排列组合常用方法总结

合集下载

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题常用策略;能运用解题策略解决简单综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合常用方法

排列组合常用方法

排列组合1.捆绑法:主要处理相邻元素问题.例1:6名同学排成一排,其中甲、乙两人必须在一起的不同排法有种.2.插空法:相离问题.例2:要排一张有6个歌唱节目和四个舞蹈节目的演出节目单,任何两个舞蹈节目不能相邻,一共有种排列方法.3.缩倍法:定序问题.例3:①今有2个红球、3个黄球、4个白球,同种颜色不加区分,将这九个球排成一列,有种不同的排法.②若把good的字母顺序写错了,有种不同的错误写法.③四张卡片上分别标有“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数的个数是4.优限法:定位问题.例4.计划展出10幅画,其中1幅水彩画、4张油画、5张国画,排成一列成列,要求同一品种的画必须放在一起,并且水彩画不放在两端,那么不同的成列方式有种.5.间接法:至多至少问题.例5:从4台甲型和5台乙型电视机中任意取出3台,至少要甲型与乙型电视机各一台,则一共有种不同的选法.6.先选后排:选排问题.例6:①四个不同的球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒子的方法有种②(2009重庆理)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).7.分类讨论法:例7:(2009重庆理)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。

从中任意舀取4个汤圆,则每种汤圆都至少取到1个的不同方法有种.8.插板法:名额分配问题.例8:某中学准备组建一个18人的足球队,这18人由高一年级10个班级的学生组成,每班至少一个,名额分配的方法有种.9.平均分配问题:例9:将12个学生平均分成四组,一共有种不同的方法.10.圆排:例10:将从10个不同的学生中选出8个,将他们分配到一个圆座上,则不同的方法有种.11.错排:例11:四个同学做了四张不同的贺卡,每个人的贺卡必须送给别人,一共有种不同送法.- 1 -。

排列组合常见15种解题方法

排列组合常见15种解题方法

排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1, 2, 3, 4, 5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C;.〔I.然后排首位共有C:, 甲最后排其它位置共有& | | J由分步计数原理得C:C;A; = 288 C] A:C;练习题:1. 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有疋斎崙=480种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题•即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_____________ 三•不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有&种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种犹不同的方法,由分步计数原理,节目的不同顺序共有貳处____________ 种元素相离问题可先把没有位宜要求的元素进行排队再把不相邻元素插入中间和两练习题:3.某班新年联欢会原定的5个节目己排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _______四•定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有丄种坐法,则共有A;丽法。

排列组合问题常用方法(二十种)

排列组合问题常用方法(二十种)

解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。

末位和首位有特殊要求。

先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。

由分步计数原理得113344288C C A =.变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。

由分步计数原理得25451440A A =.二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。

先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。

由分步计数原理得522522480A A A =。

变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。

三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。

分两步.第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =.变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。

排列组合方法大全

排列组合方法大全

排列组合方法大全(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

解决排列组合问题的常用方法

解决排列组合问题的常用方法
解:(1)如图,含顶点A的四面体的三个面上,除点A外都有5个点,从中取出3点必与点A共面,共有 种取法
含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法
根据分类计数原理和点A共面三点取法共有 种
(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点( 种取法)减去4点共面的取法
(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.
(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;
②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;
③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
(2)排列数的定义:从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示。即 = ( )
(3)组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(4)组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
2、从 五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

排列组合问题的八种求法(免费)

排列组合问题的八种求法(免费)
- 35 9
126

( 1)分成三堆,一堆 2 本,一堆 3 本,一堆 1 本; ( 2)平均分成三堆; ( 3)平均分给三个同学; ( 4)分给三个同学,一人 1 本,一人 2 本,一人 3 本; ( 5)分给甲 1 本,乙 2 本,丙 3 本。 解: ( 1)不是平均分堆,故有:
C C C
1排列组合问题的八种求法云南昭通鲁甸一中李明健云南昭通站张中华推荐排列组合是高中数学的重点难点内容之一同时也是解决概率问题的重要工具下面举例说明排列组合问题的八种求法
排列组合问题的八种求法
云南昭通鲁甸一中 李明健 云南昭通站 张中华推荐 排列组合是高中数学的重点、难点内容之一,同时也是解决概 率问题的重要 “工具 ”,下面举例说明排列组合问题的八种求法: 一、特殊位置或特殊元素:优先法 例 1:由 0、 1、 2、 3、 4、 5 六个数字可组成多少个没有重复数 字且不能被 10 整除的六位数? 解法一:先安排首末两个特殊位置,从 1、2、3、4、5 中任取 两个排在首位和末位,然后把 0 和剩余的三个数字排在中间四个位 置上,符合条件的六位数共有 A A 个。
种分法
( 5)不属平均分堆,故有:
C C C
6 5 1 2 3 3
60
种不同的分法
求解完毕,仅以以上几例抛砖引玉,解题时注意积累经验,总 结规律,掌握技巧,定会柳暗花明。
- 4-
2 4 4 5
解法二:先把特殊元素 0 排在中间四个位置的任何一个,然后 把 0 以外的五个数字排在其他五个位置, 可得符合条件的总数共有:
A A 个。
1 5 5 4
二、对称(或机会均等)问题用:除法 例 2、 A、 B、 C、 D、 E 五人排成一排,如果 B 必须站在 A 的 右边,则不同的站法有多少种? 解:B 在 A 的右边与 B 在 A 的左边的排列情况是对称的(或 B 在 A 的右边与 B 在 A 的左边机会相等) ,故有:

排列组合常用四种方法-周丽红

排列组合常用四种方法-周丽红

排列组合常用四种方法中公教育研究与辅导专家 周丽红排列组合是行测数量关系里面比较常见的一种题型,通常用来解决求方法数情况数这一类计数问题。

而这种题型在计算和解题思维上与其他题型差异很大,很多同学对于排列组合问题不知如何下手,在这里,中公教育辅导专家给大家整理出排列组合常考的四种方法,希望对各位考生有所帮助。

例题:用 1、2、3、4、5 这 5 个数字组成一个无重复数字的五位数。

一、优限法:优先安排有绝对限制的元素或者位置,再去解决其他元素或者位置。

1、若数字1只能在首位或者是末尾的五位数,有多少种情况?解析:先安排1,在首位或者末尾,有12C ,再将剩下的数字全排列有44A ,我们相当于分成了两步才将这个五位数排好,故将两步的结果数相乘。

12C 44A =2×24=48。

二、捆绑法:元素要求相邻、连续时,我们可以先将相邻元素看成一个大整体与其他元素进行相应排列,再考虑大整体内部元素的顺序问题。

2、若组成的这个数中,所有奇数都相邻、所有偶数也都相邻,有多少种情况?解析:奇数看成整体,偶数看成整体,两个整体排序22A ,奇数整体内部3个元素,偶数整体内部元素2个,并且内部元素换了位置对结果有影响,故两个整体内部排序为33A 22A 。

最终结果表示为:22A 33A 22A =2×6×2=24。

三、插空法:先将其他元素排好,再将要求不相邻的元素放其空隙或者两端的位置。

3、若组成的这个数中,所有偶数都不相邻,有多少种情况?解析:我们先将3个奇数排好33A ,形成的空隙包含两端共有4个,再从4个空隙中选2个空隙放两个偶数24A 。

最终结果表示为:33A 24A =6×12=72四、间接法:有些题目直接考虑起来情况数比较多,会比较麻烦,而其对立面却只能一两种情况,很好计算,这时我们就会先算出总的情况数减去对立面的情况数即可。

4、若组成的这个数不能被 4 整除,有多少种情况?解析:一个五位数不能被4整除要求的是后两位不满足4的倍数,显然题干中组成的五位数后两位不满足的情况很多。

排列组合20种常用方法

排列组合20种常用方法

排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。

排列组合常用方法总结(全)

排列组合常用方法总结(全)

解决排列组合问题常见策略学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。

组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。

较复杂的排列组合问题一般是先分组,再排列。

必须完成所有的分组再排列,不能边分组边排列.排列组合问题的常见错误是重复和遗漏.弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.集合是常用的工具之一.为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。

“正难则反”是处理问题常用的策略。

常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。

例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。

二. “至少"型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个"型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。

例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三。

注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。

再用分类计数原理求出总数。

例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。

解:比2015大的四位数可分成以下三类:第一类:3×××,4×××,5×××,共有:(个);第二类:21××,23××,24××,25××,共有:(个);第三类:203×,204×,205×,共有:(个)∴比2015大的四位数共有237个。

解决排列组合问题的常用方法

解决排列组合问题的常用方法

解决摆列组合问题的常用方法1.特别元素,优先办理;特别地点,优先考虑例 1:六人站成一排,求甲不在排头,乙不在排尾的摆列数().520 C答案: A剖析:法 1:先考虑排头,排尾,但这两个要求互相有影响,因此考虑分类。

第一类:乙在排头,有 A 种站法。

第二类:乙不在排头,自然他也不可以在排尾,这时候有 4 种选择即 C,还剩 5 个地点,甲不可以再排头因此只有4 种选择 C,剩下的全摆列,即有CCA种站法。

2.反面考虑法法 2: 全摆列减掉甲在排头的、乙在排尾的、再加上他们多减的部分(正好甲在排头,乙在排尾)A-A*2+A =504例 2:某单位邀请 10 名教师中的 6 位参加一个会议,此中甲乙两位不可以同时参加,则邀请的不一样方法有多少种().98 C答案: D分析:法 1:①甲参加,乙不参加,有C=56种②乙参加,甲不参加,有C=56种③甲,乙都不参加,有C=28种则邀请的不一样方法有56+56+28=140种法 2:从反面考虑,甲乙都参加,有C=70种C-C=1403.捆绑法例 3:A、 B、 C、D、E 五人排成一排,此中 A、B 两人一定站在一同,共有()种排法。

.72 C D24答案: C分析 :将 A、B 捆绑一同,与 C、D、E一同排,共有A44 24 种排法,A、B又有A22 2种排法,共有24 2 48种排法。

例 4:从单词“ equation ”选 5 个不一样的字母排成一排,且含有qu(此中 qu 相连且次序不变),共有()种排法。

.480C D840答案: B分析:①从剩下的 6 个字母里选 3 个,有 C(6, 3)=20,②再将这 3 个字母和 qu 全摆列 A=24因此共有 20×24=480 种排法4.错位摆列错位摆列问题:有n 封信和 n 个信封,每封信都不装在自己的信封里,比方: 2 封信就有 1 种装法;3 封信的详细装法1→2,2→3,3→1 和 1→ 3,2→ 1,3→ 2 就有 2 种装法;跟着信封数量的增加,这类问题也随之复杂多了。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

常用排列组合方法

常用排列组合方法

常用排列组合方法排列组合问题,首先要弄清什么叫做完成事情,这件事是“分类”还是“分步”完成,要考虑“有序”或“无序”,即分清是排列还是组合,并掌握一些典型例题和特定的方法。

1.特元特位法:优先解决有特殊要求的元素或者位置,如组数问题中最高位的限制或者排队问题中有特殊要求的元素例:5.0、1、2、3、4、5六个数字,(1)组成三位数的个数;(2)组成没有重复数字的三位数的个数;(3)组成没有重复数字的三位数中偶数的个数。

解:(1)特殊元素:,组成三位数的个数:;(2)特殊元素:,特殊位置:首位,没有重复数字的三位数的个数:;(3)特殊元素:,特殊位置:首位、末位,末位是0:;末位是2、4:,共有2.捆绑法:也称“大元法”,是相邻问题的常用方法,将相邻元素视为一个元素与其余元素进行排列,注意内部的顺序。

3.插空法:解决不相邻问题的常用方法,排列时让没有要求的元素先排列,然后不相邻的元素再插空。

例:七个人排成一排,(1)甲、乙两人必须相邻有多少种不同的排法;(2)甲、乙两人不相邻有多少种不同的排法。

解:(1)第一步:甲、乙两人排好共种排法;第二步:把甲、乙两人看成一个人相当于6个人全排列共种排法,因此,甲、乙两人必须相邻共:种排法;(2)第一步:把剩下的5个人排好共种排法,第二步:5个人出现6个空,甲、乙两人插入这6个空中的两个共种排法,因此,甲、乙两人不相邻共:种排法3.数数问题例:将数字1、2、3、4填入标号为1、2、3、4的四个格子里,每个格子填入一个数字,且每个格子的标号与所填数字均不相同,有多少不同的填法种数。

解:第一步:依题数字1可添入标号为2、3、4的三个格子里,共3种填法;例如1→2 第二步:数字2可填入标号为1、3、4的三个格子里,共3种填法;例如2→3第三步:剩下的只有3→4、4→1,共1种填法,则满足要求的填法共有种注意:需要每一步都要认真的数数。

4、多面手问题例:现有翻译8人,3人只会英语,2人只会日语,还有3人英语、日语均会。

排列组合问题常用的解题方法含答案

排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组<当作一个元素>参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。

二、相离问题插空法元素相离<即不相邻>问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。

三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边<A、B可不相邻>.那么不同的排法种数有。

四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。

五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。

例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。

六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。

例6:由数字 0.1.2.3.4.5组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。

例7:从1.2.3.…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法<不计顺序>共有多少种?例8:从1.2.…100这100个数中.任取两个数.使其和能被4整除的取法<不计顺序>有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。

n A B n A n B n A B()()()()例9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法?八、定位问题优先法某个<或几个>元素要排在指定位置.可先排这个<几个>元素.再排其他元素。

事业单位数量关系:排列组合常用方法

事业单位数量关系:排列组合常用方法

在事业单位职测考试中,排列组合是重点也是难点,题型相对敏捷,对于思维力量要求较高。

下面中公教育老师带领大家总绢非列组合的四种常用解题方法:优限法、捆绑法、插空法和间接法。

一、优限法对于有限制条件的元素(或位置),解题时优先考虑这些元素(或位置),再去解决其他元素(或位置)。

例1:甲、乙、丙、丁、戊五个人参与演讲竞赛,甲不能第一个演讲,也不能最终一个演讲,共有多少种不同的支配方式?【解析】甲是这五个人里面有限制条件的元素,所以优先考虑甲。

可支配在除第一和最终以外3个位置中的其中一个位置,有3种支配方式;再支配除甲以外的此外4个人,有A(4,4)=4*3*2*l=24种方式。

所以共有3x24=72种方式。

二、捆绑法解决要求某几个元素相邻的问题。

先将几个要求相邻的元素看作一个整体,即视为一个大元素,与其他元素进行排序,再考虑这个大元素内部各元素间的挨次。

例2:甲、乙、丙、丁、戊五个人参与演讲竞赛,甲乙演讲的挨次要相邻,共有多少种不同的支配方式?【解析】甲乙要求相邻,将甲乙捆绑变为一个大元素与其他元素进行排序,把这五个人看作4个元素,全排列共有A(4,4)=4*3*2*l=24种方式,甲乙内部两个人可以调换位置,共A(2z2)=2种方法。

所以共有24×2=48种方式。

三、插空法解决要求几个元素不相邻的问题。

先将其他元素排好,再将要求不相邻的元素插入已排好元素的间隙和两端。

例3:甲、乙、丙、丁、戊五个人参与演讲竞赛,甲乙演讲的挨次不能相邻,共有多少种不同的支配方式?【解析】要求甲乙演讲挨次不相邻,可用插空法解决。

先把其他三个元素进行排序洪A(3,3)=3*2*l=6种方式,在将甲乙插空进去丙丁戊的间隙和两端共4个位置中的2个位置,有A(2z4)=4*3=12种方法。

所以共有6×12=72种方式。

四、间接法有些题目正面考虑状况多且简单,而对立面状况较少时,可以通过求对立面的状况数出来,用总状况数减去对立面状况数,得到符合要求的状况数。

排列组合的13种方法题,,

排列组合的13种方法题,,

排列组合常用十三种解题方法方法一:捆绑法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须相邻且甲在乙的右边,那么不同的排法有多少种?方法二:插空法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须不相邻,那么不同的排法有多少种?例题:晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2个节目插入原节目单中,则不同的插法有种。

方法三:隔板法例题:小明有10块糖,他每天可以吃1块到10块不等,现在要求小明3天把10块糖吃完,问小明一共有多少种不同的吃糖方法?例题:将10个保送生预选指标分配给某重点中学高三年级六个班,每班至少一名,共有多少种分配方案?方法四:定位问题优先法例题:一个老师和四名学生排成一排,老师不在两端,且老师不能跟其中某个学生相邻,则不同的排法有种例题:2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为方法五:多排问题单排法例题:共有8个人分别站前后2排,每排4人,其中要求某2人站前排,某1人站在后排,则共有__ 种排法。

例题:现有12人排成3行,每行4人,其中小明不站第二行,小红只站第一行,小白不站第三行,问一共有多少种不同的站队方法?方法六:乱坐问题分步法例题:将数字1,2,3,4,填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种。

例题:将标有1,2,3,4,5编号的五个小球分别填入标号为1,2,3,4,5的五个箱子,每个箱子放一个球,则每个箱子的标号与放小球标号均不相同的填法有种。

方法七:多元问题罗列法例题:由0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个。

例题:用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为?方法八:至少问题间接法 例题:有9名男生与4名女生共13人,现在要求从所有学生中任选 5人参加知识竞赛,问选择的5人中至少有1名女生的选择情况有多 少种? 例题:甲、乙两人从4门课程中各选修 2门,则甲、乙所选的课程中至少有 1 门不相同的选法共有 种 方法九:条件问题排除法 例题:正六边形中心和顶点共7个点,以其中任意3个点为顶点 的三角形共有 个。

排列组合常用方法

排列组合常用方法

解决排列组合问题的常用方法一、特殊元素法例:用1,2,3,4,5,6组成无重复的四位数,求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 排除法⑶有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?分析:先排列三张卡片,然后再计算组成的三位数的个数,其算式为4022A 222A 2233=⨯⨯-⨯⨯⨯;也可回归到分步计数原理,则是40245=⨯⨯二、相邻问题-----捆绑法:1.⑴6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有几种?2402255=⋅A A⑵4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576不相邻问题-----插空法:2.⑴要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不相邻,问有多少不同的排法?4766A A ⋅ ⑵在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

等可能问题------缩倍法3.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在 A 的右边( A 、B 可以不相邻),那么有多少种排法?60/2255=A A枚举法4.将数字1、2、3、4填在标号为1、2、3、4的四个方格里,每格填上一个数字,且每个方格的标号与所填的数字均不相同的填法有几种?分析:此题的背景是同学们所不熟悉的错排问题,不好利用计数原理解之。

1717解排列组合问题常用方法(二十种)

1717解排列组合问题常用方法(二十种)

17 解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。

末位和首位有特殊要求。

先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。

由分步计数原理得113344288C C A =。

变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。

由分步计数原理得25451440A A =。

二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。

先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。

由分步计数原理得522522480A A A =。

变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。

三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。

分两步。

第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。

变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。

(完整版)排列组合常见21种解题方法

(完整版)排列组合常见21种解题方法

排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类1办法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步1有m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合常用方法总结排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

下面是,请参考!一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。

又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。

例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。

若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。

(二)每一步是向上还是向右,决定了不同的走法。

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。

∴本题答案为:=56。

2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合例3.在一块并排的10垄田地中,选择二垄分别种植A,B 两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有一种选择。

同理A、B位置互换,共12种。

例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。

(A)240 (B)180 (C)120 (D)60分析:显然本题应分步解决。

(一)从6双中选出一双同色的手套,有种方法;(二)从剩下的十只手套中任选一只,有种方法。

(三)从除前所涉及的两双手套之外的八只手套中任选一只,有种方法;(四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。

例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。

例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。

现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。

以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。

第一类:这两个人都去当钳工,有种;第二类:这两人有一个去当钳工,有种;第三类:这两人都不去当钳工,有种。

因而共有185种。

例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。

抽出的三数含0,含9,有种方法;抽出的三数含0不含9,有种方法;抽出的三数含9不含0,有种方法;抽出的三数不含9也不含0,有种方法。

又因为数字9可以当6用,因此共有2×(+)++=144种方法。

例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。

分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。

3.特殊元素,优先处理;特殊位置,优先考虑例9.六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

第一类:乙在排头,有种站法。

第二类:乙不在排头,当然他也不能在排尾,有种站法。

共+种站法。

(2)第一类:甲在排尾,乙在排头,有种方法。

第二类:甲在排尾,乙不在排头,有种方法。

第三类:乙在排头,甲不在排头,有种方法。

第四类:甲不在排尾,乙不在排头,有种方法。

共+2+=312种。

例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。

若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。

第一步:第五次测试的有种可能;第二步:前四次有一件正品有中可能。

第三步:前四次有种可能。

∴共有种可能。

4.捆绑与插空例11. 8人排成一队(1)甲乙必须相邻 (2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻分析:(1)有种方法。

(2)有种方法。

(3)有种方法。

(4)有种方法。

(5)本题不能用插空法,不能连续进行插空。

用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。

例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。

另外没有命中的之间没有区别,不必计数。

即在四发空枪之间形成的5个空中选出2个的排列,即。

例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。

又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

∴共=20种方法。

4.间接计数法.(1)排除法例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?分析:有些问题正面求解有一定困难,可以采用间接法。

所求问题的方法数=任意三个点的组合数-共线三点的方法数。

∴共种。

例15.正方体8个顶点中取出4个,可组成多少个四面体?分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数。

∴共-12=70-12=58个。

例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?分析:由于底数不能为1。

(1)当1选上时,1必为真数,∴有一种情况。

(2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94.因而一共有53个。

(3)补上一个阶段,转化为熟悉的问题例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。

因而有=360种。

(二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种,∴共=120种。

例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。

因而有=9×8×7×6=3024种。

若男生从右至左按从高到矮的顺序,只有一种站法,同理也有3024种,综上,有6048种。

例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?分析:先认为三个红球互不相同,共种方法。

而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。

5.挡板的使用例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。

因而共36种。

6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。

例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数?分析:先选后排。

另外还要考虑特殊元素0的选取。

(一)两个选出的偶数含0,则有种。

(二)两个选出的偶数字不含0,则有种。

例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法?分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。

(二)选择10层中的四层下楼有种。

∴共有种。

例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数。

(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?(3)可组成多少个能被3整除的四位数?(4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?分析:(1)有个。

(2)分为两类:0在末位,则有种:0不在末位,则有种。

∴共+种。

(3)先把四个相加能被3整除的四个数从小到大列举出来,即先选0,1,2,30,1,3,50,2,3,40,3,4,51,2,4,5它们排列出来的数一定可以被3整除,再排列,有:4× +=96种。

相关文档
最新文档