(完整版)圆柱和圆锥的体积(包含知识点内容)
北师大版六年级数学下册第1单元 圆柱与圆锥 知识点汇总
一 圆柱与圆锥一、面的旋转 1.点动成线....,.线动成面....,.面动成体。
.....2.将一个长方形以长(宽)为轴,快速旋转后可以形成一个圆柱。
3.将一个直角三角形沿一条直角边快速旋转,会形成一个圆锥。
二、圆柱和圆锥的特征1.圆柱有两个面是大小相同的圆,有一个面是曲面;圆锥有一个面是圆,有一个面是曲面。
即:2.圆柱的上、下两个圆面叫作圆柱的底面,圆柱的曲面叫作圆柱的侧面;圆柱的两个底面之间的距离叫.............作圆柱的高.....。
即:3.圆锥的圆面叫作圆锥的底面,圆锥的曲面叫作圆锥的侧面;圆锥的顶点到底面圆心的距离叫作圆锥.................的高。
...4.测量圆锥的高的方法:把圆锥放在水平面上,在圆锥的顶点上放一个平面的东西,比如一块木板,并与底面平行,测量一下这两个平面间的距离,这两个平面间的距离就是圆锥的高。
即:5.测量圆柱的高的方法:把圆柱放在水平面上,选一把直尺和一个直角三角板,使圆柱的底面与直尺的..........0.刻线对齐....,使三角板与直尺垂直并靠紧圆柱的底面,此时圆柱的另一个底面对准的刻度值即是圆柱的高。
三、圆柱的表面积1.圆柱的侧面积。
圆柱的侧面如果沿高剪开得到一个长方形。
长方形的面积=长方形的长 × 长方形的宽面的形状不同,快速旋转后形成的立体图形也不同。
圆柱有无数条高,圆锥只有一条高。
圆柱或圆锥的高都是一条垂直于底面的线段。
易错点:剪开圆柱的侧面时一定要沿高剪开才可以得到一个长方形。
↓ ↓ ↓ 圆柱的侧面积=圆柱的底面周长×圆柱的高 用字母表示:S 侧=Ch 或S 侧=πdh 或S 侧=2πrh2.圆柱的表面积。
圆柱的表面积......=.侧面积...+.两个底面积.....不同的圆柱形实物,它们的表面积也不相同。
比如圆柱形烟囱的表面积等于烟囱的侧面积,圆柱形水桶的表面积就是水桶的侧面积加上一个底面积。
四、圆柱的体积1.意义:圆柱形物体所占空间的大小叫作圆柱的体积。
六年级下学期数学 圆锥的体积 完整版题型总结 带详细答案
圆锥的体积重要题型同步巩固及提升圆锥的体积公式是:(V=1/3Sh )知识点强化:1、判断:(1)、圆锥的体积是圆柱的体积的1/3(×)(2)、一个圆锥的底面半径扩大3倍,它的体积也扩大3倍。
(×)(3)、一个正方体与一个圆锥的底面积和高都相等,这个正方体的体积是圆锥的体积的1/3。
(×)(4)、把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的1/3. (×)(5)、圆锥的体积比与他等底等高的圆柱的体积小2/3。
(√)2、填空(1)等底等高的圆柱和圆锥的体积相差16立方分米,这个圆柱的体积是(24)立方分米,这个圆锥的体积是(8 )立方分米。
(2)等底等高的圆柱和圆锥的体积的和是96立方分米,这个圆柱的体积是(72)立方分米,这个圆锥的体积是(24 )立方分米。
(3)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是(36)立方厘米,圆锥的体积是(12 )立方厘米。
例题强化拔高:例题1、在一个底面直径是20cm的圆柱形玻璃杯中放着一个底面直径为6cm,高20cm的圆锥形铁锤,铅锤没入水中,当铅锤从水中取出后,杯中的水将下降多少?(π取3.14.)铁锤的体积:3.14×(6÷2)×(6÷2)×20÷3=188.4(立方厘米)玻璃杯的底面积:3.14×(20÷2)×(20÷2)=314(平方厘米)水下降的高度:188.4÷314=0.6(厘米)例2、一个圆柱体形状的木棒,沿着底面直径竖直切成两部分,已知这两部分的表面积之和比圆柱体的表面积大2000cm2,则这个圆柱体木棒的侧面积是多少?dh=2000÷2=1000(平方厘米)侧面积=πdh=1000×3.14=3140(平方厘米)例3、一个底面直径是12cm的圆锥形木块,把它分成形状大小完全相同的两个木块后,表面积比原来增加了120cm2,这个圆锥形木块的体积是多少?增加的面积是两个三角形一个三角形的面积:120÷2=60(平方厘米)高:60×2÷12=10(厘米)半径:12÷2=6(厘米)体积::1/3×3.14×6×6×10=376.8(立方厘米)例4、把一个底面直径是20cm的装有一些水的圆柱形玻璃杯,已知杯中水面距离杯口3cm,若将一个圆锥形铅垂完全浸入杯中,水会溢出20ml,求铅垂的体积。
(完整版)圆柱圆锥知识点总结
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
第五周 圆柱和圆锥的体积(含试题和答案)
【同步教育信息】一、本周主要内容圆柱和圆锥的体积二、本周学习目标1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式正确计算圆柱体积或圆柱形容器的容积以及解决简单的实际问题。
2、通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积以及解决简单的实际问题。
3、通过圆柱、圆锥体积计算公式的推导、运用的过程,培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力,并体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
三、考点分析1、圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лr ²h 。
2、圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。
即V = 31sh 或者V = 31лr ²h 。
【典型例题】例1、(计算圆柱的体积)一个圆柱,底面周长9.42分米,高20厘米。
求它的体积?分析与解:求圆柱的体积,一般根据V = sh 或者 V = лr ²h ,题中没有给出底面积,又没有给出底面半径,所以要先求出底面半径,同时题目中单位名称不统一,要注意化单位,可以统一为分米,也可以统一为厘米。
20厘米 = 2分米底面半径:9.42 ÷ 3.14 ÷ 2 = 1.5(分米)体积: 3.14 × 1.5²× 2 = 14.13(立方分米)答:它的体积是14.13立方分米。
点评:会使用圆柱体积计算公式是一个基本的要求。
但知道圆柱体积计算公式的推导过程也非常重要。
体积计算公式的推导过程和之前的圆柱的侧面积计算公式推导过程一样,都用了转化的数学思想。
例2、(计算圆柱的容积)一个圆柱形的粮囤,从里面量得底面周长是9.42米,高是2米,每立方米稻谷约重545千克,这个粮囤约装稻谷多少千克?(得数保留整千克数)。
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
六年级下册数学讲义-圆锥的认识和体积;圆柱和圆锥体积的应用-人教版(含答案)
圆锥的认识和体积;圆柱和圆锥体积的应用学生姓名年级学科授课教师日期时段核心内容认识圆锥及其体积;掌握圆柱及圆柱体积应用课型一对一教学目标1、初步认识圆锥,掌握圆锥的特征;2、理解圆柱、圆锥体积的推导过程;3、掌握圆锥体积的计算公式,运用其解决简单的实际问题。
4、运用圆柱与圆锥的关系解决问题。
重、难点重点:教学目标1、3 难点:教学目标2、4课首沟通1、还记得圆柱吗?圆柱的表面积和体积的计算公式吗?2、你能说说我们解决圆柱的体积的计算方式是什么?知识导图课首小测1.一段圆柱形钢材长5米,横截成三个小圆柱表面积增加了40平方厘米。
如果每立方厘米钢重 7.8克,这段钢材重多少千克?2.一个圆形罐头盒的底面半径是5cm,高是18cm。
它的体积是多少?导学一:圆锥的认识和体积知识点讲解 1:圆锥的认识圆锥是由一个底面和一个侧面两部分组成的。
(1)底面:圆锥中圆形的面就是它的底面,它有一个底面。
底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。
(2)侧面:圆锥周围的面就是它的侧面。
圆锥的侧面是一个曲面(3)高:从圆锥的顶点到底面圆心的距离就是圆锥的高,高用字母h表示。
圆锥只有一条高。
例 1. 圆锥的底面是一个( );侧面是一个( ),侧面展开是一个( )。
例 2. 圆锥的高是指从圆锥( )到底面( )的( )。
【学有所获】测量圆锥的高:“先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
”我爱展示1.圆锥有()条高2.画出下列每个圆锥的高知识点讲解 2:圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积。
圆锥的体积的计算公式:圆锥的体积=底面积×高×V圆锥=S h推导公式:圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×例 1. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:cm)【学有所获】同底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍。
圆柱圆锥知识点总结
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。
圆柱和圆锥的特征见下表。
例2、求下面立体图形的底面周长和底面积。
分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长× 3 × 2 = (厘米)底面积× 3 ²= (平方厘米)圆锥:底面周长× 10 = (米)底面积×(10÷2)²= (平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。
这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
(完整版)六年级数学下册圆柱与圆锥知识点
六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。
圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆.3。
(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5。
把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6。
圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。
温馨提示:圆柱的底面是圆形,面不是椭圆。
9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。
10。
从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。
如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。
如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。
12。
圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。
(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14。
圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
圆柱和圆锥有关知识点总结(完整版)
圆柱和圆锥有关知识点一、在下图中,标出圆柱和圆锥各部分名称.二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷πd =C÷π半径=圆的周长÷π÷2r =C÷π÷2圆的面积=半径的平方×πS=πr 22、圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体就是圆柱。
(1)圆柱的侧面积=底面周长×高S 侧=C h 逆推公式有:圆柱的高=圆柱的侧面积÷底面周长h=S 侧÷C 圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2S 表=S 侧+2S 底(实际情况实际分析)(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长=高时,展开后是正方形)。
(4)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱的体积=底面积×高V 柱=S h=πr 2h 逆推公式有:圆柱的高=圆柱的体积÷底面积h=V 柱÷S 圆柱的底面积=圆柱的体积÷高S=V 柱÷h这个长方形的长就是圆柱的底面周长,宽就是圆柱的高(4)半个圆柱的表面积=侧面积÷2+一个底面积+直径×高(半个侧面积+两个半圆+1个长为高,宽为直径的长方形)14圆柱的表面积=侧面积÷4+半个底面积+半径×高×2(直径×高)(14个侧面积+一个半圆+2个长为高,宽为半径的长方形)考试常见题型:a.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长;、b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;d.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积;e.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
小学六年级数学小升初珍藏版复习资料第18讲 圆柱和圆锥的认识、表面积与体积(解析)
2022-2023学年小升初数学精讲精练专题汇编讲义第18讲圆柱和圆锥的认识、表面积与体积知识点一:圆柱与圆锥的认识1.圆柱的定义:以长方形的一条边所在的直线为轴旋转一周,得到的几何体叫作圆柱。
2.圆锥的定义:以直角三角形的一条直角边所在的直线为轴旋转一周,得到的几何体叫作圆锥。
3.圆柱和圆锥的特征:名称图形展开图特征圆柱(1)上下两个底面是两个相等的圆;两个底面之间的距离叫作高(h);圆柱有无数条高。
(2)侧面展开图是长方形(或正方形),长方形的长相当于圆柱的底面周长,宽相当于圆柱的高圆锥(1)底面是圆,顶点到底面圆心(O)的距离叫作高(h),圆锥只有 1 条高。
(2)圆锥的侧面展开图是一个扇形知识点二:圆柱与圆锥的测量1.圆柱的侧面积、表面积。
(1)圆柱的侧面积=底面周长×高,用字母表示为:S侧=πdh(或2πrh)(2)圆柱的表面积=底面积×2+侧面积,用字母表示为:S= 2πr2+2πrh 2.圆柱的体积=底面积×高,用字母表示为:V=πr2h 。
知识精讲3.圆锥的体积=13×底面积×高,用字母表示为:V=13πr2h知识点三:用排水法计算不规则物体的体积1.体积小的物体可以直接放入有水的长方体或圆柱等规则的容器里,观察水面所处的刻度的变化体积差就是物体的体积。
2.体积大的物体,可以放入装满水的长方体或圆柱等规则的容器里,排出水的体积就是物体的体积。
一.选择题(共5小题,满分10分,每小题2分)1.(2分)(2022•东昌府区)一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,圆锥的体积是()立方分米。
A.12 B.16 C.36【思路点拨】底等高的圆柱的体积是圆锥体积的3倍,那么等底等高的圆柱与圆柱的体积和相当于圆锥体积的(3+1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答。
【规范解答】解:48÷(3+1)=48÷4=12(平方分米)答:圆锥的体积是12立方分米。
圆柱和圆锥(全部整合)
D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C
(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4
(完整版)北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3、圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2、圆柱的侧面积=底面周长×高,用字母表示为:S 侧=ch 。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S 侧=ch ;(2)已知底面直径和高,求侧面积,可运用公式:S 侧=πdh ;(3)已知底面半径和高,求侧面积,可运用公式:S 侧=2πrh4、圆柱表面积的计算方法:如果用S 侧表示一个圆柱的侧面积,S 底表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:S 表=S 侧+2S 底 或 S 表=πdh+2π)2d (² 或S 表=2πrh+2πr 25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1、圆柱的体积:一个圆柱所占空间的大小。
2、圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V =Sh 。
(2)已知圆柱的底面半径和高,求体积,可用公式:V =πr 2 h ;(3)已知圆柱的底面直径和高,求体积,可用公式:V =π(d ÷2)2 h ;(4)已知圆柱的底面周长和高,求体积,可用公式:V =π(C ÷π÷2)2 h ; 、圆柱形容器的容积=底面积×高,用字母表示是V =Sh 。
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。
2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。
(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。
例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。
A圆柱的底面周长B底面直径和高C圆柱的高。
2、下面的材料中,()能做成圆柱。
12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。
圆柱和圆锥的知识点总结最全圆柱和圆锥重难点集合
圆柱和圆锥的知识点总结最全圆柱和圆锥重难点集合在数学中,圆柱和圆锥是常见的几何图形。
它们都由圆形和一些直线组成,具有一些特殊的性质和公式。
本文将对圆柱和圆锥的知识点总结和归纳,帮助读者更好地理解和掌握这两种几何图形的基础知识。
1.圆柱上下两个圆面叫作圆柱的侧面,底面是平面,侧面是曲面。
圆柱两个底面之间的距离叫作圆柱的高,圆柱的高有无数条,同一个圆柱的所有高的长度都是相等的。
圆锥下面的一个圆面叫作底面,它的周围叫作侧面,底面是平面,侧面是曲面。
从圆锥顶点到底面圆心之间的距离叫作圆锥的高,圆锥的高只有一条,从顶点到底面圆上任意一点的线段叫作圆锥的母线。
本章我们所讲的圆柱是直圆柱,即上中下一样粗,圆锥是直圆锥2.视图竖直放一个圆柱,则从该圆柱的前后左右看到的都是一样的长方形(正方形,当底面直径等于高时是一个正方形),从上下看到的圆形。
竖直放一个圆锥,则从前后左右看到的都是一样的等腰三角形(等边三角形,当底面直径等于母线是是一个等边三角形),从上面看到的是一个圆且圆心处有一个点(顶点),从下面看的的是一个圆,圆心无点。
3.展开图圆柱的展开图,圆柱沿一条高展开后侧面是一个长方形(正方形),这个长方形的长等于圆柱的底面周长,宽就是圆柱的高(当底面周长等于高时,侧面展开图是正方形)圆锥的展开图,圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于底面的周长,半径等于圆锥的母线长。
圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类基本公式1.圆的周长和面积圆的周长=直径×π=2×半径×πC=πd=2πr逆应用:直径=周长÷πd=C÷π半径=周长÷π÷2r=C÷π÷2圆的面积=π×半径×半径S=πr2.圆柱的侧面积把圆柱侧面沿高展开,得到一个长方形(正方形),长方形的长是圆柱的底面周长,长方形的宽是元祖的高,所以侧面积=底面周长×高=π×直径×高=2×π×半径×高圆柱侧面积=ch=πdh=2πrh逆推公式:圆柱的高=圆柱侧面积÷底面周长=圆柱的侧面积÷π÷d=圆柱的侧面积÷π÷2÷r圆柱的底面周长=圆柱的侧面积÷高3.圆柱的表面积=两个底面面积+侧面面积=底面面积×2+侧面面积圆柱的表面积=2πr+2πrh4.圆柱的体积圆柱的体积计算是先将圆柱沿着直径切陈两个半圆柱,再沿着半径切成若干部分后嵌合在一起组成一个近似的长方体,这个长方体的底面积和圆柱的底面积相等,高也相等,所以体积也相等,近似长方体的长为圆柱底面周长的一半(πr),宽是圆柱的底面半径(r),高等于圆柱的高(h),所以圆柱的体积=底面面积×高=πrh逆推公式:圆柱的高=圆柱的体积÷底面积圆柱的底面积=圆柱的体积÷高5.圆锥的体积圆锥的体积是利用等底等高的圆柱和圆锥进行实验得出的结果,将圆锥倒满水,然后倒入等底等高的圆柱中,3次正好倒满,所以在等底等高的前提下,圆锥的体积是圆柱体积的或者说圆柱的体积是圆锥体积的3倍。
圆锥体积知识点
圆锥体积的知识点
1.圆柱的体积=底面积×高
推导公式:
圆柱的高=体积÷底面积
圆柱的底面积=体积÷高
1(这个公式可以从课件中推导得来)
2.圆锥的体积=底面积×高×
3
推导公式:
圆锥的高=体积×3÷底面积
圆锥的底面积=体积×3÷高(想一想是如何推导的)
1Sh
3.用字母表示为V=
3
4.对公式的理解:
1。
或者说圆柱的体积等于与圆锥的体积等于与它等底等高的圆柱的体积的
3
它等底等高的圆锥的体积的3倍。
圆柱和圆锥等底等高会有这样的结论,但是如果不是等底等高的关系,圆柱和圆锥之间也可能有这样的关系。
(这一点我们可以通过举例来说明,同学们试一试例举一下)
1,或者说圆柱的体积是圆锥的3但是这并不是说所有的圆锥的体积是圆柱的
3
倍。
5,等底等高的圆柱和圆锥之间的关系
(1)等底等高的圆柱和圆锥的体积比是3:1,即圆柱的体积比圆锥多2倍。
2。
(想一想为什么会这样的关系)
圆锥的体积比圆柱少
3
(2)等体积等高的圆柱和圆锥的底面积的比是1:3。
(3)等体积等底面积的圆柱和圆锥的高的比是1:3。
圆柱圆锥知识点总结
圆柱圆锥知识点总结要紧内容圆柱和圆锥的熟悉、圆柱的表面积考点分析一、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
二、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的极点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开取得一个长方形,那个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长×高五、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例一、(圆柱和圆锥的特点)圆柱和圆锥别离有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除底面是平面图形(圆)例二、求下面立体图形的底面周长和底面积。
半径3厘米直径10米分析与解:依照圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)底面积 3.14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31.4(米)底面积 3.14 ×(10÷2)²= 78.5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要依照圆的周长和面积计算公式进行计算。
例3、判定:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的极点到底面圆心的距离是圆锥的高。
极点和底面圆心都是唯一的点,因此圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就取得一个长方形。
那个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级圆柱和圆锥的体积训练
题型一:圆柱的体积:圆柱所占空间的大小
把圆柱切开拼成一个长方体(如图),
长方体的长 = 圆柱底面周长的一半
长方体的宽 = 圆柱的半径
长方体的高 = 圆柱的高
长方体的底面积 = 圆柱的底面积
圆柱切开拼成一个长方体后,增加的面积是长方体的两个侧面积(宽×高 / 半径×高)
公式:圆柱的体积(容积) = 底面积×高,(V = Sh 或者V = лr²h )
正方体、长方体、圆柱,半圆柱、底面是环形的柱体都通用的体积公式是:底面积×高
体积和容积的区别:
1.求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。
2.一种物体有体积,可不一定有容积。
如果一种既有体积又有容积的物体,它的体积一定大于它的容积。
3.体积的单位和容积的单位不同:
1立方米 = 1000立方分米 = 1000000立方厘米 1立方米 = 1000立方分米 1立方分米 = 1000立方厘米1立方米=1000升 1立方分米=1升1立方厘米=1毫升
练习:
1.等底等高的圆柱体、正方体、长方体的体积相比较,()。
①正方体体积大②长方体体积大③圆柱体体积大④一样大
2. 圆柱体的底面半径扩大2倍,它的侧面积扩大()倍,体积扩大()倍。
3. 圆柱体的底面半径和高都扩大3倍,它的侧面积扩大()倍,体积扩大()倍。
4.圆柱的高扩大4倍,底面半径缩小4倍,它的体积()。
5. 如果圆柱体的侧面展开是一个边长为3.14分米的正方形,圆柱的体积是()立方分米。
6. 0.08平方米=()平方分米 3立方米5立方分米=()立方米
2.6立方分米=()升 = ()毫升
7. 一个圆柱体的底面半径是4米,高6米,它的侧面积是()平方米,体积是()立方米。
8.一个圆柱的底面周长是31.4厘米,高10厘米,它的表面积是()平方厘米,体积是()立方厘米。
9. 一个圆柱体容器中盛满12.56升水,从容器里面量得高是4分米,那么容器的底面积是()。
10. 一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,水面高是()分米。
11. 量得一个圆柱体饮料罐底面半径是3厘米,高是半径的4倍,这个饮料罐的底面积是()平方厘米,
侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
12. 有两个高相等的圆柱,第一个圆柱的底面半径和第二个底面半径的比是2:3。
第一个圆柱的体积是16立方厘
米,第二个圆柱的体积是()立方厘米。
13. 一个圆柱的底面周长是31.4米,体积是785立方米,它的高是()米,表面积是()平方米。
14. 一块长方体木料,长、宽、高分别是8、6、4cm,把它加工成一个最大的圆柱体,体积是()立方厘米。
15. 计算圆柱的体积。
1. 右面是一个圆柱的展开图。
算一算这个圆柱的体积是多少?(单位厘米)
2. 一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?
3. 一个圆柱形粮囤,从里面量底面半径是4米,高是2米,每立方米粮食约重500千克,这个粮囤大约能盛多少
千克粮食?
4. 把一个直径4厘米的圆柱切开拼成一个与它等底等高的长方体。
这个长方体的表面积比圆柱的表面积增加了40
平方厘米,长方体的体积是多少立方厘米?
5. 把圆柱切开拼成一个长方体,已知长方体的长是3.14米,高是2米。
这个圆柱体的体积是多少?
6. 有一个高为6.28分米的圆柱体机件,它的侧面展开正好是一个正方形,这个机件的体积是多少立方分米?
7. 把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方
体,表面积比原来增加了120平方厘米,求圆柱体的体积。
8. 用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面。
这样做成的铁桶的容积最大是多少?
9. 一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?
10. 在直径0.8米的水管中,水流速度是每秒2米,那么5分钟流过的水有多少立方米?
11. 一个圆柱的侧面积是125.6平方厘米,半径是8厘米,求它的体积。
12. 一个圆柱形铁皮油桶,体积是4.2立方米,底面积是1.4平方米,桶内装油的高度是桶高的3/4,油高多少米?
13. 将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。
14. 下图是一个长15厘米,宽6厘米、高15厘米的长方体钢制机器零件,中间有一个底面半径为5厘米的圆柱
形空洞,求这个零件的体积。
5。