分子吸收光谱法
第二章 可见紫外吸收光谱分析1
由于玻璃可吸收紫外光,所以玻璃棱镜只能用于
用于可见光域内。 石英棱镜可使用的波长范围较宽,可从185- 4000nm,即可用于紫外、可见和近红外三个光域。
光栅是利用光的衍射与干涉作用制成的。
它可用于紫外、可见及红外光域,而且
在整个波长区具有良好的、几乎均匀一 致的分辨能力。
它具有色散波长范围宽、分辨本领高、 成本低、便于保存和易于制备等优点。 缺点是各级光谱会重叠而产生干扰。
它是分光光度法定量分析的依据。
吸光系数
朗伯-比耳定律中,当c以克/升,液层厚 度b以厘米表示时,常数K以a表示,称 为吸光系数。 a的单位为升/克.厘米。 朗伯-比耳定律 :A=abc
摩尔吸光系数
朗伯-比耳定律中,浓度用摩尔/升,液 层厚度b用厘米为单位表示,则K用另一 符号ε来表示。 ε称为摩尔吸光系数(或克分子消光系数), 单位为升/摩尔.厘米。 它表示物质的浓度为1摩尔/升,液层厚 度为1厘米时溶液的吸光度。 朗伯-比耳定律 : A=εbc
72型 721型
751型 WFD-8型
760 40000
~
硅碳棒或 辉光灯
岩盐或萤 石棱镜
WFD-3型 WFD-7型
一、组成部件
光源
单色器
样品池
记录装置
检测器
(一)光源
对光源的基本要求是应在仪器操作所 需的光谱区域内能够发射连续辐射,有足 够的辐射强度和良好的稳定性,而且辐射 能量随波长的变化应尽可能小。 常用的光源有热辐射光源(如钨丝灯 和卤钨灯)和气体放电光源(如氢灯和氘 灯)两类。
1)非单色光的影响: 光吸收定律的重要前提是入射光
生物分子吸收光谱
生物分子吸收光谱生物分子吸收光谱是研究生物分子在吸收光的过程中所产生的光谱特征的科学方法。
通过分析生物分子在不同波长的光照射下的吸收情况,可以揭示生物分子的结构、功能以及相互作用等重要信息。
本文将介绍生物分子吸收光谱的原理、应用以及相关技术。
一、生物分子吸收光谱的原理生物分子吸收光谱的原理基于分子的电子结构和能级跃迁。
当生物分子受到特定波长的光照射时,分子中的电子会吸收光子的能量,从低能级跃迁到高能级。
这个过程中,吸收光的波长与分子的结构和能级有关,因此可以通过测量吸收光谱来研究分子的特性。
二、生物分子吸收光谱的应用1. 蛋白质结构研究:蛋白质是生物体内重要的功能分子,其结构与功能密切相关。
通过测量蛋白质在紫外-可见光区域的吸收光谱,可以推断蛋白质的二级结构、折叠状态以及与其他分子的相互作用等信息。
2. DNA测序:DNA是生物体内遗传信息的载体,其测序是基因组学研究的重要内容。
生物分子吸收光谱可以用于测定DNA的浓度和纯度,为后续的测序实验提供准确的数据。
3. 药物研发:药物的研发需要对药物与生物分子的相互作用进行深入研究。
生物分子吸收光谱可以用于测定药物与靶标分子的结合情况,评估药物的亲和力和效果。
4. 光合作用研究:光合作用是生物体内能量转化的重要过程,其中色素分子的吸收光谱对光合作用的研究具有重要意义。
通过测量叶绿素等色素分子的吸收光谱,可以了解光合作用的机制和效率。
三、生物分子吸收光谱的技术1. 紫外-可见吸收光谱:紫外-可见吸收光谱是最常用的生物分子吸收光谱技术。
通过测量生物分子在200-800nm波长范围内的吸收情况,可以得到吸收光谱曲线。
常用的仪器有分光光度计和紫外-可见分光光度计。
2. 红外吸收光谱:红外吸收光谱可以用于研究生物分子的结构和功能。
通过测量生物分子在红外波段的吸收光谱,可以得到分子的振动和转动信息,从而推断分子的结构和化学键的类型。
3. 核磁共振吸收光谱:核磁共振吸收光谱是一种高分辨率的光谱技术,可以用于研究生物分子的结构和动力学。
分子光谱法
2、
跃迁
处于成键轨道上的 电子跃迁到 反键轨道上,称
为
跃迁。
跃迁吸收峰的波长在20nm附近,其特征是吸 收强度大( >104)。
不饱和有机物,如具有
或
、
等基
团的有机化合物都会产生
跃迁。
第八章 分子光谱法
3、
跃迁
含有杂原子的不饱和基团,如C=O、C=S、N=N等化
合物,其未成键轨道中的n电子吸收能量后,向 反
第八章 分子光谱法
三、分子吸收光谱的基本原理 由光吸收定律及光与物质的相互作用可知,任何一种 物质对不同波长的光的吸收程度都是不相同的。
以溶液为例,将各种不同波长的单色光依次通过一定 浓度和液层厚度的某有色溶液,测量每一波长下该有 色溶液对光的吸收程度(即吸光度),然后以波长为 横坐标,以吸光度为纵坐标作图,即可得一曲线。该 曲线称为吸收曲线或吸收光谱。
分子光谱法分为吸收光谱法(如红外吸收光谱法、紫 外及可见吸收光谱法等)、发射光谱法(如荧光光谱 法)及散射光谱法(如拉曼光谱)三种基本类型。
在一般情况下,分子处于基态,当光与物质发生相互作用时,分子 吸收光能,从低能级跃迁到高能级产生吸收光谱。若分子从高能级 回复到低能级则释放出光能,形成发射光谱。散射光谱是光被物质 散射时,分子内能级的跃迁改变散射光频率而产生的。
第八章 分子光谱法
二、分子吸收光谱中的跃迁类型 化合物分子中主要还有三种类型的价电子,即形成单 键的 电子、形成双键或三键的 电子及未成键的n电子 (也称为p电子)。根据分子轨道理论,分子中这三 种电子的成键和反键分子轨道能级高低顺序为:
分子中不同轨道的价电子具有不同的能量,处于较低能级 的价电子吸收一定能量后,可跃迁到较高能级。在紫外可见光区,吸收光谱主要由 跃迁产生。
分子吸收光谱
分子吸收光谱首页资讯法规技术质量检验标准资料仪器图库商城人才英语课堂专题网刊网址论坛当前位置:首页>>检验技术>>食品理化检验>>仪器分析>>正文分子吸收光谱一. 分子吸收光谱的产生(一)分子能级与电磁波谱分子中包含有原子和电子,分子、原子、电子都是运动着的物质,都具有能量,且都是量子化的。
在一定的条件下,分子处于一定的运动状态,物质分子内部运动状态有三种形式:①电子运动:电子绕原子核作相对运动;②原子运动:分子中原子或原子团在其平衡位置上作相对振动;③分子转动:整个分子绕其重心作旋转运动。
所以:分子的能量总和为E分子= Ee +Ev +Ej +⋯ (E0 +E平) (3)分子中各种不同运动状态都具有一定的能级。
三种能级:电子能级E(基态E1 与激发态E2)振动能级V= 0,1,2,3 ⋯转动能级J = 0,1,2,3 ⋯当分子吸收一个具有一定能量的光量子时,就有较低的能级基态能级E1 跃迁到较高的能级及激发态能级E2,被吸收光子的能量必须与分子跃迁前后的能量差∆E 恰好相等,否则不能被吸收。
图1 双原子分子的三种能级跃迁示意图对多数分子对应光子波长光谱∆E 约为1~20eV 1.25 ~ 0.06㎛ 紫外、可见区(电子)∆E 约为0.5~1eV 25 ~ 1.25㎛ (中)红外区(振动)∆E约为10-4~0.05eV 1.25cm~ 25㎛ (远)红外区(转动)分子的能级跃迁是分子总能量的改变。
当发生电子能级跃迁时,则同时伴随有振动能级和转动能级的改变,即“电子光谱”——均改变。
因此,分子的“电子光谱”是由许多线光谱聚集在一起的带光谱组成的谱带,称为“带状光谱”。
分子吸收光谱法标准
分子吸收光谱法:原理、应用与标准化一、引言分子吸收光谱法是一种广泛应用于化学、生物学、环境科学等多个领域的重要分析技术。
通过测量分子对特定波长光的吸收,可以研究分子的结构、组成和反应过程。
本文将详细探讨分子吸收光谱法的原理、应用以及标准化问题,旨在帮助读者更深入地了解这一技术。
二、分子吸收光谱法的基本原理分子吸收光谱法基于分子对光的吸收特性。
当光通过含有分子的样品时,分子会吸收特定波长的光,导致光的强度减弱。
这种减弱与分子的浓度、光程长度以及分子的吸收截面有关。
通过测量不同波长下的光强减弱,可以得到分子的吸收光谱,进而推断出分子的结构、组成和浓度等信息。
三、分子吸收光谱法的应用1. 化学分析:分子吸收光谱法在化学分析中具有广泛应用,如定性鉴定、定量分析等。
通过对样品中分子的吸收光谱进行测量,可以确定样品的化学组成和浓度。
这种方法具有灵敏度高、选择性好等优点,适用于多种化学物质的检测和分析。
2. 生物学研究:在生物学研究中,分子吸收光谱法常用于研究生物大分子的结构和功能。
例如,通过测量蛋白质、核酸等生物大分子的吸收光谱,可以推断出它们的构象变化、相互作用等信息,有助于揭示生物大分子的生理功能和调控机制。
3. 环境监测:分子吸收光谱法在环境监测领域也发挥着重要作用。
例如,通过测量大气、水体等环境中污染物的吸收光谱,可以评估环境质量、污染源排放等信息,为环境保护和治理提供科学依据。
4. 材料科学:在材料科学领域,分子吸收光谱法可用于研究材料的结构、性质和制备过程。
例如,通过测量材料对光的吸收特性,可以研究其能带结构、光学性能等信息,为材料设计和应用开发提供依据。
四、分子吸收光谱法的标准化问题1. 仪器校准:为保证分子吸收光谱法的准确性和可靠性,需要对使用的仪器进行定期校准。
校准包括光源稳定性、光路系统准直性、检测器灵敏度等方面的检查和调整,以确保仪器在测量过程中的性能稳定可靠。
2. 样品制备:样品制备是影响分子吸收光谱法准确性的重要因素之一。
气相分子吸收光谱法(A)
气相分子吸收光谱法(A)1.办法原理水中硫化物包括溶解性的H2S、HS- 、S2-和存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及未电离的有机和无机硫化物。
这些硫化物可被较强的酸(5%-10%的磷酸)酸化分解,生成挥发性的H2S气体,用空气将其载入气相分子汲取光谱仪的测量系统,在200nm附近测定吸光度来举行水和污水中硫化物的迅速测定。
若水样基体复杂,含干扰成分多,则采纳迅速沉淀过滤与吹气分别的双重去除干扰手段来举行测定。
2.干扰及消退在磷酸介质中,NO2-、SO2-3、S2O2-3等的分解产物对紫外光也有汲取,产生正干扰,只要在反应瓶中加入过氧化氢,再加入磷酸,即可消退20mg NO2-、35mg SO2-3及45mgS2O2-3对10μg S2-的影响。
水样中含I-及可产生汲取的挥发性有机物,产生正干扰,CNS-产生负干扰。
为消退这些干扰,须采纳碳酸锌沉淀分别后,再加入过氧化氢和磷酸举行测定。
3.办法的适用范围本法最低检出浓度为0.005mg/L,测定上限10mg/L。
可用于各种水样中硫化物的测定。
4,仪器①气相分子汲取光谱仪(或原子汲取分光光度计在原子化器上方附加气体汲取管)。
②锌空心阴极灯。
③具磨口塞的比色管,50ml。
④混合纤维素滤膜,φ35mm,孔径3μm。
⑤减压过滤器,φ35mm。
⑥水流减压抽滤泵。
⑦医用不锈钢长柄镊子。
⑧气液分别汲取装置,参照硝酸盐氮的气相分子汲取光谱法。
5.试剂①除氧去离子水:将去离子水通入高纯氮(99.99%) 15-20min或加热煮沸15-20min,冷却后,装入塑料容器密闭保存备用。
②碱性除氧去离子水:将除氧去离子水调至pH=11±1,临用时配制。
③乙酸锌((Zn(Ac)2)+乙酸钠(NaAc)固定液:5g Zn(Ac)2.2H2O及1.25gNaAc·3H2O溶于100m1水中,摇匀,备用。
④乙酸锌((Zn(Ac)2)+乙酸钠(NaAc)混合洗液:该洗液中含1 %Zn(Ac)2 ·H2O及0.3%NaAc·3H2O,装入塑料容器中,密闭保存。
(完整版)图吸收光谱曲线
(8) B带
➢ 由芳香族化合物的π →π*跃迁而产生的精 细结构吸收带。
例如: 苯的B带: 摩尔吸光系数:200 L ·mol-1 ·cm-1 吸收峰的位置:230~270nm之间
(9) E带
➢ 芳香族化合物的π →π*跃迁所产生的吸收带, 也是芳香族的特征吸收峰。
苯的紫外吸收光谱
4、影响紫外-可见吸收光谱的因素
(2) 助色团
➢ 助色团是指本身不产生吸收峰,但与生色团 相连时,能使生色团的吸收峰向长波方向移动, 并使其吸收强度增强的基团。
例如:
—NH2 、—OH 、—OR 、—SH 、—SR 、—Cl 、—Br等
(3) 红移和蓝移
➢ 在有机化合物中,常常因取代基的变更或溶 剂的改变,使其吸收带的最大吸收波长max发生 移动。
例如:含有杂原子的不饱和基团:
(4) 电荷转移跃迁:
➢ 某些分子同时具有电子给予体和电子接受体, 它们在外来辐射照射下会强烈吸收紫外光或可 见光,使电子从给予体轨道向接受体轨道跃迁, 这种跃迁称为电荷转移跃迁,其相应的吸收光 谱称为电荷转移吸收光谱。
➢ 电荷转移跃迁实质上是一个内氧化还原过程。
例如:某些取代芳烃可产生这种分子内电荷转移 跃迁的吸收带。
➢ n → σ* 跃迁的摩尔吸光系数ε较小
(2) π→ π*跃迁:
➢ 吸收峰处于近紫外光区,在200nm左右,摩
ε 尔吸收系数 max > 104 L ·mol-1 ·cm-1 ,为强吸收带。
例如:含有π电子的基团:
(3) n → π*跃迁:
➢ 近紫外-可见光区,ε<100 L ·mol-1 ·cm-1
3、常用术语 (1) 生色团
➢ 生色团是指分子中能吸收紫外或可见光的 基团,它实际上是一些具有不饱和键和含有 孤对电子的基团。
气相分子吸收光谱法
气相分子吸收光谱法
气相分子吸收光谱法介绍
1、方法原理
气相分子吸收法(Gas-Phase Molecular Absorption Spectrometry,以下简称GPMAS)的理论基础是朗伯-比尔定律。
待测气体的浓度一定范围内与其吸光度呈现线性关系。
通过的特定的化学反应,将被测成份转化为气体,然后对生成的气体进行定量分析,从而计算出被测成分的含量。
例如:分析硫化物可将被测物转化为H2S测定;分析亚硝酸盐可将被测物转化为NO2测定;分析总氮可将被测物转化为NO测定;分析汞含量时可将被测物还原为汞蒸气测定。
另外也可直接测定气体含量,就是在一定的压力下,将测定成份直接进入测量系统测定吸光度(可测定大气中NO2、SO2以及H2S等气体),然后与测得己知浓度的标准溶液和标准气体的吸光度进行比较而得到样品的分析结果。
2、方法溯源
气相分子吸收法测定亚硝酸盐氮、硝酸盐氮、氨氮、凯氏氮、总氮、硫化物得到了国家环保部的认可,多年以前就被纳入“水和废水监测分析方法”(笫四版)中。
同时,此6个方法于2005年11月15日通过国家环保部组织的方法验证、专家审定,并作为国家环保标准方法发布实施。
因此,专业实验室采用本方法时,符合ISO17025管理体系对方法来源的要求
3、方法对比
气相分子吸收法与离子色谱、流动注射分析法对比。
紫外-可见吸收光谱法
助色团: (Auxochromous group) 有一些含有n电子的基团(如—OH、— OR、—NH2、—NHR、—X等),它们本身 没有生色功能(不能吸收λ>200nm的光) ,但当它们与生色团相连时,就会发生 —π*共轭作用,增强生色团的生色能 力(吸收波长向长波方向移动,且吸收强 度增加),这样的基团称为助色团。
(四) *跃迁
所需能量较小,吸收波长处于远紫外区 的近紫外端或近紫外区,最大吸收波长 λ在200nm左右,摩尔吸光系数εmax一般 在104L· -1· -1以上,属于强吸收。 mol cm 不饱和烃、共轭烯烃和芳香烃类均可发 生该类跃迁。
相关术语
生色团:(Chromogenesis group) 最有用的紫外—可见光谱是由π→π*和 n→π*跃迁产生的。这两种跃迁均要求有 机物分子中含有不饱和基团。这类含有π 键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、 羰基、亚硝基、偶氮基—N=N—、乙炔 基、腈基等。
当入射光波长一定时,待测溶液的吸光度 A与其浓度和比例系数,与溶液性质、温度和入射波长有关。 当浓度以 g/L 表示时,称 k 为吸光系数,以 a 表示,即
A abc
当浓度以mol/L表示时,称 k 为摩尔吸光系数,以 表示, 即
A bc
比 a 更常用。 越大,表示方法的灵敏度越高。 与波长有关,因 此, 常以表示。
摩尔吸光系数ε 的讨论 • 吸收物质在一定波长和溶剂条件下的特征常数; • 不随浓度c和光程长度b的改变而改变。在温 度和波长等条件一定时,ε仅与吸收物质本身 的性质有关; 可作为定性鉴定的参数; 同一吸收物质在不同波长下的ε值是不同的。 在最大吸收波长λmax处的摩尔吸光系数,常以 εmax表示。εmax表明了该吸收物质最大限度的 吸光能力,也反映了光度法测定该物质可能达 到的最大灵敏度。
紫外—可见分子光谱法
<三> 有机化合物的紫外—可见光谱:
(分子键主要为σ键) 1.饱和有机化合物:
饱和烃分子:σ→σ*跃迁,λmax<150nm 含N、O、S、X的饱和烃衍生物:n→σ*跃迁 λmax超出测量范 围,作溶剂使用
(分子键主要为π键) 2.单烯烃和共轭烯烃: π→π*跃迁 单烯烃:λmax在170~200nm以内
4.电荷迁移跃迁: 电磁辐射照射化合物时,电子从给予体向 与接受体相联系的轨道上跃迁,产生的吸收 光谱称电荷迁移吸收光谱。
●实质:是一个内氧化还—原过程
●跃迁的谱带较宽,吸收强度大,ε>104
<二> 几个术语: 在紫外、可见光谱区产生吸收的基 1.生色团: 团或结构系统。 2.助色团: 含有非键电子对的基团,称助色团。 在某些因素的影响下,化合物的 3.红移和紫移: 最大吸收波长λmax发生变化, 若λmax向长波方向移动,则称 为红移;若λmax向短波方向移 动,则称为紫移。 红移使吸收强度增强(增色效应), 紫移使吸收强度减小(减色效应)。
H
C H
O
p
n
1.σ→σ*跃迁: 需高激发能,对应于真空紫外区的辐射 频率,波长一般低于200nm,实际应用很 少。 2.n→σ*跃迁: 所需能量较σ→σ*跃迁能量小,可以由 150~250nm区域内的辐射引起,但大多数 吸收都出现在200nm以下的真空紫外区。 3. p→p*和n→p*跃迁: 所需能量都较σ→σ*跃迁低。产生的紫 外—可见光谱,对有机物分析十分有用。 n→p*跃迁属于禁阻跃迁,吸收较弱, ε=10~100。 p→p*跃迁为强吸收,一般εmax≥104。
一、组成: 辐 射 源
单 吸器
二、光度计类型: <一> 单光束分光光度计
分子吸收光谱和原子吸收光谱的区别
分子吸收光谱和原子吸收光谱的区别
分子吸收光谱和原子吸收光谱是两种不同的光谱学方法,它们的应用和原理也有所不同。
首先,分子吸收光谱是一种用于分析分子结构和化学反应的技术,它基于分子在特定波长的光线中的吸收能力来确定它们的组成和结构。
该技术通常使用紫外-可见吸收光谱仪来测量样品在紫外-可见光段吸收光线的程度。
这种方法可以用于分析许多类型的分子,包括蛋白质、DNA和多种有机分子。
相比之下,原子吸收光谱是一种以原子在特定波长的光线中的吸收能力为基础的技术,它通常用于确定样品中特定金属离子的含量。
原子吸收光谱可以通过火焰、火花和电弧等不同的方法实现。
这种技术的原理是,当样品被加热到足够高的温度时,其中的金属离子会被激发并吸收特定波长的光线,从而产生吸收线。
因此,分子吸收光谱和原子吸收光谱之间的主要区别在于它们的应用范围和原理。
分子吸收光谱广泛应用于分析有机分子和生物分子,而原子吸收光谱则主要用于分析特定金属离子的含量。
此外,分子吸收光谱是基于分子结构和化学反应的吸收能力,而原子吸收光谱则是基于金属离子在高温下的激发和吸收光线的能力。
- 1 -。
第二章 紫外-可见分光光度法-2
(3)温度的影响 在分光光度法测定中,通常都选用室温 显色反应。当温度对显色反应速度可能有较 大的影响时,需要考虑温度的影响。 合适的温度可用单因素实验来确定。
(4)显色时间 这里包括两种时间:一种是由于显色反 应速度不同,达到反应完全所需的时间;另 一种是有色化合物维持稳定的时间。 这两种时间均可用单因素实验来考察。
c. 快速扫描分光光度计陆续问世 利用光分析可以跟踪化学反应历程,一 般分光光度计只适于历程为20~30 min以上的 反应,要研究速度较快的反应,就需要设计 出快速扫描分光光度计,如:多道分光光度 计(采用:多道光子检测器,整个光谱扫描 时间不到1 s)。
4. 仪器的最新进展 (1) 仪器的自动化程度大大提高;
精确求取摩尔吸收系数的方法是:在 不同带通宽度时测定表观摩尔吸收系数, 绘制表观摩尔吸收系数对带通宽度的曲线 关系图,将曲线外推到带通宽度为零处, 这时相应的摩尔吸收系构造、类型及 发展趋势 1. 构造 通常由以下5个部分组成— (1) 一个或多个辐射源; (2)波长选择器; (3)试样容器 (吸收池) ; (4)辐射换能器; (5)信号处理器和读出装置。
对吸收池的要求:主要是能透过所研究的 光谱区辐射线。
吸收池的两个光学面必须平整光洁,使用 时不能用手触摸。
按材料可分为:玻璃吸收池和石英吸收池 两种。
吸收池有多种尺寸和不同结构,吸收池 的光径可在0.1 cm~10 cm之间变化,其中以 1 cm光径吸收池最为常用,根据使用要求 选用。 在用于高浓度或低浓度测定时,可相 应地采用光径较小或较大的吸收池。
(3) 蓝移 由于取代基或溶剂极性的影响,使吸收 谱带的最大吸收波长向短波方向移动的现象 称为短移、紫移或蓝移。
第二章 紫外-可见分光光度法-1
2.3 分光光度法的对比度 1. 对比度的概念 在光度法中,对比度是指显色剂与金属 离子所形成络合物(MeR)的最大吸收峰波 长(MeRmax)与显色剂本身(HnR)最大吸收峰波 长(HnRmax)之间的差值。
对比度以来表示: =MeRmax- HnRmax
一般认为: 40 nm时,显色反应对比度较小;
(2)共有六种跃迁类型:-*、-*、-*、 n-*、n-*和-*。
其中-*、-*、-*三种跃迁需要能量
较大,吸收峰小于200 nm,位于真空紫外 区。
而n-*、n-*和-*三种跃迁需要能量相
对较小,吸收峰位于近紫外区甚至可见区, 对于紫外-可见分子吸收光谱分析具有重大 意义。
:表示物质分子对某一波长光的吸收本领, 称为吸收系数。与物质性质、入射光波长 及温度等因素有关。
该式物理意义为:物质的吸光度与物质的 吸收系数和浓度的乘积成正比。
吸光度具有加和性: n A=A1+ A2+ A3+…+ An= Ai
i=1
当物质中只有一种吸光组分,则上式可简 化为:
2.4 光吸收定律—朗伯-比耳定律 1. 朗伯-比耳定律(Lambert-Beer Law) (1)定义1: A= lg I/I为吸光度(Absorbance)。 其中:I和I分别为试样入射光强度和出 射光强度。
(2)朗伯-比尔定律的数学表达式为: n A= i ci l i=1 其中:i表示某一吸光质点。c为浓度, 单位mol/L;l为液层厚度,单位为cm;为 摩尔吸光系数,单位L/(mol▪cm)。
(3) B吸收带:由苯环振动和-*的跃迁重叠 而引起的芳香族化合物特征吸收带。
例如:苯的B带吸收在230~270 nm,呈 精细的振动结构。
吸收光谱法
光度对浓度作图,绘制工作曲线。然后根据待测组分溶液
的吸光度在工作曲线上查得其浓度或含量。
与目视比色法相比,光电比色法提高了测量准确度,
而且可以通过选择滤光片来消除干扰,从而提高了选择性。 但光电比色计采用钨灯光源和滤光片,只适用于可见 光谱区和只能得到一定波长范围的复合光,而不是单色光 束。
23
3. 分光光度法
17
三、吸光度的加和性
溶液中含有对某一波长的光产生吸收的多种物质,那么 溶液的总吸光度等于溶液中各个吸光物质的吸光度之和,
A1 = 1bc1 A2 = 2bc2 A = 1bc1+ 2bc2
根据吸光度的加和性可以
进行多组分的测定以及某些化 学反应平衡常数的测定。
18
第三节
光度分析的方法和仪器
15
• ε是吸光物质在一定波长下的特征常数,反映该吸光物
质的灵敏度;
• ε值越大,表示该吸光物质对此波长光的吸收能力越强,
显色反应越灵敏;
• 在最大吸收波长处的摩尔吸光系数常以εmax表示;
16
铁(Ⅱ)浓度为5.0×10-4 g· L-1 的溶液,与邻二氮菲以1:3
的计量比生成橙色络合物。该配合物在波长508nm,比色
光谱名称 波长范围
X射线
远紫外光 近紫外光 可见光 近红外光 中红外光 远红外光 微波 无线电波
0.1~10nm
10~200nm 200~380nm 380~780nm 0.78~2.5um 2.5~25um 25~1000um 0.1~100cm 1~1000m
3
光学光谱区
单色光
单一波长的光 由不同波长的光组合而成的光
0.575
光源
单色器
吸收光谱法的定义
吸收光谱法是一种分析物质吸收光谱的方法。
它可以根据物质吸收光谱的特征来了解物质的组成、结构和性质等信息。
吸收光谱法在多个领域都有应用,如化学、生物学、医学和环境科学等。
在吸收光谱法中,物质被特定波长的光照射,然后测量透射光或反射光的强度,以确定物质对光的吸收程度。
通过分析物质吸收光谱的特征,可以推断出物质的一些性质,如化学组成、分子结构和分子间相互作用等。
吸收光谱法的优点包括:能够检测出物质的浓度和组成;可以用于不同种类的物质;具有较高的灵敏度和准确性;可以用于在线监测和实时分析等。
然而,吸收光谱法也有一些局限性,如需要使用特定的光源和检测器,以及需要精确控制实验条件等。
此外,对于某些物质,其吸收光谱特征不明显或吸收强度较弱,可能会影响分析的准确性和可靠性。
总之,吸收光谱法是一种重要的分析方法,可以用于研究物质的组成、结构和性质等信息。
虽然存在一些局限性,但在适当的条件下,它可以提供高灵敏度、高准确性和可靠性的分析结果。
紫外可见分光光度法
紫外-可见分光光度法
第一节 紫外-可见吸收光谱 第二节 朗伯-比尔定律 第三节 紫外-可见分光光度计 第四节 分析条件的选择
第五节 测定方法
概
述
紫外可见分光光度法(Ultraviolet-Visible Spectrophotometry),又称:紫外-可见分子 吸收光谱法(Ultraviolet-Visible Molecular Absorption Spectrometry)是利用被测物质 对光的吸收特征和吸收强度对物质进行定 量和定性的分析方法。
形成的溶液具有良好的化学和光化学稳定性;
在样品的吸收光谱区无明显吸收;
如果要与标准品的吸收光谱相比较,须用相同的溶剂。
5.pH值的影响
很多化合物都具有酸性或碱性可解离基团,在不同 pH的溶液中,分子的解离形式可能发生改变,其 吸收光谱的形状、λmax和吸收强度可能不一样。
OH O-
OHH+
λmax 210.5nm ,270nm
完全透过
无色
吸收黄色光
2014-12-23
蓝色
13
课堂互动
1.紫外-可见光的波长范围是 A.200~400nm B.400~780nm C.200~780nm D.360~800nm 2.下列叙述错误的是 A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈 C.物质对光的吸收有选择性 D.光的能量与其频率成反比
2mg/ml的溶液,在1cm吸收池中,于310nm处测
定吸光度A。规定A≤0.05。
(三)、结构分析
有机化合物的紫外吸收光谱 可以推定分子骨架,判断发色团之间的共轭关系
和估计共轭体系中取代基的种类、位置和数目 。
1.饱和碳氢化合物 只产生ơ→ơ*跃迁,所需能量很大, 200-400nm没有吸收,常作为溶剂。
吸收光谱法ppt课件
15
• ε是吸光物质在一定波长下的特征常数,反映该吸光物
质的灵敏度;
• ε值越大,表示该吸光物质对此波长光的吸收能力越强,
显色反应越灵敏;
• 在最大吸收波长处的摩尔吸光系数常以εmax表示;
完整版ppt课件
16
铁(Ⅱ)浓度为5.0×10-4 g·L-1 的溶液,与邻二氮菲以1:3 的计量比生成橙色络合物。该配合物在波长508nm,比色
作用:将光信号转换为电信号,并放大。 光电管,光电倍增管,光电二极管,光导摄像管
信号输出 表头、记录仪、屏幕、数字显示
完整版ppt课件
26
722型分光光度计
1. 光源:钨卤素灯-12V、30W 2. 波长范围:330~800nm 3. 分光元件:光栅,1200线/mm 4. 检测器: 端窗式G1030光电管
完整版ppt课件
光学光谱区
3
单色光
单一波长的光
复合光
由不同波长的光组合而成的光
光的互补
若两种不同颜色的单色光按一 定的强度比例混合得到白光,
蓝绿 绿蓝
绿 黄绿 黄
橙
就称这两种单色光为互补色光,
这种现象称为光的互补。
蓝 紫 紫红
红
完整版ppt课件
4
不同颜色的可见光波长及其互补光
/nm
400 ~ 450
ε=Ma =596.48×17.8=1.06×104 L·mol-1·cm-1
完整版ppt课件
17
三、吸光度的加和性
溶液中含有对某一波长的光产生吸收的多种物质,那么
溶液的总吸光度等于溶液中各个吸光物质的吸光度之和,
A1 = 1bc1 A2 = 2bc2 A = 1bc1+ 2bc2
紫外-可见分子吸收光谱法
NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子吸收光谱法
分子吸收光谱法是一种常用的分析方法,用于测定分子在特定波长范围内对光的吸收情况。
该方法利用分子在特定波长的光照射下,能够吸收光的能量,从而产生吸收峰。
分子吸收光谱法可用于研究物质的结构、测定物质的浓度以及研究反应动力学等。
常见的分子吸收光谱法包括紫外-可见吸
收光谱(UV-Vis)、红外吸收光谱(IR)和核磁共振光谱(NMR)等。
紫外-可见吸收光谱是最常用的分析方法之一,它通过测量分
子在紫外到可见光波长范围内吸收的光强来推断分子结构和浓度。
分子在特定波长下的吸收峰强度与分子中特定化学键的存在和浓度成正比。
红外吸收光谱利用物质在红外波长范围内对光的吸收,通过测量红外辐射穿过物质后的强度变化来推断物质的结构和化学键的存在。
红外吸收光谱可以用于鉴定物质的组成、研究其功能基团和判断化学反应的进行。
核磁共振光谱利用物质在磁场中核自旋的能级差别以及对外加射频辐射吸收和发射能量的差别,通过测量样品的核磁共振信号来推断物质的结构和化学环境。
核磁共振光谱可以用于确定分子的立体化学结构、鉴定物质的种类和测定分子的定量。
总之,分子吸收光谱法是一种重要的分析方法,可以用于研究物质的结构和性质,为许多领域的科学研究和实际应用提供有力支持。