高二上数学知识点空间向量

合集下载

专题1.1 空间向量及其运算(七个重难点突破)(解析版)-高二数学上学期重难点和易错点突破

专题1.1 空间向量及其运算(七个重难点突破)(解析版)-高二数学上学期重难点和易错点突破

专题1.1空间向量及其运算知识点1空间向量的有关概念1.空间向量的定义及表示名称方向模表示法零向量任意0记为0单位向量11a =或=1AB 相反向量相反相等记为a 共线向量相同或相反//a b 或//AB CD 相等向量相同相等=a b 或=AB CD知识点2空间向量的线性运算1.空间向量的加减运算加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算三角形法则语言叙述共起点,连终点,方向指向被减向量图形叙述2.空间向量的数乘运算定义与平面向量一样,实数λ与空间向量a 的乘积a λ仍然是一个向量,称为空间向量的数乘几何意义λ>a λ 与向量a 的方向相同a λ 的长度是a 的长度的λ倍0λ<a λ 与向量a 的方向相反λ=0a λ=,其方向是任意的3.空间向量的运算律知识点3共线向量与共面向量1.直线l 的方向向量定义:把与a平行的非零向量称为直线l 的方向向量.2.共线向量与共面向量的区别共线(平行)向量共面向量定义位置关系表示若干空间向量的有向线段所在的直线互相平行或重合,这些向量叫做共线向量或平行向量平行于同一个平面的向量叫做共面向量特征方向相同或相反特例零向量与任意向量平行充要条件共线向量定理:对于空间任意两个向量()0a b b ≠ ,,//a b 的充要条件是存在实数λ使=a bλ 共面向量定理:若两个向量a b,不共线,则向量p 与向量a b ,共面的充要条件是存在唯一的有序实数对(x ,y ),使p xa yb=+对空间任一点O ,)1(OP xOA yOB x y =++=空间中,,,P A B C 四点共面的充要条件是存在有序实数对(,,)x y z ,使得对空间中任意一点O ,都有(1OP xOA yOB zOC x+y +z ==++其中)重难点1空间向量的线性运算1.如图,在空间四边形ABCD 中,F ,M ,G 分别是BD ,BC ,CD 的中点,化简下列各式:(1)()12AB BC BD ++ ;(2)()12AG AB AC -+ ;(3)AC GD MB ++ .【答案】(1)AG(2)MG(3)AF【分析】(1)由于G 是CD 的中点,所以()12BC BD BG +=,再根据空间向量的加法运算即可求出结果;(2)由于M 是BC 的中点,所以()12AB AC AM +=,再根据空间向量的减法运算即可求出结果;(3)由于M ,G 分别BC ,CD 的中点,所以11,22MB CB GD CD == ,又F 是BD 的中点,()12CD CB CF +=,再根据空间向量的加法运算即可求出结果;(1)解:因为G 是CD 的中点,所以()12BC BD BG +=,所以,()12AB BC BD AB BG AG ++=+=;(2)解:因为M 是BC 的中点,所以()12AB AC AM +=,所以,()1=2AG AB AC AG AM MG -+-= ;(3)解:因为M ,G 分别BC ,CD 的中点,所以11,22MB CB GD CD == ,又F 是BD 的中点,()12CD CB CF +=,所以,()111222AC GD MB AC CD CB AC CD CB AC CF AF ++=++=++=+=.2.如图,点M ,N 分别是四面体ABCD 的棱AB 和CD 的中点,求证:()12MN AD BC =+.【答案】详见解析.【分析】取BD 的中点P ,连接PM ,PN ,由12MP AD = ,12PN BC = ,MN MP PN =+即可求证.【详解】取BD 的中点P ,连接PM ,PN ,在ABD △中,12MP AD = ,在BCD △中,12PN BC =,所以()111222AD BC MN MP P D N A BC =+=+=+ .3.在正六棱柱111111ABCDEF A B C D E F -中,化简1AF AB BC -+,并在图中标出化简结果.【答案】1BE,作图见解析【分析】先利用正六棱柱的性质证得11BC F E =,从而利用空间向量的线性运算即可得解.【详解】因为六边形ABCDEF 是正六边形,所以//BC EF ,BC EF =,又在正六棱柱111111ABCDEF A B C D E F -中,1111,//E F EF E F EF =,所以1111//,BC E F BC E F =,故11BCE F 是平行四边形,则11BC F E =,所以111111AF AB BC AF F E AB AE AB BE -+=+-=-= ,向量1BE在图中标记如下,4.如图.空间四边形OABC 中,OA a,OB b,OC c === ,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =()A .121232a b c-+ B .221332a b c+-C .111222a b c+- D .211322a b c-++ 【答案】D【分析】根据空间向量的加减和数乘运算直接求解即可.【详解】()1221123322MN ON OM OB OC OA a b c =-=+-=-++.故选:D.5.如图所示,在长方体ABCD 一A 1B 1C 1D 1中,11111,,A B a A D b A A c ===,E ,F ,G ,H ,P ,Q 分别是AB ,BC ,CC 1,C 1D 1,D 1A 1,A 1A 的中点,求证:0EF GH PQ ++=.【答案】证明见解析.【分析】先利用基底,,a b c 表示出,,EF GH PQ ,进而证得0EF GH PQ ++=成立.【详解】11111,,A B a A D b A A c ===,则111111,,222222EF a b GH a c PQ c b =+=--=-,则1111110222222EF GH PQ b a c c b⎛⎫⎛⎫++=++--+-= ⎪ ⎪⎝⎭⎝⎭.6.如图,设A 是BCD △所在平面外的一点,G 是BCD △的重心.求证:()13AG AB AC AD =++.【答案】证明见解析.【分析】连接BG ,延长后交CD 于点E ,利用G 是BCD △的重心即可得到AG与,,AB AC AD 之间的关系.【详解】连接BG ,延长后交CD 于点E ,连接AE,由G 为BCD △的重心,可得CE DE =,=2BG GE,则()=2AG AB AE AG -- ,则21=33AG AE AB + ,又()1=2AE AC AD + ,则()21111=32233AG AC AD AB AB AC AD ⎛⎫++=++ ⎪⎝⎭.7.如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点.记AB a =,AD b = ,1AA c =则下列正确的是()A .1122AM a b c=-++ B .1122AM a b c=+-C .1122AM a b c=++ D .1122AM a b c=++ 【答案】C【分析】利用平行六面体的性质以及空间向量的线性运算即可求解.【详解】由题意可知:在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,所以M 为11A C 的中点,则1121122A M A C AC ==,所以1111111122AM AA A M AA A C AA AC=+=+=+ 111112222AA AB AC a b c =++=++ ,故选:C .重难点2共线问题8.设a ,b 是空间中两个不共线的向量,已知9AB m =+ a b ,2BC =-- a b ,2DC =-a b ,且A ,B ,D 三点共线,则实数m =;【答案】3-;【分析】A ,B ,D 三点共线,故存在实数λ,使得AB BD λ= ,再由已知条件表示出BD 与AB,建立方程组可求出m 和λ值.【详解】因为2BC =-- a b ,2DC =-a b ,所以()223BD BC CD BC DC =+=-=----=-+a b a b a b ,因为A ,B ,D 三点共线,所以存在实数λ,使得AB BD λ=,即()93m λ+=-+a b a b ,所以93m λλ=-⎧⎨=⎩,解得3m λ==-.【点睛】本题考查了空间向量中三点共线问题,共线向量定理常常用来解决此问题.9.在正方体1111ABCD A B C D -中,点E ,F 分别是底面1111D C B A 和侧面11CC D D 的中心,若()10EF A D λλ+=∈R,则λ=.【答案】12-/-0.5【分析】作图,连接连接11A C ,1C D ,构造三角形中位线解题﹒【详解】如图,连接11A C ,1C D ,则点E 在11A C 上,点F 在1C D 上,易知1EF A D ,且112EF A D =,∴112EF A D = ,即1102EF A D -= ,∴12λ=-.故答案为:12-10.(多选)若空间中任意四点O ,A ,B ,P 满足OP=m OA +n OB ,其中m+n=1,则结论正确的有()A .P ∈直线ABB .P ∉直线ABC .O ,A ,B ,P 四点共面D .P ,A ,B 三点共线【答案】ACD【解析】由题意可得1m n =-,代入向量式化简可得AP nAB =,可得向量共线,进而可得三点共线,可得结论.【详解】解:因为1m n +=,所以1n =-,所以OP=()1OA B n n O -⋅+⋅ ,即OP OA -=n (OB OA - ),即AP =n AB,所以AP AB 与共线.又AP AB ,有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB.因为OP=m OA +n OB ,故O ,A ,B ,P 四点共面.故答案为:ACD【点睛】本题考查平面向量的共线问题,熟练表示出向量共线的条件是解决问题的关键,属中档题.11.已知5a = ,a b λ=.(1)若b 与a的方向相同,且7b = ,则λ的值为;(2)若b 与a的方向相反,且7b = ,则λ的值为.【答案】5757-【分析】根据向量共线可得答案.【详解】由于57a b = ,所以当a ,b 同向时,57λ=;当a ,b 反向时,57λ=-.故答案为:①57;②57-.12.已知{,,}a b c 是空间的一个基底,下列不能与m a b =- ,n b c =-构成空间的另一个基底的是()A .a c- B .a c+C .a b+D .a b c++ 【答案】A【分析】根据基底向量任意两向量不共线,三个向量不共面可判断求解.【详解】由m a b =- ,n b c =- ,两式相加可得a c m n -=+,即a c -r r 与,m n →→共面故a c -r r不能与m a b =- ,n b c =- 构成空间的另一个基底.故选:A13.已知平面单位向量1e ,2e 满足1212e e ⋅= ,且12a xe e =+,x R ∈,122(1)b e e λλ=+- ,若使1b a -= 成立的正数λ有且只有一个,则x 的取值范围为.【答案】{}2/2x =【分析】由向量的模的计算公式得223310x x λλ-+-=,再根据一元二次方程的根的判别式可求得答案.【详解】解:12a xe e =+,x R ∈,122(1)b e e λλ=+- ,则12||(2)(11)1b a x e e λλ-=-+--= ,所以212(2)1x e e λλ--= ,所以22(2)(2)1x x λλλλ---+=,故223310x x λλ-+-=.由于使||1b a -=成立的正数λ有且只有一个,故关于以λ为未知数的一元二次方程有且只有一个正实数根,故()2291210x x ∆=--=,解得2x =±,当2x =-时,0λ<故舍去,则2x =.故x 的范围是唯一一个实数{}2,故答案为:{}2.14.如图,在正方体1111ABCD A B C D -中,E 在11A D 上,且112A E ED =,F 在对角线A 1C 上,且12.3A F FC = 若1,,AB A b c a D AA === .(1)用,,a b c表示EB .(2)求证:E ,F ,B 三点共线.【答案】(1)23a EB c b =--;(2)证明见解析.【分析】(1)由已知得111112++++3EB EA A A AB D A A A AB == ,由此可得答案;(2)由已知得FB 35EB = ,由此可得证.【详解】解:(1)因为112A E ED =,1,,AB A b c a D AA === ,所以1111122+++++33EB EA A A AB D A A b A c a AB ===--,所以23a EB cb =-- ;(2)12.3A F FC = 11112++++5FB FA A A AB CA A A AB== ()112++++5CB BA AA A A AB =()2++5b ac c a =--- 323323555535a b a b c c EB ⎛⎫=--=--= ⎪⎝⎭,又EB 与FB相交于B ,所以E ,F ,B 三点共线.15.如图,已知,,,,,,,,O A B C D E F G H 为空间的9个点,且OE kOA = ,OF kOB = ,OH kOD =,AC AD m AB =+ ,EG EH mEF =+,0,0k m ≠≠.求证:(1)//AC EG;(2)OG kOC = .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由题意,EG EH mEF =+ ,转化,EH OH OE EF OF OE =-=- ,代入结合题干条件运算即得证;(2)由题意,OG OE EG =+,又,OE kOA EG k AC == ,运算即得证【详解】证明:(1)()EG EH mEF OH OE m OF OE =+=-+-()()k OD OA km OB OA =-+- ()k AD km AB k AD m AB k AC=+=+= ∴//AC EG .(2)()OG OE EG kOA k AC k OA AC kOC =+=+=+= .重难点3向量的共面问题16.已知空间A 、B 、C 、D 四点共面,且其中任意三点均不共线,设P 为空间中任意一点,若64BD PA PB PC λ=-+,则λ=()A .2B .2-C .1D .1-【答案】B【分析】根据空间四点共面的充要条件代入即可解决.【详解】64BD PA PB PC λ=-+,即64PD PB PA PB PCλ=-+- 整理得63PD PA PB PCλ=-+由A 、B 、C 、D 四点共面,且其中任意三点均不共线,可得631λ-+=,解之得2λ=-故选:B17.已知点M 在平面ABC 内,并且对空间任一点O ,1132OM xOA OB OC =++,则x =.【答案】16【分析】根据四点共面的知识列方程,由此求得x .【详解】由于M ∈平面ABC ,所以11132x ++=,解得16x =.故答案为:1618.已知,,A B M 三点不共线,对于平面ABM 外的任意一点O ,判断在下列各条件下的点P 与点,,A B M 是否共面.(1)3OB OM OP OA +=- ;(2)4OP OA OB OM =-- .【答案】(1)共面(2)不共面【分析】(1)根据空间向量的共面定理及推论,即可求解;(2)根据空间向量的共面定理及推论,即可求解;【详解】(1)解:因为,,A B M 三点不共线,可得,,A B M 三点共面,对于平面ABM 外的任意一点O ,若3OB OM OP OA +=-,即111333OP OA OB OM =++ ,又因为1111333++=,根据空间向量的共面定理,可得点P 与,,A B M 共面.(2)解:因为,,A B M 三点不共线,可得,,A B M 三点共面,对于平面ABM 外的任意一点O ,若4OP OA OB OM =--,此时41121--=≠,根据空间向量的共面定理,可得点P 与,,A B M 不共面.19.已知12e e,为两个不共线的非零向量,且12AB e e =+ ,1228AC e e =+ ,1233AD e e =- ,求证:A B C D ,,,四点共面.【答案】证明见解析【分析】用共面向量定理证明,,AC AB AD共面,即可得四点共面.【详解】设AC x AB y AD =+,则()()1212122833e e x e e y e e +=++- ,()()1223830x y e x y e ∴--+-+= ,又12e e,为两个不共线的非零向量,230830x y x y --=⎧∴⎨-+=⎩,51x y =⎧∴⎨=-⎩,5AC AB AD ∴=- ,A B C D ∴,,,四点共面,故原命题得证.20.i ,j ,k是三个不共面的向量,22AB i j k =-+ ,23BC i j k =-+ ,35CD i j k λ=+- ,且A ,B ,C ,D 四点共面,则λ的值为.【答案】-3【分析】由题知存在实数s ,t ,使得CD sAB tBC =+,代入条件,比较系数列方程求解.【详解】若A ,B ,C ,D 四点共面,则存在实数s ,t ,使得CD sAB tBC =+,即()()35222-+3i j k s i j k t i j k λ+-=-++ ,所以232-52+3s ts t s t λ=+⎧⎪=-⎨⎪-=⎩,解得1s =-,-1t =,-3λ=.故答案为:-3.21.下列条件中,一定使空间四点P 、A 、B 、C 共面的是()A .OA OB OC OP++=-uu r uu u r uuu r uu u r B .OA OB OC OP++=uu r uu u r uuu r uu u r C .2OA OB OC OP++=uu r uu u r uuu r uu u r D .3OA OB OC OP++= 【答案】D【分析】要使空间中的P 、A 、B 、C 四点共面,只需满足OP xOA yOB zOC =++uu u r uu r uu u r uuu r,且1x y z ++=即可.【详解】对于A 选项,OP OA OB OC =---uu u r uu r uu u r uuu r,()()(1)1131-+-+-=-≠,所以点P 与A 、B 、C 三点不共面;对于B 选项,OP OA OB OC =++,11131++=≠,所以点P 与A 、B 、C 三点不共面;对于C 选项,111222OP OA OB OC =++,111312222++=≠,所以点P 与A 、B 、C 三点不共面;对于D 选项,111333OP OA OB OC =++ ,1111333++=,所以点P 与A 、B 、C 三点共面.故选:D.22.若{a ,b ,c}构成空间的一个基底,则下列向量不共面的是()A .b c +,b ,b c -r r B .a ,a b + ,a b - C .a b + ,a b - ,c D .a b +,a b c ++ ,c 【答案】C【分析】由平面向量基本定理逐项判断可得答案.【详解】由平面向量基本定理得:对于A 选项,12= b ()+ b c 12+()-b c ,所以()+ b c ,b ,()- b c 三个向量共面;对于B 选项,12= a ()+ b a 12+()a b -,a ,a b + ,a b - 三个向量共面;对于C 选项,则存在实数,x y 使得()()()()=++-=++-c x a b y a b x y a x y b ,则,,a b c共面,与已知矛盾,因此C 选项中向量不共面;对于D 选项,()++=++ c a b a b c ,所以三个向量共面;故选:C .知识点1空间向量的夹角如图,已知两个非零向量a b ,,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a b ,的夹角,记作a b ,,夹角的范围:[]0,π,特别地,如果π2a b = ,,那么向量a b ,互相垂直,记作a b ⊥ 知识点2空间向量的数量积运算1.空间向量的数量积已知两个非零向量a b ,,则cos ,a b a b 〈〉叫做a b,的数量积,记作a b ⋅ ,即cos ,a b a b a b ⋅= 〈〉.零向量与任意向量的数量积为0,即00a ⋅=.2.数量积的运算律数乘向量与数量积的结合律()()a b a b Rλλλ⋅⋅∈=,交换律a b b a ⋅=⋅ 分配律()a b c a b a c⋅⋅⋅ +=+3.投影向量在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ||,bc a a b b =〈〉,向量c 称为向量a 在向量b 上的投影向量.4.数量积的性质若a,b 为非零向量,则(1)0a b a b ⊥⇔⋅= ;(2)()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向;(3)2a a a ⋅= ,a a a =⋅;(4)a b cos a,b a b⋅〈〉=;(5)a b a b⋅≤ 重难点4空间向量数量积的运算23.在正四面体-P ABC 中,棱长为1,且D 为棱AB 的中点,则PD PC ⋅的值为().A .14-B .18-C .12-D .12【答案】D【分析】在正四面体-P ABC 中,由中点性质可得()12PD PA PB =+ ,则PD PC ⋅ 可代换为()12P PA B C P ⋅+,由向量的数量积公式即可求解.【详解】如图,因为D 为棱AB 的中点,所以()12PD PA PB =+,()()1122PD PC P P C P A PB PA P C PC B ⋅=⋅⋅⋅+=+ ,由正四面体得性质,PA 与PC 的夹角为60°,同理PB 与PC的夹角为60°,1PA PB PC === ,111cos602PA PC P PB C ⋅⋅==⨯⨯︒= ,故21211122PC PD ⎛⎫⋅=⨯+= ⎪⎝⎭ ,故选:D.24.如图,在直三棱柱111ABC A B C -中,13BB =,E 、F 分别为棱AB 、11A C 的中点,则1EF BB =⋅.【答案】9【分析】分析可知1BB AB ⊥,111BB A C ⊥,利用空间向量数量积的运算性质可求得1EF BB ⋅的值.【详解】因为1BB ⊥平面ABC ,AB ⊂平面ABC ,则1BB AB ⊥,同理可知111BB A C ⊥,所以,()111111111122EF BB EA AA A F BB BA BB A C BB ⎛⎫⋅=++⋅=++⋅ ⎪⎝⎭2211111111922BA BB BB A C BB BB =⋅++⋅==.故答案为:9.25.在棱长为1的正方体1111ABCD A B C D -中,M 为棱1CC 上任意一点,则AM BC ⋅ =.【答案】1【分析】根据空间向量的线性运算及数量积的运算性质求解.【详解】如图,在正方体中,M 为棱1CC 上任意一点,则11CM CC AA λλ==,01λ≤≤,()()21001AM BC A AC CM AB AD AA D D AD A λ∴=+⋅=++⋅⋅=++= .故答案为:1.26.给出下列命题:①空间中任意两个单位向量必相等;②若空间向量,a b 满足a b =r r ,则a b = ;③在向量的数量积运算中()()a b c a c b ⋅=⋅r r r r r r;④对于非零向量c ,由a c b c ⋅=⋅ ,则a b =,其中假命题的个数是.【答案】4.【详解】对于①:空间中任意两个单位向量的方向不能确定,故不一定相等,故①错误;对于②:空间向量,a b 满足a b =r r ,但方向可能不同,故不能得到a b =,故②错误;对于③:数量积运算不满足结合律,故③错误;对于④:由a c b c ⋅=⋅,可得cos ,cos ,a c a c b c b c <>=<> ,所以cos ,cos ,a a c b b c <>=<> ,无法得到a b =,故④错误.所以错误的命题个数为4.故答案为:427.已知空间四面体D -ABC 的每条棱长都等于1,点E ,F 分别是AB ,AD 的中点,则FE CD ⋅等于()A .14B .14-CD.【答案】B【分析】由题意可得2DB FE =,再利用空间向量的数量积运算即可得到答案.【详解】因为点,E F 分别是,AB AD 的中点,所以//DB FE ,2DB FE =,所以2DB FE =,则12FE DB = ,又因为空间四面体D -ABC 的每条棱长都等于1,所以DBC △是等边三角形,则60BDC ∠=︒,所以111cos 60224FE CD DB DC DB DC ⋅=-⋅=-⋅︒=- .故选:B ..28.设a 、b为空间中的任意两个非零向量,有下列各式:①22a a = ;②2a b baa⋅=;③()222a b a b ⋅=⋅ ;④()2222a b a a b b -=-⋅+ .其中正确的个数为()A .1B .2C .3D .4【答案】B【分析】利用空间向量数量积的定义可判断①、②、③;利用空间向量数量积的运算律可判断④.【详解】对于①,222cos 0a a a == ,①正确;对于②,向量不能作比值,即ba错误,②错误;对于③,设a 、b的夹角为θ,则()()2222222cos cos a ba b a b a b θθ⋅=⋅=⋅≤⋅,③错误;对于④,由空间向量数量积的运算性质可得()2222a ba ab b -=-⋅+,④正确.故选:B.【点睛】本题考查利用空间向量数量积的定义与运算性质判断等式的正误,属于基础题.29.已知向量a b ⊥ ,向量c 与,a b 的夹角都是60︒,且1,2,3a b c ===,试求(1)()22a b c +-;(2)()()323a b b c -⋅-.【答案】(1)11(2)72-【分析】(1)计算30,,32a b a c b c ⋅=⋅=⋅=,展开计算得到答案.(2)()()2323333223a b b c a b a c b b c -⋅-=⋅-⋅-+⋅ ,代入计算得到答案.【详解】(1)向量a b ⊥ ,向量c 与,a b 的夹角都是60︒,且1,2,3a b c ===,22231,4,9,0,cos60,cos6032a b c a b a c a c b c b c ===⋅=⋅=⋅︒=⋅=⋅︒=,()()22222222241169031211a b c a b c a b a c b c +-+++⋅-⋅-⋅=+++--==;(2)()()2277323333223081822a b b c a b a c b b c -⋅-=⋅-⋅-+⋅=--+=-30.在三棱锥D ABC -中,已知2AB AD ==,1BC =,3AC BD ⋅=-,则CD =【分析】用,AB AD 表示BD,根据条件列出方程建立,,AC BAC DAC ∠∠的关系,利用等量代换计算22||CD AD AC =- 即得.【详解】设,BAC DAC αβ∠=∠=,显然||||1AC AB BC -==,则222||||cos 1AC AB AC AB α+-⋅= ,即24||cos 3AC AC α-=-,而3AC BD ⋅=-,即()3AC AD AB AC AD AC AB ⋅-=⋅-⋅=- ,于是得2||cos 2||cos 3AC AC βα-=- ,2||cos 32||cos AC AC βα=-+,22222||244||cos CD AD AC AD AC AD AC AC AC β=-=+-⋅=+-2242(32||cos )104||cos 7AC AC AC AC αα=+--+=+-=,则有||CD =,所以CD =.重难点5用数量积解决夹角问题31.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,侧棱AA 1的长度为4,且∠A 1AB =∠A 1AD =120°.用向量法求:(1)BD 1的长;(2)直线BD 1与AC .【答案】(1)【分析】(1)利用向量模的计算公式和向量的数量积的运算即得出BD 1的长;(2)分别求出11||,||,AC BD AC BD ⋅的值,代入数量积求夹角公式,即可求得异面直线BD 1与AC 所成角的余弦值.【详解】(1)∵111111BD BB B A A D =++,()22111111BD BB B A A D =++ 222111111111111111222BB B A A D BB B A BB A D B A A D =+++⋅+⋅+⋅ 222422242cos 60242cos120222cos 90=+++⨯⨯+⨯⨯+⨯⨯=24,∴1BD的长为(2)∵AC AB BC =+,∴()22222222208AC AB BCAB BC AB BC =+=++⋅=++=,∴AC =∵1BD =()()111111111111111124cos12022cos18022cos9024cos1202AC BD AB BC BB B A A D AB BB AB B A AB A D BC BB BC B A BC A D ⋅=+⋅++=⋅+⋅+⋅+⋅+⋅+⋅=⨯+⨯+⨯+⨯+2cos9022cos 08⨯+⨯=-,∴111cos ,=AC BD AC BD AC BD ⋅⋅所以直线BD 1与AC所成角的余弦值为3.32.(多选)如图所示,平行六面体1111ABCD A B C D -,其中AB AD ==11AA =,60DAB ∠=︒,1145DAA BAA ∠=∠=︒,下列说法中正确的是()A.1AC B .1AC DB⊥C .直线AC 与直线1BD 是相交直线D .1BD 与AC所成角的余弦值为3【答案】ABD【分析】对选项A ,根据11AC AB AD AA =++,再平方即可判断A 正确,对选项B ,根据()110()AC DB AB AD AA AB AD ⋅=++⋅-=,即可判断B 正确,对选项C ,根据图形即可判断C 错误,对选项D ,根据空间向量夹角公式即可判断D 正确.【详解】对选项A ,111AC AB BC CC AB AD AA =++=++,则22221111222AC AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅221cos 6021cos 4521cos 4511=+++︒+⨯︒+⨯︒=,所以1AC A 正确;对选项B ,()221111()AC DB AB AD AA AB AD AB AA AB AA AD AD⋅=++⋅-=+⋅-⋅-2112022=+-⨯-=,所以1AC DB ⊥,故B 正确;对C ,直线AC 与直线1BD 是异面直线,C 错误;对D ,111BD BA AD DD AB AD AA =++=-++ ,AC AB AD =+,1BD==AC = ()221111()BD AC AB AD AA AB AD AB AD AA AB AA AD⋅=-++⋅+=-++⋅+⋅2211222=-+++=,所以,111cos ,3||BD AC BD AC BD AC ⋅〉===〈,于是1BD 与AC所成角的余弦值为3.故选:ABD33.已知向量,a b r r 都是空间向量,且π,=3a b ,则3,4=a b -.【答案】2π3【分析】利用向量夹角公式、范围及已知求<3,4>a b -的大小.【详解】由题设1cos<,>==2||||a b a b a b ⋅,而121cos<3,4>==212||||a b a b a b -⋅-- ,<3,4>(0,π)a b -∈,所以2π<3,4>=3a b -.故答案为:2π334.已知不共面的三个向量,,a b c 都是单位向量,且夹角都是3π,则向量a b c -- 和b 的夹角为()A .6πB .4πC .34πD .56π【答案】C【分析】根据题意计算得a b c --= ()1a b c b --⋅=-,进而计算夹角即可得答案.【详解】解:由题意,得11,2a b c a b a c b c ===⋅=⋅=⋅= ,所以a b c --()21a b c b a b b b c --⋅=⋅--⋅=-设向量a b c -- 和b 的夹角为θ,则()cos 2a b c b a b c bθ--⋅==---⋅ ,又[]0,θπ∈,所以34πθ=.故选:C.35.如图,在平行六面体1111ABCD A B C D -中,1160A AD A AB BAD ∠=∠=∠=︒,2AB AD ==,11AA=,点P 为线段BC 中点.(1)求1D P ;(2)求直线1AB 与1D P 所成角的余弦值.【答案】(1)1D P =【分析】(1)首先设AB a = ,AD b = ,1AA c =,得到112D P a b c =-- ,再平方即可得到答案;(2)由1AB a c =+,得1AB = 111111cos ,AB D P AB D P AB D P⋅=计算即可.【详解】(1)因为在平行六面体1111ABCD A B C D -中,点P 在线段BC 上,且满足BP PC =.设AB a = ,AD b = ,1AA c =,这三个向量不共面,{},,a b c 构成空间的一个基底.所以()()111D P AP AD AB BP AD AA =-=+-+ ()1122a b b c a b c ⎛⎫=+-+=-- ⎪⎝⎭ .112D P a b c =-- ,22222111224D P a b c a b c a b a c b c⎛⎫∴=--=++-⋅-⋅+⋅ ⎪⎝⎭1111441222212141122134222=+⨯+-⨯⨯-⨯⨯⨯+⨯⨯=++--+=,1D P ∴=(2)由(1)知112D P a b c =--,1D P = 1a AB c =+ ,1AB === ()11111112cos ,a c a b c AB D PAB D P AB D P⎛⎫+⋅-- ⎪⋅∴=2211322214a ab ac a c b c c-⋅-⋅+⋅-⋅-== ,直线1AB 与1D P 所成角的余弦值为14.36.如图,二面角l αβ--的棱上有两个点A ,B ,线段BD 和AC 分别在这个二面角的两个面内,并且都垂直于棱l .若4,6,8,AB AC BD CD ====α与平面β夹角的余弦值为.【答案】13【分析】设这个二面角的度数为α,由题意得CD CA AB BD =++,从而得到cos α.【详解】解:设平面α与平面β的夹角的度数为α,由题意得CD CA AB BD =++,且,CA AB AB BD ⊥⊥ ,即0,0CA AB AB BD ⋅=⋅= ∴22222||||cos(π)CD CA AB BD CA BD α=+++⋅-,2361664268cos α∴=++-⨯⨯⨯,解得1cos 3α=,∴平面α与平面β的夹角的余弦值为13.故答案为:13.重难点6投影向量37.在标准正交基{},,i j k 下,已知向量2a i =-+83j k + ,52b i k =-+ ,则向量2a b + 在i 上的投影为,在,j k上的投影之积为.【答案】-1256【分析】根据向量的加法求得21287a b i j k +=-++ ,即可得2a b + 在i ,j ,k上的投影分别为-12,8,7,即可得答案.【详解】解:易得21287a b i j k +=-++,所以2a b + 在i ,j ,k上的投影分别为-12,8,7,其在j ,k上的投影之积为8756⨯=.故答案为:-12;56.38.已知4a = ,向量e 为单位向量, 120a e <>=,,则空间向量a 在向量e 方向上投影为.【答案】2-【分析】根据投影的定义结合已知条件求解即可.【详解】因为4a = ,向量e为单位向量, 120a e <>= ,,所以向量a 在向量e 方向上投影为1cos1204()22a =⨯-=-.故答案为:2-39.如图,在长方体ABCD A B C D -''''中,已知1AB =,2AD =,3AA '=,分别求向量AC ' 在AB 、AD 、AA '方向上的投影数量.【答案】向量AC ' 在AB、AD 、AA ' 方向上的投影数量分别为1、2、3.【分析】分析可得A AB AD A C A =+'+' ,利用投影数量公式可求得向量AC ' 在AB、AD 、AA ' 方向上的投影数量.【详解】解:非零向量a 在非零向量b方向上的投影数量为cos ,a b a b a a b a a b b⋅⋅<>=⋅=⋅,由空间向量的平行六面体法则可得A AB AD A C A =+'+',在长方体ABCD A B C D -''''中,0AB AD AB AA AD AA ''⋅=⋅=⋅=,因此,向量AC ' 在AB方向上的投影数量为()1AB AD AA AB AC AB AB AB AB'++⋅'⋅===,向量AC ' 在AD 方向上的投影数量为()2AB AD AA AD AC ADAD AD AD'++⋅'⋅===,向量AC ' 在AA ' 方向上的投影数量为()3AB AD AA AA AC AA AA AA AA ''++⋅''⋅'===''.40.如图,已知PA ⊥平面ABC ,120ABC ∠= ,6PA AB BC ===,则向量PC 在BC上的投影向量等于.【答案】32BC【分析】先求出PC BC ⋅,再根据投影向量的公式计算即可.【详解】PA ⊥ 平面ABC ,则PA BC ⊥,21()0666542PC BC PA AB BC BC PA BC AB BC BC BC ⋅=++⋅=⋅+⋅+⋅=+⨯⨯+= 向量PC 在BC 上的投影向量为||PC BC BC ⋅543.362||BC BC BC BC ⋅==故答案为:32BC.41.在棱长为1的正方体1111ABCD A B C D -中,向量AB在向量11A C方向上的投影向量的模是.【分析】由正方体的性质可得向量AB 与向量11A C 夹角为cos 45 ,先求出1111AB A C A C ⋅的值,进而可得答案.【详解】棱长为1的正方体1111ABCD A B C D -中向量AB 与向量11A C 夹角为cos 45,所以1111AB A C A C =⋅111111cos ,cos ,AB A C AB AB A C A B ⋅=1cos 452=⨯=向量AB在向量11A C 方向上的投影向量是11111111AB A C A C A C A C ⋅⨯=1111A C A C向量AB在向量11A C1111A C A C =故答案为:242.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,CB AB ⊥,AB BC a ==,PA b =.(1)确定PC在平面ABC 上的投影向量,并求⋅ PC AB ;(2)确定PC 在AB上的投影向量,并求⋅ PC AB .【答案】(1)PC在平面ABC 上的投影向量为AC ,2PC AB a ⋅= ;(2)PC 在AB 上的投影向量为AB,2PC AB a ⋅= .【分析】(1)根据PA ⊥平面ABC 可得PC在平面ABC 上的投影向量,由空间向量的线性运算以及数量积的定义计算()AB PC A B B P B C A A =++⋅⋅的值即可求解;(2)由投影向量的定义可得PC 在AB上的投影向量,由数量积的几何意义可得⋅ PC AB 的值.【详解】(1)因为PA ⊥平面ABC ,所以PC在平面ABC 上的投影向量为AC ,因为PA ⊥平面ABC ,AB ⊂面ABC ,可得PA AB ⊥,所以0PA AB ⋅=,因为CB AB ⊥,所以0BC AB ⋅=,所以()PC AB PA AB PA AB AB BC AB BC AB AB =++=+⋅⋅⋅⋅+⋅ 2200a a =++=.(2)由(1)知:2PC AB a ⋅= ,AB a =r ,所以PC 在AB上的投影向量为:2cos ,AB PC AB AB PC AB AB a AB PC PC AB PC AB a a AB PC AB AB AB AB⋅⋅⋅⋅=⋅⋅=⋅=⋅=⋅,由数量积的几何意义可得:2PC AB AB a AB ⋅=⋅= .重难点7用数量积求线段长度43.棱长为1的正四面体(四个面都是正三角形)OABC 中,若M 是BC 的中点,N 在OM 上且ON MN =,记OA a = ,OB b = ,OC c =.(1)用向量a ,b,c 表示向量AN ;(2)若13AP AN =,求OP .【答案】(1)1144AN a b c =-++;(2)||OP =【分析】(1)根据空间向量基本定理进行求解即可;(2)根据空间向量数量积的运算性质和定义、结合空间向量基本定理进行求解即可.【详解】(1)因为M 是BC 的中点,N 在OM 上且ON MN =,所以11111()22244AN AO ON OA OM OA OB OC a b c =+=-+=-+⨯+=-++;(2)由(1)可知:1144AN a b c =-++ ,因为13AP AN =,所以1111211()334431212OP OA AP OA AN OA a b c a b c =+=+=+-++=++,而OP = OABC 的棱长为1,所以OP ==44.如图,在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,则线段1AC 的长为()A .5B .3CD【答案】C 【分析】11AC AB BC CC =++ ,然后平方可算出答案.【详解】在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,∵11AC AB BC CC =++ ,∴()2211AC AB BC CC =++ 222111222AB BC CC AB BC AB CC CC BC=+++⋅+⋅+⋅ 111110*********=++++⨯⨯⨯+⨯⨯⨯=,∴1AC =故选:C.45.如图,在平行六面体1111ABCD A B C D -中,AB a = ,AD b = ,1AA c = ,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,1a b c === ,则用{},,a b c 表示1AC uuu r 及线段1AC 的长为分别为()A .1AC c a b =++ ,15AC = B .1AC a b c =+- ,13AC =C .1AC c a b =++ ,1AC =D .1AC a b c =+- ,1AC =【答案】C【分析】用向量的线性运算可直接求得1AC uuu r ;求整体的模长可平方再开根.【详解】在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,∵11AC AB BC CC a b c =++=++ ,∴()2222111121222AC AB BC CC AB BC CC AB BC AB CC CC BC=++=+++⋅+⋅+⋅ 111110*********=++++⨯⨯⨯+⨯⨯⨯=,∴1AC = 故选:C .46.如图,在直三棱柱111—ABC A B C 中,E F G ,,,分别为11A B ,1CC ,1BB 的中点,分别记AB ,AC ,1AA为a ,b ,c .(1)用a ,b ,c 表示EF ,EG ;(2)若12AB AC AA ===,AB AC ⊥,求2EF EG + .【答案】(1)1122EF a b c -=-+ ;1()2EG a c -= .【分析】(1)用空间向量的加减运算分别表示EF ,EG ,111111EF EA A F EA AC C F +=+=+ ,11EG EB B G =+ ,再转化为a ,b ,c 表示即可;(2)先把2EF EG + 用a ,b ,c 表示,然后平方,把向量的模和数量积分别代入,计算出结果后再进行开方运算求得2EF EG + .【详解】(1)连结1A F .在直三棱柱111—ABC A B C 中,11AB A B a == ,11AC AC b == ,111AA BB CC c === ,则1111111111111112222EF EA A F EA A C C F A B A C CC a b c ===-+-=+++-+- .11111111()222EG EB B G A B BB a c =+=--= .(2)如图,在直三棱柱111—ABC A B C 中,1AA ABC ⊥底面,AB ABC ⊂底面,AC ABC ⊂底面,所以1AA AB ⊥,1AA AC ⊥,又AB AC ⊥,所以10B AA A c a =⋅⋅= ,10C AA A c b =⋅⋅= ,0A A B a C b ⋅⋅== .1113()22222a b c a c F G b E a E c -+-++=-=+- ,()2222213193314912422442a b c a b c a b a c EF EG b c ⎛⎫=+-=+++⋅-⋅-⋅=++= ⎪⎝⎭+ ,所以2EF EG +=47.如图所示,在平行四边形ABCD 中,1AB AC ==,=90ACD ∠︒,将它沿对角线AC 折起,使AB 与CD 成60︒角,则,B D 间的距离等于()A B .1C 2D .1【答案】C 【分析】先利用向量的加法可得BD BA AC CD =++ ,等式两边进行平方,可求出24BD = 或22BD = ,从而可得结果.【详解】90,0ACD AC CD ∠=︒∴⋅= ,同理,0AC BA ⋅= ,又因为AB 与CD 成60︒角,,60BA CD ∴=︒ 或,120BA CD =︒ ,AC CD BD BA =++ ,2222222BD AC CD BA AC BA CD AC CD BA =+++⋅+⋅+⋅ 3211cos ,BA CD =+⨯⨯⨯= 31±,24BD = 或22BD = ,2BD = 或BD = 故选:C.48.平行六面体ABCD A B C D -''''中,4,3,5,9060,AB AD AA BAD BAA DAA ===∠=∠=''∠='︒︒,则AC '的长为()A .10B C D【答案】B【分析】由AC AB AD AA '=++' ,两边平方,利用数量积运算性质即可求解.【详解】如图,216AB = ,29AD = ,225AA '= ,43cos 900AB AD ⋅=⨯⨯︒= ,45cos 6010AB AA ⋅'=⨯⨯︒= ,1535cos 602AD AA ⋅'=⨯⨯︒= . AC AB AD AA '=++',∴2222222AC AB AD AA AB AD AB AA AD AA '=++'+⋅+⋅'+⋅'1516925202102852=+++⨯+⨯+⨯=,∴||AC '=即AC '故选:B .49.棱长为2的正方体中,E ,F 分别是1DD ,DB 的中点,G 在棱CD 上,且13CG CD =,H 是1C G的中点.(1)求1cos ,EF C G .(2)求FH 的长.【答案】153【分析】(1)将1,EF C G 分别用1,,DA DC DD 表示,再根据数量积的运算律分别求出11,,EF C G EF C G ⋅ ,再根据111cos ,EF C G EF C G EF C G⋅= 即可得解;(2)将FH 用1,,DA DC DD 表示,再根据数量积的运算律即可得解.【详解】(1)由题意,()11122EF ED DF DD DA DC =+=-++ ,11113C G C C CG DD DC =+=-- ,则EF ====1C G ,()111111223EF C G DD DA DC DD DC ⎡⎤⎛⎫⋅=-++⋅-- ⎪⎢⎥⎣⎦⎝⎭22111111111142626263DD DD DC DD DA DA DC DD DC DC =+⋅-⋅-⋅-⋅-= ,所以11143cos ,EF C G EF C G EF C G ⋅= (2)()11111122FH FB BC CC C H DA DC DA DD C G =+++=+-++ ()11111223DA DC DA DD DD DC ⎛⎫=+-++-- ⎪⎝⎭1111232DA DC DD =-++ ,所以FH =3=,所以FH.。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。

设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。

二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。

2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。

三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。

2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。

4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。

2025高二上数学专题第1讲 空间向量及其运算(解析版)

2025高二上数学专题第1讲 空间向量及其运算(解析版)

第1讲空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。

2.经历由平面向量的运算及其法则推广到空间向量的过程。

3.掌握空间向量的线性运算。

4.掌握空间向量的数量积。

知识梳理1.空间向量的概念与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模,空间向量用字母a,b,c ...表示.2.几个常见的向量零向量长度为0的向量叫做零向量单位向量模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记做-a 共线向量如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量。

我们规定:零向量与任意向量平行.相等向量方向相同且模相等的向量叫做相等向量3.向量的线性运算交换律:+=+a b b a ;结合律:()();()()λμλμ+=+=a b +c a +b c a a ;分配律:();()λμλμλλλ+=++=+a a a a b a b .4.共面向量平行于同一平面的向量,叫做共面向量.5.空间向量的数量积||||cos ,⋅=<>a b a b a b 零向量与任意向量的数量积为0.2025高二上数学专题第1讲 空间向量及其运算(解析版)名师导学知识点1空间向量的有关概念【例1-1】(咸阳期末)已知是空间的一个单位向量,则的相反向量的模为A.1B.2C.3D.4【变式训练1-1】(龙岩期末)在平行六面体中,与向量相等的向量共有A.1个B.2个C.3个D.4个知识点2空间向量的线性运算【例2-1】(泰安期末)如图所示,在长方体中,O为AC的中点.化简:________;用,,表示,则________.【例2-2】(河西区期末)在三棱锥中,,,,D为BC的中点,则A. B.C. D.【变式训练2-1】(东湖区校级一模)在空间四边形ABCD中,M,G分别是BC,CD的中点,则A. B. C. D.【变式训练2-2】(随州期末)如图,已知长方体,化简下列向量表达式,并在图中标出化简结果的向量.;.知识点3共面向量【例3-1】(珠海期末)已知A,B,C三点不共线,点M满足.,,三个向量是否共面点M是否在平面ABC内【变式训练3-1】(日照期末)如图所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且,.求证:向量,,共面.知识点4空间向量的数量积【例4-1】(溧阳市期末)已知长方体中,,,E为侧面的中心,F为的中点试计算:.【变式训练4-1】(兴庆区校级期末)如图所示,在棱长为1的正四面体ABCD中,E,F分别是AB,AD的中点,求:.名师导练A 组-[应知应会]1.(台江区校级期末)长方体中,若,,,则等于A. B.C. D.2.(秦皇岛期末)若空间四边形OABC 的四个面均为等边三角形,则的值为A. B. C. D.03.(定远县期末)给出下列几个命题:向量,,共面,则它们所在的直线共面;零向量的方向是任意的;若,则存在唯一的实数,使.其中真命题的个数为A.0B.1C.2D.34.(葫芦岛期末)在下列条件中,使M 与A 、B 、C 一定共面的是A.; B.;C. D.5.(多选)(点军区校级月考)已知1111ABCD A B C D -为正方体,下列说法中正确的是()A .221111111()3()A A A D A B A B ++= B .1111()0AC A B A A -= C .向量1AD 与向量1A B 的夹角是60︒D .正方体1111ABCD A B C D -的体积为1||AB AA AD 6.(都匀市校级期中)空间的任意三个向量,,,它们一定是________向量填“共面”或“不共面”.7.(池州模拟)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有;若空间向量,,满足,,则.其中不正确的命题的序号为________.8.(未央区校级期末)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++ ,若P ,A ,B ,C 四点共面,则实数t =.9.(天津期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC 的值为.10.(三明期中)如图所示,在正六棱柱中化简,并在图中标出表示化简结果的向量化简,并在图中标出表示化简结果的向量.11.(都匀市校级期中)如图所示,在四棱锥中,底面ABCD 为平行四边形,,,底面求证:.12.(西夏区校级月考)如图所示,平行六面体1111ABCD A B C D -中,E 、F 分别在1B B 和1D D 上,且11||||3BE BB =,12||||3DF DD =(1)求证:A 、E 、1C 、F 四点共面;(2)若1EF xAB y AD z AA =++ ,求x y z ++的值.B 组-[素养提升]1.(多选)(三明期中)定义空间两个向量的一种运算||||sin a b a b a =<⊗ ,b > ,则关于空间向量上述运算的以下结论中恒成立的有()A .a b b a =⊗⊗B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗ D .若1(a x = ,1)y ,2(b x = ,2)y ,则1221||a b x y x y =-⊗第1讲空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。

高考空间向量知识点

高考空间向量知识点

高考空间向量知识点空间向量是高考数学中的重要内容之一。

本文将围绕空间向量的定义、向量的共线性与共面性、向量的线性运算以及向量的数量积等知识点展开详细论述。

一、空间向量的定义空间向量是具有大小和方向的有向线段,可以表示为A→。

空间中的向量通常用坐标表示,比如向量A可以表示为(A₀, A₁, A₂),其中A₀、A₁、A₂分别表示向量A在x、y、z轴上的投影。

二、向量的共线性与共面性1. 共线性空间中的三个向量A→、B→、C→共线的条件是存在实数k₁、k₂,使得A→=k₁B→+k₂C→成立。

此时,向量A、B、C共线。

2. 共面性空间中的四个向量A→、B→、C→、D→共面的条件是存在实数k₁、k₂、k₃,使得A→=k₁B→+k₂C→+k₃D→成立。

此时,向量A、B、C、D共面。

三、向量的线性运算1. 向量的加法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→+B→=(A₀+B₀, A₁+B₁, A₂+B₂)。

2. 向量的减法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→-B→=(A₀-B₀, A₁-B₁, A₂-B₂)。

3. 向量的数乘设有向量A→(A₀, A₁, A₂)和实数k,则kA→=(kA₀, kA₁, kA₂)。

四、向量的数量积1. 定义向量A→(A₀, A₁, A₂)和向量B→(B₀, B₁, B₂)的数量积记为A→·B→=A₀B₀+A₁B₁+A₂B₂。

数量积是一种标量。

2. 性质(1) A→·B→=B→·A→;即数量积的交换律成立。

(2) A→·(B→+C→)=A→·B→+A→·C→;即数量积的分配律成立。

(3) k(A→·B→)=(kA→)·B→=A→·(kB→);即数量积的数乘性质成立。

五、空间向量的应用1. 三角关系的解题空间向量可以用于解决三角关系的几何问题。

空间向量知识点

空间向量知识点

空间向量知识点空间向量是高中数学中的重要内容之一,它是几何向量的推广和扩展。

了解空间向量的基本概念和性质,有助于我们更好地理解和应用向量。

一、空间向量的基本概念空间向量是指具有大小和方向的量,它是空间中的一条有向线段。

空间向量用矢量表示,通常用字母a、b、c等表示。

空间向量有以下几个基本要素:1. 大小:空间向量的大小通常用线段的长度表示,即向量的模或长度,记作|a|。

2. 方向:空间向量的方向通常用线段的方向表示,可以用射线或箭头表示。

3. 终点:空间向量的终点用有序的三元组(x, y, z)表示,表示向量在三维坐标系中的终点位置。

二、空间向量的运算1. 加法:空间中的向量加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。

向量相加的结果是两个向量的平行四边形的对角线。

2. 减法:向量减法等价于向量的相反数与向量的加法,即a-b=a+(-b)。

向量相减的结果是连接两个向量起点和终点的线段。

3. 数乘:向量与一个实数k的乘积,记作ka,可以改变向量的大小和方向,当k<0时,向量的方向相反。

三、空间向量的表示方法空间向量有多种表示方法:1. 平行四边形法表示:即将向量的起点与坐标系原点重合,终点与坐标系中某点重合,计算该点的坐标进行表示。

2. 数量对表示:使用有序数对(x,y,z)表示向量的平行于坐标轴的分量。

3. 距离表示:使用两点之间的距离来表示向量的大小。

4. 方向角表示:使用与坐标轴的夹角来表示向量的方向。

四、空间向量的性质1. 平行关系:若a和b平行,则存在实数k使得a=k*b。

2. 垂直关系:若a和b垂直,则a·b=0,即a和b的数量积为0。

3. 长度关系:向量的模或长度与其坐标分量相关,可以使用勾股定理计算。

4. 重要定理:向量a、向量b和向量c组成平面三角形的面积等于以向量a和向量b为两边的平行四边形的面积的一半。

空间向量不仅在数学中有重要的应用,还广泛应用于物理、工程等领域。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。

接下来,就让我们一起深入了解一下空间向量的相关知识。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

它与平面向量类似,但存在于三维空间中。

一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。

零向量:长度为\(0\)的向量,其方向任意。

单位向量:长度为\(1\)的向量。

二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。

若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

(完整版)高二空间向量知识点归纳总结

(完整版)高二空间向量知识点归纳总结

一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性 2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

b a B A OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则 3. 共线向量: (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>OB y OA x OC +=,其中1=+y x(4)与a 共线的单位向量为||a a ±4. 共面向量 : (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使。

b y a x p += (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>OC z OB y OA x OP ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间任一向量p ,存在一个唯一的有序实数组z y x ,,,使c z b y a x p ++=。

若三向量c b a ,,不共面,我们{}c b a ,,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量高考知识点总结

空间向量高考知识点总结

空间向量高考知识点总结一、空间向量的定义与性质1. 空间向量的定义:空间中的向量是指有大小和方向的线段,可以用有向线段来表示,通常用小写字母表示。

2. 空间向量的性质:空间中的向量满足向量的相等、相反、共线和共面的性质。

3. 空间向量的运算:空间向量的加法、数量乘法、内积和叉乘等运算。

二、空间向量的坐标表示1. 空间向量的坐标表示:空间中的向量可以用坐标表示,一般用三元组表示。

2. 空间向量的坐标运算:空间向量的坐标运算包括向量相加、数量乘法和点积等运算。

三、空间向量的数量积1. 空间向量的数量积定义:两个向量的数量积又称内积,记作a·b,表示为|a||b|cosθ,其中θ为a、b之间的夹角。

2. 空间向量的数量积的性质:数量积具有对称性、分配律和数量乘法结合律等性质。

3. 空间向量的数量积的几何意义:数量积可以用来计算向量的夹角、向量的投影以及向量的长度等。

4. 空间向量的数量积的应用:数量积可以用来解决空间中的几何问题,如判断两个向量的方向、判断点的位置、计算三角形的面积等。

四、空间向量的叉积1. 空间向量的叉积定义:两个向量的叉积,记作a×b,是另一个向量c,其大小等于以a、b为邻边的平行四边形的面积,方向垂直于a和b所在的平面。

2. 空间向量的叉积的性质:叉积具有反对称性、分配律和数量乘法结合律等性质。

3. 空间向量的叉积的几何意义:叉积可以用来计算平行四边形的面积、判断向量的方向以及判断向量的共线性等。

4. 空间向量的叉积的应用:叉积可以用来计算平行四边形和平行六面体的体积、判断三角形的面积、判断四边形的面积等。

五、空间向量的应用1. 空间向量在几何中的应用:空间向量可以用来解决空间中的共线、共面、投影、距离、面积、体积等几何问题。

2. 空间向量在物理中的应用:空间向量可以用来描述力的合成、速度的方向、加速度的方向、质心的位置等物理问题。

3. 空间向量在工程中的应用:空间向量可以用来解决工程中的坐标系、平面构图、体积计算、力矩计算等问题。

高二数学复习考点知识与题型专题讲解3---空间向量基本定理

高二数学复习考点知识与题型专题讲解3---空间向量基本定理

高二数学复习考点知识与题型专题讲解1.2 空间向量基本定理【考点梳理】考点一空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.考点二空间向量的正交分解1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量x i,y j,z k使得a=x i+y j+z k. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.考点三证明平行、共线、共面问题(1) 对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2) 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.考点三求夹角、证明垂直问题(1)θ为a,b的夹角,则cos θ=a·b|a||b|.(2)若a ,b 是非零向量,则a ⊥b ⇔a ·b =0. 知识点三 求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB → ).【题型归纳】题型一:空间向量基底概念1.(2021·广东·广州市海珠中学高二期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(2021·云南师大附中高二期中)已知{},,a b c 能构成空间的一个基底,则下面的各组向量中,不能构成空间基底的是( ) A .,,a b b c +B .,,a a b c -C .,,a c b c a b ---D .,,a b a b c ++3.(2021·湖南·周南中学高二)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +-B .{,,}a b b a b +- C .{,,}a b b a c +-D .{,,}a b c a b c +++ 题型二:空间基底表示向量4.(2022·四川·成都外国语学校高二阶段练习(理))如图,在三棱锥O ABC -中,设,,,OA a OB b OC c ===,若,2AN NB BM MC ==,则MN =( )A .112263a b c +-B .112263a b c -+ C .111263a b c --D .111263a b c ++5.(2022·江苏常州·高二期中)在四面体OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( ) A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c ++6.(2022·湖北·武汉市第十九中学高二期末)如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,则MN 等于( )A .111322a b c ++B .111322a b c -+ C .111322a b c +-D .111322a b c -++ 题型三:空间向量基本定理判断共面7.(2022·全国·高二)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是( )A .OP OA OB OC =++B .2OP OA OB OC =-- C .111532OP OA OB OC =++D .111333OP OA OB OC =++8.(2022·全国·高二)对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111236OP OA OB OC =++ C .1122OP OA OB OC =++D .以上都错9.(2022·全国·高二)下列向量关系式中,能确定空间四点P ,Q ,R ,S 共面的是( )A .AP AQ AR AS →→→→=++B .23AP AQ AR AS →→→→=++ C .23AP AQ AR AS →→→→=+-D .243AP AQ AR AS →→→→=-+ 题型四:空间向量共面求参数10.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-611.(2022·江苏·高二课时练习)已知i ,j ,k 是三个不共面的向量,22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-,且A ,B ,C ,D 四点共面,则λ的值为( ).A .1-B .1C .2-D .212.(2021·山东省实验中学高二期中)已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++,则A ,B ,C ,M 四点共面的充要条件是( ) A .1730λ=B .1330λ=C .1730λ=-D .1330λ=-题型五:空间向量基本定理的应用13.(2022·四川·阆中中学高二阶段练习(理))已知存在非零实数λ使得AP BC λ=,且(,0)OP OA xOB yOC x y =-++>,则62x y +的最小值为( )A .4+.8C .6.6+14.(2022·安徽蚌埠·高二期末)在下列命题中正确的是( ) A .已知,,a b c 是空间三个向量,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++ B .若,C AB D 所在的直线是异面直线,则,C AB D 不共面 C .若三个向量,,a b c 两两共面,则,,a b c 共面D .已知A ,B ,C 三点不共线,若111236OD OA OB OC =++,则A ,B ,C ,D 四点共面15.(2021·吉林·长春市第二十九中学高二)已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是( )A .111222OM OA OB OC =++B .1313O OB OC M OA =-+ C .OM OA OB OC =++D .2OM O OB OC A =-- 题型六:空间向量基本定理16.(2022·全国·高二课时练习)如图所示,已知1111ABCD A B C D -是平行六面体.(1)化简1AA BC AB ++;(2)设M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的34分点,设1MN AB AD AA αβγ=++,试求α,β,γ的值.17.(2021·河北·石家庄市第六中学高二期中)如图,已知正方体'ABCD A B C D -'''.点E是上底面''''A B C D 的中心,取{,,}AB AD AA ' 为一个基底,在下列条件下,分别求,,x y z的值.(1)BD x AD y AB z AA =+'+'; (2)AE x AD y AB z AA =+'+.【双基达标】一、单选题18.(2022·四川省成都市新都一中高二期中(理))已知M ,A ,B ,C 为空间中四点,任意三点不共线,且2OM OA xOB yOC =-++,若M ,A ,B ,C 四点共面,则x y +的值为( ) A .0B .1C .2D .319.(2022·江苏·涟水县第一中学高二阶段练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++D .1OG =111888OA OB OC ++ 20.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则( )A .1OG OA OB OC =++B .1111333OG OA OB OC =++ C .1111444OG OA OB OC =++D .1111999OG OA OB OC =++21.(2022·四川省绵阳南山中学高二期中(理))已知O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC 不能构成空间的一个基底,则一定有( ) A .OA ,OB ,OC 共线B .O ,A ,B ,C 中至少有三点共线 C .OA OB +与OC 共线D .O ,A ,B ,C 四点共面22.(2022·江苏宿迁·高二期中)已知P 是ABC 所在平面外一点,M 是PC 中点,且BM x AB y AC z AP =++,则x y z ++=( )A .0B .1C .2D .323.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =( ) A .521632a b c +-B .121632a b c ---C .121632a b c ++D .521632a b c --+24.(2022·全国·高二课时练习)设x a b =+,y b c =+,z c a =+,且{},,a b c 是空间的一个基底,给出下列向量组:①{},,a b x ;②{},,x y z ;③{},,b c z ;④{},,x y a b c ++,则其中可以作为空间的基底的向量组有( ) A .1B .2C .3D .425.(2022·广东深圳·高二期末)如图,在三棱柱111ABC A B C -中,E ,F 分别是BC ,1CC 的中点,2AG GE =,则GF =( )A .1121332AB AC AA -+B .1121332AB AC AA ++C .1211332AB AC AA -+-D .1121332AB AC AA -++26.(2022·全国·高二课时练习)在平行六面体ABCD A B C D ''''-中,已知BA ,BC ,BB '为三条不共面的线段,若23AC x AB yBC zC C ''=++,则x y z ++的值为( ). A .1B .76C .56D .11627.(2022·四川省内江市第六中学高二阶段练习(理))已知空间的一组基底{},,a b c ,若m a b c =-+与n xa yb c =++共线,则x y +的值为( ). A .2B .2-C .1D .0【高分突破】一:单选题28.(2022·吉林·长春吉大附中实验学校高二期末)已知空间向量a ,b ,c ,下列命题中正确的个数是( ) ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若a ,b ,c 非零且共面,则它们所在的直线共面;⑧若a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一有序实数组(),,x y z ,使得p xa yb zc =++;④若a ,b 不共线,向量(),,0c a b R λμλμλμ=+∈≠,则{},,a b c 可以构成空间的一个基底. A .0B .1C .2D .329.(2022·江苏省阜宁中学高二期中)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,A C BB 的中点,G 是MN 的中点,若1AG xAB yAA zAC =++,则x y z ++=( )A .1B .12C .32D .3430.(2022·安徽芜湖·高二期末)下列命题中正确的个数为( ) ①若向量a ,b 与空间任意向量都不能构成基底,则a b ∥;②若向量a b +,b c +,c a +是空间一组基底,则a ,b ,c 也是空间的一组基底; ③{},,a b c 为空间一组基底,若()0,,xa yb zc x y z R ++=∈,则2220x y z ++=;④对于任意非零空间向量()123,,a a a a =,()123,,b b b b =,若a b ∥,则312123aa ab b b ==.A .1B .2C .3D .4 二、多选题31.(2022·福建福州·高二期中)如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,AA c '=.若CM MD '=,12A C A P ''=,则( )A .a A C b c =++'B .1122AM a b c =++C .A ,P ,D 三点共线D .A ,P ,M ,D 四点共面32.(2022·河北邯郸·高二期末)已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z ===B .a ,b ,c 两两共面,但a ,b ,c 不共面C .一定存在实数x ,y ,使得a xb yc =+D .a b +,b c -,2c a +一定能构成空间的一个基底33.(2022·广东惠州·高二期末)下面四个结论正确的是( )A .空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P 、A 、B 、C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅34.(2021·浙江·金华市曙光学校高二阶段练习)已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n =C .12m =-,1n =-D .32m =,1n =35.(2021·湖南·郴州市第三中学高二期中)下列结论正确的是( )A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a ,b 是两个不共线的向量,且(c a b λμλ=+,R μ∈且0)λμ≠,则{a ,b ,}c 构成空间的一个基底D .若OA ,OB ,OC 不能构成空间的一个基底,则O ,A ,B ,C 四点共面36.(2021·浙江省杭州第二中学高二期中)已知{},,a b c 是空间中的一个基底,则下列说法正确的是( )A .存在不全为零的实数x ,y ,z ,使得0xa yb zc ++=B .对空间任一向量p ,存在唯一的有序实数组(),,x y z ,使得p xa yb zc =++C .在a ,b ,c 中,能与a b +,a b -构成空间另一个基底的只有cD .不存在另一个基底{},,a b c ''',使得2323a b c a b c '''++=++37.(2021·重庆·高二阶段练习)下列命题中,正确的有( )A .空间任意向量,a b 都是共面向量B .已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++,则1t =-C .在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若向量,,a b b c c a +++是空间一组基底,则,,a b c 也是空间的一组基底38.(2022·湖南省临湘市教研室高二期末)已知M ,A ,B ,C 四点互不重合且任意三点不共线,则下列式子中能使{,,}MA MB MC 成为空间的一个基底的是( )A .111345OM OA OB OC =++B .2MA MB MC =+C .23OM OA OB OC =++D .32MA MB MC =-三、填空题39.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若AB a =,BC b =,1AA c =,则BM =______.(用a 、b 、c 表示)40.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.41.(2022·全国·高二)已知,a b 是平面α上的两个向量,有以下命题:①平面α上任意一个向量(),p a b R λμλμ=+∈;②若存在,R λμ∈,使0a b λμ+=,则0λμ==;③若,a b 不共线,则空间任意一个向量(),p a b R λμλμ=+∈;④若,a b 不共线,且p 与,a b 共面,则都有(),p a b R λμλμ=+∈.请填上所有真命题的序号___________.42.(2022·广东珠海·高二期末)已知四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC =,若DE OA OB OC αβγ=++,则αβγ++=________.43.(2021·福建·三明一中高二)如图所示,M 是四面体OABC 的棱BC 的中点,点N在线段OM 上,点P 在线段AN 上,且AP =3PN ,23ON OM =,设OA a =,,OB b OC c ==,则OP =________(用,,a b c 来表示)44.(2022·全国·高二期末)已知三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于_____________.45.(2022·全国·高二)已知关于向量的命题,(1)a b a b -=+是a ,b 共线的充分不必要条件;(2)若//a b ,则存在唯一的实数λ,使a b λ=;(3)0a b ⋅=,0b c ⋅=,则a c =; (4)若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一基底; (5)()a b c a b c ⋅⋅=⋅⋅.在以上命题中,所有正确命题的序号是________.四、解答题46.(2022·江苏·徐州市王杰中学高二)如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用OA ,OB ,OC 表示向量OG ;(2)若2OA =,3OB =,4OC =,60AOC BOC ∠=∠=︒,90AOB ∠=︒,求OG AB ⋅的值.47.(2022·全国·高二)如图,在平行六面体1111ABCD A B C D -中,12C C EC =,13AC FC =.(1)求证:A 、F 、E 三点共线;(2)若点G 是平行四边形11B BCC 的中心,求证:D 、F 、G 三点共线.48.(2022·江苏·扬州中学高二阶段练习)如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.49.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .【答案详解】1.C【详解】对于A,任何三个不共面的向量都可构成空间的一个基底,所以A错误,B错误;对于C,两两垂直的三个非零向量不共面,可构成空间的一个基底,C正确;对于D,直线的方向向量有无数个,所以D错误.故选:C2.C【详解】由图形结合分析---,,a cbc a b三个向量共面,不构成基底,故选:C3.C选项A:由于()()2+--=,三个向量共面,故不能作为空间的一个基底;a b b a a选项B:由于()()2++-=,三个向量共面,故不能作为空间的一个基底;a b b a b选项C :若,,a b b a c +-三个向量共面,则存在,x y R ∈,使得()()()()c x a b y b a x y a x y b =++-=-++,则向量,,a b c 共面,矛盾,故,,a b b a c +-三个向量不共面,因此可以作为空间的一个基底;选项D :由于()a b c a b c ++=++,三个向量共面,故不能作为空间的一个基底; 故选:C4.A【详解】连接,,OM ON 111()()()223MN ON OM OA OB OC CM OA OB OC CB =-=+-+=+--=11112112()()23263263OA OB OC OB OC OA OB OC a b c +---=+-=+-. 故选:A5.B【解析】【分析】利用空间向量的线性运算,空间向量基本定理求解即可.【详解】解:点M 在线段OA 上,且2OM MA =,N 为BC 中点,∴23OM OA =,111()222ON OB OC OB OC =+=+, ∴122113122223a b c MN ON OM OB OC OA =-=+-+=-+. 故选:B .6.D【解析】【分析】利用空间向量的加法与减法可得出OM 关于a 、b 、c 的表达式.【详解】()()21113232MN MA AB BN OA OB OA BC OB OA OC OB =++=+-+=-+- 111322a b c =-++. 故选:D.7.D【解析】【分析】根据点P 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OP xOA yOB zOC =++,若点P 与点,,A B C 共面,则1x y z ++=,对于选项A :11131x y z ++=++=≠,不满足题意;对于选项B :21101x y z ++=--=≠,不满足题意;对于选项C :11131153230x y z ++=++=≠,不满足题意; 对于选项D :1111333x y z ++=++=,满足题意.故选:D.8.B【解析】【分析】证明出若OP xOA yOB zOC =++且1x y z ++=,则P 、A 、B 、C 四点共面,进而可得出合适的选项.【详解】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-, 则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111236OP OA OB OC =++,1111236++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =++,1112122++=≠,P 、A 、B 、C 四点不共面.故选:B.9.D【解析】【分析】由243AP AQ AR AS →→→→=-+,得23RP RQ RS →→→=+,即得解. 【详解】由243AP AQ AR AS →→→→=-+,得23AP AR AQ AR AS AR →→→→→→⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭,即23RP RQ RS →→→=+,所以RP →,,RQ RS →→为共面向量, 故,,,P Q R S 四点共面. 故选:D . 10.D 【解析】 【分析】根据向量共面列方程,化简求得2m t +. 【详解】2111-≠-,所以,a b 不共线, 由于a ,b ,c 共面, 所以存在,x y ,使c xa yb =+, 即()()()21,2,22,,1,11,t x m y -=--+,()()(),,21,2,22,,t x x y x y y m -+-=-, ()()1,2,22,,2y t x y x x m y ---+=+,21222x y x y mx y t-+=-⎧⎪-=⎨⎪+=⎩,()()13123222x y m t mx y t =-⎧⎪=-⇒⋅-+⋅-=⎨⎪+=⎩, 即26m t +=-.故选:D 11.B 【解析】 【分析】根据已知条件用i ,j ,k 表示AC ,AD ,再由空间共面向量定理设AD x AB y AC =+,再列方程组,解方程组即可求解. 【详解】因为22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-所以3AC AB BC i j k =+=-- ,()326A AC D CD i j k λ+==++-, 由空间共面向量定理可知,存在实数,x y 满足AD x AB y AC =+, 即()()()326232i j k x i j k i j k y λ++-=-+-+-,所以332262x y x y x y λ+=+⎧⎪=--⎨⎪-=-⎩,解得221x y λ=-⎧⎪=⎨⎪=⎩,所以λ的值为1,故选:B. 12.B 【解析】 【分析】由四点共面的充要可得21156λ++=,求解即可. 【详解】O 是平面ABC 外任意一点,且2156OM OA OB OC λ=++,若A ,B ,C ,M 四点共面的充要条件是21156λ++=,即1330λ=. 故选:B. 13.A 【解析】 【分析】根据向量的共面定理,得到2x y +=,再结合基本不等式,即可求解. 【详解】由题意,存在非零实数λ使得AP BC λ=,可得//AP BC ,即,,,P A B C 四点共面, 因为(,0)OP OA xOB yOC x y =-++>,根据向量的共面定量,可得11x y -++=,即2x y +=,又由621621621()()(62)(84222y x x y x y x y x y +=⋅++=⋅+++≥+=+当且仅当62y x x y=时,即x =时,等号成立,所以62x y +的最小值为4+故选:A. 14.D 【解析】 【分析】对于A ,利用空间向量基本定理判断,对于B ,利用向量的定义判断,对于C ,举例判断,对于D ,共面向量定理判断 【详解】对于A ,若,,a b c 三个向量共面,在平面α,则空间中不在平面α的向量不能用,,a b c 表示,所以A 错误,对于B ,因为向量是自由向量,是可以自由平移,所以当,C AB D 所在的直线是异面直线时,,C AB D 有可能共面,所以B 错误,对于C ,当三个向量,,a b c 两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C 错误,对于D ,因为A ,B ,C 三点不共线,111236OD OA OB OC =++,且1111236++=,所以A ,B ,C ,D 四点共面,所以D 正确, 故选:D 15.B 【解析】 【分析】证明出当1x y z ++=,且OM xOA yOB zOC =++,则点M 、A 、B 、C 共面.然后逐项验证可得合适的选项. 【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-, 即xCA yCB CM =+,所以,点M 、A 、B 、C 共面. 对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面; 对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面; 对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面. 故选:B. 16.(1)1AC ; (2)12α=,14,34γ=. 【解析】 【分析】(1)利用平行六面体的性质及向量的线性运算即得;(2)利用向量线性运算的几何表示可得1113244AB A MN AA D =++,进而即得. (1)∵1111ABCD A B C D -是平行六面体, ∴1111111AA BC AB AA BC A B AC ++=++= (2)∵MN =MB BN +11324DB BC =+()()11324AB AD AA AD =-++ 1113244AB AD AA =++,又1MN AB AD AA αβγ=++, ∴12α=,14,34γ=. 17.(1)1,1,1x y z ==-= (2)11,,122x y z === 【解析】 【分析】(1)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (2)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (1)解:BD BA AA A D ''''=++,AD AB AA '=-+,又因为BD x AD y AB z AA =+'+', 所以1,1,1x y z ==-=; (2)AE AA A D D E =+''''+,12AA AD DB ='++,()12AA AD AB AD =++-', 1122AD AB AA =+'+, 又因为AE x AD y AB z AA =+'+, 所以11,,122x y z ===. 18.D 【解析】 【分析】根据四点共面结论:若,,,A B C D 四点共面,则OD aOA bOB cOC =++且1a b c ++=, 【详解】若M ,A ,B ,C 四点共面,则21x y -++=,则3x y += 故选:D . 19.B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++ 故选:B 20.D 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112111333333999OG OG OA AG OA OB OC OA OA OB OC ⎛⎫==+=++-=++ ⎪⎝⎭ 故选:D 21.D 【解析】 【分析】根据空间向量基本定理即可判断 【详解】由于向量OA ,OB ,OC 不能构成空间的一个基底知OA ,OB ,OC 共面,所以O ,A ,B ,C 四点共面 故选:D 22.A 【解析】 【分析】利用向量减法的三角形法则进行计算即可. 【详解】因为M 是PC 中点,()()()1122BM PM PB PC AB AP AC AP AB AP ∴=-=--=--- 1122AB AC AP =-++,又BM x AB y AC z AP =++, 111,,22x y z ∴=-==,∴0x y z ++=. 故选:A. 23.B 【解析】 【分析】利用向量加法的平行四边形法则,减法的三角形法则即可求解 【详解】因为E 为1CD 中点, 所以()()11111112222AE AD AC AA AD AD AB AA AD AB =+=+++=++ ()11333AC AF AF AC AD AB =⇒==+ 所以1111111213322632EF AF AE AD AB AA AD AB AB AD AA =-=+---=--- 即121362a b c EF =--- 故选:B 24.C 【解析】 【分析】以A 为顶点作AB a =,AD b =,1AA c =,作出平行六面体1111ABCD A B C D -,根据空间向量的加法法则作出,,,,x y z a b c ++,然后判断各组向量是否共面可得结论. 【详解】如图,作平行六面体1111ABCD A B C D -,AB a =,AD b =,1AA c =, 则AC a b =+,1AD b c =+,1AB c a =+,1AC a b c =++,由平行六面体知,,,a b x 共面,,,x y z 不共面,,,b c z 不共面,,,x y a b c ++不共面, 因此可以作为空间的基底的有3组. 故选:C .25.D 【解析】 【分析】根据空间向量线性运算的几何意义进行求解即可. 【详解】23GF AF AG AC CF AE =-=+-()11121121232332AC AA AB AC AB AC AA =+-⨯+=-++, 故选:D . 26.B 【解析】 【分析】根据向量的加法法则及共面向量的基本定理即可求解. 【详解】根据向量的加法法则可得AC AB BC CC AB BC C C '''=++=+-,又23AC x AB yBC zC C ''=++,且,,AB BC C C '不共面,所以 1 2=1 3=-1x y z =⎧⎪⎨⎪⎩,解得111,,23x y z ===-,所以1171236x y z ++=+-=. 故选:B. 27.D 【解析】 【分析】根据m 与n 共线,由()xa yb c z a b c ++=-+,即可求解. 【详解】因为m 与n 共线,空间的一组基底{},,a b c , 所以()xa yb c z a b c ++=-+,所以,,1,x z y z z =⎧⎪=-⎨⎪=⎩解得1,1.x y =⎧⎨=-⎩,所以x +y =0. 故选:D. 28.B 【解析】【分析】用向量共线或共面的基本定理即可判断. 【详解】若 a 与b ,b 与c 共线,0b = ,则不能判定a c λ= , 故①错误;若非零向量,,a b c 共面,则向量c 可以在一个与,a b 组成的平面平行的平面上, 故②错误;,,a b c 不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;c a b λμ=+,∴ c 与,a b 共面,故,,a b c 不能组成一个基底,故④错误; 故选:C. 29.C 【解析】 【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案. 【详解】连接,AM AN 如下图:由于G 是MN 的中点,()12AG AM AN =+∴ 11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++. 根据题意知1AG xAB yAA zAC =++.32x y z ∴++=. 故选:C. 30.C 【解析】 【分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④. 【详解】①:向量a b ,与空间任意向量都不能构成一个基底,则a 与b 共线或a 与b 其中有一个为零向量,所以//a b ,故①正确;②:由向量a b b c c a +++,,是空间一组基底,则空间中任意一个向量d ,存在唯一的实数组()x y z ,,使得d ()()()()()()x a b y b c z c a x z a x y b y z c =+++++=+++++,所以a b c ,,也是空间一组基底,故②正确;③:由{}a b c ,,为空间一组基底,若0()xa yb zc x y z R ++=∈,,, 则0x y z ===,所以2220x y z ++=,故③正确;④:对于任意非零空间向量123()a a a a =,,,123()b b b b =,,,若//a b ,则存在一个实数λ使得=a b λ,有112233a b a b a bλλλ=⎧⎪=⎨⎪=⎩,又123b b b ,,中可以有为0的,分式没有意义,故④错误. 故选:C 31.BD 【解析】 【分析】根据空间向量运算判断AB 选项的正确性,根据三点共线、四点共面的知识判断CD 选项的正确性. 【详解】A C AC AB AD a b c A A AA '=-=+-='+'-,A 选项错误. ()()11112222AM AC A AB AD AD a b c D AA =+=+++='++',B 选项正确. 12A C A P ''=则P 是A C '的中点, ()()()111222c AP AC AA AB AD A b A a ''=+=++++=, c AD b AD AA ''=+=+,则不存在实数λ使AP AD λ'=,所以C 选项错误.()1112212122P a b c a b c b M AM AP AD +==⎛⎫=--= ⎪⎝++⎭+,由于,P M ∉直线AD ,所以,,,A P M D 四点共面,所以D 选项正确. 故选:BD 32.ABD 【解析】 【分析】利用空间向量的基底的概念及空间向量基本定理逐项分析即得. 【详解】∵a ,b ,c 是空间的一个基底,则a ,b ,c 不共面,且两两共面、不共线, ∴若0xa yb zc ++=,则0x y z ===,A 正确,B 正确;若存在x ,y 使得a xb yc =+,则a ,b ,c 共面,与已知矛盾,C 错误;设()()()22a b x b c y c a ya xb y x c +=-++=++-,则21,1,0,y x y x =⎧⎪=⎨⎪-=⎩,此方程组无解,∴a b +,b c -,2c a +不共面,D 正确. 故选:ABD. 33.ABC 【解析】 【分析】空间向量垂直的数量积表示可判断A ;由向量四点共面的条件可判断B ;由空间向量基底的定义可判断C ; a b ⋅是一个数值,c b ⋅也是一个数值,说明a 和c 存在倍数关系,或者说共线,可判断D. 【详解】空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=,故A 正确; 对空间中任意一点O ,有111632OP OA OB OC =++,且1111632++=,则P 、A 、B 、C 四点共面,故B 正确;因为{},,a b c 是空间的一组基底,所以,,a b c 不共面,m a c =+,则,,+a b a c 也不共面, 即{},,a b m 也是空间的一组基底,故C 正确;任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅,由于a b ⋅是一个数值,c b ⋅也是一个数值, 则说明a 和c 存在倍数关系,或者说共线,不一定相等,故D 错误. 故选:ABC. 34.CD 【解析】 【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可. 【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点, 所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=, 而12OP OA mOB nOC =+-,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能; 当32m =,1n =时,12m n -=,所以选项D 可能, 故选:CD 35.ABD 【解析】 【分析】根据空间向量基本定理即可判断出各个选项的正误. 【详解】解:对于选项A :三个非零向量能构成空间的一个基底,则三个非零向量不共面,所以选项A 正确,对于选项B :三个非零向量不共面,则此三个向量可以构成空间的一个基底, 若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面, 则已知的两个向量共线,所以选项B 正确, 对于选项C :(c a b λμλ=+、R μ∈且λ、0)μ≠,∴a ,b,c 共面,不能构成基底,所以选项C 错误,对于选项D :OA 、OB 、OC 共起点,若O 、A 、B 、C 四点不共面,则必能作为空间的一个基底,所以选项D 正确, 故选:ABD .36.BC【解析】【分析】根据空间向量基底概念分别判断即可.【详解】对于A,若存在不全为零的实数x,y,z,使得x y za b c,++=0{a,b,}c不能构成空间的一个基底,所以A错;对于B,因为{a,b,}c构成空间的一个基底,所以对空间任一向量p,总存在唯一的有序实数组(x,y,)z,使得p xa yb zc=++,所以B对;对于C,因为2()()b a b a b=+--,=++-,2()()a ab a b所以a,b,不能与a b+,a b-构成空间另一个基底;又因为设x,y,z R∈若()()0++-+=x a b y a b zc⇒++-+=⇒===,x y a x y b zc x y z()()00所以c与a b+,a b-构成空间另一个基底;所以在a,b,c中,能与a b+,a b-构成空间另一个基底的只有c,所以C对;对于D,存在,根据向量运算几何意义,++表示以O为顶点,以1a,2b,3c为相邻三边的长方体对角线,a b c23绕此对角线长方体旋转,基底也变为另一基底{a',b',}c',都满足2323++='+'+',所以D错误.a b c a b c故选:BC37.ACD【解析】【分析】利用空间向量共面定理及数量积运算,逐一分析判断即可.【详解】解:对于A ,空间任意向量,a b 都是共面向量,所以A 正确;对于B ,已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++, 则211t ++=,解得2t =-,所以B 错误;对于C ,在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则()()2PA BC PB BA PC PB PB PC PB BA PC BA PB ⋅=+⋅-=⋅-+⋅-⋅ ()2PB PC PB BA PB PB PC PB BA =⋅--⋅=⋅--0PB AC =⋅=,所以C 正确; 对于D ,因为向量,,,a b b c c a +++是空间一组基底,则对于空间任一向量()d x y z =,,,都存在实数m ,n ,p ,使得()()()()d x y z m a b n b c p c a ==+++++,,,即()()()d m p a m n b n p c =+++++,所以,,a b c 也是空间的一组基底,所以D 正确. 故选:ACD .38.AC【解析】【分析】根据基底的性质,结合各选项中向量的线性关系、空间向量基本定理判断M 、A 、B 、C 是否共面,即可知{,,}MA MB MC 是否能成为空间基底.【详解】A :因为111345OM OA OB OC =++,且1111345++≠,利用平面向量基本定理知:点M 不在平面ABC 内,向量,,MA MB MC 能构成一个空间基底;B :因为2MA MB MC =+,利用平面向量基本定理知:向量,,MA MB MC 共面,不能构成一个空间基底;C :由23,1231OM OA OB OC =++++≠,利用平面向量基本定理和空间平行六面体法知:OM 是以点O 为顶点的对角线,向量,,MA MB MC 能构成一个空间基底;D :由32MA MB MC =-,根据平面向量的基本定理知:向量,,MA MB MC 共面,不能构成空间的一个基底.故选:AC.39.1122a b c -++ 【解析】【分析】利用空间向量的线性运算,结合题意,求解即可.【详解】根据题意,()1111111122BM BA AA A M AB AA AC AB AA AB BC =++=-++=-+++ 11122AB BC AA =-++=1122a b c -++. 故答案为:1122a b c -++.40.0【解析】 【分析】由2=PM MC 可得出BM 关于{},BP BC 的表达式,再利用空间向量的减法可求得x 、y 、z 的值,即可得解.【详解】因为2=PM MC ,则()2BM BP BC BM -=-, 所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++, 所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.41.④【解析】【分析】通过反例可知①②错误;根据平面向量基本定理、空间向量基本定理可判断出③④正误.【详解】对于①,若0a b ==,则对于平面内任意一个向量p ,无法得到(),p a b R λμλμ=+∈,①错误;对于②,若0a b ==,则,λμ为任意实数,②错误;对于③,若p 与,a b 不共面,则对于空间任意一个向量p ,无法得到p a b λμ=+(),R λμ∈,③错误;对于④,由平面向量基本定理可知④正确.故答案为:④.42.13-【解析】连接OD ,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接OD∵四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC = ∴()2111232223DE OE OD OC OA OB OA OB OC =-=-+=--+∴121223αβγ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴13αβγ++=-.故答案为:13-43.111444a b c ++【解析】【分析】利用空间的基底结合空间向量的线性运算计算即可得解.,,OA a OB b OC c ===,而M 是四面体OABC 的棱BC 的中点,则1()2OM OB OC =+1122b c =+, 因AP =3PN ,23ON OM =,则33()44OP OA AP OA AN OA ON OA =+=+=+-132111443444OA OM a b c =+⋅=++, 所以111444OP a b c =++. 故答案为:111444a b c ++44.()12c a b -- 【解析】【分析】根据给定条件利用空间向量的线性运算即可得解.【详解】三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,则()11112222MN MB BO ON AB OB OC OB OA OB OC =++=-+=--+()11112222OC OA OB c a b =--=--, 所以MN 等于()12c a b --. 故答案为:()12c a b --. 45.(1)(4)【解析】根据共线向量,向量垂直,向量的基本定理,向量数量积的定义与性质,逐一分析5个命题的真假,即可得解.【详解】(1)若a b a b -=+,则a ,b 反向共线,即满足充分条件,但当非零向量a ,b 同向共线时,不存在a b a b -=+,即满足不必要条件,故(1)正确;(2)若向量a ,b 中有一个零向量,则存在无数个实数λ,使a b λ=,即(2)错误;(3)若0a b ⋅=,0b c ⋅=,说明a b ⊥,b c ⊥,不一定存在a c =,即(3)错误;(4)令()()a b b c c a λμ+=+++,则()a b a b c μλλμ+=+++,所以110λμλμ=⎧⎪=⎨⎪+=⎩,无解,即a b +,b c +,c a +不共面,所以{},,a b b c c a +++构成空间的另一基底,即(4)正确; (5)()()cos ,a b c a b c a b c a b ⋅⋅=⋅⋅=⋅⋅,即(5)错误.命题(1)(4)正确.故答案为:(1)(4).46.(1)111333OG OA OB OC =++(2)73【解析】【分析】(1)根据空间向量线性运算法则计算可得;(2)由(1)可得111()()333OG AB OA OB OC OB OA ⋅=++⋅-,根据空间向量数量积的运算律及定。

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。

高二数学空间向量笔记

高二数学空间向量笔记

空间向量笔记一、向量的概念与表示1.向量:既有大小又有方向的量。

在数学中,我们用有向线段来表示向量。

2.向量的模:向量的大小或长度,记作|a|。

计算公式为:|a| = √(x^2 + y^2+ z^2)。

3.向量的坐标表示:在直角坐标系中,向量a = (x, y, z)表示a的三个分量。

4.向量的数量积:两个向量的点乘,记作a ·b。

计算公式为:a ·b = |a| ×|b| × cosθ,其中θ是两向量的夹角。

二、向量的基本定理1.三个向量i, j, k满足i = (1,0,0),j = (0,1,0),k = (0,0,1),它们相互独立,可以表示空间中的任意向量。

2.任意向量a可以表示为i、j、k的线性组合,即:a = xi + yj + zk。

三、向量的运算1.向量的加法:平行四边形法则。

2.向量的数乘:标量与向量的乘法,满足分配律。

3.向量的减法:减法可以转换为加法,a - b = a + (-b)。

4.向量的向量积:定义了两个向量a和b的向量积为一个新向量c,记作c =a × b。

向量积满足反交换律,即a ×b = -b × a。

5.向量的混合积:三个向量的混合积定义为(a, b, c),计算公式为:(a, b, c) =a · (b × c)。

混合积满足反交换律和分配律。

四、向量的应用1.向量在速度和加速度的研究中的应用:通过研究速度和加速度的向量性质,可以深入理解物体运动的过程。

2.向量在力的合成与分解中的应用:在物理学中,力可以视为向量,通过向量的合成与分解可以研究力的作用效果。

3.向量在解决实际问题的应用:例如,在物理、工程、航天等领域,可以使用向量来解决很多实际问题。

高中数学选修1-第一章-1.1空间向量及其运算-重点知识点

高中数学选修1-第一章-1.1空间向量及其运算-重点知识点

第一章空间向量与立体几何1.1空间向量及其运算知识点一:空间向量的概念及几类特殊向量1.空间向量:在空间中,具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模。

2.单位向量:模为1的向量。

3.零向量:长度为0的向量。

4.相等向量:长度相等且方向相同的向量。

5.相反向量:长度相等且方向相反的向量6.共线(平行)向量:如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线(平行)向量。

7.方向向量:在直线l上取非零向量a,把与向量a平行的非零向量称为直线l的方向向量。

8.共面向量:平行于同一个平面的向量,叫做共面向量。

知识点二:空间向量的线性运算1.加法:三角形法则:a+b=OA→+AB→=OB→;平行四边形法则:a+b=OA→+OC→=OB→2.减法:a-b=OA→-OC→=CA→ 3.数乘运算当λ>0时,λa=λOA→=PQ→(与a同向)当λ<0时,λa=λOA→=MN→(与a反向)当λ=0时,λa=04.运算律(λ,μ∈R)交换律:a+b=b+a结合律:(a+b)+c=a+(b+c),λ(μa)=(λμ)a分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb知识点三:空间向量共线、共面的有关定理1.共线向量定理对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb2.共面向量定理向量p 与不共线的两个空间向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y),使p =x a +y b知识点四:空间向量的数量积1.数量积:a ·b =|a ||b |cos<a ,b >,其中<a ,b >为两个非零向量a ,b 的夹角。

2.运算律:(λa )·b =λ(a ·b );λ∈R ;a ·b =b ·a (交换律);(a +b )·c =a ·c +b ·c (分配律)。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。

下面我们来对空间向量的相关知识点进行一个系统的总结。

一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。

2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量通常用小写字母加箭头表示,如\(\vec{a}\)。

3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。

4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。

5、单位向量模为\(1\)的向量称为单位向量。

若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。

6、相等向量长度相等且方向相同的向量称为相等向量。

7、相反向量长度相等但方向相反的向量称为相反向量。

二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。

设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。

2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。

3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。

当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。

《高考数学常考知识点之空间向量》

《高考数学常考知识点之空间向量》

空间向量1.空间向量的概念: 具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下 b a AB OA OB +=+=b a OB OA BA −=−=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)( 3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 t OA OP +=a .其中向量a叫做直线l 的方向向量.5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α. 通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++ 8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅.12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅ a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a 222321a a a a a a ++=⋅=(用到常用的向量模与向量之间的转化:a a a a a a ⋅=⇒⋅=2)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d −+−+−=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||||n n AB ⋅.②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα−−l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交). α▲n BC A αβ▲n 2n 1αC ED AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上数学知识点空间向量高二上数学知识点:空间向量
一、引言
数学是一门学科,它以推理和逻辑为基础,研究数量、结构、变化以及空间等方面的规律。

高二上学期,我们将学习许多重要的数学知识点,其中之一就是空间向量。

本文将详细介绍空间向量的定义、运算方法以及相关应用。

二、空间向量的定义
空间向量是指空间中的一个有大小和方向的量。

它由起点和终点确定,常用带箭头的线段来表示。

在空间向量中,起点表示向量的位置,终点表示向量的方向和大小。

三、空间向量的表示方法
空间向量可以用坐标表示法和位置矢量法两种方式进行表示。

1. 坐标表示法
坐标表示法是将空间向量的起点放置在坐标系的原点,终点在坐标系中的一个确定点。

这样,空间中的向量就可以用坐标$(x,y,z)$ 来表示,其中 $x$ 表示向量在 x 轴上的投影,$y$ 表示向量在 y 轴上的投影,$z$ 表示向量在 z 轴上的投影。

2. 位置矢量法
位置矢量法是将空间向量的起点设置在空间中的一个位置$(x_1,y_1,z_1)$,终点则是另一个位置 $(x_2,y_2,z_2)$。

这样,空间向量就可以用矢量 $\vec{AB}$ 来表示,其中点 A 为起点,点 B 为终点。

四、空间向量的运算
1. 向量的相加
当两个空间向量进行相加时,可以将它们的起点放在一起,将终点放在一起,再连接起点和终点,得到一个新的向量。

记作$\vec{AB} + \vec{CD} = \vec{AD}$。

2. 向量的数量乘法
向量的数量乘法是指向量与一个实数相乘,其结果是方向不变,大小改变的一个新向量。

记作 $\lambda \cdot \vec{AB}$,其中
$\lambda$ 为实数。

3. 向量的点乘
向量的点乘是指将两个向量进行相乘并求和的运算。

点乘的结
果是一个实数,它等于两个向量的模长乘积与夹角的余弦值。


作 $\vec{AB} \cdot \vec{CD} = |\vec{AB}| \cdot |\vec{CD}| \cos
\theta$,其中 $\theta$ 为两向量之间的夹角。

4. 向量的叉乘
向量的叉乘是指将两个向量进行相乘并求和的运算。

叉乘的结
果是一个新的向量,其大小等于两个向量的模长乘积与夹角的正
弦值,方向由右手定则确定。

记作 $\vec{AB} \times \vec{CD} =
|\vec{AB}| \cdot |\vec{CD}| \sin \theta \cdot \vec{n}$,其中
$\theta$ 为两向量之间的夹角,$\vec{n}$ 为垂直于两向量所在平
面的单位向量。

五、空间向量的应用
1. 平面几何
空间向量在平面几何中有广泛的应用。

例如,通过向量的数量乘法可以得到点到直线的距离,通过向量的点乘可以判断两条向量的垂直性,通过向量的叉乘可以得到两条向量所在平面的法向量。

2. 物理学
向量在物理学中有着重要的作用。

空间向量可以表示力的大小和方向,通过向量的运算可以计算物体受到的合力,进而研究物体的运动状态。

3. 工程学
空间向量也被广泛应用于工程学中。

例如,在建筑设计中可以利用向量的运算来计算平面的倾斜程度,以便确定合适的建筑设计方案;在机械工程中,向量的运算可以用来确定力的方向和大小,从而设计出更稳定和安全的机械结构。

六、总结
高二上学期的数学课程中,空间向量是一个重要的知识点。

通过本文的介绍,我们了解了空间向量的定义、表示方法、运算规
则以及相关应用。

希望同学们能够通过不断的练习和探索,掌握空间向量的理论和实践,在未来的学习和工作中能够灵活运用空间向量的知识。

相关文档
最新文档