第十四章 代谢调节综述

合集下载

生物化学第十四章物质代谢调节

生物化学第十四章物质代谢调节

难点:
酶的诱导和阻遏的调节机制
第一节 物质代谢的调节类型特点
一. 神经系统的调节作用
在中区神经的控制下,通过神经递质对效应器发生 直接影响;或者改变某些激素的分泌,再通过各种激 素的相互协调,对整个代谢进行综合调 节。
特点:
短而快 具整体性 直接调 节代谢的作用 多数通过激素发挥作用
二. 激素水平的调节
第五节细胞水平的诱导与阻遏调节机制
一、构成酶与适应酶
根据酶的合成对环境影响的反应不同:
1.构成酶/组成酶
2.适应酶 诱导酶 阻遏酶
二、酶合成的诱导机制---乳糖操纵子
(一)阻遏蛋白的负调控
1. 关闭(无乳糖)
调节基因 操纵 启动子 基因 lacZ lacY
lacA
mRNA
蛋白质 阻遏蛋白 (有活性) Z: -半乳糖苷酶 Y: -半乳糖苷透过酶
通过改变生物体细胞代谢物的浓度,也可以改变某些 酶的活性或含量从而影响代谢反应的速度。
具组织特异性和效应特异性 缓慢而持久 特点: 局部性调 节部分代谢 由神经系统控制分泌
三. 细胞水平的调节
通过代谢物的浓度的改变,来调 节某些酶促反应的速度。 又称酶水平的调节 酶的活性 特点: 酶的数量
细胞水平的调节类型:
3.沉寂子(silencer)
最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的 转录和重排中证实沉寂子的作用的存在。 作用特点: 负调控顺式元件 可不受序列方向的影响 距离发挥作用 并可对异源基因的表达起作用
如: UAS(upstream acticity sequence) CAATbox(-70~-80) GC BOX(-80~-110)
(放大效应)
激素与受体结合 激活腺苷酸环化酶

第十四章 代谢调节

第十四章   代谢调节

(三)翻译水平的调节
翻译水平的调节的类型: 不同mRNA翻译能力的差 异、翻译阻遏作用、反义RNA的作用 1. 翻译阻遏(trans-lational repression) 当有过量核糖体蛋白质存在时,可引起它自身以及有 关蛋白质合成的阻遏。这种在翻译水平上的阻遏 作用叫翻译阻遏。 2.反义RNA(意义) 反义RNA指具有互补序列的RNA。亦称为干扰m RNA的互补RNA。(调节基因表达;抑制有害基因的 表达)
在血液中产生酸中毒 或到达肌肉中提供能源
在饥饿时也产生与糖尿病类似的情况
4、核酸代谢与糖、脂肪及蛋白质代谢的关系
核酸
核苷酸
AMP
ATP UTP CTP GTP
能量和磷酸基团的供应
单糖的转变和多糖的合成
参与卵磷脂的合成 给蛋白质合成提供能量
辅酶、组氨酸等
Gly、Asp、Gln 蛋白酶 蛋白因子
嘌呤、嘧啶
第一节 代谢途径的相互联系
一、代谢网络
物质代谢---联系---转化—
TCA环则是糖、脂肪和蛋白质三大物质互相转化 的枢纽
物质代谢一览
物 质 代 谢 网 络
1、糖代谢与蛋白质代谢的关系
糖代谢为蛋白质的合成提供碳源和能源:如糖分 解过程中可产生丙酮酸,丙酮酸经TCA循环产生— 酮戊二酸和草酰乙酸,它们均可经加氨基或氨基移换 作用形成相应的氨基酸。另外,糖分解过程中产生的 能量可供氨基酸和蛋白质的合成之用。 蛋白质分解产生的氨基酸,在体内可以转变为糖。 如:多数氨基酸在脱氨后转变为丙酮酸,经糖原异生 作用可生成糖,这类氨基酸称为生糖氨基酸。
2、脂类代谢与蛋白质代谢的关系
脂类分解过程中产生较多的能量,可作为体内贮藏 能量的物质。脂类与蛋白质之间可以相互转化: 脂类分子中的甘油 丙酮酸

代谢调节

代谢调节

●二、三大营养物质与核苷酸代谢间的联系
体内核苷酸可以由糖、氨基酸转 变生成。产生的CTP、GTP、 UTP可分别参与磷脂、蛋白质和 糖原的合成。
第二节
细胞水平的代谢调节
代谢调节是生物在长期进化过程中逐步形 成的一种适应能力。 ★三种层次的代谢调节 在高等动物体内,通常有三种水平的代谢 调节方式:细胞水平的调节、激素水平 的调节和整体水平的调节,其中细胞水 平的调节是整个代谢调节的基础。
代谢调节
【学习要求】 ★掌握物质代谢的相互联系、细胞水 平代谢调节概念、酶结构调节。 ▲熟悉激素水平代谢调节的基本原理、 细胞的膜结构及酶分布对代谢调节 的作用。 ●了解酶数量调节、整体水平的调节。
物质代谢是一系列连续的酶促化学 反应过程。由于各条代谢途径可以 产生一些共有的中间物而相互间有 密切联系、相互影响、相互制约, 并在神经内分泌调控下,相互协调, 维持动态平衡。
▲⑵变构调节机制:变构酶是由调节亚 基和催化亚基组成的多亚基寡聚体, 常以高活性与低活性或无活性的两种 构象状态存在于细胞内。变构剂可以 非共价键与调节亚基结合,引起酶蛋 白空间构象发生改变(解聚↔聚合),从 而改变酶活性。
▲⑶变构调节的生理意义:变构 调节可以快速改变酶活性,以 影响代谢速度甚至代谢方向, 从而防止产物堆积,避免能源 物质的浪费。
●⑴通过此途径发挥作用的激素:TRH、ADH、 作用于α1受体的肾上腺素等。 ●⑵参与传递的G蛋白:磷脂酶C型G蛋白。 ●⑶参与的第二信使:包括IP3、DAG和Ca2+。 IP3和DAG由磷脂酶C催化膜中磷脂酰肌醇二 磷酸水解生成。IP3和DAG分别作为第二信使, 启动双信使传递途径。
●⑷第二信使的作用: ①IP3与胞内钙库(肌浆网)膜上通道受体结合,引 起钙库释放Ca2+,使胞内Ca2+增高; ②DAG与Ca2+和磷脂酰丝氨酸共同激活PKC; ③Ca2+除了参与激活PKC外,还与CaM结合, 形成Ca2+-CaM活性复合物。后者可直接激活 一些酶蛋白,包括磷酸二酯酶、腺苷酸环化酶 等、Ca2+-CaM蛋白激酶,发挥调节作用。

代谢调节

代谢调节
代谢调节
内容
物质代谢的相互联系 细胞水平的代谢调节 激素水平的代谢调节 整体调节
第一节 物质代谢的相互联系
一、糖、脂类、蛋白质代谢间的联系
1. 能量代谢的相互协作关系 2. 物质代谢的相互转变关系
1) 糖与脂类之间的转变 2) 糖与氨基酸之间的转变 3) 氨基酸与脂类之间的转变
(一)能量代谢的相互协作关系
(生长因子、细胞因子、神经递质、激素)


与靶细胞上特异受体结合


细胞内信号转换
表现效应
根据激素受体的定位:
激素
作用于膜受体的激素
(蛋白质、多肽、儿茶酚胺)
作用于细胞内受体的激素
(类固醇激素、甲状腺素)
亲水 疏水
一、细胞膜受体激素的调节作用
cAMP-蛋白激酶途径 Ca2+-依赖性蛋白激酶途径 cGMP-蛋白激酶途径 酪氨酸蛋白激酶途径
常见的第二信使:
cAMP、cGMP、IP3、DG、Ca2+
不同的第二信使产生不同的生物效应
肾上腺素+受体 G蛋白→G蛋白 腺苷酸环化酶→腺苷酸环化酶
ATP→cAMP ×2 蛋白激酶→蛋白激酶
糖原合成抑制
糖原合成酶D(Pi) 糖原合成酶I
磷酸化酶b激酶→磷酸化酶b激酶(Pi) ×4 糖原磷酸酶b→糖原磷酸酶a ×6 糖原分解增强
机体的供பைடு நூலகம்特点
糖:60%以上 脂肪:25%左右 蛋白质:少量
不同组织器官的能量来源不同
心脏:酮体、乳酸、游离脂肪酸等 肾髓质、红细胞:糖酵解 脑组织:葡萄糖为唯一供能物质
(二)物质代谢的相互转变关系
1. 糖与脂类之间的转变:以糖变脂肪为主

代谢的调节和控制

代谢的调节和控制

代谢的调节和控制汇报人:2023-12-14•代谢调节基本概念•细胞内代谢调节机制•激素对整体代谢水平调控作用目录•营养感应与信号转导途径•疾病状态下代谢异常及调控策略•药物干预在代谢调控中应用前景01代谢调节基本概念指生物体内代谢过程中,通过一系列调节机制,维持代谢平衡和适应环境变化的过程。

代谢调节定义保证生命活动的正常进行,适应内外环境变化,维持机体稳态。

代谢调节意义代谢调节定义与意义通过神经系统对代谢过程进行快速、精确的调节。

神经调节体液调节自身调节通过激素、细胞因子等化学物质传递信息,对代谢过程进行广泛而持久的调节。

组织细胞不依赖于神经和体液因素,根据局部环境变化进行自我调节。

030201代谢调节方式分类营养物质供应充足时,代谢活动旺盛;供应不足时,代谢活动减弱。

营养物质供应胰岛素、甲状腺激素等激素对代谢过程具有重要影响,激素水平变化可影响代谢速度和方向。

激素水平变化环境温度变化可影响机体产热和散热平衡,进而影响代谢活动。

环境温度运动可增加机体代谢率,休息时代谢率降低。

运动和休息相互调节,维持机体代谢平衡。

运动和休息影响因素及相互作用02细胞内代谢调节机制当底物浓度增加时,代谢酶活性增强,反应速率加快;反之,底物浓度降低时,酶活性减弱,反应速率减慢。

在一定范围内,随着底物浓度的增加,酶促反应速率呈线性增加,但当底物浓度达到一定程度后,反应速率不再增加,此时底物已饱和。

底物浓度对代谢酶活性影响底物饱和度底物浓度变化关键酶在代谢途径中作用关键酶是指在代谢途径中起决定性作用的酶,其活性大小直接影响整个代谢途径的速率和方向。

关键酶特点关键酶通常具有较低的Km值(米氏常数),即对底物浓度变化敏感;同时,关键酶的活性受多种因素调节,如抑制剂、激活剂等。

别构效应是指一种蛋白质(通常是酶)的活性受到另一种分子(别构效应物)结合的影响。

别构效应物可以是底物、产物、抑制剂或激活剂等。

别构效应通过改变酶的构象来调节酶活性。

代谢调节

代谢调节
两部分构成:
亲水部分 F1 (α3β3γδε亚基 )
疏水部分 F0 (a1b2c9~12亚基)
每合成一分子ATP 大约有4个H+经通 道进入基质。
ATP合酶结构模式图
28
乙酰辅酶A是三大营养物质代谢共同的中间 代谢物;
三羧酸循环是三大营养物质分解代谢共同 的最后代谢途径;
分解代谢释放的能量均以ATP的形式储存; 从能量供应角度看,三大营养素可以相互
NAD+
⑥ FAD
GDP+Pi GTP
NADH+H+

CO2

CoASH
CO2 CoASH
26
NADH
氧 吸化 链呼
NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
琥 珀 酸 氧 化 呼 吸 链
琥珀酸 →复合体Ⅱ →Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2 27
ATP合酶 (复合物V)
40
①不同的组织器官以不同的物质为主要能量 来源。
②糖供应不足时,脂肪动员加强,增加供能 比例。
③ 一般来说,供能以糖和脂肪为主,节省蛋 白质的消耗。
41
二、三大营养物质与核苷酸代谢间的联系
1. 氨基酸是体内合成核酸的重要原料
天冬氨酸 甘氨酸
谷氨酰胺

一碳单位
组 甘

合成嘌呤
合成嘧啶
2. 磷酸核糖由磷酸戊糖途径提供 3. 核苷酸合成所需能量由糖、脂肪的氧化分解供应。 4. 核苷酸的分解代谢与糖、氨基酸的分解代谢有密
变构调节
快速调节 (数秒~数分)
细胞水平
酶结构调节
共价(化学) 修饰调节
代谢调节
酶蛋白的

代谢调节综述PPT幻灯片

代谢调节综述PPT幻灯片
代谢调节的内容及重要性
生物体内存在着相互联系,错综复杂的代 谢过程。如果体内不存在调节和控制,各种 代谢就会变得杂乱无章,生物也就不能存活。 实际上,生物体内存在着调节控制,控制各 种代谢有条不紊地进行。
代谢调节的内容
生物体内的代谢调节,在四种不同水平上进行。
酶的调节 激素的调节 神经的调节
某些物质可以诱导细胞内产生诱导酶,这种作 用叫做酶的诱导生成作用。
诱导酶:是指当细胞中加入特定诱导物后诱导 产生的酶,它的含量在诱导物存在下显著增高, 这种诱导物往往是酶底物的类似物或底物本身。
诱导酶的例子
例:E.coli 可利用多种糖为碳源,当利用
乳糖做碳源时,需要一个关键性的酶,β半乳糖苷酶,这个酶可将乳糖水解为半乳 糖和G。而用乳糖作碳源时,开始E.coli几 乎不能利用,1-2分钟后,此酶迅速增加上 千倍。这是新的酶分子的合成,而不是原 有酶分子的活化,它是由乳糖诱导生成的。 因此,β-半乳糖苷酶是个诱导酶。
启动基因(promotor):(在调节基因和操纵基因之间), 有RNA聚合酶的结合部位,启动DNA转录。
结构基因(Structural gene):可以转录出mRNA合成酶蛋白, 决定蛋白质中的氨基酸顺序,或决定mRNA中核苷酸顺序 的基因。
调节基因(regulator):负责阻遏蛋白的合成。
ቤተ መጻሕፍቲ ባይዱ
(三) 别构调节
别构调节allosteric regulation:酶分子的非催化部位 与某些化合物可逆地非共价结合后发生构象的改变, 进而改变E活性状态,称为E的别构调节。
操纵子:在原核生物的DNA分子的不同区域分布着一 个调节基因和一个操纵子,一个操纵子包括一个操纵 基因,一群功能相关的结构基因,以及在调节基因和 操纵基因之间专管转录起始的启动子(基因)。

代谢调节的主要方式

代谢调节的主要方式

长链脂酰CoA
②变构调节使能量得以有效利用,避免生成过多造成浪费
+
G-6-P

糖原合酶
糖原磷酸化酶
促进糖的储存
抑制糖的氧化
③变构调节使不同的代谢途径相互协调进行
柠檬酸
+

乙酰辅酶A羧化酶
磷酸果糖激酶-1
促进脂酸的合成
抑制糖的氧化
(四)化学修饰调节通过酶促共价修饰调节酶活性
1. 酶促共价修饰有多种形式
(1)部分葡萄糖合成肌糖原和肝糖原和VLDL (2)大部分葡萄糖直接被输送到脂肪组织、骨骼肌、脑等组织 转换成甘油三酯等非糖物质储存或利用。
(一)饱食状态下机体三大物质代谢与膳食组成有关
※ 高蛋白膳食→胰岛素水平中度升高,胰高血糖素水平升高:
(1)肝糖原分解补充血糖 (2)肝利用氨基酸异生为葡萄糖补充血糖 (3)部分氨基酸转化成甘油三酯 (4)还有部分氨基酸直接输送到骨骼肌。
节亚基导致“假底物”序列构象变化,释放催化亚基,使其发挥催化作用。 如cAMP激活PKA。
(2)别构效应剂与调节亚基结合,能引起酶分子三级和/或四级结构在“T” 构象(紧密态、无活性/低活性)与“R”构象(松弛态、有活性/高活性) 之间互变,从而影响酶活性。如氧调节Hb。
3. 别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调 别构效应剂(底物、终产物、其他小分子代谢物)
第二节
代谢调节的主要方式
(The Main Ways of Metabolic Regulation)
高等生物 —— 三级水平代谢调பைடு நூலகம் • 细胞水平代谢调节
• 激素水平代谢调节 高等生物在进化过程中,出现了专司调节功能的内分泌细胞及

代谢的调控PPT课件

代谢的调控PPT课件

营养与健康管理
通过调节个体的代谢过程, 可以实现更有效的营养补 充和健康管理,预防疾病 的发生。
代谢调控在农业领域的应用前景
作物改良
通过调节作物的代谢过程,可以培育出抗逆性强、产量高、品质 优良的新品种,提高农业生产效益。
精准农业
利用代谢调控技术,可以实现精准施肥、灌溉和病虫害防治,减 少资源浪费和环境污染。
THANKS
感谢观看
蛋白质组学是研究蛋白质表达、 修饰、功能和相互作用的学科。
蛋白质组学在生命科学、医学和 生物技术等领域具有广泛的应用
价值。
蛋白质组学的研究进展包括蛋白 质相互作用组学、蛋白质翻译后 修饰组学和蛋白质功能组学等方
面的研究。
基因组学的研究进展
基因组学是研究生物体基因组的 学科。
基因组学在遗传学、生物技术和 医学等领域具有广泛的应用前景。
葡萄糖代谢调控
01
癌细胞通常会优先利用葡萄糖作为能量来源,通过增加葡萄糖
转运子和酶的表达来促进葡萄糖的摄取和利用。
脂肪酸代谢调控
02
癌细胞会改变脂肪酸的合成和分解代谢,以满足自身对能量的
需求。
氨基酸代谢调控
03
癌细胞会利用氨基酸作为合成蛋白质和其他重要物质的原料,
同时也会通过增加酶的表达来促进氨基酸的摄取和利用。
方向。
酶的活性调节
酶的活性可以通过共价修饰、变构 效应、别构效应等方式进行调节, 从而改变酶对底物的作用。
酶的分布和定位
酶在细胞内的分布和定位对代谢调 控具有重要意义,不同细胞器中的 酶可以催化不同的代谢反应。
激素的调控
激素的合成与分泌
激素的合成与分泌受到多种因素的影响,如营养状况、神经信号 等,这些因素可以调节激素的合成与分泌。

代谢途径的调控与代谢调节

代谢途径的调控与代谢调节

代谢途径的调控与代谢调节代谢途径的调控与代谢调节在维持生物体正常功能和稳态方面起着重要作用。

生物体通过一系列的调控机制来调节代谢途径的速率和方向,以适应内外环境的变化,从而保持体内代谢的平衡。

本文将重点讨论代谢途径的调控与代谢调节的基本概念、主要调控器和相关机制。

1. 代谢途径的调控代谢途径是物质在生物体内转化的路径和方式。

生物体内有许多不同的代谢途径,如糖酵解途径、无氧呼吸途径和脂肪酸合成途径等。

这些代谢途径之间相互联系,通过酶催化等方式形成复杂的代谢网络。

生物体需要根据能量需求和外部条件来调控这些代谢途径的速率和方向,以维持体内代谢的平衡。

生物体通过调节酶的活性和基因表达来调控代谢途径。

酶是生物体内催化化学反应的蛋白质。

酶的活性受到许多因素的影响,如温度、pH值和底物浓度等。

生物体可以通过调节这些因素来改变酶的活性,进而调控代谢途径的速率。

此外,生物体还可以通过改变酶的合成和降解来调控代谢途径的方向。

2. 代谢调节的概念代谢调节是生物体通过一系列复杂的调控机制来维持体内代谢的平衡。

代谢调节可以分为两种类型:内源性调节和外源性调节。

内源性调节是指生物体内部产生的调节信号来调控代谢途径。

外源性调节是指生物体受到外部环境刺激而产生的调节信号来调控代谢途径。

内源性调节通过代谢产物的浓度来调节代谢途径。

当代谢产物的浓度升高时,生物体会抑制与该代谢产物相关的代谢途径,从而减少该代谢产物的生成。

相反,当代谢产物的浓度降低时,生物体会促进与该代谢产物相关的代谢途径,增加该代谢产物的生成。

外源性调节通过受体的激活来调节代谢途径。

生物体表面的细胞受体可以感知外部环境的刺激,并产生相应的信号传递到细胞内部。

这些信号可以激活或抑制特定的代谢途径,以适应外部环境的变化。

外源性调节可以包括神经系统和内分泌系统等。

3. 代谢调节的主要调控器代谢调节的主要调控器包括激素、酶和基因调控等。

激素是生物体内分泌系统产生的一类调节信号。

生物化学-第十四章物质代谢调节

生物化学-第十四章物质代谢调节

第五节细胞水平的诱导与阻遏调节机制
一、构成酶与适应酶
根据酶的合成对环境影响的反应不同:
1.构成酶/组成酶 2.适应酶
诱导酶 阻遏酶
二、酶合成的诱导机制---乳糖操纵子
(一)阻遏蛋白的负调控
1. 关闭(无乳糖)
调节基因
操纵
启动子 基因 lacZ lacY lacA
mRNA
蛋白质
Z: -半乳糖苷酶
通过改变生物体细胞代谢物的浓度,也可以改变某些 酶的活性或含量从而影响代谢反应的速度。
具组织特异性和效应特异性
特点:
缓慢而持久 局部性调 节部分代谢
由神经系统控制分泌
三. 细胞水平的调节
通过代谢物的浓度的改变,来调 节某些酶促反应的速度。 又称酶水平的调节
特点:
酶的活性 酶的数量
细胞水平的调节类型:
1.GTF(Genaral Transcription Factor) 通用转录因子
2.TBP(TATAbox binding protein) 是唯一能识别TATA盒并与其结合的转录因子,是三种RNA聚合酶
转录时都需要的;
不同基因由不同的上游启动子元件组成,能与不同的转录因子结合, 这些转录因子通过与基础的转录复合体作用而影响转录的效率。现在已 经发现有许多不同的转录因子,看到的现象是:同一DNA序列可被不同 的蛋白因子所识别;能直接结合DNA序列的蛋白因子是少数,但不同的 蛋白因子间可以相互作用,因而多数转录因子是通过蛋白质-蛋白质间 作用与DNA序列联系并影响转录效率的
蛋白激酶 (有活性)
磷酸化酶激酶 (无活性) ATP
磷酸化酶激酶 ADP (有活性)
磷酸化酶b (无活性) ATP
磷酸化酶a ADP(有活性)

代谢调节

代谢调节

代谢调节生物体是一个完整的统一体。

糖、脂肪、蛋白质以及核酸等代谢在体内构成新陈代谢的整体网络。

代谢途径的相互途径一、糖代谢与脂类代谢的相互联系二、糖代谢与蛋白质代谢的相互联系三、脂类代谢与蛋白质代谢的相互联系四、核酸代谢与糖、脂肪及蛋白质代谢的相互联系ATP 能量和磷酸基团的供应UTP 单糖的转变和多糖的合成CTP 参与卵磷脂的合成核酸核苷酸GTP 供给蛋白质合成的能量CAMP 激素的第二信使CoA、NAD(P+)、FAD等参与代谢甘氨酸、天冬氨酸、谷氨酰胺嘌呤、嘧啶合成糖代谢的磷酸戊糖途径磷酸戊糖酶和蛋白质因子核酸的合成综上所述,糖、脂肪、蛋白质及核酸在代谢过程中形成网络。

见图14-1 P361其中三羧酸循环是各类物质代谢的共同途径,也是它们之间相互联系的枢纽。

代谢调节代谢是一个完整统一的过程,它存在着复杂而精确的调节机制。

生物体在长期进化过程中建立了四级水平的调节:神经水平调节是生物进化发展而完善起来的调节机制,是通过细胞水平和激素水平调节酶水平变化来实现细胞水平调节是最基本的调节方式酶水平调节一、酶水平的调节:是生物体内最基本、最普遍的调节方式〈一〉酶定位的区域化各代谢反应的酶定位于不同的细胞区域中,见表14-1 P364〈二〉酶活性的调节1、酶原激活⑴酶原:酶的无活性前体。

⑵酶原激活(不可逆的共价修饰):某些酶先以无活性的酶原形式合成或分泌,然后在到达作用部位后由其它酶作用,使其失去部分肽链,从而形成或暴露活性中心,形成有活性酶分子的过程。

⑶酶原激活的实例:例:胃蛋白酶原(胃黏膜)胃蛋白(N—末端切去42个氨基酸残基)胰蛋白酶原(胰)胰蛋白酶胰凝乳蛋白酶原—胰凝乳蛋白酶3单性蛋白酶原—3单性蛋白酶羧肽酶原——羧肽酶2、酶活性的前馈和反馈调节前馈调节(feed forward):前面的底物对其后某一反应的酶的调节。

前馈激活(feed forward activation):使代谢过程加快前馈抑制(feed forward inhibition):使代谢过程减慢反馈调节(feed back):代谢产物对前面的某一酶的调节反馈激活(feed back activation)反馈抑制(feed back inhibition)前馈和反馈调节都是通过酶的别构效应来实现的。

代谢调节简介

代谢调节简介

代谢调节简介目录•1拼音•2英文参考•3调节的基本机制•4别构调节•5共价修饰•6酶量调节•7区域化1拼音dài xiè tiáo jíe2英文参考metabolic regulation代谢调节为加速或延缓物质代谢的反应或者改变代谢途径的总称。

部分系统的调节由于组成复杂,所以作为对生物整体进行调节。

3调节的基本机制(1)由于细胞内基质及辅酶浓度的变化,酶反应的速度也发生变化;(2)由于反应系统中最终产物的形成,使前一阶段中酶的受反馈抑制;(3)因细胞内的物质而产生酶的变构效应和蛋白质的修饰;(4)酶合成的诱导或抑制,可以把(2)看作是(3)的特殊情况。

用激素进行调节,在进行分析时,也能导致(3)或(4)的结果。

生物代谢不断经受多种形式的调节以适应内外环境的变化。

根据生物的进化程度不同,代谢调节大体上可分神经、激素和酶三个水平,而最原始、也最基本的是酶水平的调节。

神经和激素水平的调节最终也通过酶起作用。

代谢调节遵循最经济的原则。

产能分解代谢的总速度不是简单地依细胞内燃料的浓度来决定,而受细胞需能量的控制。

因此,在任一时期,细胞都恰好消耗适合能量需要的营养物。

例如,家蝇全速飞行时,由于飞行肌对ATP突加的需要,其氧和燃料的消耗在1秒钟内可增加百倍。

生物大分子和构件分子的合成也受当时细胞需要的调节。

生长中的大肠杆菌合成20种基本氨基酸中,每一种的速率和比例都正好符合那时组建新蛋白质的需要,任一种氨基酸的生产都不会过剩或不足。

许多动植物能贮存供能和供碳的营养物如脂肪和多糖,但一般不能贮存蛋白质、核酸或简单的构件分子,只在需要时才合成它们。

但植物种籽和动物卵细胞常含有胚生长所需氨基酸来源的大量贮存蛋白质。

酶水平代谢调节主要有两种类型:一种是通过激活或抑制酶的催化活性,另一种是通过控制酶合成或降解的量。

有下列几种重要方式。

4别构调节代谢途径的速率和方向主要依赖调节酶的量和活性,必需的不可逆反应是控制部位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章代谢调节综述
知识点:
一、细胞水平的代谢调节:代谢途径的区域化,酶活力的非共价修饰调节,酶活力的共价修饰调节,酶量的调节
二、激素水平的代谢调节:激素的化学本质,激素的两类受体,激素的作用特点,
三、常见代谢途径及相互影响:关键交叉位点,
名词解释:区域化、别构调节、别构激活剂、别构抑制剂、共价修饰调节、第二信使,酶的级联系统酶的共价修饰反馈抑制诱导酶组成酶
填空题
1.酶促化学修饰的特点有:(1)除黄嘌呤氧化酶外,属于这类调节方式的酶都有两种形式。

(2)化学修饰会引起酶分子的变化。

而且,其是酶促反应,故有效应。

(3)是最常见的酶促化学修饰反应,一般是耗能的。

2.细胞内酶的数量取决于和。

3.许多代谢途径的第一个酶是限速酶,终产物多是它的,对它进行,底物多为其。

选择题
1.各种分解途径中,放能最多的途径是:
A、糖酵解
B、三羧酸循环
C、 —氧化
D、氧化脱氨基
2.下面关于共价修饰调节酶的说法哪个是错误的?
A、共价修饰调节酶以活性和无活性两种形式存在
B、两种形式之间由酶催化共价修饰反应相互转化
C、经常受激素调节、伴有级联放大效应
D、是高等生物独有的调节形式
3.指出下列有关限速酶的论述哪个是错误的?
A、催化代谢途径的第一步反应多为限速酶
B、限速酶多是受代谢物调节的别构酶
C、代谢途径中相对活性最高的酶是限速酶,对整个代谢途径的速度起关键作用
D、分支代谢途径中的第一个酶经常是该分支的限速酶
是非题
1.蛋白激酶和蛋白磷酸酶对蛋白质进行磷酸化和去磷酸化的共价修饰是真核细胞代谢的重要方式。

2.共价修饰调节酶被磷酸化后活性增大,去磷酸化后活性降低。

3.别构酶又称变构酶,催化反应物从一种构型转化为另一种构型。

4.固化酶的缺点是稳定性不如天然酶。

5.细胞内区域化在代谢调节上的作用,除把不同的酶系统和代谢物分隔在特定区间外,还通过膜上的运载系统调节代谢物、辅助因子和金属离子的浓度。

6.组成酶是细胞中含量较为稳定的酶。

7.诱导酶是指当特定诱导物存在时产生的酶,这种诱导物往往是该酶的产物。

问答题:。

相关文档
最新文档