svg无功补偿器工作原理
老旧SVG无功补偿原理及基础知识讲解
主控屏
■调节装置1台,数据采样、运算,得出阀组 控制量,然后将此运算结果通过光隔离SPI 口送至触发单元,使用F2812 DSC作为主 CPU 。
■触发装置3台,接收运算单元发出的控制量, 以控制量为输入信号进行分析运算,产生 各IGBT模块触发用的信号 。
■主要作用:实现SVG自励启动,限制上电时 直流电容的充电涌流,避免IGBT模块、直流 电容损坏。SVG上电时,旁路电阻串于充电 回路,起限流保护作用;需将电阻通过接触 器旁路后SVG方能投入运行。设计有接触器 与上端口断路器的互锁,保证断路器“合” 状态时接触器执行“合”动作。
■单相旁路电阻选用两只640Ω/2kW并联。
将考核点电压稳定在一定水平的场合。装置通过调节其无功输出使考核 点电压稳定在用户设定的电压目标值或范围内。当考核点电压低于用户 设定的电压参考时,装置输出容性无功以提升考核点电压;当考核点电 压高于设定值时,装置输出感性无功以降低考核点电压。当电压合格时 ,又可控功率因数或系统无功的目标或范围。
SVG控制系统工作方式
电力系统中网络元件的阻抗主要是感性的,需要容性无功来补 偿感性无功。
将电容并入RL电路之后,电路如图(a)所示。该电路电流方程
为
I Ic Irl
17
由图(b)的向量图可知,并联电容后U与I的相位差变小了,即 供电回路的功率因数提高了。此时供电电流的相位滞后于电压,这种 情况称为欠补偿。
若电容C的容量过大,使得供电电流的相位超前于电压,这种情况 称为过补偿。其向量图如(c)所示。通常不希望出现过补偿的情况, 因为这样会:
■无功分类
1、感性无功:电流矢量滞后于电压矢量90°,如电动机、变压器等 2、容性无功:电流矢量超前于电压矢量90°,如电容器、电缆输配电
svg动态无功补偿装置工作原理
svg动态无功补偿装置工作原理SVG(Static Var Generator)动态无功补偿装置是一种能够实现电网无功补偿的设备,通过控制电压和电流的相位差来补偿电网中的无功功率。
它通过逆变器将直流电源转换成可调节的交流电流,根据电网的需求进行无功功率的补偿。
SVG的主要工作原理是通过控制逆变器的开关器件,通过对逆变器的输入电流进行控制,来改变逆变器输出的电流和电压的相位差,从而实现无功功率的补偿。
SVG的工作流程如下:1.电网监测:通过电压和电流传感器对电网进行监测,获取电网功率因数和无功功率的信息。
2.信号处理:将电网监测得到的信号进行滤波、去噪和放大等处理,得到稳定可靠的测量信号。
3.控制策略:根据电网的需求,通过控制器设计相应的控制策略。
控制策略可以基于电网的功率因数进行控制,也可以基于电网无功功率进行控制。
4.逆变器控制:根据控制策略生成逆变器的控制信号,通过控制开关器件的导通和断开,使逆变器输出的电流和电压的相位差发生变化。
5.逆变器输出:经过控制后的逆变器输出的交流电流,通过滤波电路进行滤波,得到准直流电流。
6.电网注入:通过串联电抗器将逆变器输出的准直流电流注入电网,实现无功功率的补偿。
由于串联电抗器的存在,可以调节逆变器输出的电压和电流的相位差,使得逆变器可以通过补偿电网的无功功率。
7.反馈控制:将电网注入的无功功率进行监测,根据监测结果反馈给控制器,进一步调整控制策略和逆变器的控制信号,使无功功率达到设定值。
8.系统保护:同时,SVG还需要具备过流、过温、过压等保护功能,保障设备的运行安全。
总之,SVG通过逆变器将直流电源转换成可调节的交流电流,通过控制器控制逆变器的开关器件,实现对无功功率的补偿,从而提高电网的功率因数和稳定性。
这种动态无功补偿装置在电力系统中具有重要的应用价值,能够有效解决电网的无功功率问题,提高电网的运行效率。
SVG工作原理、控制系统及关键技术说明书
SVG工作原理、控制系统与关键技术说明SVG(Static Var Generator, 动态无功补偿装置)是一种采用自换相变流电路的现代无功补偿装置,是当今无功补偿领域最新技术,又称为STAT〔Static Synchronous pensator, 动态无功补偿装置〕。
SVG 动态无功补偿装置在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面更具优势。
SVG产品技术特点:※触发、监控单元分相独立化设计,运行速度快,抗干扰性强;※基于瞬时无功功率理论的无功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专用的IGBT 驱动电路,保证了IGBT 高频开断的可靠性,并将状态监控信息实时上传至上层监控系统;※链节自取能设计,可靠性高;※链式结构模块化设计,满足系统高可靠性的要求,维护方便;※叠层铜排应用,满足IGBT 高频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的无功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出无功电流不受母线电压影响;※对系统阻抗参数不敏感。
电网电能质量存在的问题1.1非线性负荷大量接入电网和负载的频繁波动,对电能质量产生严重影响:(1) 输电系统缺乏与时的无功调节,系统振荡容易扩大,降低输电系统的稳定性;(2) 负荷中心缺乏快速的无功支撑,容易造成电压偏低;(3) 功率因数低,增加电网损耗,加大生产本钱,降低生产效率;(4) 产生的无功冲击引起电网电压降低、电压波动与闪变,严重时导致传动装置与保护装置无常工作甚至停产;(5) 产生大量谐波电流,导致电网电压畸变,引起:①保护与安全自动装置误动作;②电容器组谐波电流放大,使电容器过负荷或过电压,甚至烧毁;③增加变压器损耗,引起变压器发热;④导致电力设备发热,电机力矩不稳甚至损坏;⑤加速电力设备绝缘老化;⑥降低电弧炉生产效率,增加损耗;⑦干扰通讯信号;(6) 导致电网三相电压不平衡,产生负序电流使电机转子发生振动。
SVG工作原理、控制系统及关键技术说明
SVG工作原理、控制系统及关键技术说明SVG(Static Var Generator, 动态无功补偿装置)是一种采用自换相变流电路的现代无功补偿装置,是当今无功补偿领域最新技术,又称为STATCOM(Static Synchronous Compensator,动态无功补偿装置)。
SVG 动态无功补偿装置在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面更具优势.SVG产品技术特点:※触发、监控单元分相独立化设计,运行速度快,抗干扰性强;※基于瞬时无功功率理论的无功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专用的IGBT 驱动电路,保证了IGBT 高频开断的可靠性,并将状态监控信息实时上传至上层监控系统; ※链节自取能设计,可靠性高;※链式结构模块化设计,满足系统高可靠性的要求,维护方便;※叠层铜排应用,满足IGBT 高频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的无功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出无功电流不受母线电压影响;※对系统阻抗参数不敏感.电网电能质量存在的问题1.1非线性负荷大量接入电网和负载的频繁波动,对电能质量产生严重影响:(1) 输电系统缺乏及时的无功调节,系统振荡容易扩大,降低输电系统的稳定性;(2) 负荷中心缺乏快速的无功支撑,容易造成电压偏低;(3)功率因数低,增加电网损耗,加大生产成本,降低生产效率;(4)产生的无功冲击引起电网电压降低、电压波动及闪变,严重时导致传动装置及保护装置无法正常工作甚至停产;(5) 产生大量谐波电流,导致电网电压畸变,引起:①保护及安全自动装置误动作;②电容器组谐波电流放大,使电容器过负荷或过电压,甚至烧毁;③增加变压器损耗,引起变压器发热;④导致电力设备发热,电机力矩不稳甚至损坏;⑤加速电力设备绝缘老化;⑥降低电弧炉生产效率,增加损耗;⑦干扰通讯信号;(6)导致电网三相电压不平衡,产生负序电流使电机转子发生振动。
SVG工作原理
基于可自关断器件实现的静止无功发生装置(Static Var Generator---SVG,又称STATCOM ),具有控制特性好,响应速度快,体积小,损耗低等一系列优点,并已开始在工业现场获得推广应用。
SVG 的基本原理是将自换相桥式电路通过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿。
SVG 的基本构成如图所示。
+-电力系统SVG 的逆变器通过中间变压器与电力系统相连接,逆变器的输出电压i U与电力系统电压a U始终保持频率相同。
通过i U大小的调节可控制加在中间变压器上的电压的大小和方向,进而可以实现无功吸收与补偿的控制。
因此,分析SVG 无功补偿时,可将SVG 用一可控电压源代替,如图所示。
从图中分析我们可以看出,SVG 提供电流I为I=X 为中间变压器的电抗。
依据不同的逆变器输出电压,可以得到不同相位和波形的电流。
逆变器输出电压I∙iU ∙I∙电流超前(容性)U ∙jX U I∙∙=电流滞后(感性)空载1. 空载模式:a U ∙=IU ∙2. 容性模式 电流超前电压 向系统提供容性无功,且无功的大小可以通过 Ui 的大小进行调节。
3. 感性模式 电流滞后系统电压 向系统提供感性无功,且无功的大小可以通过Ui 的大小进行调节。
4. 有源滤波模式:通过调节Ui ,产生补偿谐波电流所需的电流I 。
SVG 通过可控电压源方式实现无功功率的动态补偿。
这种方式较于传统的SVC 具有一系列的优点:1 SVG 具有更好的出力特性。
SVC 在系统电压较低时,表现为电容特性,且无功随电压的降低按平方关系下降。
而SVG 在低电压时,表现为定电流特性,因而,无功功率只随电压的降低按一次方关系下降。
2 SVG 采用PWM 控制,具有更快的响应特性。
3 SVG 中,无功调节不是通过控制容抗或感抗的大小实现的,因而,无需直接与系统连接的电容器或电抗器,不存在系统谐振问题,而且大大减小了设备的体积。
svg静止无功补偿原理
svg静止无功补偿原理嘿,朋友!今天咱来聊聊 SVG 静止无功补偿原理。
您知道吗,电就像个调皮的孩子,有时候可不听话啦!无功功率这玩意儿,就像是电的小情绪,一会儿多一会儿少,搞得电网都不舒坦了。
这时候,SVG 静止无功补偿装置就像一位超级英雄,挺身而出,来拯救这混乱的局面。
那 SVG 到底是怎么工作的呢?这就得从它的核心原理说起啦。
SVG 就像是一个智能的能量调节大师,它能够快速感知电网中无功功率的变化。
您想想看,电网就好比是一条河流,无功功率就像是河流中的漩涡和乱流。
而 SVG 能够精准地找到这些漩涡和乱流,然后迅速出手,把它们抚平。
比如说,当电网中需要更多的无功功率时,SVG 会像一个慷慨的施主,迅速释放出所需的无功电流,给电网“加油打气”。
反过来,如果无功功率过剩了,SVG 又会像一个精明的管家,把多余的无功电流收起来,让电网保持平衡和稳定。
这SVG 啊,工作起来那叫一个高效!它不像传统的无功补偿装置,反应慢吞吞的。
它就像短跑运动员,瞬间就能做出反应,速度快得让人惊叹。
而且,SVG 还有个厉害的地方,它能实现连续的无功调节。
这就好比开车,传统的补偿装置是手动挡,换挡的时候难免会有顿挫感。
而SVG 呢,那是无级变速的自动挡,平滑得很,让电网运行得稳稳当当。
您再想想,如果电网没有 SVG 这样的神器来补偿无功功率,会怎么样呢?那电网就像一个生病的人,时而虚弱无力,时而又过于亢奋,这能正常工作吗?肯定不行啊!所以说,SVG 静止无功补偿原理可太重要啦!它让电网变得更加稳定、可靠,为我们的生活和生产提供了坚实的电力保障。
总之,SVG 静止无功补偿就像是电网的定海神针,让电这个调皮的孩子乖乖听话,为我们的美好生活持续输送稳定可靠的能量!。
svg 无功补偿 原理
svg 无功补偿原理SVG无功补偿原理无功补偿是电力系统中常见的一种补偿方式,用于改善电力系统的功率因数和电压质量。
SVG(Static Var Generator)是一种常见的无功补偿装置,它基于静态电子器件实现无功功率的快速调节和控制。
本文将介绍SVG无功补偿的原理和工作方式。
一、SVG无功补偿的原理SVG无功补偿的原理是通过控制无功功率的流动来实现电力系统的无功补偿。
在电力系统中,无功功率的流动会引起电压波动和功率因数下降,给电力系统的稳定运行带来不利影响。
而SVG无功补偿装置可以根据系统的需求,快速调节无功功率的流动,以维持电力系统的电压稳定和功率因数在合理范围内。
SVG无功补偿装置由主电路和控制电路两部分组成。
主电路由静态电子器件组成,包括IGBT(Insulated Gate Bipolar Transistor)、电容器等。
控制电路负责监测电力系统的电压、电流等参数,并根据设定值进行调节。
二、SVG无功补偿的工作方式SVG无功补偿装置通过控制主电路中的电子器件来实现对无功功率的调节。
具体工作方式如下:1. 监测电力系统的参数:控制电路通过传感器监测电力系统的电压、电流、功率因数等参数,实时获取电力系统的运行状态。
2. 计算无功功率:控制电路根据监测到的电力系统参数,计算出当前的无功功率。
3. 判断补偿需求:根据无功功率的计算结果,判断电力系统是否需要进行无功补偿。
如果无功功率超过设定阈值,即认为需要进行补偿。
4. 控制无功功率的流动:当判断出需要进行无功补偿时,控制电路会向主电路发送控制信号,调节主电路中的电子器件。
通过控制电容器的充放电过程,实现无功功率的流动调节。
5. 实时调节:控制电路会根据电力系统的实时运行状态,不断调节无功功率的流动,以满足电力系统的需求。
当电力系统的无功功率下降时,SVG无功补偿装置会提供无功功率;当电力系统的无功功率增加时,SVG无功补偿装置会吸收多余的无功功率。
svg动态无功补偿装置原理
svg动态无功补偿装置原理SVG dynamic reactive power compensation device operates on the principle of converting fixed-capacity capacitors into adjustable capacitors through high-power electronic devices. This device effectively compensates reactive power in the power system, improving power quality and enhancing the efficiency of power transmission. SVG devices utilize advanced power electronic technology to rapidly adjust their capacitance, enabling them to respond promptly to changes in the system's reactive power demand. SVG动态无功补偿装置的原理是通过大功率电子器件将固定容量的电容器转换为可调电容器。
这种装置可以有效地补偿电力系统中的无功功率,从而提高电能质量并增强电力传输的效率。
SVG装置利用先进的电力电子技术快速调整其电容值,使其能够迅速响应系统中无功功率需求的变化。
The core component of the SVG device is the inverter, which converts direct current (DC) into alternating current (AC) throughhigh-frequency switching. This allows for precise control of the output voltage and phase angle, enabling the device to provide either capacitive or inductive reactive power, depending on the system's needs.SVG装置的核心部件是逆变器,它通过高频开关将直流电(DC)转换为交流电(AC)。
svg无功补偿原理
svg无功补偿原理SVG(Static Var Generator)静态无功补偿装置,是一种通过电子器件来实现电力系统的无功补偿的装置。
其原理是根据电力系统中的功率因数和电压波动情况,实时调节无功功率,并保持系统的电压稳定。
SVG的无功补偿原理主要有以下几点:1.电容器的无功补偿:SVG中包含电容器作为无功补偿元件。
当电力系统的功率因数较低时,系统中有较多的无功功率需要补偿。
电容器通过储存电能的方式,在低负载时释放无功电能,以调节系统的功率因数,提高整体电能的利用率。
2.可控硅的无功补偿:SVG采用可控硅作为调节元件,通过控制可控硅通断来改变电压波形,从而实现无功补偿。
当电力系统中的高次谐波存在时,会对系统的无功功率带来影响。
SVG通过调节可控硅的开通角度和关断角度,可以消除或减小谐波分量,从而有效补偿无功。
3.瞬时响应能力:SVG具备快速响应无功补偿的能力。
当电力系统中存在瞬态负荷或突发负荷变化时,SVG可以迅速调节无功功率,以防止系统电压的大幅波动。
这种快速响应能力可以有效维持系统电压的稳定,保证系统设备的正常运行。
4.全容量调节能力:SVG能够根据系统的无功需求进行全容量调节。
不论是小负载还是大负荷情况,SVG都可以提供相应的无功补偿。
这种全容量调节能力可以满足各种负载条件下的无功需求,保证系统的无功功率控制稳定。
5.功率因数控制:SVG可以通过电压控制和电流控制来实现功率因数的调节。
在一般情况下,当电力系统中的功率因数较低时,SVG将通过有功功率、无功功率调节以及电压调节等方式,来实现功率因数的控制。
通过控制这些参数的大小,可以使系统的功率因数维持在所需的范围内。
总之,SVG静态无功补偿装置通过电容器补偿和可控硅控制,实现了对电力系统的无功补偿。
通过瞬时响应能力和全容量调节能力,SVG能够保持系统电压的稳定,提高电能的利用效率,并且通过功率因数的控制,可以满足各种负载条件下的无功需求。
这些原理使得SVG在现代电力系统中得到了广泛应用,提高了电力系统的可靠性和稳定性。
SVG无功补偿装置的基本原理及仿真分析
SVG无功补偿装置的基本原理及仿真分析特变电工新疆新能源股份有限公司新疆乌鲁木齐830011摘要:随着工业用电复杂性的提高和干扰因素的增多,配电网中的三相不平衡问题越加凸显,同时电网对无功补偿的需求也更加强烈。
静止无功发生器SVG 是当前电网中应用较为广泛的一种先进的无功补偿装置,其性能受电压波动的影响较小,同时装置本身产生的少量谐波对电网影响较为有限。
基于此,本文针对典型的SVG系统拓扑结构进行了研究,并基于此介绍了SVG的工作原理和控制方法。
最后通过Matlab仿真验证SVG对系统无功的调节作用以及对不平衡电流的调节作用。
关键词:无功补偿;瞬时无功;电流控制1绪论近年来随着单相大功率电气设备的不断增多,对配电网三相负载的平衡造成了很大的影响,改善配电网的三相平衡是目前较为关注的热点问题[1]。
无功功率主要用于设备间的能量转换,如电机、变压器等,本身不会对外做功[2]。
虽然如此,但无功功率依然会占用电网资源,影响电能质量,甚至由于过大的电压跌落导致系统脱网。
2 SVG基本原理2.1动态无功补偿装置SVG的特点分析SVG是建立在在静止无功发生器的基础上进行综合补偿的一种装置设备,就当前的实际情况来看,SVG是目前世界上最为先进和实用的动态无功补偿装置,具有强大的能力,能够匹配装置和电网的实际需求,进而连续发出所需容性和感性无功功率。
SVG动态无功补偿装置的主要特点和优势包括了以下几个方面的内容:第一,SVG动态无功补偿装置相较于其他补偿装置其消耗的能量更少。
就当前实际情况来看,在相同的条件和范围中,SVG动态无功补偿装置比传统的晶闸管控制电抗器以及磁控电抗器类动态调节装置耗能更加小,平均耗能只占这两种的百分之二十,大大的降低了能源的损耗;第二,SVG动态无功补偿装置的实际安装使用面积更小。
从当前的动态无功补偿装置系统的安装中来看,由于SVG动态无功补偿装置的很多组成部分是半导体,并且使用的是直流电进行储能的工作,这就大大的节约了装置的体积;第三,SVG动态无功补偿装置相较于其他装置更具安全性,这是由于SVG动态无功补偿装置在工作中是可以过滤谐波的,这样就是的风力发电系统中不需要再增加额外的滤波装置,促使发电系统更加安全稳定的运行;第四,SVG动态无功补偿装置相较于其他装置反应与反馈更加及时迅速。
(完整版)静止无功发生器(SVG原理简介)
PHIMIKAPHIMIKA静止无功发生器——(SVG)原理简介深圳市兆晟科技有限公司飞明佳电气科技PHIMIKAPHIMIKA静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
无功补偿的发展及SVG的工作原理
无功补偿的发展及SVG的工作原理无功补偿是电力系统中非常重要的一部分,它的发展与电力系统的稳定运行和电能质量密切相关。
在过去的几十年中,无功补偿技术经历了从机械方式到电子方式的转变,其中静止无功发生器(SVG)是目前广泛使用的无功补偿装置之一无功补偿技术的发展主要源于电力负荷的变化和电力系统的发展要求。
随着电力负荷的增加,电力系统中无功功率的占比也相应增加。
过多的无功功率将导致电力系统的电压不稳和供电质量下降,甚至可能引发系统失稳。
所以,控制和补偿电力系统中的无功功率成为了一个重要的任务。
早期的无功补偿主要通过机械方式实现,如可调谐的电容器和电抗器,以及自动调节的空气断路器。
这些机械方式存在调节速度慢、精度低、体积大等问题。
随着电子技术的发展,静止无功发生器(SVG)成为了一种技术先进、调节快速、效率高的无功补偿装置。
SVG通过控制电力电子换流器(IGBT)的开通和关闭来实现对无功功率的补偿。
当系统中存在过多的无功功率时,SVG可以通过将电力电子换流器接入系统,将多余的无功功率转换为有功功率,并注入系统,从而实现无功补偿。
SVG的工作原理主要涉及两个方面的内容:电力电子换流器和控制系统。
电力电子换流器是SVG的核心部件,它可以将直流电压转换为交流电压,并且可以实现有源功率的注入和吸收。
控制系统主要负责监测电力系统中的无功功率,并根据设定值来控制电力电子换流器的开通和关闭。
当系统中无功功率超过设定值时,控制系统将指令发送给电力电子换流器,使其工作,实现无功功率的补偿。
与传统的机械方式相比,SVG具有很多优势。
首先,SVG的响应速度非常快,能够在几个周期内完成无功功率的补偿。
其次,SVG具有很高的准确性和精度,可以实现较低的无功功率误差。
此外,SVG还具有体积小、重量轻、可靠性高等特点。
总之,无功补偿技术的发展经历了从机械方式到电子方式的转变,其中SVG成为了一种技术先进、效果好的无功补偿装置。
SVG通过控制电力电子换流器的开通和关闭,实现对无功功率的补偿。
SVG动态无功补偿原理及功能
科陆能源哈密源和发电有限责任公司
功,增加了供电线路上的电能损失,降低了电压质量,同时无功电流 也降低了发、输、供电设备的有效利用率;对于电力用户而言,低功 率因数会增加电费支出,增加变压器损耗,加大生产成本。
SVG 可跟随负荷无功的变化,实现无功功率的动态补偿,使线路 损耗降到最低,并且充分提高了发、输、供电设备的利用率。 (2)谐波动态补偿,改善电能质量,节能降耗
科陆能源哈密源和发电有限责任公司
SVG 动态无功补偿原理及功能
培训人:刘永佩 一、工作原理
TSVG 的原理接线图如图 1-5 所示,自换相电压源变流器通过 变压器或者电抗器并联到电网上,通过调节 电压源变流器交流侧输 出电压的幅值和相位就可以使变流器输出连续变化的容性或者感性 无功电流,实现无功补偿的目的。TSVG 在空载、容性和感性运行模 式下的输出电流、输出电压与系统电压的关系如下表 1-10 所示:
在区域电网中,一般采用分级投切电容器组的方式来补偿系统无 功,改善功率因数,这种方式只能向系统提供容性无功,并且不能随 负载的变化而实现快速精确调节,在保证母线功率因数的同时,容易 造成向系统倒送无功,抬高母线电压,危害用电设备及系统稳定性。 SVG 系统可以快速精确地进行容性及感性无功补偿,使 SVG 在稳定 母线电压,提高功率因数的同时,彻底、方便地解决了无功倒送问题。 并且,安装新的 SVG 系统时, 可以充分利用原有的固定电容器组和 晶闸管相控电抗器(TCR)部分,用最少的投资取得最佳的效果,成 为改善区域电网供电质量的最有效的方法。 (四)、日常维护
气开关等部分组成。控制电源由四路开关电源构成,两路 DC24V 电
源系统,采用冗余方式,为触摸屏和继电器操作供电;两路直流
svg无功补偿原理
svg无功补偿原理
无功补偿是指在电力系统中通过一定的措施,将系统中发生的无功功率引起的问题最小化或消除的过程。
无功补偿的原理可以通过SVG(Static Var Generator)来实现。
SVG是一种通过电子器件来进行无功补偿的装置。
它由一组可控的电子开关、电容器和电感器组成。
这些开关可以根据系统的需求进行开关动作,从而调整系统中的无功功率。
具体实现无功补偿的原理如下:
1. 感应无功补偿:当电力系统中的负载变化时,会产生额外的无功功率。
SVG通过控制电子开关的状态来调整系统中的电容和电感器,从而改变系统的等效电抗,来补偿这部分感应无功功率。
2. 电容无功补偿:电容无功补偿主要用于电力系统中的电感负载。
SVG通过将电容器连接到系统中,可以产生与电感器相反的无功电流,从而将系统中的无功功率补偿掉。
3. 谐波无功补偿:电力系统中的谐波会引起额外的无功功率,导致系统中的功率因数下降。
SVG可以通过控制电子开关的状态来过滤掉谐波,从而改善系统的功率因数。
综上所述,SVG通过调整电子开关的状态,控制系统中的电容和电感器,实现感应无功补偿、电容无功补偿和谐波无功补偿。
通过这些补偿措施,可以有效地解决电力系统中的无功功率问题,提高系统的稳定性和能效。
动态无功补偿装置原理
动态无功补偿装置原理
动态无功补偿装置的原理是利用电力电子技术和控制技术,通过适当的调节桥式电路交流侧输出电压相对系统电压的相位和幅值,迅速吸收或发出满足要求的无功电流,实现快速动态无功补偿。
具体来说,SVG动态无功补偿装置将自换相桥式电路通过电抗器或变压器
并联在电网上,通过可关断大功率电力电子器件IGBT将直流侧电压转换成
交流侧与电网同频率的输出电压,实现无功能量的交换,补偿基波无功。
此外,SVG动态无功补偿装置还可以根据系统情况,进行主动式跟踪补偿。
另一种常见的动态无功补偿装置是调压式动态无功补偿装置,其原理是在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。
根据Q=2πfCU2改变电容器端电压来调节无功输出,从而改变
无功输出容量来调节系统功率因数。
该装置为分级补偿方式,容易产生过补、欠补。
由于调压变压器的分接头开关为机械动作过程,响应时间慢,虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
SVG动态无功补偿装置原理
SVG动态无功补偿装置原理SVG(Static Var Generator)是一种静态无功补偿装置,用于解决电力系统中的无功功率问题。
其基本原理是通过控制电力电子开关器件进行无功功率的补偿,从而改善电力系统的功率因数和电压稳定性。
SVG的主要组成部分包括电力电子开关器件、滤波电容、控制系统等。
当电力系统中的无功功率过大时,SVG通过调节电力电子开关器件的导通和断开时间,可以实时地控制电流的相位和大小,从而提供所需的无功功率,并将多余的无功功率回馈到电网中。
SVG的工作原理主要可分为两个步骤:检测和控制。
1.检测:SVG通过检测电网的电流和电压来获取系统的相位差和功率因数,并转化为相关信号送给控制系统处理。
检测部分主要包括电流采样、电压采样和相位差计算等。
-电流采样:通过与电网连接的电流互感器或电流互感器测量电网的电流值。
-电压采样:通过与电网连接的电压互感器或电压互感器测量电网的电压值。
-相位差计算:根据电流和电压的采样值,通过计算得到电网的相位差。
2.控制:SVG通过控制系统对电力电子开关器件进行调节,实时地控制电流的相位和大小,从而提供所需的无功功率。
-控制电流相位:根据检测到的电流和电压的相位差,通过调节电力电子开关器件的导通和断开时间,使得电流与电压相位差为零或接近零,并具有适当的相位滞后或超前,以实现无功功率的产生和吸收。
-控制电流大小:根据检测到的电压和电网所需的功率因数,通过控制电力电子开关器件的导通和断开时间,调节电流的大小,实现无功功率的提供或吸收。
通过以上的检测和控制,SVG可以实时地提供所需的无功功率,使得电力系统的功率因数变为理想的值,并提高电网的电压稳定性。
此外,SVG还具有快速响应、高效率和灵活性等特点,可以有效地调节电力系统的无功功率分配,并改善电网的品质和可靠性。
总结而言,SVG的工作原理是通过控制电力电子开关器件进行电流相位和大小的调节,实现无功功率的补偿,从而改善电力系统的功率因数和电压稳定性。
svg无功补偿工作原理
svg无功补偿工作原理
SVG无功补偿工作原理是通过引入补偿电容器或电感器来改
善电力系统的功率因数。
当电力系统中存在无功功率时,引入补偿装置可以在一定程度上抵消无功功率,从而提高功率因数。
具体工作原理如下:
1. 补偿电容器:当电力系统中存在感性负载时,会产生感性无功功率。
此时,通过加入补偿电容器,可以在电力系统中产生容性无功功率,与感性无功功率抵消,从而减少系统的总无功功率。
补偿电容器的容量根据感性无功功率大小来确定,一般可采用固定容量的电容器或可调节容量的电容器。
2. 补偿电感器:当电力系统中存在容性负载时,会产生容性无功功率。
此时,通过加入补偿电感器,可以在电力系统中产生感性无功功率,与容性无功功率抵消,从而减少系统的总无功功率。
补偿电感器的电感值根据容性无功功率大小来确定,一般可采用固定电感值的电感器或可调节电感值的电感器。
总的来说,SVG无功补偿工作原理是通过在电力系统中引入
补偿装置,利用补偿电容器或电感器产生与负载产生的无功功率相反的无功功率,实现无功功率的抵消,从而提高功率因数,改善电力系统的稳定性和效率。
svg无功补偿工作原理
svg无功补偿工作原理
SVG无功补偿工作原理是利用发电机侧电抗器、负载侧电抗器和避雷器,把发电机的电源侧的滞回功率,即电力系统接受到的无功功率,补偿到用户侧实现,从而实现电力系统发电机侧无功功率的补偿。
每一间发电机变电站实际上都应搭配一个合适的SVG无功补偿装置。
SVG由主变压器、负载侧电抗器、发电机侧电抗器和避雷器组成,可以测量和补偿变压器的无功功率,使发电机侧和负载侧的有功功率实现平衡,减轻无功回路中的补偿工作量和负载侧电网负荷,从而有效改善发电机侧线路及负载侧电网参数,降低系统电损和接地电位,提高电力系统供电可靠性并优化整个电力系统的运行状态。
SVG动态无功补偿装置原理1
.工作原理STATCOM-的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。
品采用基于瞬时无功功率理论的无功电流检测方式,逆变主电路采用IGBT组成的H桥功率单元级联拓扑结构,并辅助以小容量储能元件。
它由几个电平台阶合成阶梯波以逼近正弦输出电压,这种逆变器由于输出电压电平数的增加,使得输出波形具有更好的谐波频谱,并且每个开关器件所承受的电压应力较小,不需要均压电路,可避免大dv/dt所导致的各种问题。
因此这种逆变器可称为完美无谐波”变流器。
二.主要功能♦提高线路输电稳定性在长距离输电线路上安装SVG装置,不但可以在正常运行状态下补偿线路的无功损耗,抬高线路电压,提高有效输电容量,而且可以在系统故障情况下提供及时的无功调节,阻尼系统振荡,提高输电系统稳定性。
♦维持受电端电压,加强系统电压稳定性对于负荷中心而言,由于负载容量大,又没有大型的无功电源支撑,因此容易造成电网电压偏低甚至发生电压崩溃的稳定事故。
而SVG具有快速的无功功率调节能力,可以维持负荷侧电压,提高负荷侧供电系统的电压稳定性。
♦补偿系统无功功率,提高功率因数,降低线损,节能降耗电力系统中的大量负荷,如异步电动机、电弧炉、轧机以及大容量的整流设备等,在运行中需要大量的无功;同时,输配电网络中的变压器、线路阻抗等也会产生一定的无功,导致系统功率因数降低。
对电力系统而言,负荷的低功率因数会增加供电线路的能量损耗和电压降落,降低了电压质量。
同时,无功也会导致发电、输电、供电设备的利用率降低;对于电力用户而言,低功率因数会增加电费支出,加大生产成本。
♦抑制电压波动和闪变电压波动和闪变主要是负荷的急剧变化引起的。
负荷的急剧变化会导致负荷电流产生对应的剧烈波动,剧烈波动的电流使系统电压损耗快速变化,从而引起受电端电网电压闪变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SVG(Static Var Generator,静止无功发生器)是一种用于电力系统中动态补偿无功功率的装置。
其工作原理基于先进的电力电子技术,主要通过自换相桥式电路实现。
1. 基本结构:
SVG的核心部件是采用可关断电力电子器件(如IGBT,绝缘栅双极型晶体管)组成的电压源逆变器(VSI)。
该逆变器经过适当的控制后并联接入电网。
2. 实时监测与控制:
- SVG首先通过外部电流互感器(CT)或其他传感器检测系统的电流、电压等参数。
- 控制系统根据这些信息计算出当前所需的无功功率和相位,并实时调整逆变器输出的交流侧电压幅值和相位。
3. 无功补偿过程:
- 通过快速调节逆变器输出的交流电流,SVG能够在需要时产生或吸收无功功率,精确匹配负载变化,从而改善电网的功率因数,减少线损,稳定电压,提高电能质量。
- 当系统需要无功功率时,SVG会向电网注入滞后90度相位的电流;当系统有过多无功功率需要消耗时,SVG则从电网吸收相同相位的电流。
4. 动态响应能力:
- SVG具有非常快的动态响应速度,可以在毫秒级的时间内完成对无功需求的跟踪和补偿,尤其适用于负荷变化频繁、冲击性大或者谐波含量高的场合。
5. 谐波抑制:
- 高性能的SVG不仅可以补偿基波无功,还可以通过特定算法对谐波进行抵消,有助于改善整个电力系统的电能质量。
总之,SVG通过高级的电力电子技术和数字信号处理技术,实现了对电网无功功率的精准控制和高效补偿,是现代电力系统中不可或缺的重要组成部分之一。