简述铸造成型的特点
铸造成型的工艺特点
铸造成型工艺的特点
铸造成型工艺的特点主要有以下几个方面:
1.适应性广泛:铸造可以生产各种形状、大小和结构的铸件,尤其适用于难以
加工的复杂形状铸件。
2.材料种类多:可用于铸造的材料种类繁多,包括铸铁、铸钢、铝合金、铜合
金等。
3.成本低:铸造工艺可以使用低成本的材料和简单的工具,且适合批量生产,
因此具有较低的生产成本。
4.适用性强:铸造工艺可用于生产单件、小批量或大批量生产的铸件,也可用
于生产大型或小型铸件。
5.铸造缺陷:铸造过程中可能会出现一些缺陷,如气孔、缩孔、疏松、裂纹等,
这些缺陷需要通过改进工艺或加入相应的添加剂来减少或避免。
6.环保:铸造过程中会产生一些噪音、粉尘和废气等污染物,对环境有一定的
影响,因此需要采取相应的环保措施来减少对环境的影响。
总之,铸造成型工艺具有广泛的适应性、多样的材料种类、低成本、适用性强等特点,但也存在一些铸造缺陷和环境问题需要注意和解决。
在生产过程中需要选择合适的材料、工艺和设备,并进行有效的质量控制和环境管理。
铸造的定义及特点
铸造的定义及特点铸造是一种通过将熔化的金属或合金注入到模具中,并在冷却后使其凝固成所需形状的工艺。
在铸造过程中,金属或合金会经历熔化、注入、凝固和冷却等阶段,最终得到所需的铸件。
铸造是制造业中最常见的一种工艺,被广泛应用于汽车、航空航天、建筑、机械等领域。
铸造的特点主要包括以下几个方面:1. 造型自由度高:铸造工艺可以制造出各种形状复杂的铸件,无论是几何形状还是内部空腔结构,都可以通过合理设计模具来实现。
这使得铸造成为制造大型、复杂铸件的首选工艺。
2. 工艺适应性强:铸造适用于各种金属和合金,包括铁、钢、铝、铜、镁等。
不同的金属和合金有不同的熔点、凝固温度和流动性,铸造工艺可以根据材料的特性进行调整,以得到满足要求的铸件。
3. 生产效率高:铸造是一种批量生产的工艺,通过模具可以同时制造多个相同的铸件,大大提高了生产效率。
同时,铸造工艺可以实现自动化生产,减少了人工操作,提高了生产效率和产品质量。
4. 材料利用率高:铸造过程中,金属或合金是以液态形式注入模具中的,因此可以充分利用金属材料,减少浪费。
同时,铸造还可以回收和再利用废铸件和铸型材料,减少资源消耗和环境污染。
5. 产品质量稳定:铸造工艺可以通过控制铸件的组织和性能来满足不同的使用要求。
通过合理的铸造工艺参数和材料选择,可以获得具有一定强度、硬度、耐磨性、耐腐蚀性等特性的铸件。
6. 成本较低:相比其他制造工艺,铸造的设备投资和生产成本较低。
铸造设备简单、易于操作,不需要复杂的加工工艺和设备,可以在较低的成本下完成生产任务。
铸造工艺的发展随着时间的推移和科技的进步,逐渐形成了多种不同的铸造方法和工艺。
例如,根据铸造材料的不同,可以将铸造分为金属铸造、陶瓷铸造和塑料铸造等。
根据铸造方法的不同,可以将铸造分为重力铸造、压力铸造、离心铸造、注射铸造等。
每种铸造方法和工艺都有其适用的范围和特点,可以根据具体的产品要求和生产需求进行选择。
铸造作为一种传统的制造工艺,在现代工业中仍然占据重要地位。
铸造成型
模块一 模块二 模块三 模块四
铸造概述 砂型铸造 金属铸造性能 特种铸造简介
模块一 铸造概述
一、铸造成型特点 1、适应性广。各种金属、复杂形状、各种大小。 2、经济性好。废材料利用、设备简单、机加工少。 3、力学性能低。质量不稳、晶粒粗大,缩孔、气孔。 砂型铸造 特种铸造:金属型铸造、 压力铸造、 离心铸造、 熔模铸造等。
特种铸造
一、金属型铸造 一模多铸 1、金属型材料:铸铁或碳钢。 2、金属型铸造的工艺特点 1)金属型预热 预热温度一般不低于150℃。 2)刷耐火涂料 厚0.3-0.4mm,以保护型壁表面。 3、金属型铸造的特点 1)金属型铸件冷却快,组织致密,力学性能高。 2)铸件的精度和表面质量较高 3)金属型成本贵,易产生浇不足。
二、压力铸造
简称压铸
常用压射压力为5-1500MPa,充填速度约5-5m/s, 充填时间很短,约0.01-02s。 压铸过程主要由压铸机来实现。 优点:薄壁、生产率高、细晶、强度较高。 缺点:铸件易产生缩松,制造费用贵。 应用:大批量、薄壁复杂的非铁金属小铸件。
三、离心铸造
优点:力学性能较好;省去芯子和浇注系统。 缺点:内表面质量较差。 应用:空心旋转体、钢套镶铜轴承等。 离心铸造必须在离心铸造机上进行。
铸造应力: 收缩应力、热应力和相变应力 减小铸件变形的措施: 1. 力求使铸件壁厚均匀,形状对称; 2. 合理设计浇冒口等,使铸件冷却均匀; 3. 采用退让性好的型砂和芯砂; 4.
铸件结构的合理性
1、铸件应有合理的壁厚 2、铸件壁厚应力求均匀 3、铸件要有结构斜度 4、应使铸件尽可能不用型芯
模块四
获得外形准确、内部无缺陷铸件的能力。 主要有吸气性、氧化性、流动性和收缩性等。
第二章 铸造成形
铸造成形的特点
优点: (1)适应性强,工艺灵活性大。 (2)成形能力强 (3)经济性好 缺点: (1)铸件的力学性能差 (2)铸造工序多,工艺过程难于控制,废品率高 (3)铸造的工作条件差,工人劳动强度大。
2.1铸造方法及其应用
从造型方法来分, 砂型铸造:应用最广 特种铸造:熔模铸造、金属型铸造、压力铸造、 离心铸造等。与砂型铸造比,能够改善铸件质 量、提高生产率和降低工人劳动强度。
2)在金属型的工作表面上喷刷涂料 在金属型中与金属液接触的工作表面上喷刷涂 料,可避免高温金属液与金属型内表面直接接 触,延长金属型的使用寿命。涂料一般由石英 粉、石墨粉、炭黑等耐火材料和粘结剂调制而 成,涂层厚度为0.l~0.5mm。
3)适当提高浇注温度
金属型导热能力强,适当提高浇注温度(高 20~30℃)也增强金属的流动性。
1、熔模铸造
熔模成型工艺是液态金属在重力作用下浇入由 蜡模熔失后形成的中空型壳中成型,从而获得 精密铸件的方法,常称为熔模铸造或失蜡铸造。
(1)熔模铸造的基本工艺过程 (1)蜡模制造 蜡模制造是熔模铸造的重要过程, 它不仅直接影响铸件的精度,且因 每生产一个铸件就要消耗一个蜡模, 所以,对铸件成本也有相当的影响, 蜡模制造步骤如下:
①制造压型: 压型是用于压制蜡模的专用模 具。压型应尺寸精确、表面光 洁,且压型的型腔尺寸必须包 括蜡料和铸造合金的双重收缩 量,以压出尺寸精确、表面光 洁的蜡模。
压型的制造方法随铸件的生产批量不同,常用 的有如下两种: a)机械加工压型。它是用钢或铝,经机械加工 后组装而成,这种压型使用寿命长,成本高, 仅用于大批生产。
③硬化、风干。将浸涂后并粘有干砂的模组浸 入硬化剂(20%~25%NH4Cl氯化铵水溶液中)浸泡 数分钟,使硬化剂与粘结剂产生化学作用,分 解出硅酸溶胶,将砂粒牢固粘结,使砂壳迅速 硬化。在蜡模组上便形成1~2mm厚的薄壳。硬 化后的模壳应在空气中风干,使其不要太湿, 也不要过分干燥,然后再进行第二次浸涂料等 结壳过程,一般需要重复4~6次(或更多次),制 成5~1Omm厚的耐火型壳。
铸造的工艺特点
铸造的工艺特点铸造是一种将金属加热至液态后,通过浇注到模具中并冷却凝固成型的工艺。
铸造工艺具有多种特点,其中包括形状复杂的零件可以通过铸造来实现,生产效率高、成本相对较低等优点。
铸造工艺能够实现形状复杂的零件的生产。
通过设计合理的模具,铸造可以制造出各种形状繁复的零件,包括内部结构复杂的零件。
这使得铸造工艺在生产汽车零部件、航空发动机零件等复杂零件时具有独特的优势。
相比于其他加工工艺,铸造可以更容易地实现复杂结构的零件生产,因此在一些特殊领域具有不可替代的地位。
铸造工艺的生产效率较高。
由于铸造是通过将金属加热至液态后浇注到模具中进行成型,相比于其他加工工艺如锻造、冲压等,铸造的生产效率通常更高。
一次性可以同时生产多个零件,且生产周期相对较短,这使得铸造在大批量生产中更具优势。
在汽车、机械等行业,铸造工艺被广泛应用于生产各类零部件,以满足市场需求。
铸造工艺的成本相对较低。
相比于其他加工工艺,铸造通常需要的设备和工艺较为简单,因此投资成本相对较低。
同时,铸造可以有效利用金属原料,减少浪费,降低生产成本。
这使得铸造在一些成本敏感的行业中得到广泛应用,例如建筑、家具等领域。
除了以上几点,铸造工艺还具有良好的表面质量和精度。
通过控制合适的工艺参数,可以获得光滑平整的表面,减少后续加工工序的需求。
同时,铸造还可以实现一些微小细节和尺寸精度要求较高的零件的生产,如珠宝、钟表等领域的产品。
总的来说,铸造工艺具有形状复杂、生产效率高、成本低、表面质量好等特点,使得它在工业生产中占据重要地位。
随着科技的不断进步和铸造工艺的不断优化,相信铸造工艺在未来会有更广泛的应用和更大的发展空间。
铸造的特点及应用领域
铸造的特点及应用领域铸造是一种通过将熔融金属或其它熔体倾注入型腔中,然后冷却凝固成型的加工方法。
铸造的特点包括以下几个方面:1. 可制造复杂形状的零件:铸造工艺可以制造出复杂形状的零件,包括具有内腔和薄壁的零件,而其他加工方法难以实现。
2. 材料利用率高:铸造工艺可以实现对材料的高利用率,避免了大量剪切加工所带来的材料损耗。
3. 生产周期短:铸造工艺可以一次性完成整个零件的制造,无需多道工序和装配过程,缩短了生产周期。
4. 可以制造大型零件:铸造工艺可以制造大型的零件,满足一些特殊领域的需求,如航空航天、能源等。
5. 成本相对较低:相比于其他加工方法,铸造工艺的成本相对较低,特别是对于大批量生产的零件,可以实现更低的制造成本。
铸造具有广泛的应用领域,涵盖了众多工业部门和生活领域。
以下是一些常见的应用领域:1. 汽车制造:汽车零部件中有大部分是通过铸造工艺制造的,如发动机缸体、曲轴箱壳、刹车鼓等。
铸造工艺可以批量生产复杂形状的汽车零部件,实现生产效率和成本的优化。
2. 航空航天:航空航天领域对零件的轻量化要求较高,铸造工艺可以制造出轻质但强度高的零件,符合航空航天领域对零件性能的需求。
3. 能源领域:能源行业包括火电、核电、风电等,铸造工艺可以制造出燃烧器、涡轮叶片、核反应堆部件等复杂零件,满足能源装置的需求。
4. 建筑和工程机械:建筑领域需要大量的结构件和装饰件,铸造工艺可以制造出各种形状和尺寸的金属构件,满足建筑和工程机械的需要。
5. 家电和日用品:铸造工艺广泛应用于家电和日用品的制造中,如厨具、浴室配件、门把手等。
铸造可以提供耐用且外形精美的产品。
总的来说,铸造作为一种传统的加工工艺,在各个行业和领域都有着广泛的应用。
随着新材料和新技术的发展,铸造工艺将会继续适应市场需求,不断改进和创新,为各行业提供更好的零部件和产品。
铸造工艺原理和总结
铸造工艺原理和总结一、实质、特点及应用1.铸造定义是指熔炼金属、制造铸型、并将熔融金属浇注入铸型内、凝固后获得一定形状和性能铸件的成形方法。
铸造实质:是利用熔融金属的流动性能实现成形。
铸件:用铸造方法得到的金属零件。
铸型:形成铸件形状的工艺装置。
2.铸造的特点1)成形方便、适应性强•尺寸、形状不受限制长度从几mm-20m;厚度从0.5-500mm;重量从几克-几百吨;•材料的种类和零件形状不受限制。
2)生产成本较低(与锻造比)•设备费用低;•减少加工余量,节省材料;•原材料来源广泛。
3)组织性能较差•晶粒粗大、不均匀;•力学性能差;-工序繁多、易产生铸造缺陷。
4)工作条件差、劳动强度大。
3、铸造的应用1)形状复杂、特别是具有复杂内腔的零件:箱体、缸体和壳体;2)尺寸大、质量大的零件,如床身、重型机械零件;3)力学性能要求不高,或主要承受压应力作用的零件,如底座、支架;4)特殊性能要求的零件,如球磨机的磨球、拖拉机的链轨。
4、铸造成形的基本工序二、金属的铸造性能——是指金属材料铸造成形的难易程度。
评价指标:流动性和收缩性。
(一)流动性——是指熔融金属有流动能力1、表示方法螺旋试样长度L,如L铸钢=20mm,L铸铁=1800mm,铸铁的流动性比铸钢好。
2、影响流动性的因素1)化学成分:共晶合金最好,纯金属差;2)浇注温度:T浇愈高,保温时间愈长,流动性愈好,但收缩性大和浇毁铸型。
经验:“高温出炉,低温浇注”。
3)铸型类别影响铸型蓄热能力和透气性;如、干砂型〉湿砂型>金属型。
4)铸型结构简单、壁厚的铸型〉复杂、壁薄的铸型。
3、流动性对铸件质量的影响流动性好:铸件形状完整、轮廓清晰;利于气体和夹杂物上浮排出和补偿;流动性不好:产生浇不到和冷隔、气孔和夹杂等缺陷。
4、防止流动性不好缺陷方法调整化学成分、提高浇注温度和改善铸型条件。
(二)收缩性——指浇注后熔融金属逐渐冷却至室温时总伴随着体积和尺寸缩小的特性。
简述铸造成型的工艺特点
简述铸造成型的工艺特点铸造成型是一种重要的制造工艺,采用这种工艺可以制造出大量高质量的零部件和组件。
不同的铸造成型工艺有着各自独特的特点,本文将按照工艺类别对其各自的特点进行简述。
一、砂型铸造砂型铸造是应用最广泛的一种铸造成型工艺。
其工艺特点主要有以下几个方面:1. 砂型制作灵活,能够适应各种形状、大小、结构的铸件制作。
2. 砂型材料便宜,易得,能够降低成本,提高生产效率。
3. 砂型铸造适用于各种铸造材料,包括铸铁、铸钢、铝合金等材料。
4. 砂型铸造的表面质量较差,需要进行后续处理和加工,才能达到要求。
二、压铸工艺压铸是另一种常见的铸造成型工艺,其工艺特点主要有以下几个方面:1. 压铸制品表面质量高,尺寸精度高,能够生产出复杂、高精度的零部件和组件。
2. 压铸工艺节约原材料,减少成本,提高生产效率。
3. 压铸同时还能够进行镁合金、铝合金、铜合金等各种工程材料铸造,可满足不同领域的需要。
三、熔模铸造熔模铸造是一种相对高级的工艺,其工艺特点主要有以下几个方面:1. 熔模铸造制品的表面质量和尺寸精度都非常高,能够铸造出复杂形状和高精度的铸件,适用于生产高质量的小批量铸件。
2. 熔模铸造适用于铸造高熔点,难加工的合金,如钨合金等。
3. 熔模铸造的模具寿命长,可反复使用,具有较高的经济效益,但是模具的制造成本也较高。
四、连铸工艺连铸是大型铸造工艺中的一种,其工艺特点主要有以下几个方面:1. 连铸生产效率高,适用于大规模、长期稳定的铸造生产。
2. 连铸制品表面质量好,尺寸精度高,适用于生产大量定尺的铸件。
3. 连铸适用于各种合金的铸造生产,包括铝合金、铜合金、钢等。
总体而言,铸造成型是一种非常常用的制造工艺。
不同的工艺具有各自的优缺点,工程师和制造商需要根据铸件特点和生产需要综合选择具体的铸造成型工艺,以平衡成本、质量和生产效率等因素。
铸造成形成形原理、工艺特点
铸造成形成形原理、工艺特点
铸造成形是指将熔融金属或合金注入铸型中,通过冷却凝固形成所需的产品形状的制造过程。
铸造成形是一种非常重要的金属加工工艺,具有成本低、生产周期短、生产效率高等优点。
本文将介绍铸造成形的成形原理、工艺特点等相关内容。
1. 成形原理
铸造成形的成形原理是将熔融金属或合金注入铸型中,通过冷却凝固形成所需的产品形状。
铸造成形的成形过程主要分为注型、凝固、冷却、脱模等四个步骤。
在注型过程中,将熔融金属或合金注入铸型中,填满整个铸型腔,形成所需的产品形状。
凝固过程中,熔融金属或合金开始凝固,形成固态金属或合金。
冷却过程中,将固态金属或合金从铸型中取出后,通过自然冷却或强制冷却,让产品内部温度均匀降至室温。
最后,脱模过程中,将产品从铸型中取出,完成铸造成形的全过程。
2. 工艺特点
1) 生产周期短:铸造成形的生产周期短,可快速生产出大批量的产品。
2) 成本低:铸造成形的设备和原材料成本相对较低,可大幅降低产品生产成本。
3) 适用性广:铸造成形可用于生产各种形状的金属或合金制品,适用性非常广泛。
4) 生产效率高:铸造成形可进行自动化生产,提高生产效率和
生产能力,同时可大幅降低人力成本。
5) 重型、大型产品生产优势:铸造成形可生产大型、重型产品,如机床床身、发动机缸盖等。
总之,铸造成形是一种非常重要的金属加工工艺,具有成本低、生产周期短、生产效率高等优点,适用性广泛,可生产出各种形状的金属或合金制品。
铸件砂型铸造的特点和方法
铸件砂型铸造的特点和⽅法1铸造的特点与分类 1.1铸造的特点 1)成形⽅便且适应性强。
⾦属液态成形⽅法对⼯件的尺⼨形状⼏乎没有任何限制,铸件的材料可以是铸铁,铸钢,铸造铝合⾦,铸造铜合⾦等各种⾦属材料,也可以是⾼分⼦材料和陶瓷材料;铸件的尺⼨可⼤可⼩,形状可简单可复杂。
因此,形状复杂或⼤型机械零件⼀般采⽤铸造⽅法初步成形。
在个中批量的⽣产中,⾦属液态成形都是重要的成形⽅法。
2)成本较低。
由于成形⽅便,铸件⽑坯与零件形状相近,能节省⾦属材料和切削加⼯⼯时;使⽤原材料来源⼴泛,可以利⽤废料,废件等,节约资源;所⽤设备通常⽐较简单,投资较少。
因此,铸件的成本较低。
3)成形的组织性能较差。
铸件晶粒粗⼤(铸态组织),化学成分不均匀,⼒学性能较差。
因此,宜⽤作受⼒不⼤或承受静载荷的机械零件,如箱体,床⾝,⽀架等常⽤铸件⽑坯。
1.2铸造的分类⾦属铸造的⼯艺⽅法很多,⼀般可分为砂型铸造和特种铸造两⼤类。
当直接形成铸型的原材料主要为型砂,且液态⾦属完全靠重⼒充满整个型腔时,这种铸造⽅法称为砂型铸造。
砂型铸造⼀般可分为⼿⼯砂型铸造和机器砂型铸造。
前者主要适⽤于单件,⼩批量⽣产以及复杂和⼤型铸件的⽣产,后者主要适⽤于成批⼤量⽣产。
凡不同于砂型铸造的所有铸造⽅法,统称为特种铸造。
如⾦属型铸造,压⼒铸造,离⼼铸造,熔模铸造,低压铸造等。
砂型铸造⽬前仍然是国内外应⽤最⼴泛的铸造⽅法。
2铸件的凝固⽅式 铸件的质量与铸件的⼯艺过程密切相关,其中影响较⼤的是铸件的凝固。
物质由液态转变为固态的过程称为凝固。
铸造时由于固态⾦属均为晶体,因此⾦属的凝固过程⼜称为结晶。
铸件的质量和⼒学性能主要取决于柱状晶和等轴晶所占的⽐例。
铸件究竟是以柱状品为主,还是以等轴晶为主,除了和铸造合⾦的成分有关,还与铸件的凝固⽅式有关。
铸件在凝固过程中,除纯⾦属和共晶成分合⾦外,⼀般都存在三个区域,即固相区,凝固区和液相区。
根据凝固区宽度的不同,铸件的凝固⽅式可分为逐层凝固,糊状凝固和中间凝固三种⽅式。
铸造成形技术-基本知识
合金的收缩及影响因素
2)缩孔与缩松的形成与防止 铸型内的熔融合金在凝固过程中,由于液态 收缩和凝固收缩所缩减的体积得不到补充, 在铸造件最后凝固部位将形成孔洞。按孔洞 的大小和分布可分为缩孔和缩松。缩孔是比 较集中的孔洞。缩松是比较分散的孔洞。
缩孔与缩松的形成与防止
1、缩孔 孔通常隐藏在铸件上部或最后凝固部位。缩孔 的形成过程如FLASH示意图所示。液态金属 填满铸型后,因铸型吸热,靠近型腔表面的 金属很就降到凝固温度,凝固成一层外壳, 温度下降,合金逐层凝固,由于液态收缩和 补充凝固层的凝固收缩,体积缩减,液面下 降,铸件内部出现空隙,直到内部完全凝固, 在铸件上部形成缩孔。纯金属或共晶成分的 合金易于形成集中缩孔。
铸造应力、铸件的变形与裂纹及防 止措施
(2)收缩应力 铸件在固态收缩时,因受铸型、型芯、浇冒 口等外力的阻碍而产生的应力称收缩应力。一 般铸件冷却到弹性状态后,收缩受阻都会产生 收缩应力。收缩应力常表现为拉应力。形成原 因一经消除(如铸件落砂或去除浇口后)收缩 应力也随之消之,因此收缩应力是一种临时应 力。但在落砂前,如果铸件的收缩应力和热应 力共同作用其瞬间应力大于铸件的抗拉强度时, 铸件会产生裂纹。
缩孔与缩松的形成与防止
2、缩松 实质上是将集中缩孔分散为数量极多的小缩 孔。一般合金在凝固过程中都存在液一固两 相区,形成树枝状结晶。这种凝固方式称糊 状凝固。枝晶长到一定程度使熔融金属被分 离成彼此孤立的状态,它们继续凝固时也将 产生收缩,这时铸件中心虽有液体存在,但 由于树枝晶的阻碍使之无法补缩,在凝固后 形成许多微小的孔洞。这种很细小的孔洞称 为疏松。
(1)流动性 (1)流动性
3、杂质: 熔融金属中出现的固态夹杂物,将使 液体的粘度增加,合金的流动性下降。如灰 铁中锰和硫,多以MnS(熔点1650T)的形式 悬浮在铁液中,阻碍铁液的流动,使流动性 下降。 4、含气量:熔融金属中的含气量愈少,合金的 流动性愈好。
铸造生产工艺特点
铸造生产工艺特点铸造是利用金属、合金或其他熔融状态的材料,通过浇铸方法将其注入到铸型中,经过冷却凝固得到所需形状的工艺方法。
铸造作为最早的金属加工技术之一,具有以下特点:1. 可制造复杂形状的零件:铸造工艺可以制造出形状复杂、尺寸大、壁厚不均匀等其他加工方法难以制造的零件。
通过合理设计铸型结构,可以实现自由变形的多种形状产品制造。
2. 生产效率高:铸造工艺适用于批量生产,生产效率高。
一次冶炼得到的金属液体可以用来生产多个零件,减少了生产时间和劳动力成本。
3. 材料利用率高:铸造工艺相对于其他加工方法来说,材料利用率更高。
通过铸造可以使得金属液体装入到铸型中,利用率接近100%。
而其他加工方法通常需要对材料进行切割、钻孔等加工,导致材料的浪费。
4. 适用于多种材料:铸造工艺适用于多种金属和合金的制造。
如铁、铜、铝、锌等常见金属,以及高温合金、有色合金等特殊材料。
只要材料能够熔化并保持一定的流动性,就可以通过铸造工艺进行生产。
5. 成本相对较低:由于铸造工艺适用于批量生产,且生产效率高,使得单件零件的制造成本相对较低。
此外,由于铸造可以利用废旧金属进行回收再利用,可以降低原材料采购成本。
6. 质量稳定性好:铸造工艺可以通过合理的铸造参数设置和严格的铸造工艺控制,保证产品质量的稳定性。
铸造产品的性能可以通过调整合金成分和热处理工艺等方式进行调节和改善。
7. 环境友好:铸造工艺是一种较为环境友好的加工方式。
相对于其他金属加工方法,铸造过程中可减少废料的产生,且可以通过回收再利用废旧金属,减少对环境的影响。
总之,铸造工艺以其在形状复杂、成本低、适用范围广等方面的优势,在工业制造领域具有重要地位和广泛应用。
随着科学技术的进步,铸造工艺不断发展,不断提高产品质量、提高生产效率和降低成本,为制造业的发展做出了重要贡献。
简述铸造加工的特点及铸造工艺过程
简述铸造加工的特点及铸造工艺过程一、铸造加工的特点铸造加工是一种将熔化的金属或合金注入到模具中,冷却后形成所需形状的加工方法。
它的特点主要有以下几点:1. 可以制造各种形状和大小的零件,从小到大,从简单到复杂均可。
2. 材料利用率高,因为可以回收再利用废料。
3. 生产效率高,可以批量生产。
4. 适用于各种金属及合金材料。
5. 制造成本低。
二、铸造工艺过程铸造加工的过程主要分为模具制作、熔炼及浇注、冷却和脱模、清理和检验等步骤。
1. 模具制作模具是铸造加工中最重要的部分,它直接影响到零件质量和生产效率。
根据所需零件的形状和大小,可以选择不同类型的模具制作方法。
常见的有沙型、金属型、陶瓷型等。
2. 熔炼及浇注在选定好模具后,需要将所需材料进行熔化并倒入模具中。
这个过程需要注意控制温度和时间,以保证材料的质量。
浇注时需要注意浇注口的位置和数量,以充分填充模具。
3. 冷却和脱模经过一段时间的冷却后,需要将零件从模具中取出。
这个过程需要注意控制温度和时间,以避免零件变形或损坏。
一般来说,可以采用自然冷却或水淬等方式。
4. 清理和检验在取出零件后,需要对其进行清理和检验。
清理包括去除余渣、毛刺等不良物质;检验则包括尺寸、外观等方面的检查。
如果发现问题,则需要进行修复或重新制作。
三、不同类型铸造加工方法1. 砂型铸造:使用砂型作为模具,在其中倒入熔化的金属或合金材料。
2. 压铸:使用压力将熔化的金属或合金材料压入模具中。
3. 精密铸造:采用高精度模具制作,可制造出高精度、高表面质量的零件。
4. 低压铸造:在低压下将熔化的金属或合金材料注入到模具中。
5. 失蜡铸造:先用蜡模制作出零件的模型,然后在其表面涂上一层陶瓷,烘干后倒入金属或合金材料进行铸造。
铸造的优缺点和分类
铸造的优缺点和分类
铸造:将液态金属浇注到具有与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,称为铸造。
一、铸造的概述
(一)铸造特点
1、优点:
(1)可制成形状复杂、特别是具有复杂内腔的毛坯,如箱体、气缸体等。
(2)适应范围广。
(3)铸造可直接利用成本低廉的废机件和切屑,设备费用较低。
⑷铸件的尺寸与质量几乎不受限制。
⑸铸件的形状、尺寸与零件很接近,因而减少了切削加工的工作量,可节省大量金属材料。
2、缺点
(1)生产工序繁多、工艺过程较难控制、铸件易产生缺陷。
(2)铸件的尺寸均一性差,尺寸精度低,
(3)和相同形状、尺寸的锻件比,红外碳硫仪铸件的内在质量差,承载能力不及锻件。
⑷工作环境差,温度高、粉尘多,劳动强度大。
(二)铸造的分类
最基本的工艺方法是砂型铸造,还有多种特种铸造方法,如熔模铸造、金属型铸造、压力铸造、离心铸造等。
第一章铸造成型
上一页 下一页 返回
第二节 砂型铸造详解
(2)起模方法常用的起模方法有顶箱、漏模、翻转三种。图 1-15为顶箱起模方法。 随着生产的发展,新的造型设备会 不断出现,从而使整个造型和制芯过程逐步地实现自动化, 并逐步提高生产效率为制芯。型芯的主要作用是用来获得铸 件的内腔,但有时也可作为铸件难以起模部分的局部铸型。 浇注时,由于型芯受金属液的冲击、包围和烘烤,因此,与 砂型相比,型芯必须具有较高的强度、耐火度、透气性、退 让性和溃散性。满足上述性能主要是依靠合理配制芯砂和正 确的制芯工艺来保证的。在制芯过程中,应采取下列一些措 施:
型芯上的延伸部分称为芯头,用于安放和固定型芯。型芯头 位于砂型的型芯座上。型芯中设有通气孔,用于排出型芯在 受热过程中产生的气体。型腔的上方开设出气口,用于排出 型腔中的气体。另外,利用通气针在砂型中还扎有多个通气 孔。金属液从浇口杯中浇入,经直浇道、横浇道、内浇道流 入型腔中。
四、两种造型方法
上一页 下一页 返回
第五节铸件结构工艺性
2.铸件应具有最少的分型面,并尽量使分型面呈平面 图1-34 (a)所示铸件因侧壁凹入,有两个分型面,需 采用三箱造型,造型效率低,而且易产生错型缺陷。在不影 响使用性能的前提下,改为图1-34 (b)所示结构后,只 有一个分型面,可采用两箱造型。 3.铸件应有起模斜度 为了起模方便,在模样或芯盒的出模方向留有一定斜度, 以免损坏砂型或砂芯。这个在铸造工艺设计时所规定的斜度 称为起模斜度。
二、造型材料和工具
1.造型材料 制造铸型用的材料称为造型材料。造型材料主要包括型砂 和芯砂。型砂和芯砂主要由原砂、黏结剂(多用黏土和膨润 土,有时也用水玻璃、植物油、树脂等)、附加物毛坯(煤 粉或木屑等)、旧砂和水组成。
铸造成形工艺的优点
铸造成形工艺的优点铸造成形工艺是一种传统的金属加工工艺,具有许多优点,使其成为制造业中最常用的一种加工方法之一。
以下是铸造成形工艺的主要优点:1. 大批量生产能力:铸造成形工艺适用于大规模、连续生产,可以同时生产多个相同形状和尺寸的产品。
这对于满足市场需求和降低生产成本非常重要。
2. 灵活性高:铸造成形工艺可以生产各种形状、尺寸和复杂度的零件,从简单的器皿到复杂的汽车发动机零件都可以完成。
同时,铸造还可以生产近净成形零件,减少后续加工工序,提高生产效率。
3. 可塑性强:铸造成形工艺可以加工各种金属材料,包括铁、铜、铝、镁、锡等。
不同的金属材料可以根据需要选择,保证产品的性能和要求。
4. 材料利用率高:铸造成形工艺可以有效地利用材料,减少浪费。
通过对模具的合理设计和铸造工艺的优化,可以最大限度地减少废料和副产品的产生。
5. 产品性能优越:铸造成形工艺可以生产具有良好机械性能和优异表面质量的零件。
通过控制铸造工艺参数和材料的选择,可以提高产品的强度、硬度和韧性等性能指标。
6. 成本低廉:相比于其他加工方法如锻造、铣削等,铸造成形工艺成本相对较低。
铸造设备和工艺相对简单,相对容易实施自动化生产,减少了人工成本和设备投资。
7. 可靠性高:铸造成形工艺是一种成熟稳定的工艺,具有长期稳定的生产能力和良好的可靠性。
铸造工艺参数相对容易控制,通过合理的工艺设计和严格的质量控制,可以保证产品的质量和稳定性。
8. 环保性好:铸造成形工艺在生产过程中产生的废料可以回收利用,减少对环境的影响。
同时,铸造成形工艺不需要大量的能源消耗,比较节能。
总之,铸造成形工艺具有大批量生产能力、灵活性高、可塑性强、材料利用率高、产品性能优越、成本低廉、可靠性高和环保性好等优点。
这些优点使得铸造成形工艺在制造业中得到广泛应用,并在汽车、机械、航空航天等领域发挥重要作用。
简述铸造的定义特点及应用
简述铸造的定义特点及应用铸造是指将熔化状态下的金属或其他可熔合材料倒入铸型中,经过凝固形成一定形状和尺寸的零件或产品的工艺过程。
铸造是金属加工的一种重要方法,具有广泛的应用领域。
铸造工艺简单、灵活,可以制造形状复杂、内部结构复杂的零件,生产效率高,适用于大规模生产,是工业制造的重要基础。
铸造的特点主要包括以下几个方面:1. 材料成本低廉:铸造的原材料主要是金属,而金属材料一般价格相对较低,所以铸造产品的成本较低。
2. 工艺简便:铸造工艺相对简单,主要包括制备铸造模具、熔炼金属、浇注铸型、冷却凝固、清理加工等几个阶段。
相比于其他金属加工方法,铸造工艺操作简单,不需要过多的设备和技术。
3. 生产效率高:铸造是一种高效的大规模生产方法,可以快速制造大量相同形状的零件。
通过采用自动化铸造设备,可以进一步提高生产效率。
4. 零件形状复杂:铸造能够制造各种形状复杂、内部结构复杂的零件。
通过设计和制造适当的铸型,可以实现复杂零件的铸造。
5. 材料性能优良:通过合理选择金属材料,可以使铸造零件具有良好的力学性能和化学性能。
同时,铸造可以根据需求在材料中添加合金元素,提高材料的特性。
6. 应用范围广泛:铸造工艺可以用于制造各种类型的零件和产品,包括汽车零件、机械零件、航空零件、建筑构件等。
铸造还广泛应用于艺术品制作、工艺品制造等领域。
铸造的应用主要涵盖以下几个方面:1. 汽车制造:铸造在汽车制造中占据很大的比重,包括发动机缸体、缸盖、曲轴、车轮等零部件,铸造工艺在汽车制造中起到了至关重要的作用。
2. 机械制造:铸造被广泛应用于机械制造行业,包括各种机床床身、工作台、变速箱壳体等零部件。
铸造技术可以满足机械制造对形状复杂零件的需求。
3. 飞机航空:铸造在航空领域也有重要的应用,包括发动机叶片、航空发动机铸件等。
飞机制造要求零件具有高强度、高温性能,铸造技术能够满足这些要求。
4. 建筑工程:铸造在建筑工程领域应用广泛,包括各种建筑构件、护栏、桥梁支架等。
铸造及其特点
铸造及其特点铸造是熔炼金属,制造铸型,并将金属液浇入铸型,凝固后获得一定形状和性能铸件的成形方法。
铸造是获得零件毛坯的主要方法之一。
与其它加工方法比较,铸造具有适应性广、生产成本低的优点,尤其在制造内腔复杂的构件时,更显其优越性。
在机械产品中,铸件占有很大的比例,如机床中为 60%~80%。
但是铸造存在着铸件质量不稳定、尺寸精度不高,工人劳动强度大,工作环境差等问题。
铸造按其工艺特点分为砂型铸造和特种铸造两大类。
砂型铸造是最基本和应用最广泛的铸造方法,它是以型砂制造铸型的。
锻造及其特点锻造是在加压设备及工模具的作用下使坯料、铸锭产生局部或全部塑性变形,以获得一定几何尺寸、形状和质量的锻件的成形方法。
锻造可分为自由锻、模锻、胎模锻。
各类塑性良好的金属材料,如钢、铝、铜及其合金等都具有良好的锻造性能。
锻件内部组织致密、均匀,力学性能优于相同化学成分的铸件,能承受较大的载荷和冲击,因此力学性能要求较高的重要零件一般都采用锻件毛坯,如主轴、传动轴、齿轮、凸轮、连杆等。
锻造还可节省金属材料,节省切削加工工时,提高生产率。
但锻件形状的复杂程度不如铸件,尤其是不能加工脆性材料(如铸铁)和难以锻出具有复杂内腔的零件毛坯,焊接及其特点焊接是通过加热或加压(或两者并用)、并且用(或不用)填充材料,使工件形成原子间结合的连接方法。
焊接实现的连接是不可拆卸的永久性连接。
与铆接相比,焊接具有节省金属材料、生产率高、连接质量优良、劳动条件好、易于实现自动化等优点。
在机械制造工业中,焊接广泛用于制造各种金属结构件(如厂房屋架、桥梁、船舶、车辆、压力容器、管道等)及某些机械零件的毛坯,还常用于修补铸件、锻件的某些缺陷和局部受损坏的零件,在生产中有较大的经济意义。
热处理及其特点热处理是采用适当的方式对金属材料或工件进行加热、保温和冷却以获得所预期的组织结构与性能的工艺。
热处理能显著提高钢的力学性能,满足零件使用要求和延长寿命;还可改善钢的加工性能,提高加工质量和劳动生产率,因此热处理在机械制造中应用很广。
铸造特点
2.1 铸造生产的特点铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。
与其它加工方法相比,铸造工艺具有的几大特点:第一是铸件几乎不受金属材料、尺寸大小和重量的限制。
铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米;第二铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等;第三铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时;第四铸件一般使用的原材料来源广、铸件成本低;第五铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。
2.2 型砂的性能及组成一、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。
二、型砂的组成型砂由原砂、粘接剂和附加物组成。
铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。
铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。
为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。
2.3 金属液态成型工艺一、什么是液态金属的充型金属液态成型是指将液态金属填充到铸型的型腔中待其冷却凝固后获得所需形状、尺寸和性能的铸件毛坯(或零件)的成型方法,就是铸造。
对其的影响包括两个方面,一个是熔炼金属让固态金属变为液态,另一个是制造铸型获得所需的形状尺寸。
二、浇筑的条件及要求1.浇筑的温度:一般温度越高,液态金属的充型能力越强。
2.充型压力:液态金属在流动方向上所受的液力越大充型能力越强。
3.浇筑系统的结构:浇筑系统的结构越复杂,流动阻力越大,充型能力越差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述铸造成型的特点
铸造成型的特点主要有以下几点:
1.成形方便:铸造成形方法对工件的尺寸形状几乎没有任何限制,
铸件的尺寸可大可小,可获得形状复杂的机械零件。
因此,形状复杂或大型机械零件一般采用铸造方法初步成形。
在各种批量的生产中,铸造都是重要的成形方法。
2.适应性强:铸件的材料可以是各种金属材料,也可以是高分子材
料和陶瓷材料。
3.成本较低:铸造成形方便,铸件毛坯与零件形状相近,能节省金
属材料和切削加工工时;铸造原材料来源广泛,可以利用废料、废件等,节约国家资源;铸造设备通常比较简单,价格低廉。
因此,铸件的成本较低。
4.铸件的组织性能较差:一般条件下,铸件晶粒粗大(铸态组织),
化学成分不均,因此,受力不大或承受静载荷的机械零件,如箱体、床身、支架等常用铸件毛坯。
5.生产效率高:在铸造生产过程中,可以通过模具或模型一次或多
次浇注得到所需的产品或部件,适合大批量生产。
6.材料来源广:铸造可以采用各种金属或非金属材料,如钢铁、铜、
铝、锌、镁等,根据需要选择合适的材料来制造零件或产品。
7.工艺灵活性高:铸造可以采用不同的工艺方法,如砂型铸造、压
铸、消失模铸造等,以满足不同零件或产品的需求。
8.适用范围广:铸造可以生产各种尺寸和重量的零件或产品,从小
型饰品到大型机床和桥梁,都有广泛应用。
总的来说,铸造成型是一种具有广泛应用和重要性的制造工艺。