平面运动机构的解析分析

合集下载

机械原理第三章 运动分析

机械原理第三章 运动分析

例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC

3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23

机械原理-机构运动分析的解析法

机械原理-机构运动分析的解析法

l
1
φ θ
2
l
x
a2 x 2l cos al sin a2 y 2l sin al cos
已知:构件的长度L及运动参数角位置θ 、角速度ω 、 角加速度ε ,1点的运动参量。
求: 3点的运动参量。
解: P 3x P 1 x l cos( ) v3 x v1 x l sin( ) P v3 y v1 y l cos( ) 3y P 1 y l sin( )
运 动 副 点 号
要求赋值
构 件 号
构 件 长 度
角位置角速度角加速 度,位置 速度 加速 度 n1
r1
m>0——实线 M<=0——虚线
不赋值
已知: 外运动副N1的位置P、速度v、加速度a,导路上任意参考点 N2的位置P、 速度v、加速度a,构件1的长度及导路的角位置、角速度、角加速度。 求:内运动副N3的运动参量、构件①的运动参量、 r2、vr2、ar2
P 3x P 1x l1 cos 1 P 3y P 1 y l1 sin 1
P 3y P 2y 2 arctan P P 2x 3x
rrrk(m,n1,n2,n3,k1,k2,r1,r2,t,w,e,p,vp,ap)
装 配 模 式
n3 k1 k2 r2 n2 N3’
}
y
3
l
1
φ
l
2
θ
x
bark(n1,n2,n3,k,r1,r2,gam,t,w,e,p,vp,ap)
关 键 点 号 构 n n 件 1 1 号 n n ∠ n3 n1 2 3 间 间 n2 距 距 离 离 角位置角速度 角加速度,位 置 速度 加速度

第三章第三章平面机构的运动分析平面机构的运动分析

第三章第三章平面机构的运动分析平面机构的运动分析

若既有滚动又有滑 动, 则瞬心在高副接 触点处的公法线上。
三、机构中瞬心位置的确定 (续) ◆ 不直接相联两构件的瞬心位置确定
三心定理:三个彼此作平面平行运动的构 件的三个瞬心必位于同一直线上。 例题:试确定平面四杆机构在图示位置 时的全部瞬心的位置。 解: 机构瞬心数目为: K=6 瞬心P13、P24用 于三心定理来求 P24 P12 P23 2 3 4 P34 P13
e
n n' ①由极点p1向外放射的矢量代表构件相应点的绝对加速 度;
b' 注意:速度影像和加速度影像 只适用于构件。
②连接两绝对加速度矢量矢端的矢量代表构件上相应两 点间的相对加速度,其指向与加速度的下角标相反; ③也存在加速度影像原理。
三、两构件重合点间的速度和加速度的关系
已知图示机构尺寸和原动件1的运动。求重合点C的运动。 1. 依据原理 构件2的运动可以认为是随同构件1的牵连运动和构件2 相对于构件1的相对运动的合成。 2、依据原理列矢量方程式 vc2c1 B 2 C1、C2、C3 C 大小: ? √ ? 方向:⊥ CD ⊥AC ∥AB
vC 2 = vC 1 + vC 2C 1
ω1
1
ac1 4
3 大小: √ ? √ D vc1 √ ? C→D ⊥CD √ 方向:
n k r aC2 = aC3D +atC3D = aC1 +aC2C1 +aC2C1
√ ∥AB
A
a
k C 2 C1
= 2ω1vC 2C1
科氏加速度方向是将vC2C1沿 牵连角速度ω1转过90o的方向。
(1) 速度解题步骤:
★求VC ①由运动合成原理列矢量方程式
v C = v B + v CB

1.机构的运动分析

1.机构的运动分析

第二章机构的运动分析• 2.1 对机构进行运动分析的目的和方法• 2.2 用速度瞬心法进行速度分析• 2.3 相对运动图解法• 2.4 解析法•2.1 对机构进行运动分析的目的和方法一、平面机构运动分析的目的1. 求解机构中某些点的运动轨迹或位移,确定机构的运动空间2.求解机构某些构件的速度、加速度,了解机构的工作性能3.为力分析作前期工作构件的惯性力与其加速度成正比,惯性力矩与其角加速度成正比。

二、运动分析的方法复数法矩阵法矢量法速度瞬心法相对运动图解法(一)图解法(二)解析法(三)实验法2.2 用速度瞬心法进行速度分析2.2.1 瞬心的基本概念2.2.2 用瞬心法进行机构的速度分析2.2.1 瞬心的基本概念一、瞬心概念二、平面机构瞬心的数目三、瞬心位置的确定在任一瞬时,两个作平面相对运动的构件都可以看成是围绕一个瞬时重合点作相对转动。

瞬时重合点若你站在机架上看是等速重合点或同速点瞬时回转中心瞬心一、瞬心A 1(A 2)B 1(B 2)12A2A1V B2B1V P 12平面运动两构件肯定存在一个相对速度为零,绝对速度相同的点.如果你站在机架上看那就是同速点二、平面机构瞬心的数目2(1)2NN N K C -==假设机构中含有N 个构件,每两个构件之间有一个瞬心,则全部瞬心的数目三、瞬心位置的确定1.两个构件之间用运动副连接的瞬心位置2.两个构件之间没有用运动副连接的瞬心位置1.两个构件之间用运动副连接的瞬心位置(1)两个构件用转动副连接时的瞬心位置(2)两个构件用移动副连接时的瞬心位置(3)两构件用平面高副连接时的瞬心位置12 P12P12P121122(1)两个构件用转动副连接时的瞬心位置P 1212∞(2)两个构件用移动副连接时的瞬心位置半径无穷大的转动副(3)两个构件用平面高副连接时的瞬心位置纯滚动连滚带滑2.两构件之间没有用运动副连接时的瞬心位置(1)三心定理(2)瞬心多边形法的步骤(1)三心定理作平面运动的三个构件有三个瞬心,且位于同一直线上。

第2章-平面机构运动分析(解析法)

第2章-平面机构运动分析(解析法)

复数矢量法
复数矢量法是将机构看成一封闭矢量 多边形,并用复数形式表示该机构的封闭 矢量方程式,再将矢量方程式分别对所建 立的直角坐标系取投影。
Hale Waihona Puke 1、铰链四杆机构2、曲柄滑块机构
3、导杆机构
§2-4 用解析法求机构的 位置、速度和加速度
图解法的缺点:
1、分析结果精度低; 2、作图繁琐、费时,不适用于一个运动周期的分析。 3、不便于把机构分析与综合问题联系起来。 随着计算机应用的普及,解析法得到了广泛的应用。 方法:复数矢量法、矩阵法、杆组法等。 思路: 由机构的几何条件,建立机构的位置方程,然后就位置方程对 时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方 程。

机械原理-机构的运动分析

机械原理-机构的运动分析

3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a

aC a G e´
aCB
n2 ´ n2

n3
aF

加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。

机械原理第3章平面机构的运动分析

机械原理第3章平面机构的运动分析
(不包括机架), 所以有 N=n+1 。
机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理

平面机构的运动分析

平面机构的运动分析

2.第二种情况——不同构件重合点
A
1 ω1
C
2
B1 (B2 B3 )
VB2 = VB1 VB3 = VB2 + VB3B2 大小: ? ω1LAB ? 方向:⊥BD ⊥AB ∥导路
3
p
D
4
b2 b1 b3
§3-3 用相对运动图解法对机构进行运动分析
anB3 + aτB3 = aB2 + akB3B2 + aτB3B2 大小: ω32 LBD ? ω12 LAB 2 ω2vB3B2 ?
1.同一构件上两点间的速度和加速度关系
构件上C点或B点的运动,可以看
作随其上任一点(基点)A 的牵连运 A
动和绕基点A 的相对转动。
C B
§3-3 用相对运动图解法对机构进行运动分析
2.两构件上重合点间的速度和加速度关系
构件2的运动可以看作是构件2跟 着构件1的牵连运动和构件2相对构件 1的相对运动的合成运动。构件3的运 动可以看作是构件3跟着构件2的牵连 运动和构件3相对构件2的相对运动的 合成运动。
确定瞬心位置分为如下两种情况
1)通过运动副直接相联的两构件的瞬心
两构件组成移动副:
两构件组成转动副:
P12在垂直于导路的无穷远处
P12在转动副的中心
§3-2 用瞬心法对机构进行速度分析
两构件组成纯滚动高副: 纯滚动接触点的相对速度为零,接触点为速度瞬心。
两构件组成滑动兼滚动高副: 瞬心应在过接触点的公法线nn上, 具体位置由其它条件共同来确定。
图环的解速法度的分学析习,要工作求量非常大。
根据运动合成原理能 正确地列出机构的速度和加速度矢量方程 准确地绘出速度和加速度矢量图 根据矢量图解出待求量

第8章第5讲平面四杆机构的设计——解析法

第8章第5讲平面四杆机构的设计——解析法

第8章第5讲平面四杆机构的设计——解析法平面四杆机构是机械工程中常用的一种机构,它由4个连接杆组成,通过连接杆与铰链的连接方式,能够实现不同形式的运动。

平面四杆机构的设计可以采用解析法,该方法通过解析机构的运动学性质和机构参数,来确定机构的设计参数和结构尺寸。

在平面四杆机构的解析法设计中,首先需要确定机构的运动类型。

根据机构的运动要求和工作环境,可以选择不同的运动类型,如平行移动、旋转、复杂曲线轨迹等。

运动类型的选择将对机构的结构设计和参数确定产生重要影响。

接下来,需要确定机构的工作原理和结构特点。

根据机构的运动类型,可以选择不同的结构形式,如平行四杆机构、向心四杆机构、菱形四杆机构等。

不同的结构形式具有不同的运动学特性和工作原理,需要根据实际需求进行选择。

确定机构的杆件长度和角度。

在机构设计中,杆件的长度和角度是关键的设计参数。

杆件的长度决定了机构的尺寸和工作范围,而杆件的角度决定了机构的运动轨迹和运动特性。

通过分析机构的运动学方程和几何方程,可以确定机构的杆件长度和角度。

确定机构的铰链位置。

铰链的位置决定了杆件之间的连接方式和机构的运动特性。

通过分析机构的力学平衡条件和运动学方程,可以确定机构的铰链位置,使机构能够实现所需要的运动要求。

最后,进行机构的参数优化和结构优化。

根据机构的运动学性能和工作要求,可以对机构的结构参数进行优化,使机构的运动特性更加优秀。

同时,还需要对机构的结构进行优化,提高机构的强度和刚度,确保机构在工作过程中的可靠性和稳定性。

通过解析法进行平面四杆机构的设计,可以使机构的结构和性能更加合理和可靠。

这种设计方法具有简单易行、工程实用性强的特点,是一种常用的机构设计方法。

在实际的机械设计中,可以根据具体的需求和实际情况,采用解析法进行平面四杆机构的设计,以提高机构的性能和工作效果。

第3章平面机构的运动分析

第3章平面机构的运动分析

vc pcv
P
矢量方程图解法
pa 代表 V A pb 代表 V B pc 代表 V C ab 代表 V BA
b
a c
第三章 平面机构的运动分析 矢量方程图解法
概念:速度多边形 点p与各绝对速度矢端构成的图形pabc。 点p为速度极点,代表构件上速度为零的点。
注意: 1)由极点引出的矢量代表构件上同名点的绝对速度
第三章 平面机构的运动分析
任务、目的及方法
§3-1 机构运动分析的任务、目的及方法 ◆ 机构运动分析的任务
是在已知机构尺寸和原动件运动规律的情况下,确定机 构中其它构件上某些点的轨迹、位移、速度及加速度和某 些构件的角位移、角速度及角加速度。
目的: 分析、标定机构的性能指标。
位移轨迹分析
1、能否实现预定位置、轨迹要求; 2、确定行程、运动空间;
1、同一构件上两点间的关系(速度 、加速度)
刚体的平面运动原理: 刚体的平面运动是随 基点的移动与绕基点 转动的合成
铰链四杆机构,已知原动件O1A(2、2),以连杆3为 研究对象,分析同一构件上两点间的速度、加速度关系。
第三章 平面机构的运动分析 矢量方程图解法
1)速度关系
a. 取A为基点,列B点的速度矢量方程式
p aV A;p bV B;p cV C
2)连接任意两绝对速度矢端代表构件上同名点的相对速度, 指向与速度下标相反。
a cV C;A b cV C;B a bV B A
第三章 平面机构的运动分析 矢量方程图解法
3
vBA(m/s) lAB
abv
lAB
方向逆时针(将ab平移)
图形abc为构件图形ABC的速度影像,字母顺 序相同,逆时针方向。为构件图形沿3方向旋转 90°,利用影像法可方便地求出点C的速度。

第三章机构的运动分析

第三章机构的运动分析

1、构件(或原动件)—— 同一构件上点的运动分析 已知该构件上一点的运动(位置、速度、加速 度),构件的运动(角位置、角速度、角加速度), 及已知点到所求点的距离。求同一构件上其它点的 运动(位置、速度、加速度)。 如图 b-1 所示的构件 AB ,已知:
运动副A的(xA、yA、x 、yA、x 、y A)和
∵ P23为2、3两构件的同速点,
V3 =V3 P23 = V2 P23 = ω2 P12 P23μL (方向垂直向上)
P13

P12
图3-3
§3—3 用解析法作机构的运动分析
常用的解析法有: 矢量方程解析法、矩阵法、 复数矢量法、杆组法。
一、复数矢量法 复数矢量法是先写出机构位置的封闭矢量方 程式,然后将它对时间求一次和二次导数即得 速度和加速度矢量方程式,最后用复数矢量运 算法求出所需的运动参数。 机构位置的封闭矢量方程式
第三章 平面机构的运动分析
§3—1 机构运动分析的目的及方法 §3—2 用速度瞬心法作机构的速度分析 §3—3 用解析法作机构的运动分析
§3—1 机构运动分析的目的及方法
机构的运动分析,就是根据原动件给定的运动规律, 来分析这个机构其它构件上某些点的位移、轨迹、速度、 加速度,以及构件的角位移、角速度、角加速度。 一、运动分析的目的 1、进行机构的位移或轨迹分析 1)确定某些构件在运动时所需的 空间、执行构件的行程; 2)判断机构运动时各构件之间是 否会发生互相干涉; 3)考察某构件或构件上某些点能 否实现预定的位置或轨迹要求。
L3 θ3+isinθ3) + (cos
L4
(cos θ2+isinθ2) = L1 (cosθ1+isinθ1)+ L 2

第二章 平面机构的运动分析图解法及解析法3

第二章  平面机构的运动分析图解法及解析法3
X
l1 l 2 l 4 l 3
将上述矢量方程向 X,Y轴投影得:
x : l 1 cos1 l 2 cos2
l 4 l 3 cos3 ( 1 ) y : l 1 sin 1 l 2 sin 2 l 3 sin 3 (2)
x : l 1 cos1 l 2 cos2 l 4 l 3 cos3 y : l 1 sin 1 l 2 sin 2 l 3 sin 3
位移方程 速度方程 轨迹(角位移) 速度(角速度) 加速度(角加速度)
s s (t ) v s ds dt a v dv dt

加速度方程
方法:①瞬心法 ②图解法 ③解析法
求机构的速度和角速度 简易直观,精度低,有限个位置 过程规范,结果完整
2.2 用瞬心法进行机构的速度分析 (Instant center of velocity ) 一、速度瞬心的概念 定义:两个互作平面平行运动的刚体上绝对速度相等
A B B C
2

2
C
2
)
同理,对于2 也可求得:
D 2 l 1 l 2 sin 1 F l
2 1
“”代表机构中C点在AD之下。
D sin 2 E cos 2 F 0
E = 2 l 2 ( l 1 cos1 l 4 ) 2 l 1 l 4 cos1
l
2 2
② 确定瞬心数目和位置 N=3 P12在高副法线n-n上,
P13 P23 P12
3
P23
n

2
③求构件2的速度
V2 VP12 1 P 13 P 12 L
(方向向上)
P13 P 12
w1

第三章平面机构的运动分析十字滑块联轴器运动简图

第三章平面机构的运动分析十字滑块联轴器运动简图

第三章平面机构的运动分析十字滑块联轴器运动简图第三章平面监管机构的运动分析§3-1 研究机构运动分析最终目标的目的和方法1、运动分析:已知各构件尺寸和原动件的运动规律→从动件各点或构件的(角)位移、(角)速度、(角)加速度。

2、目的:来判断运动参数是否满足设计要求?为后继设计提供原始参数3.方法:图解法:形象直观、概念清晰。

精度不高?(速度瞬心法,相对运动图解法)解析法:高的精度。

工作量大?实验法:§3-2 速度瞬心法及其在机构速度建模上的应用1、速度瞬心:两构件作平面相对运动时,在任意瞬间总能找到这样的点:两构件的相对运动可以认为是绕该点后的转动。

深入概括速度瞬心:1)两构件上相对速度为零的重合点,即同速点; 2)瞬时具有瞬时性(时刻不同,位置不同);3)平行线两构件的速度瞬心位于无穷远,表明两构件的表明角速度相同或仅作相对移动;4)相对速度瞬心:两构件都是运动的;绝对速度瞬心:两构件之一是相对运动的(绝对速度为零的点后;并非接触点的变化速度快);2、咨询机构中瞬心的数目年K:K=n(n-1)n ——构件数(包括机架) 23、瞬心位置的确定1)直接观察法(定义法,由于直接形成运动副的呈现出两构件);2N=P23设:Vk13、1K3)曲柄滑块机构N=4⨯(4-1)=624)直动平底从动件轮轴机构5)图示机构,已知M点的速度,用速度瞬心法求出所有的瞬心,并求出VC,VD,i12。

解:直接观察:P12、P23、P34;P14=(n_-n). × VM ; P13= P12P23. × P14P34P24= P12P14 × C·P24P34 ; ω1= VM/ P14M ; VB= P14B·ω1 ω2=VB/ P12P24 ; VC= P24C·ω2ω1/ω2=( VM/ P14M)/( VB/ P12P24); VD= P24D·ω2速度瞬心法小结:1)速度瞬心法仅用于求解速度问题,不能用于求解加速度环境问题。

第3章 平面机构的运动分析习题解答

第3章 平面机构的运动分析习题解答

第3章 平面机构的运动分析本章关键词:速度瞬心法、矢量方程图解法、解析法。

3-1 何谓速度瞬心?相对瞬心与绝对瞬心有何异同点?[解答] (1)互作平面相对运动的两构件上瞬时速度相等的重合点称为两构件的速度瞬心,简称瞬心。

(2)区分相对瞬心与绝对瞬心关键看瞬心处的绝对速度是否为零,为零则称为绝对瞬心;否则则称为相对瞬心。

3-2 何谓三心定理?何种情况下的瞬心需用三心定理来确定?[解答] (1) 所谓三心定理,三个彼此作平面运动的构件的三个瞬心位于同一直线上。

(2)确定不通过运动副直接相连的两构件间的瞬心位置需借助三心定理。

3-3 [解答]3-4 [解答]由三心定理,求得齿轮1与齿轮3的同速重合点,也即相对瞬心13P 。

由瞬心的性质可得: l l P P P P P v μωμω361331613113==传动比 1613361331P P P P =ωω (如需尺寸直接从图上量取) 3-6题[解答] mm mm l /2=μ(1)由三心定理确定出构件2、4的等速重合点,也即相对瞬心24P 。

由瞬心性质得 l l P P P P P v μωμω241442412224== ) ( 4.5rad/s (49/109)10 2414241224顺时针=⨯==P P P P ωωs mm l v CD C /4055.4904=⨯==ω 方向如图示(2)由三心定理确定出构件1、3的等速重合点,也即绝对瞬心13P 。

在此瞬时,可将构件3视为绕点13P 转动,从而求得构件3的BC 线上速度最小的点E 。

s rad P P P P /5.25.11930102313231223=⨯==ωω 方向如图示 s mm E P v l E /3552715.2133=⨯⨯==μω 方向如图示 (3)结合(2)的分析可知,要使0=C v ,须满足C 、E 两点重合,而要满足C 、E 两点重合,只需令A 、B 、C 三点共线即可。

机械原理 第3章 平面机构的运动分析

机械原理 第3章 平面机构的运动分析

VD5 = VD4+ VD5D4 大小 ? √ ?
方向 ⊥DF √ ∥移动方向
ω5= VD5/LDF
aD5
= aD5n +
a
t D5
=aD4
+
aD5D4k (哥氏加速度) +
aD5D4r
大小 ω52* LDF ? √ 2ω4* VD5D4

方向
√ D→F ⊥DF
VD5D4方向沿ω4转过900
∥移动方向
二.实例分析
1、矢量方程图解法的基本原理和作法 原理:相对运动原理 方法:对矢量方程进行图解 1)同一构件上两点间速度和加速度的关系 同一构件上一点的运动可看成是随该构件上另 一点的平动和绕该点的转动的合成。
VB=VA+VBA aB=aA+aBAn+aBAt
1 同一构件两点间的和关系
构件2:已知B和B
1)去除局部自由度; 2)剔除虚约束;(D?)
3)正确确定运动副的数目; 4)构件编号; 5) 列式计算 • F=3×5-2×6-1×2
•用速度瞬心作机构的速度分析
•用矢量方程图解法作机构的速度分 析及加速度分析
第三章 平面机构的运动分析
3-1 平面机构运动分析的任务目的和方法 平面机构的运动分析是指 :
已知原动件的运动规律、机构尺寸,求其 它构件上某点的运动(s、v、a)
方法:
1 、图解法 特点: 形象直观,精度低,用于求个别
位置的运动特性
VC = VB + VCB
大小 ? √

方向∥X-X ⊥AB ⊥BC
设速度比例尺,作速度图,
设p(小写)为速度极点,
速度极点的速度为零。

用解析法进行机构的运动分析

用解析法进行机构的运动分析

实例二:凸轮机构的运动分析
凸轮机构的定义: 由凸轮和从动件 组成的机构
凸轮机构的特点: 可以实现复杂的 运动规律
凸轮机构的应用: 广泛应用于汽车、 机械、电子等领 域
凸轮机构的运动分 析:通过解析法进 行运动轨迹、速度 和加速度的分析
实例三:齿轮机构的运动分析
齿轮机构的组成:包括齿轮、轴、轴承等 运动分析的目的:了解齿轮机构的运动规律优化设计 解析法的应用:通过解析法求解齿轮机构的运动参数 实例分析:对某齿轮机构进行运动分析得出运动参数和运动规律
解析法进行机构的运
01
机构运动分析的解析 法
02
解析法的实施步骤
04
解析法的优缺点
05
解析法的基本原理
03
解析法的应用实例
06
解析法概述
解析法的定义
解析法是一种通过数学方法求解机构运动问题的方法 解析法主要应用于机构运动学和动力学分析 解析法可以求解机构的位移、速度和加速度等运动参数 解析法可以应用于各种类型的机构如平面机构、空间机构等
添加标题
添加标题
验证求解结果的正确性
结果分析
确定机构的自由 度
建立机构的运动 方程
求解运动方程得 到机构的运动规

分析机构的运动 特性如速度、加
速度、位移等
验证解析法的准 确性和可靠性
提出改进措施提 高机构的性能和
效率
优化设计
确定目标:明确优化设计的目标和要求 建立模型:建立解析法的数学模型 求解模型:求解解析法的数学模型得到最优解 验证结果:验证优化设计的结果是否满足要求 调整优化:根据验证结果调整优化设计直至满足要求
解析法的应用实 例
实例一:平面连杆机构的运动分析

平面连杆机构的运动分析和设计实用教案

平面连杆机构的运动分析和设计实用教案
其 中 Lmin :最短杆长度 L m ax :最长杆长度
P, Q: 其余两杆的长度
Grashof机构(jīgòu) : 满足条件 Lmin + Lmax ≤ P +Q的机构(jīgòu)。
第15页/共57页
第十六页,共57页。
平面(píngmiàn)四杆机构存在曲柄的条 件
Lmin + Lmax ≤ P +Q 最短杆为机架或连架杆
动画链接(liàn jiē)
第23页/共57页
第二十四页,共57页。
讨论:机构(jīgòu)的初始装配状态与
可行域
在 机构的运动过程中是不会发生变化的原因
第24页/共57页
第二十五页,共57页。
急回运动
当曲柄等速回转的情况下,通常 (tōngcháng)把从动件往复运动速度快慢 不同的运动称为急回运动。
a21x1 a22 x2 ...... a2n xn b2
...........
an1x1 an2 x2 ...... ann xn bn
x , x ,..... x 其中
为 待求变量。
12
n
方 程组可以简写为
( 5---5´)
Ax b
则 方程组的解为
(5---6)
x A1b
第38页/共57页
c (d a) b
acd b
两 两相加
动画演示
ac ab ad
最短杆与最长杆之和小于等于其它两杆长度之和
a最短
第14页/共57页
第十五页,共57页。
补充:Grashof曲柄存在(cúnzài)条

Lmin + Lmax ≤ P +Q 则最短杆两端的转动(zhuàn dòng)副均为周转副;其余转 动(zhuàn dòng)副为摆转副。

第三章 平面机构的运动分析

第三章 平面机构的运动分析

第三章 平面机构的运动分析
➢机构中瞬心的数目
因为每两个构件就有一个瞬心,所以由 m个构件(含机架)组成的机构,总的瞬 心数K为
k = m(m-1) / 2
m----机构中的构件(含机架)数。
第三章 平面机构的运动分析
➢机构中瞬心位置的确定
(1)通过运动副直接连接的两构件的瞬心
(2)不直接相连的两构件的瞬心
例6:如图所示为一导杆机构,其特点是铰链点B2不在
导杆3的导杆线上。已知原动件1以匀角速度1 转动。 试求导杆3的角速度3 和角加速度 3
第三章 平面机构的运动分析
例7 如图a所示为一平底摆动从动件盘形凸轮机构, 平底2与凸轮1在点K相切成高副。已知凸轮1的匀角
速度为1 ,求从动件2的角速度 2 和角加速度 2
va ve vr
第三章 平面机构的运动分析
牵连运动为平动时的加速度合成定理:当牵连运 动为平动时,动点在每一瞬时的绝对加速度等于牵连 加速度与相对加速度的矢量和。
aa ae ar
牵连运动为转动时的加速度合成定理:当牵连运动

为转动时,动点的每一瞬时的绝对加速度等于相对加 速度、牵连加速度与哥氏加速度三者的矢量和。
基本要求: (1)明确理解速度瞬心(绝对速度瞬心和相对 速度瞬心)的概念。并能运用“三心定理”确 定一般平面机构多瞬心的位置。 (2)能以相对运动图解法对一般平面机构进行 速度分析和加速度分析。 (3)能以解析法写出一般平面机构的位置方程、 速度方程和加速度方程。
第三章 平面机构的运动分析
重点: (1)速度瞬心以及“三心定理”的运用。 (2) 矢量方程图解法,一般平面机构的速度多 边形及加速度多边形的作法。 难点: 速度瞬心和矢量方程图解法求机构的加速度, 特别是哥氏加速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面运动机构的解析分析
平面运动机构,又称平面机构,是把空间存在的弯曲运动转换成平面运动的机构。

它由轮,杆,连杆,卡盘和联接件等组成,可以实现运动变换,连接机构并使它们运动起来。

二、原理
平面运动机构的运动原理可以用描述其复杂运动变换的正确力学分析性表示,即依据关节运动的时间和位置特性,建立由它们之间关系的动力学分析。

按动力学研究,运动机构的运动变换可以表示为运动目标函数的求解。

这个函数由各个部分的动力学方程构成,而这些方程的参数由运动结构参数决定。

三、结构
平面运动机构的基本结构为外部驱动的线性滑动,内部铰接的斜杠摆动,以及马达和编码器等控制系统组成。

它由轮,杆,连杆,卡盘等零部件构成,由这些部件通过滑动和摆动或者滚动接触,实现精确、结实的连接,完成运动变换使得机构动起来。

四、应用
平面运动机构在工业机械领域有广泛的应用,主要用于连接某些空间存在的机构,把空间存在的弯曲运动转换成平面运动,实现变幅和变分功能,如滚针位置机构的工作,针对材料的运动机构等。

五、优点
平面运动机构具有结构简单,制造简便,安装调试简单,操作可靠,维护方便等优点,在工业领域受到广泛的认可和应用。

六、缺点
虽然平面运动机构各种优点,但它也有一些缺点,如它的运动受到限制,运动范围受到限制,性能受到限制,精确度受到限制等。

总结
平面运动机构是一种利用空间存在的机构把弯曲运动转换成平面运动的机构,它具有结构简单,制造简便,安装调试简单,操作可靠,维护方便等优点,广泛应用于工业生产领域。

但它也有一定的缺点,要求用户谨慎考虑选择性能要求,保证机构的精准性能。

相关文档
最新文档