ的两个下标分别表示?ij τ的正负如何规定?20. 从分子运动学观点看流体与固体比较有什么不同?21. 试述流体运动的Helmhottz 速度分解定律并给出其表达式。
大学科目《流体力学》习题及答案
一、选择题1.按连续介质的概念,流体质点是指A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
2.作用在流体的质量力包括A. 压力;B. 摩擦力;C. 重力;D. 惯性力。
3.单位质量力的国际单位是:A . N ; B. m/s ; C. N/kg ; D. m/s 2。
4.与牛顿内摩擦定律直接有关系的因素是A. 切应力和压强; B. 切应力和剪切变形速率; C. 切应力和剪切变形。
5.水的粘性随温度升高而A . 增大; B. 减小; C. 不变。
6.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。
7.流体的运动粘度υ的国际单位是A. m 2/s ;B. N/m 2 ; C. kg/m ;D. N ·s/m2 8.理想流体的特征是A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT 。
9.当水的压强增加1个大气压时,水的密度增大约为A. 200001; B. 100001;C. 40001 。
10.水力学中,单位质量力是指作用在A. 单位面积液体上的质量力;B. 单位体积液体上的质量力; C. 单位质量液体上的质量力;D. 单位重量液体上的质量力 11.以下关于流体粘性的说法中不正确的是A. 粘性是流体的固有属性;B. 粘性是在运动状态下流体具有抵抗剪切变形速率能力的量度C. 流体的粘性具有传递运动和阻滞运动的双重作用;D. 流体的粘性随温度的升高而增大。
12.已知液体中的流速分布µ-y 如图所示,其切应力分布为 A.τ=0;B.τ=常数; C. τ=ky (k 为常数)。
13.以下关于液体质点和液体微团的正确论述是A. 液体微团比液体质点大;B. 液体微团包括有很多液体的质点; C. 液体质点没有大小,没有质量;D. 液体质点又称液体微团。
14.液体的汽化压强随温度升高而 A. 增大;B. 减小;C. 不变;15.一封闭容器盛以水,当其从空中自由下落时(不计空气阻力),其单位质量力为 A. 0 ; B. -g ; C. mg ;D. –mg 。
流体力学习题集与答案解析
流体力学与叶栅理论课程考试试题一、选择题(每小题1分,共10分)1、在括号填上“表面力”或“质量力”:摩擦力();重力();离心力();浮力();压力()。
2、判断下列叙述是否正确(对者画√,错者画╳):(a) 基准面可以任意选取。
()(b) 流体在水平圆管流动,如果流量增大一倍而其它条件不变的话,沿程阻力也将增大一倍。
()(c) 因为并联管路中各并联支路的水力损失相等,所以其能量损失也一定相等。
()(d) 定常流动时,流线与迹线重合。
()(e) 沿程阻力系数λ的大小只取决于流体的流动状态。
()二、回答下列各题(1—2题每题5分,3题10分,共20分)1、什么是流体的连续介质模型?它在流体力学中有何作用?2、用工程单位制表示流体的速度、管径、运动粘性系数时,管流的雷诺数4Re ,10问采用国际单位制时,该条件下的雷诺数是多少?为什么?3、常见的流量的测量方法有哪些?各有何特点?三、计算题(70分)1、如图所示,一油缸及其中滑动栓塞,尺寸D=120.2mm,d=119.8mm,L=160mm,间隙充满μ=0.065Pa·S的润滑油,若施加活塞以F=10N的拉力,试问活塞匀速运动时的速度是多少?(10分)题1图2、如图所示一盛水容器,已知平壁AB=CD=2.5m,BC及AD为半个圆柱体,半径R=1m,自由表面处压强为一个大气压,高度H=3m,试分别计算作用在单位长度上AB面、BC面和CD面所受到的静水总压力。
(10分)题2图3、原型流动中油的运动粘性系数υp=15×10-5m2/s,其几何尺度为模型的5倍,如确定佛汝德数和雷诺数作为决定性相似准数,试问模型中流体运动粘性系数υm=?(10分)4、如图所示,变直径圆管在水平面以α=30。
弯曲,直径分别为d1=0.2m,d2=0.15m,过水流量若为Q=0.1m3/s,P1=1000N/m2时,不计损失的情况下,求水流对圆管的作用力及作用力的位置。
高等流体力学习题
第一讲绪论习题:1.综述流体力学研究方法及其优缺点。
2.试证明下列各式:(1)grad(φ±ψ)=grad(φ)±grad(ψ)(2) grad(φψ)=ψgrad(φ)+φgrad(ψ)(3)设r= xi+y j+ z k,则=(4)设r= x i+yj+ zk,求div(r)=?(5) 设r=xi+yj+zk,则div(r4r)=?3.给定平面标量场f及M点处上已知两个方向上的方向导数和,求该点处的grad f第二讲应力张量及应变张量例2-1试分析下板不动上板做匀速运动的两个无限大平板间的简单剪切流动,,式中k为常数,且k=u0/b。
解:由速度分布和式(2-14、16和17)可得再由式(2-18)可得所以II=k=u0/b。
流动的旋转张量R的分量不全为零说明流动是有旋流动,I=trA=0表明流动为不可压缩流动,II=k表明了流场的剪切速率为常数。
第三讲流体的微分方程习题:试由纯粘流体的本构方程和柯西方程推导纳维尔-斯托克斯方程(N-S方程)。
第四讲流动的积分方程【例3-1】在均匀来流速度为V的流场中放置一个垂直于来流的圆柱体,经过若干距离后测得的速度分布如图所示,假设图示的控制体边界上的压力是均匀的,设流体为不可压缩的,其密度为ρ,试求:(1)流线1-2的偏移量C的表达式;(2)单位长度圆柱体的受力F的表达式。
解:(1)无圆柱体时流管进出口一样大(即流线都是直线,无偏移),进出口的流速分布也是相同的,而放入圆柱体之后出口处的流速分布变成图示的那样,即靠近中心线部分的流速变小,由于已经假定流体是不可压缩的流体,若想满足进出口流量相同——连续性方程,必然会导致流管边界会向外偏移,也就是说出口处流管的截面会增大。
因此,求解时可由进出口流量相等入手,设入口处平均流速为V,取宽度为L,所得的连续性方程应为:求得C=a/2(2)在流管的进出口截面1-1与2-2之间使用动量方程,即圆柱体的阻力应等于单位时间内流出2-2面的流体的动量与流入1-1面的流体的动量差,列x方向的动量方程可表示为则,F=-R【例3-2】试求如图所示的射流对曲面的作用力。
(完整版)流体力学基本练习题
流体⼒学基本练习题⼀、名词解释流体质点、流体的体膨胀系数、流体的等温压缩率、流体的体积模量、流体的粘性、理想流体、⽜顿流体、不可压缩流体、质量⼒、表⾯⼒、等压⾯、质点导数、定常场、均匀场、迹线、流线、流管、流束、流量、过流断⾯(有效截⾯)、层流、湍流、层流起始段、粘性底层、⽔⼒光滑管、⽔⼒粗糙管、沿程阻⼒、局部阻⼒⼆、简答题1.流体在⼒学性能上的特点。
2.流体质点的含义。
3.⾮⽜顿流体的定义、分类和各⾃特点。
4.粘度的物理意义及单位。
5.液体和⽓体的粘度变化规律。
6.利⽤欧拉平衡⽅程式推导出等压⾯微分⽅程、重⼒场中平衡流体的微分⽅程。
7.等压⾯的性质。
8.不可压缩流体的静压强基本公式、物理意义及其分布规律。
9.描述流体运动的⽅法及其各⾃特点10.质点导数的数学表达式及其内容。
写出速度质点导数。
11.流线和迹线的区别,流线的性质。
三、填空题、判断(⼀)流体的基本物理性质1.⽔⼒学是研究液体静⽌和运动规律及其应⽤的⼀门科学。
()2.当容器⼤于液体体积,液体不会充满整个容器,⽽且没有⾃由表⾯。
()3.⽓体没有固定的形状,但有⾃由表⾯。
()4.⽔⼒学中把液体视为内部⽆任何间隙,是由⽆数个液体质点组成的。
()5.粘滞性是液体的固有物理属性,它只有在液体静⽌状态下才能显⽰出来,并且是引起液体能量损失的根源。
()6.同⼀种液体的粘滞性具有随温度升⾼⽽降低的特性。
()7.作层流运动的液体,相邻液层间单位⾯积上所作的内摩擦⼒,与流速梯度成正⽐,与液体性质⽆关。
()8.惯性⼒属于质量⼒,⽽重⼒不属于质量⼒。
()9.质量⼒是指通过所研究液体的每⼀部分重量⽽作⽤于液体的、其⼤⼩与液体的质量成⽐例的⼒.()10.所谓理想流体,就是把⽔看作绝对不可压缩、不能膨胀、有粘滞性、没有表⾯张⼒的连续介质。
()11.表⾯⼒是作⽤于液体表⾯,与受⼒作⽤的表⾯⾯积⼤⼩⽆关。
()12.⽔和空⽓的黏度随温度的升⾼⽽减⼩。
()13.流体是⼀种承受任何微⼩切应⼒都会发⽣连续的变形的物质。
高等流体力学习题答案
高等流体力学习题答案高等流体力学学习题答案高等流体力学是力学的一个重要分支,研究流体的运动规律和性质。
在学习高等流体力学的过程中,解题是非常重要的环节。
本文将为大家提供一些高等流体力学学习题的答案,帮助大家更好地理解和掌握这门学科。
题目一:在一个封闭的容器中,有一定质量的气体,初始状态下气体的温度、压力和体积分别为T1、P1和V1。
当气体发生等温膨胀时,求膨胀后气体的温度、压力和体积。
解答:根据等温膨胀的特点,气体的温度保持不变。
根据理想气体状态方程PV = nRT,其中n为气体的摩尔数,R为气体常数。
由于等温膨胀,温度和摩尔数不变,所以有P1V1 = P2V2。
解得P2 = P1V1/V2。
由于温度不变,所以V2 =V1。
代入上式,可得P2 = P1。
所以膨胀后气体的温度、压力和体积分别为T1、P1和V1。
题目二:一个圆柱形容器中装有水,高度为H,底面半径为R。
求水的压力随深度的变化规律。
解答:根据流体静力学原理,水的压力与深度成正比。
设水的密度为ρ,重力加速度为g,则单位深度上的压力为ρg。
由于水的压力随深度线性增加,所以在高度为H的位置,水的压力为P = ρgH。
由于底面积为πR^2,所以水的总压力为P_total = ρgHπR^2。
题目三:一个半径为r的球在水中下沉,求球下沉的速度。
解答:根据阿基米德原理,物体在液体中受到的浮力等于物体排开液体的重量。
设球的密度为ρ_s,水的密度为ρ_w,重力加速度为g,球的体积为V,则球的重力为G = ρ_sgVg,球受到的浮力为F = ρ_wVg。
根据牛顿第二定律,球受到的合外力等于质量乘以加速度,即G - F = ρ_sgVg - ρ_wVg = (ρ_s - ρ_w)Vg =m_ag,其中m_a为球的有效质量。
所以球下沉的加速度为a = (ρ_s - ρ_w)g。
根据运动学公式v = u + at,其中v为球下沉的速度,u为初始速度,t为时间。
《高等流体力学》习题集与基本知识
《高等流体力学》复习题一、 基本概念1. 什么是理想流体?正压流体,不可压缩流体? [答]:教材P57当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。
内部任一点的压力只是密度的函数的流体,称为正压流体。
流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。
2. 什么是定常场;均匀场;并用数学形式表达。
[答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。
其数学表达式为:)(r ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。
其数学表达式为:)(t ϕϕ=3. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么? [答]:理想流体运动时无切应力。
粘性流体静止时无切应力。
但是,静止时无切应力,而有粘性。
因为,粘性是流体的固有特性。
4. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系? [答]:教材P119-123如果流体运动是无旋的,则称此流体运动为有势运动。
对于无旋流动来说,其速度场V 总可以由某个速度标量函数(场)),(t r φ的速度梯度来表示,即φ∇=V ,则这个标量函数(场)),(t r φ称为速度场V 的速度势函数。
无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。
5. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) [答]:6. 平面流动中用复变位势描述的流体具有哪些条件(性质)? [答]:教材P126-127理想不可压缩流体的平面无旋运动,可用复变位势描述。
7. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?Stokes 假设的基本事实依据是什么? [答]:教材P89第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数; 第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。
高等流体力学-习题集
高等流体力学一、流体的运动用x=a,y=e t b+c2+e−tb−c2,z=e tb+c2−e−tb−c2表示,求速度的拉格朗日描述与欧拉描述。
解:由题可知速度分量为:{u=ðxðt=0v=ðyðt=e t b+c2−e−t b−c2=zw=ðzðt =e t b+c2+e−t b−c2=y则速度的拉格朗日描述:V⃑ =(0,e t b+c2−e−t b−c2,e t b+c2+e−t b−c2)速度的欧拉描述:V⃑ =(0,z,y)二、速度场由V⃑ =(x2t,yt2,xz)给出,当t=1时求质点p(1,3,2)的速度及加速度。
解:由V⃑ =(x2t,yt2,xz)可得速度分量式为:{u=x2t v=yt2 w=xz则当t=1时,质点p(1,3,2)的速度为:V⃑ =(1,3,2);加速度为{a x=ðuðt+uðuðx+vðuðy+wðuðz a y=ðvðt+uðvðx+vðvðy+wðvðza z=ðwðt +uðwðx+vðwðy+wðwðz={a x=x2+x2t∙2xt+yt2∙0+xz∙0a y=2yt+x2t∙0+yt2∙t2+xz∙0a z=0+x2t∙z+yt2∙0+xz∙x={a x=1+2+0+0=3a y=6+0+3+0=8a z=0+2+0+2=4,即加速度为:a=(3,9,4)三、速度场由V⃑ =(αx+t2,βy−t2,0)给出,求速度及加速度的拉格朗日表示。
解:由题可得速度场V⃑ =(u,v,w)=(αx+t2,βy−t2,0),则由{u=ðxðt=αx+t2v=ðyðt=βy−t2w=ðzðt =0得{dxdt−αx=t2dydt−αy=−t2dzdt=0,解微分方程得{x=c1eαt−1αt2−2α2t−2α3y=c2eβt+1βt2+2β2t+2β3z=c3,即为流体质点运动的拉格朗日表达式,其中c1,c2,c3为任意常数。
高等流体力学复习题及解答1214
《高等流体力学》复习题一、基本概念1.什么是流体,什么是流体质点?答:在任何微小剪切应力作用下,都会发生连续不断变形的物质称为流体。
宏观无限小,微观无限大,由大量流体分子组成,能够反映流体运动状态的集合称为流体质点。
2.什么事连续介质模型?在流体力学中为什么要建立连续介质这一理论模型?答:认为流体内的每一点都被确定的流体质点所占据,其中并无间隙,于是流体的任一参数φ(密度、压力、速度等)都可表示为空间坐标和时间的连续函数(,,,)x y z t φφ=,而且是连续可微函数,这就是流体连续介质假说,即流体连续介质模型。
建立“连续介质”模型,是对流体物质结构的简化,使在分析流体问题得到两大方便:第一、 可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;第二、 能用数学分析的连续函数工具。
3.给出流体压缩性系数和膨胀性系数的定义及表达式。
答:压缩性系数:单位体积的相对减小所需的压强增值。
(/)/d d βρρρ=膨胀性系数:在一定压强下,单位温度升高所引起的液体体积的相对增加值。
(/)(/)/v a dV V dT d dT ρρ==-4.什么是理想流体,正压流体,不可压缩流体?答:当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。
内部任一点的压力只是密度的函数的流体,称为正压流体。
流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。
5.什么是定常场;均匀场;并用数学形式表达。
答:如果一个场不随时间的变化而变化,则这个场就被称为定常场。
其数学表达式为:)(r ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。
其数学表达式为:)(t ϕϕ=6.分别用数学表达式给出拉格朗日法和欧拉法的流体加速度表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等流体力学》复习题一、 基本概念1. 什么是理想流体?正压流体,不可压缩流体? [答]:教材P57当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。
内部任一点的压力只是密度的函数的流体,称为正压流体。
流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。
2. 什么是定常场;均匀场;并用数学形式表达。
[答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。
其数学表达式为:)(r ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。
其数学表达式为:)(t ϕϕ=3. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么? [答]:理想流体运动时无切应力。
粘性流体静止时无切应力。
但是,静止时无切应力,而有粘性。
因为,粘性是流体的固有特性。
4. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系? [答]:教材P119-123如果流体运动是无旋的,则称此流体运动为有势运动。
对于无旋流动来说,其速度场V 总可以由某个速度标量函数(场)),(t r φ的速度梯度来表示,即φ∇=V ,则这个标量函数(场)),(t r φ称为速度场V 的速度势函数。
无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。
5. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) [答]:6. 平面流动中用复变位势描述的流体具有哪些条件(性质)? [答]:教材P126-127理想不可压缩流体的平面无旋运动,可用复变位势描述。
7. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?Stokes 假设的基本事实依据是什么? [答]:教材P89第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数; 第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。
对于不可压缩流体,可不考虑第二粘性系数。
Stokes 假设的基本事实依据:平均法向正应力ε就是压力函数的负值,即体变形粘性系数032=+='λμμ。
8. 从运动学观点看流体与固体比较有什么不同? [答]:教材P55若物质分子的平均动能远小于其结合能,即E mv ∆<<221,这时物质分子间所形成的对偶结构十分稳定,分子间的运动被严格地限定在很小的范围内,物质的分子只能在自己的平衡位置周围振动。
这时物质表现为固态。
若物质分子的平均动能与其结合能大致相等,即E mv ∆≈221,其分子间的对偶结构不断地遭到破坏,又不断地形成新的对偶结构。
这时,物质分子间不能形成固定的稳定对偶结构,而表现出没有固定明确形状的液态。
若物质分子的平均动能远大于其结合能,即E mv ∆>>221,物质几乎不能形成任何对偶结构。
这时,物质表现为气态。
9. 试述流体运动的Helmholts 速度分解定律。
[答]:教材P65可变形流体微团的速度分解:流体微团一点的速度可分解为平动速度分量与转动运动分量和变形运动分量之和,这称为流体微团的Helmholts 速度分解定理r S r V V δδω⋅+⨯+=010. 流体微团有哪些运动形式?它们的数学表达式是什么? [答]:r S r V V δδω⋅+⨯+=0 1)平动运动:0V V = 2)转动运动:r δω⨯ V rot 21=ω3)变形运动:r S δ⋅11. 描述流体运动的基本方法有哪两种?分别写出其描述流体运动的速度、加速度的表达式。
[答]:教材P58-60描述流体运动的基本方法:1) 拉格朗日方法:对流体介质的每一质点进行跟踪,着眼于流体介质中的每个质点,需要对流体介质中的每个质点进行区别。
各质点速度表达式:tt c b a r t c b a V ∂∂=),,,(),,,(各质点加速度表达式:22),,,(),,,(t t c b a r t c b a V∂∂=•2) 欧拉方法:定点观察描述流场的运动,着眼于空间的定点,而不是流体质点。
速度表达式:332132321213211321),,,(),,,(),,,(),,,(),(e t x x x u e t x x x u e t x x x u t x x x V t r V V ++=== 加速度表达式:V V t V V t V x u u t u rV t V t r r t V dt V d j i j i )(∇⋅+∂∂=∇⋅+∂∂=∂∂⋅+∂∂=∂+∂∂=∂∂∂+∂∂=12. 什么是随体导数(加速度)、局部导数(加速度)及位变导数(加速度)?分别说明0=dt v d ,0=∂∂tv及()0=∇⋅v v的物理意义?[答]:教材P60随体导数:流体质点在其运动过程中的加速度所对应的微商,叫做随体导数; 局部导数:流体位置不变时的加速度所对应的微商,叫做局部导数; 位变导数:质点位移所造成的加速度所对应的微商,叫做位变导数。
物理意义:0=dt vd :随体导数为0,流体质点在其运动过程中的加速度为0;0=∂∂t v:局部导数为0,流体位置不变时的加速度为0,流体是定常流动; ()0=∇⋅v v :位变导数为0,流体质点位移所造成的加速度为0,流体速度分布均匀。
13. 什么是流体的速度梯度张量?试述其对称和反对称张量的物理意义。
[答]:教材P65-67对流体微团M ,其中o r 处的速度为0V ,那么r 处的速度可以表示为 j jx x VV V δ∂∂+=0,或者j j i i i x x u u u δ∂∂+=0, 即)(0V r V V ∇⋅+=δ。
这里,V x uji ∇=∂∂为二阶张量,是速度的梯度,因此称之为速度梯度张量。
速度梯度张量分解为对称和反对称部分:S A x u V ij +=∂∂=∇反对称张量的物理意义:反对称张量表征了流体微团旋转运动,所对应的矢量ω为流体微团的角速度矢量。
k ijk z v y w z u x w z v y w yu x v z u x w y u x v A ωεωωωωωω=⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂-∂∂-∂∂-∂∂-∂∂-∂∂∂∂-∂∂-∂∂-∂∂∂∂-∂∂=0000) (21) (21) (210) (21) (21)(210121323V rot e e e z y x 21321=++=ωωωω对称张量的物理意义:对称张量表征了流体微团的变形运动。
其中,对角线上的元素()321 , , εεε表示了流体单元微团在3个坐标轴上的体变形分量,而三角元素⎪⎭⎫ ⎝⎛32121 ,21 ,21θθθ表示了流体单元微团在3个坐标平面上的角变形分量的一半。
⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=312123231212121212121) (21) (21) (21) (21) (21) (21 εθθθεθθθεz w zv y w z u x w z v y w y v y u x v z u x w yu x v x u A yu∂∂xw ∂∂-zv ∂∂-反对称部分Z z∂14. 流体应力张量的物理意义是什么?它有什么性质? [答]:教材P71流体应力张量的物理意义:应力张量表示了坐标面的三个面力密度矢量z y x p p p, ,的九个分量}{ij p 组成的一二阶张量,即为面力密度张量。
应力张量的性质:应力张量是对称张量,具有对称性 应力张量具有二阶对称张量的性质(1) 应力张量的几何表示为应力椭球面,即二次型1222)(222=+++++=⋅⋅zx p yz p xy p z p y p x p r P r zx yz xy zz yy xx(2) 应力张量有三个互相垂直的主轴方向,即是应力椭球的三个对称的直径的方向。
在主轴坐标系下,应力张量具有标准形式:⎪⎪⎪⎭⎫ ⎝⎛='000'000'332211p p p P (3) 应力张量的三个不变量为:反对称部分⎪⎩⎪⎨⎧+--++=---++=++=223112123323122322113312312332211321223122322111133332223322111p p p p p p p p p p p p p p p I p p p p p p p p p I p p p I15. 某平面上的应力与应力张量有什么关系?nm mn p p =的物理含义是什么? [答]:教材P71应力n p 与应力张量P 的关系:P n p n p ij n ⋅=⋅= ,即:空间某点处任意平面上的应力等于这点处的应力张量与该平面法向单位矢量的左向内积。
nm mn p p =的物理意义:i ji j j ji i j ij i n nm n p m m p n m p n m p m P n p ===⋅=⋅⋅=)(mn m p n p n P m =⋅=⋅⋅=)(应力张量的对称性,使得在以n 为法线的平面上的应力np在 m 方向上的投影等于(=)在以m 为法线的平面上的应力mp 在 n方向上的投影。
16. 流体微团上受力形式有哪两种?它们各自用什么形式的物理量来表达? [答]:教材P68-71(1)质量力,也称体力,这种力作用在物质中每个质点上,其大小与每个质点的质量成正比。
作用于某物质体上质量力的合力将通过该物质体的质心。
δτρδ)(r F f = , ⎰=τδτρ)(r F f )(r F 为质量力密度,与位置有关。
(2)面力,作用于流体微团表面S 上的力。
S p p n δδ= , ⎰=S n S p p δ n p 为面力分布密度,P n p n p ij n ⋅=⋅=17. 什么是广义的牛顿流体和非牛顿流体? [答]:教材P86-87牛顿内摩擦定律:流体微团的运动变形的的大小与其上所受的应力存在线性关系。
遵从或近似遵从牛顿内摩擦定律的一类流体称为牛顿流体。
不遵从牛顿内摩擦定律的流体称为非牛顿流体。
广义牛顿内摩擦定律:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。
遵从或近似遵从广义牛顿内摩擦定律的一类流体称为广义牛顿流体。
18. 试述广义牛顿内摩擦定律的物理意义及相应的数学表达式? [答]:教材P87广义牛顿内摩擦定律的物理意义:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。