新人教版的九年级数学下册教案(全文完整版)

合集下载

(完整版)人教版九年级数学下册教学计划

(完整版)人教版九年级数学下册教学计划

(完整版)人教版九年级数学下册教学计划人教版九年级数学下册教学计划一、教学目标1. 熟练掌握九年级数学下册的基础知识和概念。

2. 培养学生的数学思维能力和解决问题的能力。

3. 培养学生的数学兴趣,提高研究动力。

4. 为学生的高中数学研究打下坚实的基础。

二、教学内容1. 第一章:立体几何- 研究球、圆锥、圆柱、圆盘等的相关概念和性质。

- 掌握利用公式计算各种几何体的表面积和体积。

2. 第二章:函数的应用- 复函数的基本概念和性质。

- 研究函数的应用,包括函数模型的建立和使用。

3. 第三章:数据统计与概率- 复数据统计的相关知识,包括折线图、饼图等的绘制和分析。

- 研究概率的基本概念和计算方法。

4. 第四章:三角函数- 研究三角函数的概念和性质。

- 掌握三角函数的运算和应用。

三、教学方法1. 理论研究:通过教师讲解和学生课堂笔记,让学生掌握基础知识和概念。

2. 实践练:布置大量的题,让学生深入理解和熟练运用所学知识。

3. 小组合作:安排小组活动,让学生合作解决问题,培养团队合作和沟通能力。

4. 核心思维训练:引导学生进行逻辑思考和问题解决,培养学生的数学思维能力。

四、教学评估1. 日常作业:根据每课的题,进行日常作业评估。

2. 小组活动:评估学生在小组合作中的表现和贡献。

3. 单元测试:每个章节结束后,进行单元测试评估学生对知识的掌握情况。

4. 期末考试:对整个学期所学内容进行考试,评估学生的综合能力。

五、教学资源1. 人教版九年级数学下册教材和教辅书籍。

2. 题集和试卷。

3. 实物几何模型和教学工具。

4. 多媒体投影仪和电子教学资源。

六、教学进度安排- 第一章:立体几何(2周)- 第二章:函数的应用(3周)- 第三章:数据统计与概率(3周)- 第四章:三角函数(4周)七、教学总结本学期的数学教学重点是培养学生的数学思维能力和解决问题的能力。

通过理论学习、实践练习和小组合作等多种教学方法,帮助学生掌握九年级数学下册的基础知识和概念,培养他们的数学兴趣和学习动力。

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。

1、教材编排。

(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。

并且已经采取逐步渗透的方法来培养代数思维。

例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。

第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。

2、教学目标。

(1)结合具体情境,建立方程的概念。

(2)寻找简单情况下的等价关系,会用方程表示。

(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。

3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。

抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

(2)难点:数量关系向等量关系的转化。

二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。

由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。

列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
突破方法:教师可通过图示和实际操作,帮助学生理解直角三角形中的对边、邻边、斜边关系,并强调在计算函数值时要注意这些关系。
(2)实际问题中的数学建模:学生在解决实际问题时,往往不知道如何构建数学模型,将实际问题转化为数学问题。
突破方法:教师可以引导学生通过分析实际问题,找出其中的关键信息,然后运用正弦、余弦、正切函数构建数学模型。同时,通过举例讲解,让学生了解这一过程。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
一、教学内容
本节课选自人教版初中九年级数学下册,章节为《正弦、余弦、正切函数的简单应用》。教学内容主要包括以下两个方面:
1.掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-正弦函数:在直角三角形中,正弦值等于对边与斜边的比值。
-余弦函数:在直角三角形中,余弦值等于邻边与斜边的比值。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生理解正弦、余弦、正切函数的简单应用。从导入新课到实践活动,再到小组讨论,我发现学生们在这些环节中的表现各有亮点,也有一些需要改进的地方。
首先,在导入新课环节,通过提出与日常生活密切相关的问题,成功引起了学生的兴趣。他们积极参与,提出了很多有关测量物体高度和距离的想法。这说明实际情景的引入有助于激发学生的学习热情,使他们更愿意投入到新知识的学习中。

(完整版)人教版九年级数学下册教学计划

(完整版)人教版九年级数学下册教学计划

2017年春九年级数学下册教学计划殷勇一、基本情况分析1. 学生情况本学期我继续教九年级的数学课。

通过一个学期的努力,该班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于一些学生数学基础太差,学生数学成绩两极分化的现象没有显著改观,给教学带来很大难度。

设法关注每一个学生,重视学生的全面协调发展是本学期教学的首要任务。

2. 教学内容分析本期教学进程主要分为新课教学和总复习教学两个阶段。

新课教学共分四章。

《反比例函数》共分二节。

首先介绍反比例函数及其图象,并从图象得出反比例函数的有关性质。

然后探讨反比例函数与一次函数的联系。

最后通过设置探究栏目展现反比例函数的应用。

《相似》是在前面研究图形的全等和一些全等变换基础上的拓广与发展。

全章共分三小节内容。

第一小节“图形的相似”主要介绍相似图形、相似多边形的概念,并探索相似多边形的性质;第二小节“相似三角形”主要研究相似三角形的判定方法、相似三角形在测量中的应用以及相似三角形的周长和面积;第三小节“位似”研究了一种特殊的相似一一位似,研究了位似图形的画法以及平面直角坐标系中的位似变换。

《锐角三角函数》分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。

第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。

《投影与视图》分为三节,主要内容包括:投影的基础知识;视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化;课题学习:制作立体模型。

总复习是本期教学的一个重点。

通过系统的总复习使学生全面熟悉初中数学教学内容,在牢固掌握基础知识的前提下,能娴熟的运用所学知识分析问题和解决问题。

二、教学目标师生共同努力,使绝大多数学生达到或基本达到《课标》的要求,注重基础训练,顾及多数人的水平和接受能力,促进全体学生的全面协调发展。

人教版九年级数学下册教案全册(精华版)

人教版九年级数学下册教案全册(精华版)

例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为年级九年级课题26.2.1实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100 x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之留白:(供教师个性化设计)间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.附:板书设计教后反思:年级九年级课题26.2.2实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I (A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A 时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.留白:(供教师个性化设计)解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36 R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96 V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:年级九年级课题27.1 图形的相似课型新授教学媒体多媒体教学目标知识技能1.使学生理解并掌握两个图形相似的概念,理解相似形的特征,掌握相似形的识别方法;2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多变形是否相似,并能运用相似多边形的性质进行相关计算.过程方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度培养学生的观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学过程设计教学程序及教学内容师生行为设计意图情境引入欣赏下面4组图片,说说你的想法引出本章,及本节课题二、自主探究(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?教师展示图片并提出问题,学生观察,思考.教师引导点拨:它们的形状相同,大小不等,学生总结归纳,初步感知相似图形的基本特征.学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征学生完成练习,之后订正,师生达成共识教师设计问题,学生思考分析,理解相似多边形概念激起学生的好奇心,探索欲望,初步感受相似,引入本节课.让学生亲自进行观察,分析,探究,得到结论,举出生活中的实例,培养学生的观察能力,体验数学与生活的密切关系.学生通过思考回答教师提出的问题,初步感知相似多边形及其的特征,为后续学习做铺垫21年级 九年级 课题 28.1 锐角三角函数(1)课型 新授教学媒体 多媒体教 学 目 标知识 技能 1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;2.能根据已知直角三角形的边长求一个锐角的正弦值.过程 方法 经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感 态度使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.教学重点 正确理解正弦(sinA )概念,会根据直角三角形的边长求一个锐角的正弦值 教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=10m ,•求AB ; 3.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=20m ,•求 AB. 二、自主探究 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考:1.如果使出水口的高度为50m ,那么需要准备多长的水管? 2.如果使出水口的高度为a m ,那么需要准备多长的水管? 结论:直角三角形中,30°角的对边与斜边的比值等于12思考:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值是 22.探究:从上面两个问题的结论中可知,•在Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值? 任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,教师引导学生回顾直角三角形性质,学生完成两个铺垫练习. 教师提出问题,引导学生思考,逐步从特殊到一般的理解锐角的正弦概念.在特殊角的基础上提出一般性问题,教师再次引导学生利用相似三角形知识,得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比都是一个固定值.复习直角三角形的性质,在此基础上探究新问题.让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景.培养学生从特殊到一般的演绎推理能力.39斜边c 对边a bC B A•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA , 即sinA =A a A c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= .例1 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.三、课堂训练课本第64页练习.补充:1.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( )A .35B .45C .34D .432. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .b aC .2222.a b D a b a b ++ 四、课堂小结 1.锐角的正弦概念; 2.会求一个锐角的正弦值。

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。

第一节课重点讲解了相似图形的概念和运用方法。

通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。

同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。

在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。

同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。

第二节课重点讲解了相似多边形的主要特征和识别方法。

老师让学生们了解到相似多边形的对应角相等,对应边的比相等。

通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。

总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。

通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。

在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。

这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。

如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。

在解决这个问题时,依靠直觉观察是不可靠的。

课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。

2.相似多边形的特征是对应角相等,对应边的比相等。

如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比是相似多边形对应边的比。

4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。

例1(补充)(选择题):下列说法正确的是D。

因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。

例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。

新人教版九年级下册数学《特殊角的三角函数值》精品教案

新人教版九年级下册数学《特殊角的三角函数值》精品教案

28.1锐角三角函数第3课时特殊角的三角函数1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)一、情境导入问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的?问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值.二、合作探究探究点一:特殊角的三角函数值【类型一】利用特殊的三角函数值进行计算计算:(1)2cos60°·sin30°-6sin45°·sin60°;(2)sin30°-sin45°cos60°+cos45°.解析:将特殊角的三角函数值代入求解.解:(1)原式=2×12×12-6×22×32=12-32=-1;(2)原式=12-2212+22=22-3.方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值求角的取值范围若cosα=23,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.0°<α<30°解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22,∴cos60°<cosα<cos45°,∴锐角α的范围是45°<α<60°.故选C.方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.【类型三】根据三角函数值求角度若3tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°解析:∵3tan(α+10°)=1,∴tan(α+10°)=33.∵tan30°=33,∴α+10°=30°,∴α=20°.故选A.方法总结:熟记特殊角的三角函数值是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第9题探究点二:特殊角的三角函数值的应用【类型一】利用三角形的边角关系求线段的长如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.解析:由题意可知△BCD为等腰直角三角形,则BD=BC,在Rt△ABC中,利用锐角三角函数的定义求出BC的长即可.解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=BCAB,即BCBC+4=33,解得BC=2(3+1).方法总结:在直角三角形中求线段的长,如果有特殊角,可考虑利用三角函数的定义列出式子,求出三角函数值,进而求出答案.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】判断三角形的形状已知△ABC中的∠A与∠B满足(1-tan A)2+|sin B-32|=0,试判断△ABC的形状.解析:根据非负性的性质求出tan A及sin B的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论.解:∵(1-tan A)2+|sin B-32|=0,∴tan A=1,sin B=32,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=3,∠ABC=30°,∴tan30°=ACBC=13=33.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=CDBC,tan75°=BCCD求出即可.解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E.∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.设CD=x,则AD=1-x,AE=2-BE=2-BC=2- 3.在Rt△ADE中,DE2+AE2=AD2,x2+(2-3)2=(1-x)2,解得x=23-3,∴tan15°=23-33=2-3,tan75°=BCCD=323-3=2+ 3.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.特殊角的三角函数值:2.应用特殊角的三角函数值解决问题.课程设计中引入非常直接,由三角尺引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.在讲解特殊角的三角函数值时讲解的也很细,可以说前面部分的教学很成功,学生理解的很好.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。

人教版九年级数学下册精品教案1 传播问题与一元二次方程

人教版九年级数学下册精品教案1 传播问题与一元二次方程

21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC 与CQ 的长,根据面积公式建立方程求解.解:(1)设x s 后,可使△PCQ 的面积为8cm 2,所以AP =x cm ,PC =(6-x )cm ,CQ =2x cm.则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0.由于此方程没有实数根,所以不存在使△PCQ 的面积等于△ABC 面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)一、教学目标1. 知识与技能:(1)能理解并掌握电子版的制作方法和技巧。

(2)能熟练运用电子版进行数学题目的解答和分析。

(3)能运用电子版进行数学知识的探索和研究。

2. 过程与方法:(1)通过自主学习,掌握电子版的操作方法和技巧。

(2)通过合作学习,提高运用电子版解决数学问题的能力。

(3)通过研究性学习,培养运用电子版进行数学探索和研究的能力。

3. 情感态度与价值观:(1)培养对数学学习的兴趣和热情。

(2)培养运用现代技术手段进行学习的习惯。

(3)培养团队协作和自主探究的精神。

二、教学内容第一章:电子版的初步使用1. 电子版的启动与退出2. 电子版的界面认识3. 电子版的文件操作第二章:电子版的编辑技巧1. 文字的输入与编辑2. 公式的输入与编辑3. 图片的插入与处理第三章:电子版的解题方法1. 运用电子版进行几何题目的解答2. 运用电子版进行代数题目的解答3. 运用电子版进行概率题目的解答第四章:电子版的探索与研究1. 运用电子版进行数学知识的探索2. 运用电子版进行数学问题的研究3. 运用电子版进行数学实验的设计与实施第五章:电子版的合作学习1. 运用电子版进行数学小组合作学习2. 运用电子版进行数学课题的研究3. 运用电子版进行数学成果的展示与评价三、教学重点与难点1. 教学重点:(1)电子版的操作方法和技巧。

(2)运用电子版进行数学题目的解答和分析。

(3)运用电子版进行数学知识的探索和研究。

2. 教学难点:(1)电子版的深入运用和操作。

(2)运用电子版解决较复杂的数学问题。

(3)运用电子版进行数学探索和研究。

四、教学方法与手段1. 教学方法:(1)任务驱动法:通过设置具体任务,引导学生自主学习电子版的操作方法和技巧。

(2)合作学习法:通过小组合作,提高学生运用电子版解决数学问题的能力。

(3)研究性学习法:引导学生运用电子版进行数学知识的探索和研究。

2. 教学手段:(1)电子版的操作演示。

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)教案章节:一、二次根式的乘除法【教学目标】1. 理解二次根式的乘除法运算法则。

2. 能够熟练地进行二次根式的乘除法运算。

【教学内容】1. 二次根式的乘法法则:同底数相乘,指数相加;异底数相乘,先转化为同底数,再按照同底数相乘法则计算。

2. 二次根式的除法法则:同底数相除,指数相减;异底数相除,先转化为同底数,再按照同底数相除法则计算。

【教学步骤】1. 导入:回顾一次根式的乘除法,引导学生思考如何将一次根式的方法应用到二次根式中。

2. 讲解:讲解二次根式的乘法法则和除法法则,通过例题进行解释和演示。

3. 练习:学生独立完成一些二次根式的乘除法练习题,教师进行指导和讲解。

4. 总结:对本节课的内容进行总结,强调二次根式的乘除法法则。

【作业布置】请学生完成课后练习,包括一些二次根式的乘除法题目。

教案章节:二、勾股定理【教学目标】1. 理解勾股定理的定义和意义。

2. 能够熟练运用勾股定理计算直角三角形的边长。

【教学内容】1. 勾股定理的定义:直角三角形的两条直角边的平方和等于斜边的平方。

2. 勾股定理的应用:根据勾股定理计算直角三角形的边长。

【教学步骤】1. 导入:通过一个直角三角形的例子,引导学生思考如何计算其边长。

2. 讲解:讲解勾股定理的定义和意义,通过例题进行解释和演示。

3. 练习:学生独立完成一些勾股定理的应用题,教师进行指导和讲解。

4. 总结:对本节课的内容进行总结,强调勾股定理的应用方法。

【作业布置】请学生完成课后练习,包括一些勾股定理的应用题目。

教案章节:三、相似三角形的性质【教学目标】1. 理解相似三角形的定义和性质。

2. 能够熟练运用相似三角形的性质解决实际问题。

【教学内容】1. 相似三角形的定义:具有相同形状但不同大小的三角形。

2. 相似三角形的性质:对应角相等,对应边成比例。

【教学步骤】1. 导入:通过两个形状相同但大小不同的三角形,引导学生思考它们的性质。

人教版九年级数学下册教案全册(精华版)

人教版九年级数学下册教案全册(精华版)

人教版九年级数学下册教案全册(精华版)教学目标:使学生理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式,能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

教学重点:理解反比例函数的概念,能根据已知条件写出函数解析式。

教学难点:能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

教师准备:多媒体课件。

学生准备:无特殊要求。

一、创设情境、导入新课1.回忆一下正比例函数和一次函数的概念及一般形式。

2.老师测试了百米赛跑,让学生思考时间与平均速度的关系。

问题提出:电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时。

1)你能用含有R的代数式表示I吗?2)利用写出的关系式完成下表:R/ΩI/A20406080100留白:(供教师个性化设计)是否需要课件?2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

二、联系生活、丰富联想做一做1.一个矩形的面积为20cm,相邻的两条边长分别为xcm和ycm。

那么变量y是变量x的函数吗?为什么?学生先独立思考,再进行全班交流。

2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?学生先独立思考,再同桌交流,而后大组发言。

3.已知y是x的反比例函数,下表给出了x与y的一些值:xy2122231212113…1)写出这个反比例函数的表达式;2)根据函数表达式完成上表。

学生先独立练,而后再同桌交流,上讲台演示。

三、举例应用创新提高:例1.(补充)下列等式中,哪些是反比例函数:1)y=2x2)y=-x33)xy=214)y=-53/(x+2)1.$y=\frac{y}{2x}$,将其改写为反比例函数的形式,即$y=k\frac{1}{x}$,其中$k=\frac{1}{2}$。

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。

九年级数学下册 第25章概率初步全章教案新人教版.

九年级数学下册 第25章概率初步全章教案新人教版.

25.1.1随机事件(第一课时知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。

重点:随机事件的特点难点:对生活中的随机事件作出准确判断教学程序设计一、创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1太阳从西边下山;(2某人的体温是100℃;(3a2+b2=-1(其中a,b都是实数;(4水往低处流;(5酸和碱反应生成盐和水;(6三个人性别各不相同;(7一元二次方程x2+2x+3=0无实数解。

【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。

】2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。

】二、引导两个活动,自主探索新知活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。

新人教版数学九年级下册第27章27.3位似图形的概念及画法(教案)

新人教版数学九年级下册第27章27.3位似图形的概念及画法(教案)
-位似变换的作图方法:学会运用位似变换对几何图形进行放大与缩小,掌握作图方法,为解决实际问题奠定基础。
-举例:已知一个三角形,按位似比2:1放大,画出放大后的三角形;理解位似变换在实际问题中的应用,如地图的缩放。
2.教学难点
-位似图形的识别与判断:对于某些复杂的位似图形,学生可能难以直观地判断它们之间的位似关系,需要掌握一定的方法和技巧。
-位似性质在几何证明中的应用:位似性质在解决几何问题时具有重要作用,但学生在运用过程中可能遇到困难。
-突破方法:通过典型例题,引导学生运用位似性质进行几何证明,总结解题方法;加强练习,提高学生的几何证明能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《位似图形的概念及画法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体放大或缩小的情况?”(如照片的放大、地图的缩小等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索位似图形的奥秘。
-能够运用所学知识,构建位似图形模型。
-能够结合实际情境,发现并提出与位似图形相关的问题。
三、教学难点与重点
1.教学重点
-位似图形的定义与性质:位似图形的比值、对应点、对应边、对应角是本节课的核心内容。通过实例和练习,使学生掌握位似图形的基本概念,能够识别和应用位似性质。
-举例:比较两个位似三角形的边长比例,理解位似比的概念;找出位似图形的对应点、对应边、对应角,并说明它们之间的关系。
-位似图形在生活中的应用实例
4.练习与巩固
-判断两个图形是否位似
-已知位似比,画出一个图形的位似图形
-应用位似变换解决实际问习题1、2、3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版的九年级数学下册教案
(全文完整版)
1.简单不容易出错。

第四步,根据题目中已知数的精度进行近似计算,根据题目要求的精度确定答案并注明单位思维方法。

转化的思想贯穿了整章。

比如三角函数的定义可以实现棱和角的变换,三角函数与两个余角的关系可以实现正、余函数的相互变换。

另外,同角三角函数的关系可以实现不同名称的相互转换。

利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题。

这一章,从概念的推导到公式的推导以及直角三角形的求解和应用,都体现了数形结合的思维方法。

比如在解直角三角形的题时,我们往往先画图,让已知元素和未知元素更直观,有助于顺利解题。

函数锐角的正弦、余弦、正切、余切都是三角函数,都包含函数的思想,比如任何锐角及其正弦。

2、在中,米米米答缆车垂直上升了米说明解直角三角形在实际生活中的应用,是中考考查的重点,也是考查的热点要解决好这类问题是要合理地构造合适的直角三角形二是要熟记特殊角的三角函数值三是要有很好的运算能力和分析问题的能力课时作业设计本章单元测试单元测试选择题在中则等于在中若,则等于如图,为测河两岸相对两电线杆间的距离,在距点米的处⊥测得,则之间的距离应为米米米米第题第题第题如果,那么锐角的度数是在中若,则的值为如图,为了测量河两岸两点的距离,在与垂直的方向上取点,测得那么等于如图中⊥,为垂足若则的值为已知直角三角形中角所对的直角边长是,则斜边的长是在中,那么是等腰三角形等边三角形直角三角形等腰直角三角形在中,则下列各式中正确的是如图,为测楼房。

3、为米解在中,米,米答拉线下端点与杆底的距离约为米锐角三角函数全章教案锐角三角函数第课时教学三维目标知识目标初步了解正弦余弦正切概念能较正确地用表示直角三角形中两边的比熟记功角的三角函数,并能根据这些值说出对应的锐角度数。

二能力目标逐步培养学生观察比较分析,概括的思维能力。

三情感目标提高学生对几何图形美的认识。

教材分析教学重点正弦,余弦,正切概念教学难点用含有几个字母的符号组表示正弦,余弦,正切教学程序探究活动课本引入问题,再结合特殊角的直角三角形探究直角三角形的边角关系。

归纳三角函数定义。

斜边的对边,斜边的邻边,的邻边的对边例求如图所示的⊿中的的值。

学生练习练习二探究活动二让学生画的直角三角形,分别求归纳结果求下列各式的。

4、等的实数根,求的值四解答题如图,为申办年冬奥会,需改变哈尔滨市的交通状况在大道拓宽工程中,要伐掉棵树,在地面上事先划定以为圆心,半径与等长的圆形区域为危险区,现在工人站在离点米处的处测得树的顶端点的仰角为,树的底部点的俯角为,问距离点米远的保护物是否在危险区内取我边防战士在海拔高度即的长为米的小岛顶部处执行任务,上午时发现在海面上的处有艘船,此时测得该船的俯角为,该船沿着方向航行段时间后到达处,又测得该船的俯角为,求该船在这段时间内的航程计算结果保留根号如图,在离地面高度米处引拉线固定电线杆,拉线和地面成,求拉线下端点与杆底的距离精确到米答案二三解解原式四过点作⊥于,中,中,保护物不在危险区解根据题意,在中米答该船在这段时间内的航。

5、关系也就是说,对于锐角任意确定的个度数,都有惟确定的值与之对应反之,对于在之间任意确定的个值,锐角都有惟确定的个度数与之对应方程思想在解直角三角形时,若个元素无法直接求出,往往设未知数,根据三角形中的边角关系列出方程,通过解方程求出所求的元素中考新题型例计算
分析把特殊角的三角函数值代入计算即可解原式
说明熟记角的三角函数值,是解决这类问题的关键,这类题也是中考考查的重点,在选择题和填空题中出现的更多例如右图,已知缆车行驶线与水平线间的夹角小明乘缆车上山,从到,再从到都走了米即米,请根据所给的数据计算缆车垂直上升的距离计算结果保留整数,以下数据供选用分析缆车垂直上升的距离分成两段与分别在和中求出与,两者之和即为所求解在中,米。

相关文档
最新文档