高中数学知识点总结及公式:离散型随机变量的分布列
离散型随机变量的分布列、均值与方差
![离散型随机变量的分布列、均值与方差](https://img.taocdn.com/s3/m/03ed893a1eb91a37f0115c03.png)
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
高中数学知识点总结及公式:离散型随机变量的分布列
![高中数学知识点总结及公式:离散型随机变量的分布列](https://img.taocdn.com/s3/m/e621693683d049649b6658e6.png)
高中数学知识点总结及公式:离散型随机变量的分布列>常用公式1.离敢型随机变量的分布列的性质土(O Pi > Or </=1, 2, 3,…,n);〔2) Pi 5 十…十%二1-2.离散型随机变量朋g从参数为M M, Ti的超几何分布』则P(Z= m) = (0 < m- < 0^ E和M中较小的—个.C N3.条件概率公式:F〔E ⑷二鶴^ P(A)>0.4.如果事件眉一生,…「山就互相独立"那么讴个事件都发生的概率等于每个事件发生的概率的积,即卩(久门彼门…PM』=P(A) P(4Q • P(A n) “N如果在一次试验中事件4发生的概率是戸那么在加吹独立重复试验中事件?1恰好发生花次的概率:P n (fc) = C^p ft (1 - p)n-ft (fc = Q7 1, 2,…,n).6・离散型随机变量X的均值或数学期EQO =扫巧 + x 佃+ …+ x rt p n(p i+ 宀+ …+ % = 1).特别地二Q)若*服从两点分布,贝fjE(X)-p(2)^X-B(n f p),则E(X} = xp(3)E(aX ± b) = aE(X) ± b7.离散型随机变量X的方差!D(X)=站一EC?)]% + [x2一E(Z)hi + …+ 必一E(Z)]%・特别地2(1)若X服从两点分布,则D(JQ = p(l - p)(2)若X~B(m p),则D(X) = np(l-p)(3)D(aX + &) = a2D(X)8.正态变量概率密度曲线的函数表达式,i _d)2fM = V^e 2ff2 , %GR,其中“,CT是参数,且CT > 0, —OO < fl <十8,式中“和CT分别是正态变量的数学期望和标准差.期望为如标准差为(J的正态分布通常记作N(/l,。
2).当“ =0,(7=1时,正态总体称为标准正态分布:记作N(0, 1).标准正态分布的函数表示式是/(x) = -7= e~T, r e R.。
高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列
![高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列](https://img.taocdn.com/s3/m/20bf812a640e52ea551810a6f524ccbff021ca62.png)
高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。
高中理科数学-离散型随机变量及分布列汇编
![高中理科数学-离散型随机变量及分布列汇编](https://img.taocdn.com/s3/m/9dc6e8615f0e7cd185253648.png)
理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。
2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。
(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。
如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。
2020年高考数学专题复习离散型随机变量及其分布列
![2020年高考数学专题复习离散型随机变量及其分布列](https://img.taocdn.com/s3/m/f29da1a0da38376bae1fae6f.png)
离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
高中数学离散型随机变量的分布列、均值与方差
![高中数学离散型随机变量的分布列、均值与方差](https://img.taocdn.com/s3/m/3add53db0066f5335a8121fc.png)
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
高中数学概率与统计知识点总结
![高中数学概率与统计知识点总结](https://img.taocdn.com/s3/m/6201ba0ffe00bed5b9f3f90f76c66137ee064fbe.png)
概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。
高考数学选修知识讲解离散型随机变量及其分布列(理)
![高考数学选修知识讲解离散型随机变量及其分布列(理)](https://img.taocdn.com/s3/m/80e60891bdeb19e8b8f67c1cfad6195f312be816.png)
离散型随机变量及其分布列编稿:赵雷 审稿:李霞【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。
【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a .试验可以在相同的情形下重复进行.B .试验的所有可能结果是明确可知的,并且不止一个.c .每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示。
要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。
例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。
(2)随机变量实质是将随机试验的结果数量化 。
3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….4. 随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5. 若是随机变量,其中a,b 是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。
高中数学-离散型随机变量的分布列
![高中数学-离散型随机变量的分布列](https://img.taocdn.com/s3/m/bf00271aaeaad1f347933fc2.png)
离散型随机变量的分布列一.基本理论(一)基本概念(1) 随机变量如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量来表示, 随机变量常用希腊字母ηξ,等表示. (2) 离散型随机变量:如果对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.例如,射击命中环数ξ是一个离散型随机变量.(3) 连续型随机变量如果随机变量可以取某一区间内的一切值,这样的随机变量叫连续型随机变量. 〔二〕离散型随机变量的分布列1.设离散型随机变量ξ可能取的值为 ,,,21n x x x ,ξ取每一个值)4,3,2,1( =i x i 的概率i i p x P ==)(ξ,则称下表为随机变量ξ的概率分布,简称为ξ的分布列.分布列的表达式可以是如下的几种(A)表格形式; (B)一组等式 (C)压缩为一个帶i 的形式.2.由概率的性质知,任一离散型随机变量的分布列具有以下二个性质:(A),3,2,1,0 =≥i p i (B)121=++ p p 3. 求分布列三种方法(1)由统计数据得到离散型随机变量分布列; (2)由古典概型求出离散型随机变量分布列;(3)由互斥事件、独立事件的概率求出离散型随机变量分布列.4..离散型随机变量的期望与方差一般地,假设离散型随机变量ξ的概率分布列为则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数.或均值.+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的均方差.简称方差.ξD 叫标准差.性质: (1)22)()(ξξξE E D -= (2)b aE b a E +=+ξξ)( (3)ξξD a b a D 2)(=+〔三〕几种常见的随机变量的分布 1.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量X 服从参数为p 的两点分布.2.二项分布在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.假设在一次试验中某事件发生的概率是P,则在n 次独立重复试验中这个事件恰好发生k 次的概率是,,2,1,0,1,)(n k p q q p C k P kn k k n=-===-ξ 得到随机变量ξ的概率分布如下称随机变量ξ服从二项分布,记作ξ~B(n,p),并记kn k k nq p C -=b(k;n,p) 3. 超几何分布一般地,在含有M 件次品中的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为(),0,1,2,3,,,k n kM N MnNC C P x k k m C --===其中{}min ,,,,,,m M n n N MN n M N N *=≤≤∈题型1.由统计数据求离散型随机变量的分布列题1. (2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学 (1)求这两名同学的植树总棵数y 的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.[审题视点] 此题解题的关键是求出Y 的取值及取每一个值的概率,注意用分布列的性质进行检验.解 (1)分别从甲、乙两组中随机选取一名同学的方法种数是4×4=16,这两名同学植树总棵数Y 的取值分别为 17,18,19,20,21,P (Y =17)=216=18 P (Y =18)=416=14 P (Y =19)=416=14 P (Y =20)=416=14 P (Y =21)=216=18则随机变量Y 的分布列是:Y 17 18 19 20 21 P1814141418(2)由(1)知E (Y )=178+184+194+204+218=19, 设这名同学获得钱数为X 元,则X =10Y , 则E (X )=10E (Y )=190.题2. 【2012高考真题广东理17】〔本小题总分值13分〕某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80][80,90][90,100]. 〔1〕求图中x 的值;〔2〕从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上〔含90分〕的人数记为ξ,求ξ得数学期望.【答案】此题是在概率与统计的交汇处命题,考查了用样本估计总体等统计知识以及离散型随机变量的分布列及期望,考查学生应用数学知识解决实际问题的能力,难度中等。
常见离散型随机变量的分布列
![常见离散型随机变量的分布列](https://img.taocdn.com/s3/m/92d8113fbed5b9f3f80f1c07.png)
4.常见离散型随机变量的分布列(1>两点分布像这样的分布列叫做两点分布列.如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率.(2>超几何分布列一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k>=错误!,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布.1设离散型随机变量X求:(1>2X+1的分布列;(2>|X-1|的分布列.【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列.【解】由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.首先列表为:493则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>;(2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为X 2的分布列为(3>由(2>得,E (X 1>=1×错误!+2×错误!+3×错误!=2.86(万元>,E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车.4.(2018年湖南>某商店试销某种商品20天,获得如下数据:试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率;(2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!.(2>由题意知,X 的可能取值为2,3.P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为X的数学期望为E(X>=2×错误!+3×错误!=错误!.5.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1>取出的3个小球上的数字互不相同的概率;(2>随机变量X的分布列;(3>计分介于20分到40分之间的概率.思路启迪】(1>是古典概型;(2>关键是确定X的所有可能取值;(3>计分介于20分到40分之间的概率等于X=3与X=4的概率之和.【解】(1>“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A>=错误!=错误!.(2>随机变量X的可能取值为2,3,4,5,取相应值的概率分别为P(X=2>=错误!=错误!,P(X=3>=错误!+错误!=错误!,P(X=4>=错误!+错误!=错误!,P(X=5>=错误!+错误!=错误!.∴随机变量X的分布列为(3>因为按3个小球上最大数字的93或4,所以所求概率为P=P(X=3>+P(X=4>=错误!+错误!=错误!.6.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为错误!.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X表示取球终止时所需要的取球次数.(1>求袋中原有白球的个数;(2>求随机变量X的分布列;(3>求甲取到白球的概率.解:(1>设袋中白球共有x个,根据已知条件错误!=错误!,即x2-x-6=0,解得x=3,或x=-2(舍去>.即袋中原有白球的个数为3.(2>X表示取球终止时所需要的次数,则X的取值分别为:1,2,3,4,5.因此,P(X=1>=错误!=错误!,P(X=2>=错误!=错误!,P(X=3>=错误!=错误!,P(X=4>=错误!=错误!,P(X=5>=错误!=错误!.则随机变量X的分布列为:(3>甲取到白球的概率为P=P(X=1>+P(X=3>+P(X=5>=错误!+错误!+错误!=错误!.1.超几何分布是一种很重要的分布,其理论基础是古典概型,主要运用于抽查产品、取不同类别的小球等概率模型,其中的随机变量相应是正品(或次品>的件数、某种小球的个数.如果一随机变量ξ服从超几何分布,那么事件{ξ=k}发生的概率为P(ξ=k>=错误!,k=0,1,2,…,m,m=min{M,n}.2.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.7.(2018年江西>某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1>求X的分布列;(2>求此员工月工资的期望.【解】(1>X的所有可能取值为:0,1,2,3,4,P(X=i>=错误!=(i=0,1,2,3,4>,则(2>令Y表示此员工的月工资,则Y=错误!,P(Y=2 800>=P(X=3>=错误!,P(Y=2 100>=P(X≤2>=错误!,E(Y>=3 500×错误!+2 800×错误!+2 100×错误!=2 280,所以此员工月工资的期望为2 280元.8某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛测试,用X表示其中的男生人数,求X的分布列.解:依题意,随机变量X服从超几何分布,所以P(X=k>=错误!(k=0,1,2,3,4>.∴P(X=0>=错误!=错误!,P(X=1>=错误!=错误!,P(X=2>=错误!=错误!,P(X=3>=错误!=错误!,P(X=4>=错误!=错误!,∴X的分布列为易错点对随机变量的意义理解不到位某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布列.【正确解答】P(X=1>=0.9,P(X=2>=0.1×0.9=0.09,P(X=3>=0.1×0.1×0.9=0.009,P(X=4>=0.1×0.1×0.1×0.9=0.000 9,当X=5时,只要前四次射击不中的都要射第5发子弹,第5发子弹可能射中也可能射不中.∴P(X=5>=0.15+0.14×0.9=0.14.∴耗用子弹数X的分布列为已知随机变量X则P(X=10>=(>A.错误!B.错误!C.错误!D.错误!解读:由题易知:P(X=1>+P(X=2>+…+P(X=10>=1⇒错误!+错误!+…+错误!+m=1⇒m=1-错误!=1-2×错误!=1-错误!=错误!.答案:C申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
第五节 离散型随机变量及其分布列(知识梳理)
![第五节 离散型随机变量及其分布列(知识梳理)](https://img.taocdn.com/s3/m/1fe906e3f5335a8103d2204e.png)
第五节离散型随机变量及其分布列复习目标学法指导1.了解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.2.了解条件概率和两个事件相互独立的概念.3.理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 1.了解离散型随机变量的意义,能利用古典概型的概率公式求分布列.2.了解两个事件相互独立及独立重复试验的概念,能把复杂事件转化为n个互斥事件的和或几个独立事件的和求解,并注意每个公式的适用条件.一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.二、离散型随机变量的分布列及性质1.一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表X x1x2…x i…x n P p1p2…p i…p n称为离散型随机变量X的概率分布列,简称为X的分布列.2.离散型随机变量的分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.三、相互独立事件一般地,对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.四、两点分布若随机变量X的分布列为X 0 1P 1-p p则称X服从两点分布,并称p=P(X=1)为成功概率.五、独立重复试验与二项分布1.独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验. 2.二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C kp k(1-p)n-k(k=0,1,2,…,n).n此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.1.概念理解(1)随机变量是将随机试验的结果数量化.(2)离散型随机变量的分布列从整体上反映了随机变量取各个值的可能性的大小,反映了随机变量取值的规律性.(3)因为一次试验的各种结果是互斥的,而全部结果之和为一个必然事件,所以离散型随机变量的分布列具有性质p 1+p 2+…+p i +…+p n =1. (4)由事件A 和B 同时发生所构成的事件称为事件A 与B 的交(或积),记作A ∩B(或AB).(5)相互独立的两个事件实质上是一个事件的发生对另一个事件的发生没有影响.(6)独立重复试验必须满足三个特征:①每次试验的条件都完全相同,即每次试验事件发生的概率相等;②各次试验互相独立;③每次试验只有两种结果,即事件要么发生,要么不发生.(7)P(X=k)=C k np k (1-p)n-k 恰好是[(1-p)+p]n 展开式的第k+1项1k T =C k n (1-p)n-kp k .(8)独立重复试验的实际原型是有放回的抽样问题,但在实际中,从大批产品中抽取少量样品的不放回检验,也可以近似地看作此类型. (9)独立重复试验中的概率公式P n (k)=C knp k (1-p)n-k 中的p 与(1-p)的位置不能互换,否则式子表示为事件A 有k 次不发生的概率. 2.与独立事件有关的结论(1)若A 与B 相互独立,则A 与B ,A 与B,A 与B 也都相互独立. (2)若A 与B 相互独立,则P(B|A)=P(B)且P(A|B)=P(A).(3)事件A,B发生的概率关系如表所示事件概率A,B互斥A,B相互独立A,B至少有一个发生P(A+B)P(A)+P(B)1-P(A)·P(B)A,B同时发生P(A·B)0 P(A)·P(B)A,B都不发生P(A·B)1-[P(A)+P(B)]P(A)·P(B)A,B恰有一个发生P(A·B+A·B)P(A)+P(B)P(A)·P(B)+P(A)·P(B)A,B至多有一个发生P(A·B+A·B+A·B)11-P(A)·P(B)1.随机变量X的分布列如表:X -1 0 1P a b c其中a,b,c 成等差数列,则P(|X|=1)等于( A ) (A)23(B)12(C)13(D)162.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15,假定三人的行动相互之间没有影响,那么这段时间内三人同去北京旅游的概率为( D )(A)5960 (B)35 (C)12 (D)160解析:因甲、乙、丙三人去北京旅游的概率分别为13,14,15,且三人的行动相互独立,故三人同去北京旅游的概率为 13×14×15=160.故选D. 3.离散型随机变量X 的概率分布规律为P(X=n)=()1an n +(n=1,2,3,4),其中a 是常数,则P(12<X<52)的值为( D ) (A)23 (B)34 (C)45 (D)56解析:因为P(X=n)=()1an n +(n=1,2,3,4),所以2a +6a +12a +20a =1,所以a=54, 所以P(12<X<52)=P(X=1)+P(X=2)=54×12+54×16=56.故选D. 4.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X=1的概率为 .解析:P(X=1)=113225C C C =610=35.答案:35考点一 离散型随机变量分布列的性质及其应用[例1] 设随机变量X 的分布列为P(X=5k )=ak(k=1,2,3,4,5).(1)求a; (2)求P(X ≥35).解:(1)由分布列的性质得,P(X=15)+P(X=25)+P(X=35)+P(X=45)+P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)P(X ≥35)=P(X=35)+P(X=45)+P(X=1) =3×115+4×115+5×115 =45.(1)利用分布列中各概率之和为1可求参数的值,此时注意检验,保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列及互斥事件的概率加法公式,将所求范围内各随机变量对应的概率相加即可.设X 是一个离散型随机变量,其分布列为:X -10 1 P132-3qq 2则q 的值为( C ) (A)1 (B)3233(C)3233(D)3233解析:由分布列的性质知22230,0,1231,3⎧⎪-≥⎪≥⎨⎪⎪+-+=⎩q q q q解得q=32-336.故选C.考点二 求离散型随机变量的分布列[例2] 一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4,从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X 的分布列.解:(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=1322252547C CC C C =67.所以取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4.P(X=1)=3347C C =135,P(X=2)=3447C C=435,P(X=3)=3547C C =27, P(X=4)=3647C C =47,所以随机变量X 的分布列是X 1234P1354352747(1)求离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值的概率,在求解时,要注意应用计数原理、古典概型等知识.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求: (1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X 的分布列. 解:(1)设事件A:选派的3人中恰有2人会法语,则P(A)=215237C CC =47.(2)依题意知X 的取值为0,1,2,3,P(X=0)=3437C C=435,P(X=1)=214337C C C =1835, P(X=2)=124337C C C =1235, P(X=3)=3337C C=135,所以X 的分布列为X 0123P43518351235135考点三 独立重复试验与二项分布[例3] 甲将要参加某决赛,赛前A,B,C,D 四位同学对冠军得主进行竞猜,每人选择一名选手,已知A,B 选择甲的概率均为m,C,D 选择甲的概率均为n(m>n),且四人同时选择甲的概率为9100,四人均未选择甲的概率为125.(1)求m,n 的值;(2)设四位同学中选择甲的人数为X,求X 的分布列和数学期望.解:(1)由已知可得()()22229,100111,25,m n m n m n ⎧=⎪⎪⎪--=⎨⎪⎪>⎪⎩ 解得3,51.2⎧=⎪⎪⎨⎪=⎪⎩m n(2)X 可取0,1,2,3,4.P(X=0)=125,P(X=1)=12C ×35×(1-35)×(1-12)2+(1-35)2×12C ×12×(1-12)=15, P(X=2)=12C ×35×(1-35)×12C ×12×(1-12)+(35)2×(1-12)2+(1-35)2×(12)2=37100,P(X=3)=12C ×35×(1-35)×(12)2+(35)2×12C ×12×(1-12)=310, P(X=4)=9100.X 的分布列为 X 01234P12515371003109100E(X)=0×125+1×15+2×37100+3×310+4×9100=2.2. 二项分布的简单应用是求n 次独立重复试验中事件A 恰有k次发生的概率,其解题一般思路是:根据题意设出随机变量X →分析出随机变量服从二项分布→找到参数n,p →分析X 取每个值对应的k 值→将k 代入公式求概率.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求比赛局数的分布列.解:(1)由已知得甲、乙两名运动员在每一局比赛中获胜的概率都是12,设A={甲以4比1获胜},则P(A)=34C(12)3(12)4-3·12=18.(2)设比赛的局数为X,则X的可能取值为4,5,6,7,P(X=4)=2·44C(12)4=18,P(X=5)=2·34C(12)3(12)4-3·12=14,P(X=6)=2·35C(12)3(12)5-3·12=516,P(X=7)=2·36C(12)3(12)6-3·12=516,比赛局数的分布列为X 4 5 6 7P 1814516516古典概型与离散型随机变量的分布列[例题] 某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队. (1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛.设X 表示参赛的男生人数,求X 的分布列和数学期望. 解:(1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为33343366C C C C =1100.因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.①(2)根据题意,X 的可能取值为1,2,3.②P(X=1)=133346C C C =15, P(X=2)=223346C C C =35,P(X=3)=313346C C C =15.③ 所以X 的分布列为④因此,X 的数学期望为E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)=1×15+2×35+3×15=2.⑤规范要求:步骤①②③④⑤应齐全,能够正确利用计数原理、排列、组合求出概率.温馨提示:对于“至少”“至多”型问题常考虑利用对立事件概率加法公式求解.[规范训练] 在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记X=|x-2|+|y-x|.(1)求随机变量X的最大值,并求事件“X取得最大值”的概率;(2)求随机变量X的分布列.解:(1)由题意知,x,y可能的取值为1,2,3,则|x-2|≤1,|y-x|≤2,所以X≤3,且当x=1,y=3或x=3,y=1时,X=3.因此,随机变量X的最大值为3.而有放回地抽两张卡片的所有情况有3×3=9(种),所以P(X=3)=2.故随机变量X的最大值为3,事件“X取得最大值”的9.概率为29(2)X的所有可能取值为0,1,2,3.当X=0时,只有x=2,y=2这一种情况,当X=1时,有x=1,y=1或x=2,y=1或x=2,y=3或x=3,y=3四种情况, 当X=2时,有x=1,y=2或x=3,y=2两种情况.当X=3时,有x=1,y=3或x=3,y=1两种情况.所以P(X=0)=19,P(X=1)=49,P(X=2)=29,P(X=3)=29.则随机变量X的分布列为X 0 1 2 3P 19492929类型一离散型随机变量1.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量ξ,那么ξ的可能取值为( C )(A)0,1 (B)1,2 (C)0,1,2 (D)0,1,2,3解析:因为8件产品中有2件次品,所以从中任取3件,表示取到次品件数的随机变量ξ的可能取值为0,1,2.故选C.类型二求概率2.随机变量X的分布列如下:X -1 0 1P a b c其中a,b,c成等差数列,则P(|X|=1)等于( D )(A)16(B)13(C)12(D)23解析:由题意知a,b,c成等差数列,所以2b=a+c. 又因为a+b+c=1,解得b=13,所以P(|X|=1)=a+c=23.故选D.3.某科研小组共有5名成员,其中男生3名,女生2名,现选举2名代表,至少有1名女生当选的概率为( C ) (A)25(B)35(C)710(D)以上都不对解析:所求概率P=1-2325C C =710.故选C.4.已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( C )(A)13 (B)12 (C)59 (D)29解析:根据题意,分两种情况讨论:①从甲袋中取出两个红球,其概率为13,此时乙袋中有2个黄球和4个红球,则从乙袋中取出红球的概率为46=23,则这种情况下的概率为13×23=29,②从甲袋中取出1个红球和1个黄球,其概率为23,此时乙袋中有3个黄球和3个红球,则从乙袋中取出红球的概率为36=12,则这种情况下的概率为23×12=13, 则从乙袋中取出红球的概率为29+13=59.故选C. 类型三 分布列5.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、6个红球,今从两袋里各任意取出1个球,设取出的白球个数为X,则下列概率中等于11118646111212C C C C C C +的是( C )(A)P(X ≤1) (B)P(X ≤2) (C)P(X=1) (D)P(X=2)解析:P(X=1)= 11118646111212C C C C C C +,故选C.6.随机变量X 的概率分布规律为P(X=n)=()1+an n (n=1,2,3,4),其中a是常数,则P(23<X<52)的值为( D ) (A)23 (B)34 (C)45 (D)56解析:由题意知P(X=1)=2a ,P(X=2)=6a ,P(X=3)=12a ,P(X=4)=20a , 所以2a +6a +12a +20a =1, 可解得a=54, 因为P(23<X<52)=P(X=1)+P(X=2), 所以P(23<X<52)=56.故选D. 7.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的分布列是 . 解析:ξ的可能取值为P(ξ=0)=232128C C =411,P(ξ2126C =111.P(ξ=1)=1-P(ξ=0)-P(ξ411-111=611. 答案:8.生产方提供50箱的一批产品,其中有2箱不合格产品,采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有一箱不合格产品,便接收该批产品,则该批产品被接收的概率是 .解析:设“5箱中的不合格品的箱数”为X, 则该批产品被接收的概率是 P(X ≤1)=P(X=0)+P(X=1)=05248550CC C ⋅+14248550CC C ⋅=243245.答案:2432459.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为25.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X 的分布列.解:(1)用A 表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,因为语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,所以P(A)=620 n = 25,解得n=2,即m=4,用B 表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑思维能力优秀的学生”, 所以P(B)=1-2629C C =712.(2)随机变量X 的可能取值为0,1,2.因为20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有8名,所以P(X=0)=212220C C=3395,P(X=1)=11812220C C C =4895,P(X=2)=28220C C = 1495, 所以X 的分布列为。
新高考数学复习考点知识讲解5---离散型随机变量及其分布列
![新高考数学复习考点知识讲解5---离散型随机变量及其分布列](https://img.taocdn.com/s3/m/dbc53c0a524de518974b7d02.png)
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
3、性质
①pi≥0(i=1,2,…,n);② pi=1.
4、若随机变量X的分布列为
X
0
1
P
1-p
p
则称该分布列为两点分布列或0-1分布.若随机变量X的分布列为两点分布列,则称X服从两点分布,称p=P(X=1)为成功概率
答案】设(i,j)表示掷两次骰子后出现的点数,i表示第一次的点数,j表示第二次的点数.
(1)Y的可能取值为1,2,3,4,5,6.
当Y=1时,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1).故P(Y=1)= ,同理P(Y=2)= = ,P(Y=3)= ,P(Y=4)= ,P(Y=5)= = ,P(Y=6)= .所以Y的概率分布列为
A.20B.24C.4D.18
【答案】B
【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有 =24(种).
题型三离散型随机变量的分布列
例3 将一颗骰子掷2次,求下列随机事件的分布列.
(1)两次掷出的最小点数Y;
(2)第一次掷出的点数减去第二次掷出的点数之差ξ.
P(X=1)= = ,
P(X=2)= = .
所以X的分布列为
X
0
1
2
P
4、设离散型随机变量X服从两点分布,若 ,则
高中数学选修2-3-离散型随机变量及其分布列
![高中数学选修2-3-离散型随机变量及其分布列](https://img.taocdn.com/s3/m/8b919f4ff02d2af90242a8956bec0975f465a4e0.png)
离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。
随机变量及其分布列概念公式总结
![随机变量及其分布列概念公式总结](https://img.taocdn.com/s3/m/57856150f524ccbff0218496.png)
随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示.2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 4。
分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5。
求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p (ξ=x i )=p i (3)画出表格6。
两点分布列:7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=k }发生的概率为(),0,1,2,,k n kM N MnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 01 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。
高二数学分布列复习分解
![高二数学分布列复习分解](https://img.taocdn.com/s3/m/2790a424a8114431b90dd8df.png)
第二章 随机变量及分布列知识点梳理 1.离散型随机变量的分布列(1)随机试验结果变化而变化的量叫做 ;随机变量一般用 表示,所有取值可以一一列出的随机变量叫做 .(2)设离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为随机变量X 的概率分布列,简称为X 的分布列, 具有性质:(1)p i ______0,i =1,2,…,n ; (2)p 1+p 2+…+p i +…+p n =______. 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的__________. 2.如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量X 服从参数为p 的________. 3.超几何分布列在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为:P (X =k )=__________________________(k =0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,则称分布列 为 . 4.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做______________,用符号__________来表示,其公式为P (B |A )=__________.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )= . (2)条件概率具有的性质: ①____________;②如果B 和C 是两互斥事件,则P (B ∪C |A )=__________________________________. 5.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称_______________. (2) 若事件A 、B 相互独立,则P (AB )= .(3)若A 与B 相互独立,则________,________,________也都相互独立. 6.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有______种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,事件A 发生k 次的概率为________________________(p 为事件A 发生的概率),事件A 发生的次数是一个随机变量X ,其分布列为____________,记为____________.7.离散型随机变量的均值与方差 若离散型随机变量(1)均值称E (X )=________________________为随机变量X 的均值或__________________,它反映了离散型随机变量取值的____________.性质:E (aX +b )=__________.(a ,b 为常数) (2)方差称D (X )=________________ 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的___________________,并称其_________________为随机变量X 的标准差. 性质:D (aX +b )=__________.(a ,b 为常数) 8.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=______,D (X )=______________________________. (2)若X ~B (n ,p ),则E (X )=________,D (X )=__________________________________. 9.正态曲线及性质 (1)正态曲线的定义函数()x μσϕ=, ,x ∈(-∞,+∞),其中实数μ和σ (σ>0)为参数,我们称()x μσϕ,的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x 轴 ,与x 轴不相交; ②曲线是 的,它关于直线 对称; ③曲线在________处达到峰值 ; ④曲线与x 轴之间的面积为 ;⑤当σ一定时,曲线随着 的变化而沿x 轴平移;⑥当μ一定时,曲线的形状由σ确定,σ________,曲线越“瘦高”,表示总体的分布越集中;σ________,曲线越“矮胖”,表示总体的分布越分散. 10.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=(),ba x dx μσϕ⎰,则称随机变量X 服从正态分布,记作__________. (2)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=________; ②P (μ-2σ<X ≤μ+2σ)=________; ③P (μ-3σ<X ≤μ+3σ)=________.专题一:条件概率例1、抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”. (1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.专题二:相互独立事件的概率例2、 甲、乙、丙3位大学生同时应聘某个用人单位的职位,甲、乙两人只有一人被选中的概率为1120,两人都被选中的概率为310,丙被选中的概率为13,且各自能否被选中互不影响.(1)求3人同时被选中的概率; (2)求恰好有2人被选中的概率; (3)求3人中至少有1人被选中的概率.专题三:离散型随机变量的分布列、均值和方差例3、 甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局.已知乙队胜丙队的概率为15,甲队获得第一名的概率为16,乙队获得第一名的概率为115.(1)求甲队分别胜乙队和丙队的概率P 1,P 2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列及数学期望、方差.专题4:正态分布的实际应用例4、某学校高三2 500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X在550~600分的人数.专题五:分类讨论的思想方法例5、某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确各得0分,第三个题目,回答正确得20分,回答不正确得-10分.如果一个挑战者回答前两题正确的概率都是0.8,回答第三题正确的概率为0.6,且各题回答正确与否相互之间没有影响.(1)求这位挑战者回答这三个问题的总得分ξ的分布列和数学期望;(2)求这位挑战者总得分不为负分(即ξ≥0)的概率.随机变量及分布列练习一、选择题1.设离散型随机变量X 的分布列为:则p 的值为( )A.12B.C.13D.162. 10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则E (ξ)等于( )A.35B.815C.1415D .1 3.如图,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8.则系统正常工作的概率为()A .0.960B .0.864C .0.720D .0.5764.已知箱子中共有6个球,其中红球、黄球、蓝球各2个.每次从该箱子中取1个球(有放回,每球取到的机会均等),共取三次.设事件A :“第一次取到的球和第二次取到的球颜色相同”,事件B :“三次取到的球颜色都相同”,则P (B |A )=( )A.16B.13C.23 D .15.已知随机变量ξ服从正态分布N (2,σ2).且P (ξ<4)=0.8,则P (0<ξ<2)等于( )A .0.6B .0.4C .0.3D .0.26.已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.17.甲、乙、丙三人独立解决同一道数学题,如果三人分别完成的概率依次是P 1,P 2,P 3,那么至少有一人解决这道题的概率是( )A .P 1+P 2+P 3B .1-(1-P 1)(1-P 2)(1-P 3)C .1-P 1P 2P 3D .P 1P 2P 38.节日期间,某种鲜花进货价是每束2.5元,销售价是每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如表所示的分布列:若进这种鲜花500A .706元 B .690元 C .754元 D .720元9.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]10.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310B.29C.78D.79 二、填空题11.已知随机变量ξ的分布列为: 又变量η=4ξ+3,则η的期望是12.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X 的均值为________个,方差为________.13.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是12,两次闭合后都出现红灯闪烁的概率为16.则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是________.14.接种某疫苗后,经过大量的试验发现,出现发热反应的概率为15,现有3人接种该疫苗,恰有一人出现发热反应的概率为________.15.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43;③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________. 三、解答题16、一批产品分一、二、三级,其中一级品的数量是二级品的两倍,三级品的数量是二级品的一半,从这批产品中随机抽取一个检查其品级,用随机变量描述检验的可能结果,写出它的分布列.17、某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.(1)求ξ的分布列;(2)求ξ的数学期望.18、某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1、2、3个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第1、2、3个问题的概率分别为0.8、0.7、0.6.且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.19、张华同学上学途中必须经过A B C D,,,四个交通岗,其中在A B,岗遇到红灯的概率均为12,在C D,岗遇到红灯的概率均为13.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.(1)若3x≥,就会迟到,求张华不迟到的概率;(2)求EX.20、为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点总结及公式:离散型随机变量的分布列以活活被整死;堂堂大元帅受辱骂;……这哪里还有什么尊重可言!3、用在设问句后。
如:(10)我们能让你计划实现吗?不会的。
4、用在选择问句中。
如:(11)我们是革命呢, 还是要现大洋?(12)你到底是去, 还是不去?●提示:在选择疑问句中, 若该句为复句, 一般只在句末用问号;若分句较长, 或者为加强语气, 各分句后也可用问号。
5、用在表疑问的独词句后。
如:(13)我?不可能吧。
●提示:若疑问句为倒装句, 问号应放在句末。
如:(14)到底出了什么问题, 你的车?(若说成:“到底出了什么问题?你的车。
”则错误。
)6、句子中对某词语有疑问或生卒年月不详时用问号, 疑问句构成的标题后面也用问号。
如:(15)中国现今文坛(?)的状况, 实在不佳……(16)曹邺(816--?), 桂林人。
●特别提示:句号、问号均表示句末停顿。
句号用于陈述句末尾, 问号用于疑问句末尾。
有些句中虽有疑问词, 但全句并不是疑问句, 句末只能用句号, 不能用问号。
例如:(17)……最后应求出铜块的体积是多少?(18)面对千姿百态、纷繁芜杂的期刊世界, 有哪位期刊编辑不想通过期刊版面设计为刊物分朱布白、添花增色呢?19)关于什么是智力?国内外争论多年也没有定论。
(17)()(19)三句都是非疑问句, (17)(18)句中问号均应改为句号, (19)句中的问号应改为逗号。
三、感叹号●特别提示:1、在表感叹或祈使语气的主谓倒装句中, 感叹号要放在句末。
如:(20)多么雄伟壮观啊, 万里长城!2、句前有叹词, 后是感叹句, 叹号放在句末。
如:(21)啊, 这儿多么美丽!下面介绍句中点号的用法。
句中点号包括逗号、分号、顿号、和冒号四种。
一、逗号提示:复句内各分句之间的停顿, 除了有时用分号外, 都要用逗号。
二、顿号用于句中并列的词、词组之间较小的停顿。
如:(22)邓颖超的品德、人格、风范为中华民族树立了一座精神丰碑。
(23)从1918年起, 鲁迅陆续发表了《狂人日记》、《药》、《祝福》等短篇小说。
●特别提示:以下九种情况不用顿号。
1、不定数的两个数字间不用顿号。
24)你的年龄大概是十六七岁。
(不能写成“十六、七岁”)●【注意】相邻的两个数字而非约数之间要用顿号。
如:(25)三年级四、五的学生。
(26)战斗在一、二的工人。
并列词语之间带有“啊”、“哇”、“啦”、“呀”等语气词时, 并列成分之间用逗号, 不用顿号。
2如:(26)他退休后生活很丰富, 遛遛鸟呀, 打打麻将呀, 听听戏呀。
3、标题中有并列词语时中间不用顿号, 可在并列词语之间空一格。
4并列的词组比较长、停顿较大的用逗号而不用顿号。
如:(27)情况的了解, 任务的确定, 兵力的部署, 军事和政治教育的实施, 给养的筹划, 武装的整理等等, 都要包括在领导的工作之中。
5并列成分做补语且需要强调时用逗号而不用顿号。
28)那种叫“水晶”的, 〈长得长长的, 绿绿的, 晶莹剔透〉, 真像是用水晶和玉石雕刻出来的。
6、并列成分做状语, 并列成分是介宾短语, 它们之间用逗号而不用顿号。
如:(29)他们[在朦胧的夜色中, 在大青树下, 在纺车旁边, 用传统的诗一般的语言]倾吐着彼此的爱慕和理想。
●【注意】并列成分若都是单个词语或成语则用顿号。
如:(30)我们应坚决、彻底、干净、全部消灭大国主义。
7、并列成分做谓语时, 若并列成分是主谓短语它们之间用逗号而不用顿号。
31)她衣服新潮头发齐耳根长, 走起路来风风火火, 讲起话来大声大气。
●【注意】并列成分做谓语时, 若共带一个宾语, 并列词间用顿号如:(32)今年我公司研制、推出了两款新车。
8、并列的词或词组作复指成分时, 并列成分之间用逗号, 不用顿号。
33)老槐树下有两辈人:一个“老”字辈, 一个“小”辈。
●【注意】如并列词或词组简单, 它们之间则用顿号。
如:(34)抗战、团结、进步, 这是共产党的三大方针。
9、并列结构内部又包含并列词语时, 为分清层次在不同属类间用逗号。
35)过去、现在、未来上下、左右, 中国、外国, 都是相互联系、相互影响、相互制约的。
三分号下列几种情况使用分号1、用在复句中表示并列分句间的停顿, 非并列关系(转折、因果等)的多重复句, 前后两部分之间也用分号。
如:(35)惨象, 已使我目不忍视了;流言, 犹使我耳不忍闻。
(36)她今年已经十八岁了, 个子也长成了, 按说该找个婆家;可是她母亲总是一个劲地说他还小。
2、分条说明一个完整的意思, 在每一条里, 不管是词、词组、单句, 还是复句, 都作为一个分句, 各条末尾用分号, 最后一条完了用句号。
如:(37)农民对一个好的村干部的要求是:一、办事公道, 一碗水端平;二、自己不要吃得太饱;三、有经济头脑。
3、句子中有余指代词“等等”代表未说出的并列部分, 在“等等”的前面也要用分号。
38)阅读有许多好处:它能扩大你的知识面;能陶冶你的情操;能提高你的审美能力;等等。
●【提示:并列的几个分句, 不论其结构是否一致, 并列分句间均用分号, 不能有的用分号有的用逗号】四冒号1、冒号用于提示下文或小结上文。
如:(39)我们的复习分为三个阶段:第一阶段为专项复习阶段;第二阶段为综合复习阶段;第三阶段……(40)她是秋天没丈夫的;他有一个小叔子, 小她十岁;她靠打柴为生:我知道的就这些。
●【提示:用于提示下文的词语“注意”、“指出”、“宣称”、“证明”、“告诉”、“如下”、“例如”等后常用冒号。
】2、用于书信、讲话稿等称呼的后面。
3、用于需要说明的词语后。
如:(41)日期:10月20日地点:县剧院●【特别提醒】A冒号提示的范围一般要管到句子末尾, 不能只管到句子中间。
如:(42)参加国庆献礼的优秀影片:《风暴》、《青春之歌》、《林则徐》等, 也将在各大城市上映。
(此句中的冒号应去掉)B、部分引用别人的话, 使之成为整个句子的一部分, 引文前不用冒号。
43)林则徐宣称:“若鸦片一日未绝, 本大臣一日不回, 誓与此事相始终, 断无中止之理”, 表示决心禁绝鸦片。
(应将冒号换成逗号)C、一个句子中不要出现两个冒号。
如:(44)他在文中指出:我们要学习一些自己国家的历史, 比如说:国家的政治史、文化史、经济史等。
(第二个冒号应删去。
)标号标号主要标明语句的性质和作用, 包括引号、括号、破折号、省略号、着重号、书名号、间隔号、连接号和专名号九种。
一引号主要作用有:1 、表明引用的部分。
2、着重论述的对象或重要的特定的词语。
如:(45)股市有它的行话:如股票价格上涨叫“牛市”, 因牛的眼睛总朝上看;反之叫“熊市”, 因熊的眼睛总朝下看。
明是否定、反义或讽刺的词语。
如:(46)这样的“聪明”还是少来一点好。
(表否定)4、表明是简称。
如:(37)你的这种做法到底是姓“资”还是姓“社”。
5表明是成语、熟语、术语。
如:(47)人们常常称技艺高超的工人为“能工巧匠”, 赞精妙的艺术品为“巧夺天工”。
(48)我们有些同志喜欢写长文章, 但是没有什么内容, 真是“懒婆娘的裹脚, 又臭又长”。
6表示特殊的日子, 特殊的事件。
如:(49)“五四”运动(50)“一二·九”运动7、表明是象声词、音译词、绰号、专有名词。
如:(51)青蛙“呱呱”叫, 惊醒了“豆腐西施”杨二嫂。
(52)一条“金利来”拴在脖子里, 叫人不自在。
●【特别提醒】A、引文中有引文, 要分双引和单引, 单引中还有引文则用双引, 总的原则是双中有单, 单中有双。
B、引用的文字独立而又完整, 则引文末尾的标点不能改动, 并将其写在后引号的里面。
如:(53)爱因斯坦说:“想象力比知识更重要, 因为知识是有限的, 而想象力概括着世界上的一切, 推动着进步, 并且是知识进化的源泉。
”引文不独立, 引用的话只作为作者自己话的一部分时, 不管它是不是完整, 后引号前都不能用点号(问号、叹号除外)。
如:(54)“满招损, 谦受益”这句格言, 流传到今天至少有两千年了。
(55)现代画家徐悲鸿笔下的马, 正如有的评论家所说的那样, “形神兼备, 充满生机”。
56在老张“同志们走吧!”的招呼声中, 我们这支队伍又出发了。
C、连续引用一篇文章的几个段落, 只在每段开始使用前引号, 该段末尾不用后引号, 直到引文结束时才使用后引号。
二括号括号标明行文中的注释性的文字。
从注释的范围看, 它有句内括号和句外括号之分。
只注释和补充说明句中一部分词语的叫句内括号。
如:(57)猴子跳到一个十二三岁的孩子(他是船长的儿子)面前, 把他的帽子摘下来。
补充和注释全句的叫句外括号。
它放在正文的句末点号之后。
如:(58)他培育了许多香花, 繁殖和训练了许多小动物。
(他后来还曾照顾动物园里的一只没有妈妈的小虎, 每天用牛奶喂它。
)●【特别提醒】句内括号内的文字末尾不能用句号;但可用问号或叹号。
句外括号里的注释如是一句话, 句末可用点号。
如:(59)1861年以后, 那拉氏(慈禧)曾搞所谓“垂帘听政”(这是那拉氏直接掌管政权的一种形式。
), 指使刽子手……(句中括号里的句号应去掉)(60)她先是寄希望于刘女士的丈夫(那个美男子!), 后又寄希望于Q男士。
三破折号破折号用来标明行文中解释说明的语句, 或表示语义的转换、递进、中断、延长等。
破折号和括号用法不同:破折号引出的解释说明是正文的一部分, 括号里的解释说明不是正文, 只是注释。
其作用主要有:1、表示注释。
如:(61)迈进金黄色的大门, 穿过宽阔的风门厅和衣帽厅, 就到了大会堂建筑的枢纽部分——中央大厅。
2、表示意思的转折及转换。
如:(62)到山上打柴的记忆至今都是幸福而快乐的——尽管那是童年十分辛苦的一种劳作。
(54)“好香的菜, ——听到风声了吗?”赵七爷站在七斤的后面说。
3表示意思的递进。
63)自然是读着, 读着, 强记着——而且要背出来。
4用于标明语句间的因果关系, 破折号前是果, 后是因。
如:(64)他首先指出早恋并不可耻——这是一种十分自然、正常的现象……早恋并不可爱——早结的果不甜, 早开的花早谢。
’5、表声音的延长、中断或停顿。
6表分项列举。
7用于副标题前。
●【提示】破折号与逗号都有强调的作用, 前者强于后者, 逗号强调前面的内容, 破折号强调后面的内容。
如:(65)我, 是第一个跑到终点的。
(66)那就是我——一名普通的中学教师。
当语句容易引起误解时要用两个破折号。
破折号前可用点号以示强调突出。
(67)如:我有四年多, 曾经常常, ——几乎是每天——出入于质铺和药店……四省略号省略号前后使用标点的规定是:省略号前面是完整的句子, 句末标点应保留, 如果不是完整的句子, 只是句内停顿, 则句末不保留标点;省略号后面一般不用标点, 只有需要表示不跟下文连接才可以使用句尾标点。