平行四边形经典证明题例题讲解
人教中考数学综合题专题复习【平行四边形】专题解析附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=245ACACcos︒=∴2AD AB AC+=.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2,∴AH=BH=BC ,∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,∴EF=BC .考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
平行四边形的判定定理培优讲解及练习
平行四边形的判定定理【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴ AF∥CE.页1∵四边形DEBF为平行四边形,∴ BE∥DF.∴四边形EGFH为平行四边形.【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.例2、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.页2(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.例3、已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.页3页 4【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明. 【答案与解析】证明:连接BD 交AC 与O 点,∵四边形ABCD 是平行四边形, ∴AO=CO,BO=DO , 又∵AP=CQ, ∴AP+AO=CQ+CO, 即PO=QO ,∴四边形PBQD 是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式1】如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF=DC ,连接CF .试说明:D 是BC 的中点.【答案】证明:∵AF∥BC ,∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,页 5在△AEF 和△DEB 中,∵ ∴△AEF ≌△DEB (AAS ), ∴AF=BD , ∵AF=DC , ∴BD=DC , ∴D 是BC 的中点.【变式2】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【答案】证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ),,,,===AFE DBE AEF DEB AE DE ∠∠⎧⎪∠∠⎨⎪⎩页 6∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC +∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.例4、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD是平行四边形,∴OD=OB ,OA=OC , ∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO , ∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.类型二、平行四边形的性质定理与判定定理的综合运用例1、如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系: ________________.(2)请证明你的猜想.【思路点拨】(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.【答案与解析】(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.举一反三:【变式】如图,在ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.页7页 8【答案】解:猜想BE 与DF 的关系是BE=DF ,BE ∥DF ,理由是:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴AD-AE=BC-CF , 即DE=BF , ∵DE ∥BF ,∴四边形BFDE 是平行四边形, ∴BE=DF ,BE ∥DF .例2、如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.【思路点拨】(1)首先在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,可得PN=PM ,则易证四边形EMFN 是平行四边形,则可得ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN ,则可得PA=PC ;(2)由PA=PC ,EP=PF ,可证得四边形AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四边形ABCD 为平行四边形,由AB=15,AD=12,∠DAB=60°,即可求得四边形ABCD 的面积. 【答案与解析】(1)证明:在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF . ∵AP+AE=CP+CF , ∴PN=PM . ∵PE=PF ,∴四边形EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF.又∵∠AME=∠AEM,∠CNF=∠CFN,∴△EAM≌△FCN.∴AM=CN.∵PM=PN,∴PA=PC.(2)解:∵PA=PC,EP=PF,∴四边形AFCE为平行四边形.∴AE∥CF.∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为90.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.例3、如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:3页9∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】页10∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.例4、如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】页11页 12∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF . 又∵AG=CH ,∴BG=DH . 又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE , ∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形. 举一反三 【变式】如图,ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°, 在△ABE 和△CDF 中,∴△ABE ≌△CDF (AAS ), ∴BE=DF , ∴BO-BE=DO-DF , 即:EO=FO ,同理:△ABG ≌△CDH , ∴AG=CH , ∴AO-AG=CO-CH , ,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩即:GO=OH,∴四边形GEHF是平行四边形.【课堂练习】一.选择题1.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个 B.2个 C.3个 D.4个2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ).A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5. 已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a2+ab-ac-bc=0,b2+bc-bd-cd=0,那么四边形ABCD是()A.平行四边形 B.矩形 C.菱形 D.梯形页136. 如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙二.填空题7. 如图,E、F 是ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.8.如图,平行四边形ABCD的对角线交于点O,直线EF过点O且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有______________个.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则秒时四边形ADFE是平行四边形.页1410. 如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=______________.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,平行四边形ABCD中,AC、BD相交于点O,E、F、G、H分别是AB、OB、CD、OD 的中点.有下列结论:①AD=BC,②△DHG≌△BFE,③BF=HO,④AO=BO,⑤四边形HFEG是平行四边形,其中正确结论的序号是.三.解答题13.如图,在口ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.14.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.页1515.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.【答案与解析】一.选择题1.【答案】C;【解析】解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.页162.【答案】C;【解析】①②③能判定平行四边形.3.【答案】B;【解析】平行四边形对角相等.∠A与∠C为对角,∠B与∠D为对角.4.【答案】A;【解析】∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.5.【答案】A;【解析】由a2+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;由b2+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.(其中a,b,c,d都是正数,a+b、b+c一定不等于0)由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.故选A.6.【答案】D;【解析】图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.页17页 18二.填空题 7.【答案】BE=DF ;【解析】添加的条件是BE=DF ,理由是:连接AC 交BD 于O , ∵平行四边形ABCD , ∴OA=OC ,OB=OD , ∵BE=DF , ∴OE=OF ,∴四边形AECF 是平行四边形. 故答案为:BE=DF .8.【答案】18;【解析】图中平行四边形有:AEOG ,AEFD ,ABHG ,GOFD ,GHCD ,EBHO ,EBCF ,OHCF ,ABCD ,EHFG ,AEHO ,AOFG ,EODG ,BHFO ,HCOE ,OHFD ,OCFG ,BOGE .共18个.故答案为:18. 9.【答案】3;【解析】解:设t 秒时四边形ADFE 是平行四边形;理由:当四边形ADFE是平行四边形,则AE=DF,即t=9﹣2t,解得:t=3,故3秒时四边形ADFE是平行四边形.故答案为:3.10.【答案】8;【解析】过E点作EG∥PD,过D点作DH∥PF,∵PD∥AC,PE∥AD,∴PD∥GE,PE∥DG,∴四边形DGEP为平行四边形,∴EG=DP,PE=GD,又∵△ABC是等边三角形,EG∥AC,△BEG为等边三角形,∴EG=PD=GB,同理可证:DH=PF=AD,∴PD+PE+PF=BG+GD+AD=AB=8..11.【答案】平行四边形;12.【答案】①,②,③,⑤;【解析】解:平行四边形ABCD中,∴AD=BC,故①正确;∵平行四边形ABCD,∴DC∥AB,DC=AB,OD=OB,∴∠CDB=∠DBA,∵E、F、G、H分别是AB、OB、CD、OD的中点,∴DG=BE=AB,DH=BF=OD,∴②△DHG≌△BFE,故②正确;∵HO=DH,DH=BF,∴BF=HO,故③正确;平行四边形ABCD,OA=OC,OB=OD,故④错误;E、F、G、H分别是AB、OB、CD、OD的中点,∴HG∥OC,HG=OC,EF∥OA,EF=OA,∴HG∥EF,HG=EF,HEFG是平行四边形,故⑤正确;故答案为:①,②,③,⑤.三.解答题页1913.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.14.【解析】证明:∵在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,∴DE∥AC,CD=AB=AD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∴DC∥EF,∴四边形CDEF是平行四边形.15.【解析】解:∵∠ACB=90°,DE⊥BC,页20∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2在Rt△CDE中,由勾股定理∵D是BC的中点,∴BC=2CD=在Rt△ABC中,由勾股定理.∵D是BC的中点,DE⊥BC,∴EB=EC=4∴四边形ACEB的周长=AC+CE+BE+BA=10+.【课后作业】一.选择题1.如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数CD==AB==页21页 223.A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B .5种 C .4种 D .3种4. 如图,在▱ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形(不包括四边形ABCD )的个数共有( )A .9个B .8个C .6个D .4个5. 如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB.DE =BFC. D.6.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形; ②△BCE 是等腰三角形; ③四边形ACEB 的周长是10+2; ④四边形ACEB 的面积是16. 则以上结论正确的是( )CBF ADE ∠=∠CFB AED ∠=∠A.①②③ B.①②④ C.①③④ D.②④二.填空题7.已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有____________组.8.在▱ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有____________.9.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出______个平行四边形.10.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=___________度.11.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是.(只写出一种情况即可)12.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.页23三.解答题13. 在ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形.14.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.15. 如图所示,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.页24(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案与解析】一.选择题1.【答案】D;【解析】A、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,-1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(-1,-1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,页25页 26当第四个点为(1,1)时, ∴BO=AC 1=2,∵A ,C 1,两点纵坐标相等, ∴C 3O=BC 3=, 同理可得出AO=AB=,进而得出C 3O=BC 3=AO=AB ,∠OAB=90°, ∴四边形OABC 3是正方形;故此选项正确;D 、∵以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行四边形, 当第四个点为(-1,-1)时,四边形OC 2AB 是平行四边形;∴当第四个点为(-2,-1)时,四边形OC 2AB 不可能是平行四边形; 故此选项错误.故选:D .2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形. 3.【答案】C ;【解析】根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C .4.【答案】B ;【解析】设EF 与NH 交于点O ,∵在▱ABCD 中,EF ∥AD ,HN ∥AB ,∴AD ∥EF ∥BC ,AB ∥NH ∥CD ,则图中的四边AEOH 、DHOF 、BEON 、CFON 、AEFD 、BEFC 、AHNB 、DHNC 和ABCD 都是平行四边形,共9个. 故选B .5.【答案】B ; 22页 27【解析】C 选项和D 选项均可证明△ADE ≌△CBF ,从而得到AE =CF ,EO =FO ,BO =DO ,所以可证四边形DEBF 是平行四边形.6.【答案】A ;【解析】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°, ∴AC∥DE, ∵CE∥AD,∴四边形ACED 是平行四边形,故①正确; ②∵D 是BC 的中点,DE⊥BC, ∴EC=EB,∴△BCE 是等腰三角形,故②正确; ③∵AC=2,∠ADC=30°, ∴AD=4,CD=2,∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB,∴EB=4,DB=2, ∴CB=4,∴AB==2,∴四边形ACEB 的周长是10+2故③正确; ④四边形ACEB 的面积:×2×4+×4×2=8,故④错误,故选:A .二.填空题 7.【答案】4;【解析】①和②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和④,②和④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有四组.故答案为:4.8.【答案】①③④;【解析】∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴①正确;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∴②正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴③正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴④正确;即其中能判定四边形ABCD是平行四边形的有①②③④,故答案为:①②③④.9.【答案】15;【解析】两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.10.【答案】180°;【解析】依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.11.【答案】AD=BC;【解析】∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.12.【答案】6;【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴BC2=AB2+AC2,∴∠BAC=90°,页28页 29∵△ABD,△ACE 都是等边三角形, ∴∠DAB=∠EAC=60°, ∴∠DAE=150°.∵△ABD 和△FBC 都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°, ∴∠DBF=∠ABC. 在△ABC 与△DBF 中,∴△ABC≌△DBF(SAS ), ∴AC=DF=AE=4,同理可证△ABC≌△EFC, ∴AB=EF=AD=3,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). ∴∠FDA=180°﹣∠DAE=30°,∴S 口AEFD =AD•(DF ×)=3×(4×)=6. 即四边形AEFD 的面积是6. 故答案为:6.二.解答题 13.【解析】 证明:在ABCD 中AD ∥BC ,AO =CO ,BO =DO∴∠GAO =∠HCO 在△AGO 和△CHO 中∴△AGO ≌△CHO∴GO =HO 又∵BO =DO ,BE =DF GAO HCO AO CO GOA HOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EO=FO∴四边形EHFG为平行四边形.14.【解析】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.15.【解析】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°.页30又∵∠EFB=60°,∴ EF∥BC,即EF∥DC.又∵ DC=EF,∴四边形EFCD是平行四边形.(2)如图,连接BE.∵ BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴ BE=BF=EF,∠EBF=60°,∴ DC=EF=BE.∵△ABC是等边三角形,∴ AC=AB,∠ACD=60°.在△ABE和△ACD中,∵ AB=AC,∠ABE=∠ACD,BE=CD,∴△ABE≌△ACD,∴ AE=AD.页31。
八年级数学平行四边形30道经典题(含答案和解析)
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
平行四边形判定经典题型
平行四边形判定经典题型摘要:一、平行四边形的定义和性质二、平行四边形的判定方法1.两组对边分别平行2.两组对边分别相等3.一组对边平行且相等4.两组对角分别相等5.对角线互相平分三、经典题型解析1.题目一2.题目二3.题目三4.题目四5.题目五正文:平行四边形是初中数学中一个重要的基本图形,它具有许多独特的性质,其中最重要的性质之一就是可以通过一些特定的条件来判定一个四边形是否为平行四边形。
这些判定方法包括两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等以及对角线互相平分。
首先,如果一个四边形的两组对边分别平行,那么这个四边形就是平行四边形。
这是最直接的判定方法。
其次,如果两组对边分别相等,那么这个四边形也是平行四边形。
这种情况下,四边形的一组对边可能相等,也可能不等。
再者,如果一组对边平行且相等,那么这个四边形也是平行四边形。
这种情况下,另一组对边可能平行,也可能相等。
此外,如果两组对角分别相等,那么这个四边形也是平行四边形。
最后,如果对角线互相平分,那么这个四边形也是平行四边形。
在实际做题过程中,我们需要根据题目给出的条件,灵活运用这些判定方法。
下面,我们通过五个经典题型来具体解析这些判定方法的应用。
题目一:如果一个四边形的两组对边分别平行,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目二:如果一个四边形的两组对边分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目三:如果一个四边形的一组对边平行且相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目四:如果一个四边形的两组对角分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目五:如果一个四边形的对角线互相平分,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
平行四边形10道经典例题
平行四边形经典例题一、已知平行四边形的性质求角度例题:在平行四边形ABCD 中,∠A 的度数比∠B 的度数小40°,求∠A 和∠B 的度数。
解析:因为平行四边形的邻角互补,即∠A + ∠B = 180°。
又已知∠A 比∠B 小40°,即∠B - ∠A = 40°。
联立这两个方程可得:∠A = 70°,∠B = 110°。
二、利用平行四边形的性质求边长例题:平行四边形ABCD 的周长为40,AB = 6,求BC 的长。
解析:平行四边形的对边相等,所以AB = CD = 6,BC = AD。
周长为40,则2(AB + BC) = 40,即2×(6 + BC) = 40,解得BC = 14。
三、判断四边形是否为平行四边形例题:已知四边形ABCD 中,AB∠CD,AB = CD,判断四边形ABCD 是否为平行四边形。
解析:一组对边平行且相等的四边形是平行四边形,所以四边形ABCD 是平行四边形。
四、根据平行四边形的性质求线段长度例题:在平行四边形ABCD 中,AC、BD 是对角线,AC = 10,BD = 8,且AC 与BD 的夹角为60°,求AB 的长度。
解析:过 A 作AE∠BD 于E。
设O 为AC 与BD 的交点,则AO = 5,BO = 4。
在直角三角形AOE 中,因为∠AOE = 60°,所以OE = AO×cos60° = 5×1/2 = 2.5,AE = AO×sin60° = 5×√3/2。
在直角三角形ABE 中,根据勾股定理可得AB = √(AE² + BE²) = √[(5×√3/2)²+(4 + 2.5)²]。
五、利用平行四边形的性质证明线段相等例题:在平行四边形ABCD 中,E、F 分别是AB、CD 的中点,连接DE、BF。
平行四边形的判定证明题
四、运用判定3“对角线互相平分的四边形是平行四边形” 判定,证对角线互相平分。 1、如图,在平行四边形ABCD中,E、F在对角线AC上,且 AE=CF,试说明四边形DEBF是平行四边形.
解:连接BD交AC于点O. ∵四边形ABCD是平行四边形, ∴AO=CO,BO=DO. 又AE=CF, ∴AO-AE=CO-CF, 即EO=FO. ∴四边形DEBF是平行四边形.(对角线互相平分 的四边形是平行四边形)
证明:∵四边形ABCD是正方形,
∴AB = CD,AD = BC, ∠A =∠C =∠ABC =∠ADC =90° ∵AE = AD ,CF = BC,
∴AE = CF. ∴△ABE≌△CDF. ∴∠ABE =∠CDF,∠AEB =∠CFD. ∴∠BED =∠DFB. ∴∠EBF =∠EDF. ∴四边形BFDE是平行四边形. (两组对角 分别相等的四边形是平行四边形)
例2、已知:如图,在△ABC中,AB=AC,E是AB的中 点,D在BC上,延长ED到F,使ED = DF = EB. 连结FC. 求证:四边形AEFC是平行四边形.
证明:∵AB=AC, ∴∠B =∠ACB. ∵ED = EB, ∴∠B =∠EDB. ∴∠ACB =∠EDB. ∴EF∥AC. ∵E是AB的中点, ∴BD = CD. ∵∠EDB =∠FDC,ED = DF, ∴△EDB≌△FDC. ∴∠DEB =∠F. ∴AB∥CF. ∴四边形AEFC是平行四边形. (两组对边
证明:∵四边形ABCD 是平行四边形, ∴∠DAB=∠BCD, 又∵∠1= ∠DAB,∠2= ∠BCD,
∴∠1=∠2, ∵AB//CD, ∴∠3=∠1,∠4=∠2, ∴∠3=∠4, ∴∠5=∠6, ∴四边形AECF是平行四边形.(两组对角分 别相等的四边形是平行四边形)
中考特殊平行四边形证明及计算经典习题及答案2
DSE 金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一. 解答题1.(1)如图①, ▱ABCD的对角线AC, BD交于点O, 直线EF过点O, 分别交AD, BC于点E, F.求证: AE=CF.(2)如图②, 将▱ABCD(纸片)沿过对角线交点O的直线EF折叠, 点A落在点A1处, 点B落在点B1处, 设FB1交CD于点G, A1B1分别交CD, DE于点H, I.求证:EI=FG.考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题). 718351分析:(1)由四边形ABCD是平行四边形, 可得AD∥BC, OA=OC, 又由平行线的性质, 可得∠1=∠2, 继而利用ASA, 即可证得△AOE≌△COF, 则可证得AE=CF.(2)根据平行四边形的性质与折叠性质, 易得A1E=CF, ∠A1=∠A=∠C, ∠B1=∠B=∠D, 继而可证得△A1IE≌△CGF, 即可证得EI=FG.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.解答:证明: (1)∵四边形ABCD是平行四边形,∴AD∥BC, OA=OC,∴∠1=∠2,在△AOE和△COF中,, ∴△AOE≌△COF(ASA), ∴AE=CF;(2)∵四边形ABCD是平行四边形, ∴∠A=∠C, ∠B=∠D, 由(1)得AE=CF,由折叠的性质可得: AE=A1E, ∠A1=∠A, ∠B1=∠B,∴A1E=CF, ∠A1=∠A=∠C, ∠B1=∠B=∠D, 又∵∠1=∠2, ∴∠3=∠4, ∵∠5=∠3, ∠4=∠6, ∴∠5=∠6, 在△A1IE与△CGF中,, ∴△A1IE≌△CGF(AAS), ∴EI=FG.点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中, 注意掌握折叠前后图形的对应关系, 注意数形结合思想的应用.2. 在△ABC中, AB=AC, 点P为△ABC所在平面内一点, 过点P分别作PE∥AC交AB于点E, PF∥AB交BC于点D, 交AC于点F. 若点P在BC边上(如图1), 此时PD=0, 可得结论: PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2), △ABC外(如图3)时, 上述结论是否成立?若成立, 请给予证明;若不成立, PD, PE, PF与AB之间又有怎样的数量关系, 请写出你的猜想, 不需要证明.考点:平行四边形的性质. 718351专题:探究型.分析:在图2中, 因为四边形PEAF为平行四边形, 所以PE=AF, 又三角形FDC为等腰三角形, 所以FD=PF+PD=FC, 即PE+PD+PF=AC=AB, 在图3中, PE=AF可证, FD=PF﹣PD=CF, 即PF﹣PD+PE=AC=AB.解答:解: 图2结论: PD+PE+PF=AB.证明: 过点P作MN∥BC分别交AB, AC于M, N两点,∵PE∥AC, PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC, PF∥AB∴四边形BDPM是平行四边形,∴AE=PF, ∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.图3结论: PE+PF﹣PD=AB.图3结论:PE+PF﹣PD=AB.点评:此题主要考查了平行四边形的性质, 难易程度适中, 读懂信息, 把握规律是解题的关键.3. 如图, △ABC是等边三角形, 点D是边BC上的一点, 以AD为边作等边△ADE, 过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①), 求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B.C外如图②), 那么(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立, 请说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质. 718351专题:证明题.分析:(1)根据△ABC和△AED是等边三角形, D是BC的中点, ED∥CF, 求证△ABD≌△CAF, 进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC, 结合∠ACB=60°, 得出∠ACF=∠BAD, 求证△ABD≌△CAF, 得出ED=CF, 进而求证四边形EDCF是平行四边形, 即可证明EF=DC.(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.解答:(1)证明: ∵△ABC是等边三角形, D是BC的中点,∴AD⊥BC, 且∠BAD= ∠BAC=30°,∵△AED是等边三角形,∴AD=AE, ∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°, ∵∠ACB=60°, ∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°, 在△ABD和△CAF中,,∴△ABD≌△CAF(ASA), ∴AD=CF, ∵AD=ED,∴ED=CF, 又∵ED∥CF, ∴四边形EDCF是平行四边形, ∴EF=CD.(2)解: △AEF和△ABC的面积比为: 1: 4;(3)解: 成立.理由如下: ∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF, ∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.∴EF=DC.点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多, 综合性较强, 难度较大.4. 如图, 在菱形ABCD中, AB=10, ∠BAD=60度. 点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点, 在点M移动过程中, 线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动, 在什么时刻, 梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动, 过点M作MP∥AB, 交BC于点P.当△MPN≌△ABC时, 设△MPN与菱形ABCD重叠部分的面积为S, 求出用t表示S的关系式, 井求当S=0时的值.考点:菱形的性质;二次函数的最值;全等三角形的性质. 718351专题:压轴题.分析:(1)菱形被分割成面积相等的两部分, 那么分成的两个梯形的面积相等, 而两个梯形的高相等, 只需上下底的和相等即可.(2)易得菱形的高, 那么用t表示出梯形的面积, 用t的最值即可求得梯形的最大面积.(3)易得△MNP的面积为菱形面积的一半, 求得不重合部分的面积, 让菱形面积的一半减去即可.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.解答:解: (1)设: BN=a, CN=10﹣a(0≤a≤10)因为, 点M从点A以每秒1个单位长的速度沿着AD边向点D移动, 点M移动的时间为t秒(0≤t≤10)所以, AM=1×t=t(0≤t≤10), MD=10﹣t(0≤t≤10).所以, 梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10﹣t)+(10﹣a)]×菱形高÷2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10, (0≤t≤10), (0≤a≤10)所以, 当t+a=10, (0≤t≤10), (0≤a≤10)时, 可出现线段MN一定可以将菱形分割成面积相等的两部分.(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动, 设点N移动的时间为t, 可知0≤t≤5,因为AB=10, ∠BAD=60°, 所以菱形高=5 ,AM=1×t=t, BN=2×t=2t.所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5 ×= t(0≤t≤5).所以当t=5时, 梯形ABNM的面积最大, 其数值为.(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积, 则△MPN的面积为菱形面积的一半为25 ;因为要全等必有MN∥AC,∴N在C点外, 所以不重合处面积为×(at﹣10)2×∴重合处为S=25 ﹣,当S=0时, 即PM在CD上,∴a=2.∴a=2.点评:本题考查了菱形以及相应的三角函数的性质, 注意使用两条平行线间的距离相等等条件.5. 如图, 在下列矩形ABCD中, 已知: AB=a, BC=b(a<b), 假定顶点在矩形边上的菱形叫做矩形的内接菱形, 现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ): 图①中, 若AH=BG=AB, 则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ): 图②中, 若点E、F、G和H分别是AB、BC、CD和DE的中点, 则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中, 若EF垂直平分对角线AC, 变BC于点E, 交AD于点F, 交AC于点O, 则四边形AECF是矩形ABCD的内接菱形.请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个, 并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的, 但不全等的内接菱形).(3)试探究比较图①, ②, ③中的四边形ABGH、EFGH、AECF的面积大小关系.考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理. 718351分析:(1)①先证明是平行四边形, 再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形, 再根据对角线互相垂直证明是菱形;(2)先作一条对角线, 在作出它的垂直平分线分别与矩形的边相交, 连接四个交点即可.(3)分别表示出三个菱形的面积, 根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系, 分a>2b, a=2b和a<2b三种情况讨论.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.解答:解: (1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ), 证明如下:∵矩形ABCD,∴AB=CD, AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H是中点,∴AE=BE=CG=DG, AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH是菱形;若选(Ⅲ), 证明如下∵EF垂直平分AC,∴FA=FC, EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴AF=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示: AH=CF, EG垂直平分对角线FH, 四边形HEFG是菱形;(3)SABGH=a2 ,SEFGH= ab,S菱形AECF= ,∵﹣a2==>0(b>a)∴S菱形AECF>SABGH.∵﹣ab= = = >0,∴S菱形AECF>SEFGH.∵a2 ﹣ab=a(a﹣b)∴当a>b, 即0<b<2a时, S菱形ABGH>S菱形EFGH;当a= b, 即b=2a时, S菱形ABGH=S菱形EFGH;当a<b, 即b>a时, S菱形ABGH<S菱形EFGH.综上所述:当O<b<2a时, SEFGH<SABGH<S菱形AECF.当b=2a时, SEFGH=SABGH<S菱形AECF.当b>2a时SABGH<SEFGH<S菱形AECF.点评:本题主要考查了菱形的判定与性质, 三角形中位线定理, 全等三角形的判定与性质以及矩形的性质等知识点.注意第(3)题需要分类讨论, 以防错解.6. 在平行四边形ABCD中, ∠BAD的平分线交直线BC于点E, 交直线DC的延长线于点F, 以EC.CF为邻边作平行四边形ECFG.(1)如图1, 证明平行四边形ECFG为菱形;(2)如图2, 若∠ABC=90°, M是EF的中点, 求∠BDM的度数;(3)如图3, 若∠ABC=120°, 请直接写出∠BDG的度数.考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质. 718351分析:(1)平行四边形的性质可得AD∥BC, AB∥CD, 再根据平行线的性质证明∠CEF=∠CFE, 根据等角对等边可得CE=CF, 再有条件四边形ECFG是平行四边形, 可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形, 再证明△BME≌△DMC可得DM=BM, ∠DMC=∠BME, 再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)分别连接GB、GC, 求证四边形CEGF是平行四边形, 再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB, 求证△BEG≌△DCG, 然后即可求得答案.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形. 由AD ∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.(3)分别连接GB.GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC 及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.解答:解: (1)证明: ∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC, AB∥CD,∴∠DAF=∠CEF, ∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图, 连接BM, MC,∵∠ABC=90°, 四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB.FG交于H, 连接HD.∵AD∥GF, AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°, AF平分∠BAD,∴∠DAF=30°, ∠ADC=120°, ∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH, △DHF为全等的等边三角形,∴DH=DF, ∠BHD=∠GFD=60°,∵FG=CE, CE=CF, CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.点评:此题主要考查平行四边形的判定方法, 全等三角形的判定与性质, 等边三角形的判定与性质, 菱形的判定与性质等知识点, 应用时要认真领会它们之间的联系与区别, 同时要根据条件合理、灵活地选择方法.7. 在△ABC中, ∠BAC=90°, AB=AC, 若点D在线段BC上, 以AD为边长作正方形ADEF, 如图1, 易证: ∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上, 其他条件不变, 写出∠AFC.∠ACB.∠DAC的关系, 并结合图2给出证明;(2)若点D在CB延长线上, 其他条件不变, 直接写出∠AFC、∠ACB、∠DAC的关系式.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质. 718351专题:几何综合题.分析:(1)∠AFC.∠ACB.∠DAC的关系为: ∠AFC=∠ACB﹣∠DAC, 理由为: 由四边形ADEF为正方形, 得到AD=AF, 且∠FAD为直角, 得到∠BAC=∠FAD, 等式左右两边都加上∠CAD得到∠BAD=∠CAF, 再由AB=AC, AD=AF, 利用SAS可得出三角形ABD与三角形ACF全等, 根据全等三角形的对应角相等可得出∠AFC=∠ADB, 又∠ACB为三角形ACD的外角, 利用外角的性质得到∠ACB=∠ADB+∠DAC, 变形后等量代换即可得证;(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°, 可以根据∠DAF=∠BAC=90°, 等号两边都减去∠BAF, 可得出∠DAB=∠FAC, 再由AD=AF, AB=AC, 利用SAS证明三角形ABD与三角形AFC全等, 由全等三角形的对应角相等可得出∠AFC=∠ADB, 根据三角形ADC的内角和为180°, 等量代换可得证.(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC 的内角和为180°,等量代换可得证.(2)∠AFC、∠ACB.∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.(2)∠AFC.∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.解答:解: (1)关系: ∠AFC=∠ACB﹣∠DAC, …(2分)证明: ∵四边形ADEF为正方形,∴AD=AF, ∠FAD=90°,∵∠BAC=90°, ∠FAD=90°,∴∠BAC+∠CAD=∠FAD+∠CAD, 即∠BAD=∠CAF, …(3分)在△ABD和△ACF中,,∴△ABD≌△ACF(SAS), …(4分)∴∠AFC=∠ADB,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADB+∠DAC, …(5分)∴∠ADB=∠ACB﹣∠DAC,∵∠ADB=∠AFC,∴∠AFC=∠ACB﹣∠DAC;…(6分)(2)∠AFC.∠ACB.∠DAC满足的关系式为: ∠AFC+∠DAC+∠ACB=180°, …(8分)证明: ∵四边形ADEF为正方形,∴∠DAF=90°, AD=AF,又∠BAC=90°,∴∠DAF=∠BAC,∴∠DAF﹣∠BAF=∠BAC﹣∠BAF, 即∠DAB=∠FAC,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,在△ADC中, ∠ADB+∠ACB+∠DAC=180°,则∠AFC+∠ACB+∠DAC=180°.则∠AFC+∠ACB+∠DAC=180°.点评:此题考查了正方形的性质, 全等三角形的判定与性质, 三角形的内角和定理, 以及三角形的外角性质, 熟练掌握判定及性质是解本题的关键.8. 已知四边形ABCD是正方形, O为正方形对角线的交点, 一动点P从B开始, 沿射线BC运动, 连接DP, 作CN⊥DP于点M, 且交直线AB于点N, 连接OP, ON. (当P在线段BC上时, 如图1: 当P在BC的延长线上时, 如图2)(1)请从图1, 图2中任选一图证明下面结论: ①BN=CP;②OP=ON, 且OP⊥ON;(2)设AB=4, BP=x, 试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.考点:正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质. 718351专题:代数几何综合题.分析:(1)根据正方形的性质得出DC=BC, ∠DCB=∠CBN=90°, 求出∠CPD=∠DCN=∠CNB, 证△DCP ≌△CBN, 求出CP=BN, 证△OBN≌△OCP, 推出ON=OP, ∠BON=∠COP, 求出∠PON=∠COB即可;(2)同法可证图2时, OP=ON, OP⊥ON, 图1中, S四边形OPBN=S△OBN+S△BOP, 代入求出即可;图2中, S四边形OBNP=S△POB+S△PBN, 代入求出即可.(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.解答:(1)证明: 如图1,∵正方形ABCD,∴OC=OB, DC=BC, ∠DCB=∠CBA=90°, ∠OCB=∠OBA=45°, ∠DOC=90°, DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90°,∴∠BCN+∠CPD=90°, ∠PCN+∠DCN=90°,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中∴△DCP≌△CBN,∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP,∴ON=OP, ∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°,∴ON⊥OP,即ON=OP, ON⊥OP.(2)解: ∵AB=4, 四边形ABCD是正方形,∴O到BC边的距离是2,图1中, S四边形OPBN=S△OBN+S△BOP,= ×(4﹣x)×2+ ×x×2,=4(0<x<4),图2中, S四边形OBNP=S△POB+S△PBN=×x×2+×(x﹣4)×x= x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.即以O、P、B、N为顶点的四边形的面积y与x的函数关系是: .即以O、P、B.N为顶点的四边形的面积y与x的函数关系是:.即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.点评:本题考查了正方形性质, 全等三角形的性质和判定, 分段函数等知识点的应用, 解(1)小题的关键是能运用性质进行推理, 解(2)的关键是求出符合条件的所有情况, 本题具有一定的代表性, 是一道比较好的题目, 注意:证明过程类似.9. 如图, 四边形ABCD是正方形, 点E, K分别在BC, AB上, 点G在BA的延长线上, 且CE=BK=AG. (1)求证: ①DE=DG;②DE⊥DG(2)尺规作图: 以线段DE, DG为边作出正方形DEFG(要求: 只保留作图痕迹, 不写作法和证明);(3)连接(2)中的KF, 猜想并写出四边形CEFK是怎样的特殊四边形, 并证明你的猜想:(4)当时, 请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图. 718351分析:(1)由已知证明DE、DG所在的三角形全等, 再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F, 得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形, 然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.(4)由已知表示出的值.解答:(1)证明: ∵四边形ABCD是正方形,∴DC=DA, ∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.(2)解: 如图.(3)解: 四边形CEFK为平行四边形.证明: 设CK、DE相交于M点∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD, AB=CD, EF=DG, EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF, CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)解: ∵,∴设CE=x, CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图, 解题的关键是先由正方形的性质通过证三角形全等得出结论, 此题较复杂.10. 如图, 点P是正方形ABCD对角线AC上一动点, 点E在射线BC上, 且PB=PE, 连接PD, O为AC中点. (1)如图1, 当点P在线段AO上时, 试猜想PE与PD的数量关系和位置关系, 不用说明理由;(2)如图2, 当点P在线段OC上时, (1)中的猜想还成立吗?请说明理由;(3)如图3, 当点P在AC的延长线上时, 请你在图3中画出相应的图形(尺规作图, 保留作图痕迹, 不写作法), 并判断(1)中的猜想是否成立?若成立, 请直接写出结论;若不成立, 请说明理由.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质. 718351分析:(1)根据点P在线段AO上时, 利用三角形的全等判定可以得出PE⊥PD, PE=PD;(2)利用三角形全等得出, BP=PD, 由PB=PE, 得出PE=PD, 要证PE⊥PD;从三方面分析, 当点E在线段BC上(E与B、C不重合)时, 当点E与点C重合时, 点P恰好在AC中点处, 当点E在BC的延长线上时, 分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上, 利用垂直平分线的性质只要以P为圆心, PB为半径画弧即可得出E点位置, 利用(2)中证明思路即可得出答案.(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.解答:解: (1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,过点P做PM⊥CD, 于点M, 作PN⊥BC, 于点N,∵PB=PE, PN⊥BE,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE, NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90°,∴∠DPE=90°,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD, PE⊥PD;(2)∵四边形ABCD是正方形, AC为对角线,∴BA=DA, ∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD.(i)当点E与点C重合时, 点P恰好在AC中点处, 此时, PE⊥PD.(ii)当点E在BC的延长线上时, 如图.∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综合(i)(ii), PE⊥PD;(3)同理即可得出: PE⊥PD, PD=PE.点评:此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识, 此题涉及到分类讨论思想, 这是数学中常用思想同学们应有意识的应用.巩固训练:1.如图, 矩形ABCD的对角线交于点O, AE⊥BD, CF⊥BD, 垂足分别为E, F, 连接AF, CE.(1)求证: 四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G, 则△ACG是等腰三角形吗?并说明理由.考点:平行四边形的判定;全等三角形的判定;等腰三角形的判定;矩形的性质. 718351专题:证明题;几何综合题;探究型.分析:(1)根据矩形的性质可知: AB=CD, ∠ABE=∠CDF, ∠AEB=∠CFD=90°, 得到△ABE≌△CDF, 所以AE∥CF, AE=CF, 可证四边形AECF为平行四边形;(2)因为AE∥FG, 得到∠G=∠GAE.利用AG平分∠BAD, 得到∠BAG=∠DAG, 从而求得∠ODA=∠DAO.所以∠CAG=∠G, 可得△CAG是等腰三角形.(2)因为AE∥FG,得到∠G=∠GAE. 利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO. 所以∠CAG=∠G,可得△CAG是等腰三角形.(2)因为AE∥FG,得到∠G=∠GAE.利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO.所以∠CAG=∠G,可得△CAG是等腰三角形.解答:(1)证明: ∵矩形ABCD,∴AB∥CD, AB=CD.∴∠ABE=∠CDF, 又∠AEB=∠CFD=90°,∴AE∥CF,∴△ABE≌△CDF,∴AE=CF.∴四边形AECF为平行四边形.(2)解: △ACG是等腰三角形.理由如下: ∵AE∥FG,∴∠G=∠GAE.∵AG平分∠BAD,∴∠BAG=∠DAG.又OA= AC= BD=OD,∴∠ODA=∠DAO.∵∠BAE与∠ABE互余, ∠ADB与∠ABD互余,∴∠BAE=∠ADE.∴∠BAE=∠DAO,∴∠EAG=∠CAG, ∴∠CAG=∠G,∴△CAG是等腰三角形.∴△CAG是等腰三角形.点评:本题考查三角形全等的性质和判定方法以及等腰三角形的判定, 判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等, 先根据已知条件或求证的结论确定三角形, 然后再根据三角形全等的判定方法, 看缺什么条件, 再去证什么条件.2. 如图, 在Rt△ABC中, ∠BAC=90°, E, F分别是BC, AC的中点, 延长BA到点D, 使AD= AB. 连接DE, DF. (1)求证: AF与DE互相平分;(2)若BC=4, 求DF的长.考点:平行四边形的判定. 718351专题:计算题;证明题.分析:(1)连接EF、AE, 证四边形AEFD是平行四边形即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等, 求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质: 平行四边形的对边相等,求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.解答:(1)证明: 连接EF, AE.∵点E, F分别为BC, AC的中点,∴EF∥AB, EF= AB.又∵AD= AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.∴AF与DE互相平分.(2)解: 在Rt△ABC中,∵E为BC的中点, BC=4,∴AE= BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.点评:本题考查了平行四边形的判定, 有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.3. 如图, 以△ABC三边为边在BC同侧作三个等边△ABD.△BCE、△ACF.请回答下列问题:(1)求证: 四边形ADEF是平行四边形;(2)当△ABC满足什么条件时, 四边形ADEF是矩形.考点:平行四边形的判定;等边三角形的性质;矩形的判定. 718351专题:证明题;探究型.分析:1.本题可根据三角形全等证得DE=AF, AD=EF, 即可知四边形ADEF是平行四边形2、要使四边形ADEF是矩形, 必须让∠FAD=90°, 则∠BAC=360°﹣90°﹣60°﹣60°=150°2.要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°﹣90°﹣60°﹣60°=150°2、要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°﹣90°﹣60°﹣60°=150°解答:证明: (1)∵等边△ABD.△BCE、△ACF,∴DB=AB, BE=BC.又∠DBE=60°﹣∠EBA, ∠ABC=60°﹣∠EBA,∴∠DBE=∠ABC. ∴△DBE≌△CBA. ∴DE=AC.又∵AC=AF, ∴AF=DE.同理可证: △ABC≌△FCE, 证得EF=AD.∴四边形ADEF是平行四边形.(2)假设四边形ABCD是矩形, ∵四边形ADEF是矩形, ∴∠DAF=90°.又∵等边△ABD.△BCE、△ACF, ∴∠DAB=∠FAC=60°.∴∠BAC=360﹣∠DAF﹣∠FAC﹣∠DAB=150°.当△ABC满足∠BAC=150°时, 四边形ADEF是矩形.当△ABC满足∠BAC=150°时,四边形ADEF是矩形.当△ABC满足∠BAC=150°时,四边形ADEF是矩形.点评:此题主要考查了等边三角形的性质和平行四边形的判定.4. 已知: 如图, 矩形ABCD中, AB=2, AD=3, E、F分别是AB.CD的中点.(1)在边AD上取一点M, 使点A关于BM的对称点C恰好落在EF上. 设BM与EF相交于点N, 求证: 四边形ANGM是菱形;(2)设P是AD上一点, ∠PFB=3∠FBC, 求线段AP的长.考点:菱形的判定;矩形的性质. 718351专题:计算题;证明题.分析:(1)设AG交MN于O, 由题意易得AO=GO, AG⊥MN, 要证四边形ANGM是菱形, 还需证明OM=ON, 又可证明AD∥EF∥BC. ∴MO: ON=AO: OG=1: 1, ∴MO=NO;(2)连接AF, 由题意可证得∠PFA=∠FBC=∠PAF, ∴PA=PF, ∴PA= , 求得PA= .(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA= ,求得PA= .(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=,求得PA=.解答:(1)证明: 设AG交MN于O, 则∵A.G关于BM对称,∴AO=GO, AG⊥MN.∵E、F分别是矩形ABCD中AB.CD的中点,∴AE=BE, AE∥DF且AE=DF, AD∥EF∥BC.∴MO: ON=AO: OG=1: 1.∴MO=NO.∴AG与MN互相平分且互相垂直.∴四边形ANGM是菱形.(2)解: 连接AF,∵AD∥EF∥BC,∴∠PAF=∠AFE, ∠EFB=∠FBC.又∵EF⊥AB, AE=BE,∴AF=BF,∴∠AFE=∠EFB.∴∠PAF=∠AFE=∠EFB=∠FBC.∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC. ∴∠PFA=∠FBC=∠PAF.∴PA=PF.∴在Rt△PFD中, 根据勾股定理得: PA=PF= ,解得:PA= .。
平行四边形判定,题型归纳(较难)
对角线取值范围问题(同三角形第三边中线取值范围)平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a的取值范围为( ) A.4<a<16 B.14<a<26 C.12<a<20 D.8<a<32平行四边形的判定:1:定义法:两组对边分别平行的四边形是平行四边形2:一组对边平行且相等的四边形是平行四边形3:两组对边分别相等的四边形是平行四边形4:对角线相互平分的四边形是平行四边形14.平行四边形的判定(一)定义法:两组对边分别平行的四边形是平行四边形例题1:如图,四边形ABCD是平行四边形,连接AC.过点A作AE⊥BC于点E;过点C作CF∥AE,交AD于点F;求证:四边形AECF为平行四边形练习:1、已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.(1)求证:四边形BCFD是平行四边形;证明:(1)∵△ABC为等边三角形,且AE=AD,∴由题可知∠AED=∠ADE=∠EAD=60°∴EF∥BC,又∵EC=EF,∴△ECF为等边三角形,即∠EFC=∠EDB=60°,∴CF∥BD∴四边形BCFD为平行四边形.2、如图:平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q。
试说明PQ与MN互相平分。
3、如图,在四边形ABCD中,AH、CG、BE、FD分别是∠A、∠C、∠B、∠D的角平分线,且BE∥FD,AH∥CG,证明四边形ABCD为平行四边形.15.平行四边形的判定(二):一组对边平行且相等的四边形是平行四边形例题1:如图,在ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G。
求证:AF=DF【答案】解:(1)证明:如图1,连接BD、AE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD。
2020中考数学 专题练习:平行四边形(解析版)
2020中考数学专题练习:平行四边形(解析版)【例题1】如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE 的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【例题2】如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB 延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.【例题3】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.【例题4】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或巩固练习一、选择题:1.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE是解答本题的关键.2.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠EAC,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.3.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.4.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=C.AF=D.四边形AFCE的面积为【分析】根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,∴S四边形AECF=•AC•EF=××=,故D错误,故选C.5.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE ≌△DCF (SAS ),∴∠ABE=∠DCF ,在△ADG 和△CDG 中,,∴△ADG ≌△CDG (SAS ),∴∠DAG=∠DCF ,∴∠ABE=∠DAG ,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG ⊥BE ,故③正确,同法可证:△AGB ≌△CGB ,∵DF ∥CB ,∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △HDG :S △HBG =DG :BG=DF :BC=DF :CD=tan ∠FCD ,又∵∠DAG=∠FCD ,∴S △HDG :S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确取AB 的中点O ,连接OD 、OH ,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=2﹣2.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确,故选C.二、填空题:6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AB的中点,OE=5cm,则AD的长是10cm.【分析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD 的中位线,则AD=2OE,继而求出答案.【解答】解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=5cm,∴AD=10cm.故答案为:10.7.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E 重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.8.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.9. 如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为10﹣10cm.【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC 为底.分别求出PD的最小值,即可判断.【解答】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC 相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC 上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为10﹣10(cm);故答案为:10﹣1.10.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是①②③(填序号)【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确.故答案为:①②③.三、解答题:1.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6,.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.【分析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.【解答】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.2.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS 证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.3.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x ﹣x2=﹣(x﹣2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN 的最大值=即可.【解答】(1)解:∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①证明:∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②解:连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE=x﹣x2=﹣(x﹣2)2+1,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.4.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N 分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ•PN═﹣(x﹣)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,则S矩形PQMN∴当PQ=时,S最大值为,矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.。
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。
平行四边形常用的证明方法
平行四边形常用的证明方法一利用平行四边形的相关定理证明1.(1)两组对边分别平行的四边形是平行四边形例题:已知在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形证明:∵∠A=∠C,∠B=∠D,又∵∠A+∠C+∠B+∠D=3600,∴∠A+∠B=∠C+∠D=1800,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(2)两组对边分别相等的四边形是平行四边形例题:如图,□ABCD中,点E、F分别在边BC和AD上,且∠BAE=∠DCF.求证:四边形AECF是平行四边形证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD=BC,又∵∠BAE=∠DCF, ∴△BAE≌△DCF, ∴AE=CF,BE=DF, ∵AD=BC, ∴AF=EC, ∴四边形AECF是平行四边形(3)两组对角分别相等的四边形是平行四边形例题:如图,在□ABCD中,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形证明:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,∠BAD=∠DCB,∴∠ADE=∠CBF,∴AE=AD,CF=CB,∴∠EAD=∠ADE,∠CBF=∠FCB,∵∠ADC=∠ABC,∴∠EAD=∠BCF,∴∠EAD+∠BAD=∠BCF+∠DCB,即∠EAF=∠ECF,∵∠EAD=∠BCF,∠EAD=∠ADE,∠CBF=∠FCB,∴∠EAD=∠ADE=∠CBF=∠FCB,∴∠E=∠F,∴四边形AFCE是平行四边形(4)两条对角线互相平分的四边形是平行四边形例题:如图,□AECF的对角线交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形证明:∵四边形AECF是平行四边形,∴AO=CO,∠FCA=∠CAE,∵∠DOC=∠AOB,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形(5)一组对边平行且相等的四边形是平行四边形例题:如图,□ABCD中,AM=(2/3)AB,CN=(2/3)CD.求证:四边形AMCN是平行四形证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AM=(2/3)AB,CN=(2/3)CD,∴AM∥CN,AM =CN,∴四边形AMCN是平行四形2.(1)有一个角是直角的平行四边形是矩形例题:如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,求证:四边形ADCE是矩形证明:∵AB=AC,D为BC中点,∴AD⊥BC,BD=DC,∵四边形ABDE是平行四边形,∴AE=BD,AE∥BD,∵A、D、C在一条直线上,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵∠ADC=900,∴四边形ADCE是矩形(2)有三个角是直角的四边形是矩形例题:如图,BD,BE分别是∠ABC与它的邻补角∠ABP的平分线.AE⊥BE,AD⊥BD,E,D为垂足,求证:四边形AEBD是矩形证明:∵BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,∴∠PBE=∠ABE=0.5∠ABP,∠ABD=∠DBC= 0.5∠ABC,∵∠ABP+∠ABC=900,∴∠ABE+∠ABD=∠PBE+∠DBC=0.5×1800,∴∠EBD=900,∵AE⊥BE,AD⊥BD,∴∠AEB=900,∠ADB=900,∴∠EBD=∠AEB=∠ADB=900,∴四边形AEBD是矩形,(3)对角线相等的平行四边形是矩形例题:如图,□ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,求证:四边形ABCD是矩形证明:∵△OAB是等边三角形,∴OA=OB,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴AO=OB=OC=OD,∴AC=BD,∴四边形ABCD是矩形3.(1)有一组邻边相等的平行四边形是菱形例题:如图,在△ABC中,AB=BC,D、E、F分别为BC、AC、AB边的中点。
平行四边形证明经典有详解
(1)求 的度数.
(2)求四边形 的面积.
5.已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
6.已知:如图,E,F是▱ABCD的对角线AC上两点,且AE=CF.求证:BE=DF.
(2)求四边形ABCD的面积;
(3)设P点在线段BC上的运动时间为t秒,当P运动时,△APB可能是等腰三角形吗?如能,请求出t的值;如不能,请说明理由
27.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.
(1)求证:DE=EF;
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的长.
24.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.
(1)求证:△ABE≌△DFE;
(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.
25.(8分)如图所示在 中, 是 的延长线上一点, 与 交于点 , .
39.(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标(_________,_________).
(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).
归纳与发现
(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e之间的等量关系为_________.
平行四边形经典例题
平行四边形经典例题
平行四边形的经典例题包括但不限于以下几种:
1. 计算平行四边形的周长:
例题:已知平行四边形的一组邻边分别是3厘米和4厘米,这组对角线长分别为5厘米和6厘米,求这个平行四边形的周长。
答案:根据平行四边形的性质,对角线互相平分,所以可以计算出平行四边形的周长为22厘米。
2. 判断平行四边形:
例题:给出四个四边形,其中一个是平行四边形,另外三个是梯形,请判断哪个是平行四边形。
答案:根据平行四边形的性质,如果一个四边形的两组对边都分别平行,则该四边形是平行四边形。
所以只有一个是平行四边形。
3. 求平行四边形的面积:
例题:已知平行四边形的底为6厘米,高为4厘米,求这个平行四边形的面积。
答案:根据平行四边形的面积公式,面积 = 底× 高,所以这个平行四边形的面积是24平方厘米。
4. 利用平移性质证明平行四边形:
例题:已知一个三角形ABC,D、E分别是AB、AC上的点,且DE 平行于BC,证明三角形ADE是平行四边形。
答案:由于DE平行于BC,根据平移性质,有AE平行于DC,从而得出结论:三角形ADE是平行四边形。
北师大版数学八年级下册期末复习(六) 平行四边形
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
中考数学平行四边形综合经典题含答案
中考数学平行四边形综合经典题含答案一、平行四边形1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.3.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.4.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF ﹣AE|=2,EF=23,AE=CK ,∴FK=2, 在Rt △EFK 中,tan ∠FEK=33,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=12EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33, 综上所述:OP 6223. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.5.如图①,在等腰Rt ABC V 中,90BAC ∠=o ,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=o ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED V 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED V 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②42或22.【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF V 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF V ≌EDA V 再证明AEF V 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:Q 四边形ABFD 是平行四边形,AB DF ∴=,AB AC =Q ,AC DF ∴=,DE EC =Q ,AE EF ∴=,DEC AEF 90∠∠==o Q ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .Q 四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==o ,EKF 180DKE 135∠∠∴=-=o o ,EK ED =,ADE 180EDC 18045135∠∠=-=-=o o o o Q ,EKF ADE ∠∠∴=,DKC C ∠∠=Q ,DK DC ∴=,DF AB AC ==Q ,KF AD ∴=,在EKF V 和EDA V 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴V ≌EDA V ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==o ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===22AH (25)(2)32=-=,AE AH EH 42=+=,=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.6.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)23【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.7.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且86OB OD==,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P 为点D的对应点,再将纸片还原。
平行四边形经典证明题例题讲解
经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
判定平行四边形的五种方法
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F 在对角线AC上,且AE=CF,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,图1AB C DEF并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判图3别平行四边形所需的“一组对边平行且相等”的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例 4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB=∠BCD ,所以AF ∥EC.又因为∠1=21∠DAB ,∠2=21∠BCD ,所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF.所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
初中数学特殊平行四边形的证明及详细答案
初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。
(完整版)平行四边形的性质及判定典型例题
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
平行四边形知识点与经典例题2
平⾏四边形知识点与经典例题2平⾏四边形⼀、基础知识平⾏四边形2、由矩形的性质得到直⾓三⾓形的⼀个性质:直⾓三⾓形斜边上的中线等于斜边的⼀半。
三、例题例1、如图1,平⾏四边形ABCD 中,AE⊥BD,CF⊥BD,垂⾜分别为E 、F. 求证:∠BAE =∠DCF.例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F.求证:BE = CF.例3、已知:如图3,在梯形ABCD 中,AD∥BC,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA ,CF = 2FD. 求证:∠BEC =∠CFB.例4、如图6,E 、F 分别是平⾏四边形ABCD 的AD 、BC 边上的点,且AE = CF.(1)求证:△ABE≌△CDF;(2)若 M 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎(图1) BA DBCE F(图6)M NOABCDE F (图2)样的四边形,并证明你的结论.例5、如图7 ABCD的对⾓线AC的垂直平分线与边AD,BC分别相交于点E,F.,求证:四边形AFCE是菱形.例6、如图8,四边形ABCD是平⾏四边形,O是它的中⼼,E、F是对⾓线AC上的点.(1)如果,则△DEC≌△BFA(请你填上⼀个能使结论成⽴的⼀个条件);(2)证明你的结论.例7、如图9,已知在梯形ABCD中,AD∥BC,AB = DC,对⾓线AC和BD相交于点O,E是BC边上⼀个动点(点E不与B、C 两点重合),EF∥BD交AC于点F,EG∥AC交BD于点C.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题⽬的条件“梯形ABCD中,AD∥BC,AB = DC”改为另⼀种四边形,其他条件不变,使得结论,“四边形EFOG的周长等于2OB”仍成⽴,并将改编后的题⽬画出图形,写出已知、求证、不必证明.例8、有⼀块梯形形状的⼟地,现要平均分给两个农户种植(即将梯形的⾯积两等分),试设计两种⽅案(平分⽅案画在备⽤图13(1)、(2)上),并给予合理的解释.备⽤图(1)备⽤图(2)图13B图8CRPDCBAEF 第12题图四、练习⼀、选择题1.下列命题正确的是()(A)、⼀组对边相等,另⼀组对边平⾏的四边形⼀定是平⾏四边形 (B)、对⾓线相等的四边形⼀定是矩形(C)、两条对⾓线互相垂直的四边形⼀定是菱形 (D)、在两条对⾓线相等且互相垂直平分的四边形⼀定是正⽅形 2. 已知平⾏四边形ABCD 的周长32, 5AB=3BC,则AC 的取值围为( ) A. 64.延长平形四边形ABCD 的⼀边AB 到E ,使BE =BD ,连结DE 交BC 于F ,若∠DAB =120°,∠CFE =135°,AB =1,则AC 的长为()(A )1 (B )1.2 (C )32(D )1.5 5.若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BD 的长是()(A )1cm (B )2cm (C )3cm (D )4cm 6.若顺次连结⼀个四边形各边中点所得的图形是矩形,那么这个四边形的对⾓线( ) (A )互相垂直(B )相等(C )互相平分(D )互相垂直且相等7. 如图,等腰△ABC 中,D 是BC 边上的⼀点,DE ∥AC ,DF ∥AB ,AB=5那么四边形AFDE 的周长是()(A )5 (B )10 (C )15 (D )20(第7题)(第8题)(第9题)(第10题)8.如图,将边长为8cm 的正⽅形纸⽚ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是().(A )3cm (B )4cm (C )5cm (D )6cm9. 如图,在直⾓梯形ABCD 中,AD∥BC,∠B=90°,AC 将梯形分成两个三⾓形,其中△ACD 是周长为18 cm 的等边三⾓形,则该梯形的中位线的长是( ). (A)9 cm (B)12cm (c)29cm (D)18 cm 10.如图,在周长为20cm 的□ABCD中,AB≠AD,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为() (A)4cm (B)6cm (C)8cm (D)10cm11. 如图2,四边形ABCD 为矩形纸⽚.把纸⽚ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于()(A )34 (B )33 (C )24(D )812.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是 AP 、RP 的中点,当点P 在CD 上从C 向D 移动⽽点R 不动时,那么下列结论成⽴的是( )A 、线段EF 的长逐渐增⼤B 、线段EF 的长逐渐减⼩C 、线段EF 的长不变D 、线段EF 的长与点P 13. 在梯形ABCD 中,AD//BC ,对⾓线AC ⊥BD ,且cm AC 5 ,BD=12c m ,则梯形中位线的长等于()ABCDEF 图 2ABCDE O第10题图DABCPMN (1)(2)图9A B CDE F O 图A. 7.5cmB. 7cmC. 6.5cmD. 6cm14. 国家级历史⽂化名城——,风光秀丽,花⽊葱茏.某⼴场上⼀个形状是平⾏四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜⾊的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是()A .红花、绿花种植⾯积⼀定相等B .紫花、橙花种植⾯积⼀定相等C .红花、蓝花种植⾯积⼀定相等D .蓝花、黄花种植⾯积⼀定相等⼆、填空题1.如果四边形四个⾓之⽐1:2:3:4,则这四边形为____形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 1经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FAD CB连接∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.【关键词】多边形的内角和【答案】设xA=∠(度),则20+=∠xB,xC2=∠.根据四边形内角和定理得,360602)20(=++++xxx.解得,70=x.∴︒=∠70A,︒=∠90B,︒=∠140C.4.(如图,E F,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE==,,∥.ACAB CD∥DCABAC∠=∠B D AC CA∠=∠=,ABC△CDA△36AB CD BC AD====,ABCD183262=⨯+⨯=BDAB CD∥CDBABD∠=∠ABC CDA∠=∠ADBCBD∠=∠AD BC ABCD36AB CD BC AD====,ABCD183262=⨯+⨯=A DCBA DCB1 / 11 / 1求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=° 12∠=∠ABDEFCADCBEBCEDA F PF1 / 190DAM ABE DA AB ∠=∠==°, DAM ABE ∴△≌△ DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥DM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
证明:四边形DECF 是平行四边形。
【关键词】平行四边形的判定【答案】∵D.E 、F 分别为AB.BC.CA 的中点,∴DF ∥BC ,DE ∥AC , ∴四边形DECF 是平行四边形.BCEDAFP541M1 / 17.(2009年包头)已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式; (2)在直线xm =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.【关键词】二次函数、相似三角形、运动变化、抛物线解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,解得132a b c =-==-,,.232y x x ∴=-+-.(2)当EDB AOC △∽△时,得AO CO ED BD =或AO COBD ED=, ∵122AO CO BD m ===-,,,当AO CO ED BD =时,得122ED m =-, ∴22m ED-=, ∵点E 在第四象限,∴122m E m -⎛⎫⎪⎝⎭,. yxO yxOBA DC(x =m )(F 2)F 1 E 1 (E 2)1 / 1当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则1EF AB ==,点F 的横坐标为1m -,当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,,∵点1F 在抛物线的图象上,∴22(1)3(1)22mm m -=--+--, ∴2211140m m -+=,∴(27)(2)0m m --=,∴722m m ==,(舍去), ∴15324F ⎛⎫- ⎪⎝⎭,, ∴33144ABEFS=⨯=. 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,,∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100mm -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =,∴2(46)F -,, ∴166ABEFS=⨯=.注:各题的其它解法或证法可参照该评分标准给分. 8.(2009年莆田)已知:如图在ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA的延长线、AB 、DC 、BC 的延长线于点E 、M 、N 、F 。
(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;1 / 1(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?【关键词】四边形、全等三角形、变换(1)DOE BOF ①△≌△;证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴EDO FBO E F ∠=∠∠=∠,又∵OD OB = ∴()DOE BOFAAS △≌△BOM DON ②△≌△证明:∵四边形ABCD 是平行四边形∴AB CD ∥∴MBO NDO BMO DNO ∠=∠∠=∠,又∵BO DO =∴()BOMDON AAS △≌△ABD CDB ③△≌△;证明:∵四边形ABCD 是平行四边形∴AD CB AB CD ==,又∵BD DB = ∴()ABD CDBSSS △≌△(2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到.8分9.(2009年温州)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)【关键词】平行四边形的性质,判定 【答案】解:(1)EB M OD NF CA EBMODNFCA1 / 1(2)10.(2009年中山)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙,(1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.【关键词】利用平行四边形证明线段相等【答案】(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,AE OF OF ∴∥,就是圆心O 到CD 的距离.四边形ABCD 是平行四边形,AB CD AE OF ∴∴=∥,.在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°, AD BCOAD BC OEFAD BC OEF1 / 1333222AE AE m OF AE m m ====,,, 圆心到CD 的距离PF 为32m . (2)32OF m =,AB 为O ⊙的直径,且10AB =,∴当5OF =时,CD 与O ⊙相切于F 点,即3103523m m ==,, ∴当1033m =时,CD 与O ⊙相切.11.(2009年宁德市)(本题满分8分)如图:点A.D.B.E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)【关键词】平行四边形的判定【答案】解法1:图中∠CBA =∠E证明:∵AD =BE∴AD +DB =BE +DB 即AB =DE ∵AC ∥DF ∴∠A =∠FDE又∵AC =DF∴△ABC ≌△DEF∴∠CBA =∠E解法2:图中∠FCB =∠EA FE D C BAFE D C B1 / 1证明:∵AC =DF ,AC ∥DF∴四边形ADFC 是平行四边形 ∴CF ∥AD ,CF =AD∵AD =BE ∴CF =BE ,CF ∥BE ∴四边形BEFC 是平行四边形 ∴∠FCB =∠E12.(2009年山东青岛市)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥? (2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.【关键词】全等三角形的性质与判定、相似三角形判定和性质、平行四边形有关的计算 【答案】解:(1)∵PE AB ∥∴DE DPDA DB=. 而10DE t DP t ==-,,∴10610t t -=,∴154t =. AE DQPBFCA E D QPBFCN M1 / 1∴当15(s)4tPE AB =,∥. (2)∵EF 平行且等于CD , ∴四边形CDEF 是平行四边形.∴DEQ C DQEBDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ CDQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△.∴DE EQBC CD=. 104t EQ=. ∴25EQt =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ====∵ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PNBD BM=,10210t -=,15t PN ⎫=-⎪⎭211212255PEQ t SEQ PN t ⎫==⨯⨯-=+⎪⎭△. (3)11422BCDS CD BM ==⨯⨯=△ 若225PEQBCD S S =△△,1 / 1则有2225525-+=⨯, 解得1214t t ==,.(4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△, ∴PDE PFCDEPFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△∴在运动过程中,五边形PFCDE 的面积不变.13. (2009年达州)如图10,⊙O 的弦AD ∥BC,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及延长线分别交AC.BC 于点G 、F.(1)求证:DF 垂直平分AC ; (2)求证:FC =CE ;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.【关键词】圆,平行四边形,勾股定理 【答案】(1)∵DE 是⊙O 的切线,且DF 过圆心O∴DF ⊥DE又∵AC ∥DE∴DF ⊥AC∴DF垂直平分AC(2)由(1)知:AG=GC又∵AD∥BC∴∠DAG=∠FCG又∵∠AGD=∠CGF∴△AGD≌△CGF(ASA)∴AD=FC∵AD∥BC且AC∥DE∴四边形ACED是平行四边形∴AD=CE∴FC=CE5分(3)连结AO;∵AG=GC,AC=8cm,∴AG=4cm在Rt△AGD中,由勾股定理得GD=AD2-AG2=52-42=3cm 设圆的半径为r,则AO=r,OG=r-3在Rt△AOG中,由勾股定理得AO2=OG2+AG2有:r2=(r-3)2+42解得r=256∴⊙O的半径为256cm.经典例题(附带答案2)例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?分析根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.解设平行四边形的一个内角的度数为x,则它的邻角的度数为3x,根据题意,得,解得,∴∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 已知:如图,的周长为60cm,对角线AC、BD相交于点O,的周长比的周长多8cm,求这个平行四边形各边的长.1 / 1分析由平行四边形对边相等,可知平行四边形周长的一半=30cm,又由的周长比的周长多8cm,可知cm,由此两式,可求得各边的长.解∵四边形为平行四边形,∴,∴,∴∴答:这个平行四边形各边长分别为19cm,11cm,19cm,11cm.说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例 3 已知:如图,在中,交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.分析观察图形,,从而可说明证明在中,交于O,∴,∴,∴,∴例4 已知:如图,点E在矩形ABCD的边BC上,且,垂足为F。