4-1-2_图形找规律 题库教师版
小学数学 图形找规律.教师版
【答案】
【例 19】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了 9 幅蝴蝶图,并用剪刀将它们一一剪下来.她将这 9 只纸蝴蝶摆在桌上,见下图 1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了 3 只纸 蝴蝶,见下图 2.你能找出蝴蝶的排列规律,将图 2 的 3 只蝴蝶放入图 1 的空缺处吗?
。
【考点】图形找规律 【难度】3 星 【题型】填空 【解析】(1)数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可以看出,在每相邻的两个数中,
后一个数都比前一个数大 3.因为方框内应是第(5)个点群,它的点数应该是 10+3=13(个). (2)列表,依次写出各点群的点数,
可知第(10)个点群包含有 28 个点. (3)前十个点群,所有点的总数是:1+4+7+10+13+16+19+22+25+28=145(个)
例题精讲
模块一、图形规律——数量规律
【例 1】 观察这几个图形的变化规律,在横线上画出适当的图形.
【考点】图形找规律 【难度】1 星 【题型】填空 【解析】几个图形的边数依次增加,因此横线上应为一个七边形. 【答案】七边形 【例 2】 请找出下面哪个图形与其他图形不一样.
【考点】图形找规律 【难度】1 星 【题型】填空 【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边
1
2
3
4
5
6
7
8
9
图1
A
B
C
图2
【考点】图形找规律 【难度】2 星 【题型】填空 【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中 3 只蝴蝶的翅膀形状各不相同,翅膀
四年级下册数学奥数试题-培优拓展训练:第2讲:图形计数(教师版)
第二讲图形计数几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.一:简单图形计数的方法。
二:复杂图形计数的方法和找规律的方法。
例(1)数出右图中总共有多少个角分析:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个角。
例(2 )数一数共有多少条线段?共有多少个三角形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三角形30个。
小学奥数:图形找规律.专项练习及答案解析
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律【难度】1星【题型】填空【解析】几个图形的边数依次增加,因此横线上应为一个七边形.【答案】七边形【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律【难度】1星【题型】填空【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【答案】(4)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【考点】图形找规律【难度】2星【题型】填空【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:例题精讲知识点拨4-1-2.图形找规律【答案】【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【答案】△【例 5】观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【考点】图形找规律【难度】2星【题型】填空【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例 6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律【难度】2星【题型】填空【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例 7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
小学奥数4-1-2 图形找规律.专项练习及答案解析(精品)
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化; ⑵图形形状的变化;⑶图形大小的变化; ⑷图形颜色的变化; ⑸图形位置的变化; ⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例1】观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律 【难度】1星 【题型】填空【解析】 几个图形的边数依次增加,因此横线上应为一个七边形.【答案】七边形【例 2】 请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律 【难度】1星 【题型】填空 【解析】 这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样 【答案】(4)【例 3】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【考点】图形找规律 【难度】2星 【题型】填空 【解析】 观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:例题精讲知识点拨4-1-2.图形找规律【答案】【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【答案】△【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【考点】图形找规律【难度】2星【题型】填空【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律【难度】2星【题型】填空【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
4-1-2图形找规律-题库教师版
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化; ⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一 数量规律【例 1】 请找出下面哪个图形与其他图形不一样.【解析】 这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【例 2】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.例题精讲图形找规律(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【例 3】观察下面的图形,按规律在“?”处填上适当的图形.(4)(3)(2)(1)?【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 4】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
小学奥数教程之-图形找规律 (35) (含答案)
【考点】图形找规律 【难度】2 星 【题型】填空 【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数
不变.因为三角形的个数是按 4、3、?、1 的顺序变化的,显然“?”处应填一个三角形△. (方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照 4、?、2、1 的顺序变化,也可以看出 “?”处应是三角形△. 【答案】△
D
【答都是由 A、B、C、D(线段或圆)中的两个组合而成,记为 A★B、C★D、A★D.请 你画出表示 A★C 的图形.
A★B
C★D
A★D
【考点】图形找规律 【难度】2 星 【题型】填空 【解析】观察上图,第一个图形和第三个图形的共同之处是都有一条竖向线段,而它们共有的字母是 A,因
的个数是按 4、3、?、1 的顺序变化的,显然“?”处应填一个圆形。 【答案】圆形
【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【考点】图形找规律 【难度】2 星 【题型】填空 【解析】 (方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不
按照这个规律,第 5 个点群(即方框中的点群)包含的点数是:5×5=25(个).
(2)按发现的规律推出,第十个点群的点数是:10×10=100(个).
(3)前十个点群,所有的点数是:
【答案】(1) 25 ,(2)100 ,(3) 385
【例 8】 观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含
如:甲图中,A 在左方;而乙图中,A 在上方,……我们把这样一种位置的变化称为图形的旋转, 乙图可以看作是甲图沿顺时针方向旋转 90°得到的,甲图也可以看成是乙图沿逆时针旋转 90°而得到
8图形找规律(教师版)
共有
(个)小球.
7 看图找规律,“?”处的图形应该填().
A.
B.
C.
D.
答案 A 解析 如图所示 8 找规律,选出接下来的图形( ).
B.
D.
A.
C.
答案 D 9 找规律,涂一涂.
答案 解析 10 找规律,画出下一幅图案.
答案 11 找规律接着画 个.
(1) (2) (3)
答案 (1) (2) (3)
(2)
答案
( )下一个是( ( )下一个是(
(1) (2) 解析 (1) (2) 5 找规律,填一填. 答案 6 找规律,补全空白方框.
答案
解析 通过观察可以发现本题中,从第二个方框开始,后一个方框里的小球是在前一个方框里的小
球的基础上增加一排小球.所以可以得出第五个方框中有 排小球,第 排有 个小球,所以一
图形找规律
1 找规律,下一个填什么?
A.
B.
C.
答案 C
解析 观察后发现题目中这
是
.
故选 .
2 找规律,画一画. (1) (2) (3) (4)
答案 (1) (2)
三个图形重复出现,所以下一个应该
(3) (4) 3 找规律,圈出合话的图案. (1)
). (2)
). 答案 (1)
(2)
4 找规律,画一画. (1)
.
答案 解析 规律是向左滑滑梯.
19 观察下面图形找规律,画出?处的图形
.
答案 ☆,△ 解析
12 找规律,画一画
( ). ( ).
( ).
答案
解析 从左到右分别表示 时、 时、 时和 时,时针都比之前多走了 格,后面应该是 时. 13 找规律,填一填.
七年级数学图形中的排列规律重难点题型总结(含解析版)
图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()A.29B.38C.48D.59【变式6-2】(2018春•沙坪坝区校级期中)下列图形都是由同样大小的●和〇按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为()A.91B.112C.123D.160【变式6-3】(2019春•北碚区校级月考)下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,…,按此规律排列下去,第⑦个图形中黑色圆点的个数为()A.66B.91C.120D.135图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【分析】根据题目中给出的图形,可知每五个一个循环,空白的大三角形按照顺时针旋转,从而可以得到从左到右第2019个图形是选项中的哪个图形,本题得以解决.【答案】解:由图可知,每连续的五个为一组,也就是五个一循环,2019÷5=403…4,故选:A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化特点,利用数形结合的思想解答.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【分析】设第n个正方形中标记的最大的数为a n,观察给定图形,可找出规律“a n=4n”,依此规律即可得出结论.【答案】解:设第n个正方形中标记的最大的数为a n.观察给定正方形,可得出:每个正方形有4个数,即a n=4n.∵2019=504×4+3,∴数2019应标在第505个正方形左上角.故选:D.【点睛】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律a n=4n.本题属于基础题,难度不大,需找出2019在第几个正方形上.【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【分析】观察图形不难发现,每移动8cm为一个循环组依次循环,用2018除以8,根据商和余数的情况确定最后停的位置所在的点即可.【答案】解:∵两个菱形的边长都为1cm,∴从A开始移动8cm后回到点A,∵2018÷8=252余2,∴移动2018cm为第253个循环组的第2cm,在点C处.故选:D.【点睛】本题是对图形变化规律的考查,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,在用2018除以此步数即可.【答案】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B →…的顺序循环运动,此时一个循环为8步,∴2018÷8=252…2.∴当物体走到第252圈后再走2步正好到达C点.故选:B.【点睛】本题考查的是图形的变化类这一知识点,解答此题的关键是根据题意得出物体走一个循环的步数,找出规律即可轻松作答.【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个,根据其中的规律,计算出第100个图案的黑纸片个数即可.【答案】解:第1个图案中有黑色纸片3×1+1=4张,第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片:(3n+1)张,∴第100个图案中有黑纸片301张.故选:B.【点睛】本题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系,难度适中.【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【分析】观察图形可知:第1个图形需要围棋子的枚数=5;第2个图形需要围棋子的枚数=5+3;第3个图形需要围棋子的枚数=5+3×2;第4个图形需要围棋子的枚数=5+3×3,…,则第n个图形需要围棋子的枚数=5+3(n﹣1),然后把n=2018代入计算即可.【答案】解:∵第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,∴第n个图形需要围棋子的枚数=5+3(n﹣1)=3n+2,∴第2018个图形需要围棋子的枚数=3×2018+2=6056,故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出一般的运算规律解决问题.【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑩个图形中正方形的个数即可.【答案】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑩个图形有3+2×9=21(个),故选:C.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【分析】由图可得,第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;…进一步发现规律:第n个“上”字中的棋子个数是(4n+2);由此求得问题答案.【答案】解:第1个“上”字中的棋子个数是6=4+2;第2个“上”字中的棋子个数是10=4×2+2;第3个“上”字中的棋子个数是14=4×3+2;…第n个“上”字中的棋子个数是(4n+2);所以第10个“上”字需用棋子的数量是4×10+2=42个.故选:C.【点睛】本题主要考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【答案】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点睛】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【答案】解:第1个图案由12+4=5个基础图形组成,第2个图案由22+4=8个基础图形组成,……,如果按照以下规律继续下去,可以发现:第20个图案需要202+4=404个基本图形.故选:B.【点睛】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的规律,难度不大.【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【分析】根据图示,可得:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,据此求出第10个小房子用了多少颗石子即可.【答案】解:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,∴第n个小房子用的石子的数量是:2n﹣1+(n+1)2,∴第10个小房子用的石子的数量是:19+112=19+121=140.故选:C.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【分析】第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,那么可得第n个图形中有n•n+n+4个黑点.【答案】解:第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,可得第n个图形中有n•n+n+4个黑点.把n=10代入可得:10×10+10+4=114,故选:B.【点睛】本题考查规律型:图形的变化类;根据图形的排列规律正确列式是解决本题的关键.【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【分析】根据题意和题目中点的个数的变化,可以判断各个小题是否正确,从而可以解答本题.【答案】解:当n=4时,三角点阵中的点数之和是:1+2+3+4=10,故①正确,当1+2+…+n=300时,即,得n=24,故②正确,当n=19时,三角点阵中的点数之和为=190,∵190+10=200,∴前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,故③正确;故选:D.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中点的个数的变化规律,利用数形结合的思想解答.【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【分析】根据已知图形得出第n个图形中面积为1的正方形有2+3+4+…+n+1=,据此求解可得.【答案】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.【答案】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+1+2=4;当n=3时,铜币个数=1+1+2+3=7;当n=4时,铜币个数=1+1+2+3+4=11;…第n个图案,铜币个数=1+1+2+3+4+…+n=n(n+1)+1,当n=8时,×8×9+1=37,故选:C.【点睛】本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【分析】由图可知:第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;由此代入求得答案即可.【答案】解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个三角形,共有3×(1+2)根火柴;第③个有1+2+3个三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;∴第⑥个图形中火柴棒根数是3×(1+2+3+4+5+6)=63,故选:A.【点睛】此题考查了图形的变化规律,解题的关键是发现三角形个数的规律,从而得到火柴棒的根数.【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【分析】根据已知得出第n个图形有1+3+5+…+(2n﹣1)=n2个三角形,据此代入计算可得.【答案】解:第①个图有1=12个三角形,第②个图形有1+3=4=22个三角形,第③个图形有1+3+5=9=32个三角形,…第⑥个图形有62=36个三角形,故选:A.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【分析】分析数据可得:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1).据此可以求得答案.【答案】解:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故选:C.【点睛】此题属于图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【分析】首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【答案】解:第1个三角形图案:1+3=4=22,第2个三角形图案:1+3+5=9=32,第3个三角形图案:1+3+5+7=16=42,第4个三角形图案:1+3+5+7+9=16+9=25=52,第5个三角形图案:1+3+5+7+9+11=25+11=36,则第n个三角形图案:1+3+5+7+9+11+…+2n﹣1=(n+1)2,令(n+1)2=2025,解得:n=44或n=﹣46(舍去)故选:C.【点睛】本题是图形与数字类的变化规律的综合问题,首先要探寻规律,认真观察、仔细思考,善用联想来解决这类问题;本题不仅要从图形中看规律,还要从数字变化看规律,两方面结合得出结论.【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【分析】仔细观察图形,找到图形的变化规律,利用规律解得即可.【答案】解:第一个图形有1个圆,第二个图形有1+3+1=5个圆,第三个图形有1+3+5+3+1=13个圆,第四个图形有1+3+5+7+5+3+1=25个圆,…第六个图形有1+3+5+7+9+11+9+7+5+3+1=61个圆,故选:B.【点睛】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【分析】根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1),据此可得.【答案】解:因为图①中点的个数为4=22﹣0,图②中点的个数为8=32﹣1,图③中点的个数为13=42﹣(1+2),图④中点的个数为19=52﹣(1+2+3),……所以图⑨中点的个数为102﹣(1+2+3+…+8)=100﹣36=64,故选:C.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1).【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()。
小学奥数4-1-2 图形找规律.专项练习及答案解析
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例1】观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律【难度】1星【题型】填空【解析】几个图形的边数依次增加,因此横线上应为一个七边形.【答案】七边形【例2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律【难度】1星【题型】填空【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【答案】(4)【例3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【考点】图形找规律【难度】2星【题型】填空例题精讲知识点拨4-1-2.图形找规律【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【答案】【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△. (方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【答案】△【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【考点】图形找规律【难度】2星【题型】填空【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律【难度】2星【题型】填空【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
(教师版)小学奥数4-1-2 图形找规律.专项检测题及答案解析
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例1】观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律【难度】1星【题型】填空【解析】几个图形的边数依次增加,因此横线上应为一个七边形.【答案】七边形【例2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律【难度】1星【题型】填空【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【答案】(4)【例3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【考点】图形找规律【难度】2星【题型】填空例题精讲知识点拨4-1-2.图形找规律【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【答案】【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【答案】△【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【考点】图形找规律【难度】2星【题型】填空【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律【难度】2星【题型】填空【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
找规律练习题幼儿园
找规律练习题幼儿园一、图形规律识别1. 观察下列图形序列,找出下一个图形是什么?- 圆形,正方形,三角形,圆形,正方形,() A. 三角形 B. 圆形 C. 五边形 D. 六边形2. 下列图形序列中,哪一个图形不应该出现?- 圆形,圆形,正方形,圆形,圆形,()A. 圆形B. 三角形C. 正方形D. 五边形3. 根据图形大小变化规律,下一个图形应该是多大? - 小圆形,中圆形,大圆形,()A. 小圆形B. 中圆形C. 大圆形D. 巨大圆形二、数字规律识别4. 观察下列数字序列,找出下一个数字是什么?- 1,2,4,8,()A. 9B. 10C. 16D. 325. 下列数字序列中,哪一个数字不符合规律?- 2,4,6,8,10,()A. 12B. 11C. 10D. 96. 根据数字递增规律,下一个数字应该是多少?- 3,5,7,9,()A. 10B. 11C. 12D. 13三、颜色规律识别7. 观察下列颜色序列,找出下一个颜色是什么?- 红色,黄色,蓝色,红色,黄色,()A. 绿色B. 蓝色C. 紫色D. 橙色8. 下列颜色序列中,哪一个颜色不应该出现?- 绿色,蓝色,红色,绿色,蓝色,()A. 黄色B. 绿色C. 红色D. 黑色9. 根据颜色变化规律,下一个颜色应该是什么?- 蓝色,绿色,黄色,()A. 红色B. 橙色C. 紫色D. 粉色四、形状和颜色结合规律识别10. 观察下列图形和颜色的组合序列,找出下一个组合是什么?- 圆形红色,正方形蓝色,三角形黄色,圆形()A. 红色B. 蓝色C. 黄色D. 绿色11. 下列图形和颜色的组合序列中,哪一个组合不应该出现?- 圆形红色,正方形蓝色,三角形黄色,圆形蓝色,()A. 正方形红色B. 圆形黄色C. 正方形绿色D. 圆形蓝色12. 根据图形和颜色的变化规律,下一个组合应该是什么?- 圆形红色,正方形黄色,三角形蓝色,()A. 圆形黄色B. 圆形蓝色C. 正方形红色D. 三角形红色五、综合规律识别13. 观察下列序列,找出下一个图形、数字和颜色的组合是什么?- 圆形1红色,正方形2蓝色,三角形3黄色,()A. 圆形4绿色B. 圆形4蓝色C. 正方形4红色D. 三角形4黄色14. 下列序列中,哪一个组合不符合规律?- 圆形1红色,正方形2蓝色,三角形3黄色,圆形4()A. 红色B. 蓝色C. 黄色D. 绿色15. 根据序列的综合规律,下一个组合应该是什么?- 圆形1红色,正方形2蓝色,三角形3黄色,()A. 圆形4绿色B. 圆形4蓝色C. 正方形4红色D. 三角形4黄色答案:1-5 B A C C C 6-10 D B B B A 11-15 A D A C请注意,这些练习题旨在帮助幼儿园的孩子们通过观察和思考来识别图形、数字、颜色以及它们之间的规律。
四年级暑假班第3次课------找规律(教师版)
找规律观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
【例题1】 先找出下列数排列的规律,并根据规律在括号里填上适当的数。
(1)1,4,7,10,( 13 ),( 16 ),19。
【总结】依次增加(减少)同一个数。
(2)4,8,16,( 32 ),64,( 128 )。
【总结】成相同的倍数增加(缩小)。
(3)8,9,14,9,20,( 9 ),( 26 )。
【总结】一个数增加(减少),一个数不变王牌例题剖析 专题要点练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(18),22,26(2)55,49,43,( 37),31,(25),19(3)3,6,12,(24),48,(96),192(4)128,64,32,(16),8,(4 ),2(5)19,3,17,3,15,3,(13),(3),11,3【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
(1)1,2,4,7,(11),16,22【总结】一组数中依次增加(减少)的数在增加(减少)。
(2)76,53,70,50,64,47,(58),(44)。
【总结】可以拆分成两组数来看,再分别去找两组数的规律。
一组一次减少6,一组一次减少3。
练习2:先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,(20),(25),31(2)3,2,5,2,7,2,(9),(2),11,2(3)53,44,36,29,(23),18,(14),11,9,8(4)81,64,49,36,( 25 ),16,(9),4,1,0(5)28,1,26,1,24,1,(22),(1),20,1(6)1,6,4,8,7,10,(10),(12),13,14(可以拆分成两组数来看,再分别去找两组数的规律。
小学奥数4-1-2 图形找规律.专项练习
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例1】观察这几个图形的变化规律,在横线上画出适当的图形.【例2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列. 【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
【例8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例10】在纸上画5条直线,最多可有个交点。
模块二、图形规律——旋转、轮换型规律【例11】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○ □ ☆ △ ○ □ ☆ △△ ○ □ ☆ △ ○ □ ☆☆ △ ○ □ ☆ △ ○ □()()()()()()()()【例12】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)(2)(3)【例 13】 观察下图的变化规律,画出丙图.甲DA乙BC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A ★BC ★DA ★D【例 15】 (希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A 、B 、C 、D(线段和正方形)组合(记为*)而成。
【七年级数学代数培优竞赛专题】专题4 找规律【含答案】
专题4 找规律知识解读1.探索数列中的规律现阶段的数列多为等差数列(后一个数与前一个数的差都相等)、等比数列(后一个数与前一个数的商都相等),也有的数列是某几个数的循环。
2.探索等式中的规律题目条件所提供的等式都是一般规律的具体应用,因此将所提供的等式一般化是找寻规律的常用方法.3.探索图案中的规律图案中蕴含的规律,一般可从数和形两个角度来探寻.培优学案典例示范1.探索数列中的规律例1(1)有一列数:1,-2,4,-8,16,-32,…则这列数的第8个数是,第n个数是 .(用含n的代数式表示)(2)有一列数:20,10,n,n,19,…则这列数的第9个数是,第n个数是 .(用含n的代数式表示)【提示】(1)思路一:先看符号:正、负、正、负循环,可用12319190++++=来表示;再看绝对值,后一个数的绝对值都是前一个数的绝对值的2倍,因此第n个数的绝对值是第一个数的绝对值乘(n-1)个2.思路二:看整列数,可以发现后一个数都是前一个数的-2倍,因此第n个数是第一个数乘以(n-1)个-2.(2)先看符号,负、正、负、正循环,可用20来表示;再看绝对值,分子都是1,后一个分母比前一个分母大2,因此第n个数的分母是第一个数的分母加上(n-1)个2.【技巧点评】一个数列:10,200,5,…,1,2如果满足3-4=5-1=…=1-3=5-7=p那么这个数列是等差数列,2=15+(n-1)p.一个数列:13,11,9,…,3,17如果满足19那么这个数列是等比数列,21=23等差数列和等比数列及其派生出的数列(将原等差数列或等比数列的每个数或加、或减、或乘以、或除以一个相同的非零数而生成的新数列)是找规律题中常见的数列.跟踪训练1(1)下面一组按规律排列的数:1,2,4,8,16,…第2015个数是 ; (2)已知一列数2,8,26,80,…,按此规律,则第n 个数是 (用含n 的代数式表示)例2 有一列数:1111112612203042,,,,,,,则这列数的第n 个数是 (用含n 的代数式表示)【提示】分子都是1,分母既不是等差数列,也不是等比数列. 思路一:第一个分母是12⨯,第二个是23⨯,第三个是34⨯思路二:从乘方的角度考虑,第一个分母是211+,第二个是222+,第三个是233+【技巧点评】遇到非等差或非等比数列时,从乘方的角度考虑,常常会有突破. 跟踪训练2有一组数1,2,5,10,17,26请观察规律,则第10个数为 .例3 有若干个数,第一个数记为1a ,第二个数记为2a ,第三个数记为3a 第n 个数记为n a ,若112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”.(1)试计算2a = ,3a = ,4a = ; (2)根据以上结果,请你写出2015a = ,2016a = .【提示】先根据条件计算2a ,3a ,4a ,可以发现,这n 个数是12-,23,3这三个数在循环.【技巧点评】 有的数列是一组数12,,,n a a a 在循环,找出这个数列是哪些数在循环是解决这类问题的关键.跟踪训练3观察下列各式:133=,239=,3327=,4381=,53243=,63729=,依照这个规律,20153的末位数字是 .例4 将1,12-,13,14-,15,16-按一定规律排列如下:第一行 1第二行 12- 13第三行 14- 15 16-第四行17 18- 19 110- 请你写出第20行从左到右第10个数是 .【提示】从数的排列方式可以看出,第n 行就有n 个数,因此,前面19行共有12319190++++=个数,第20行从左到右第10个数应该是所给数列中的第200个数.【技巧点评】这类问题是将一个有规律的数列与数的位置排列结合起来,因此需要在原来的基础上再去探寻数的位置的排列规律.跟踪训练4将正奇数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 1 3 5 7 第2行 15 13 11 9第3行 17 19 21 23 第4行 31 29 27 25根据上面规律,2007应在第 行第 列.2.探索等式中的规律例5 观察下列各式:332211129492344+==⨯⨯=⨯⨯;3332211123369163444++==⨯⨯=⨯⨯;33332211123410016254544+++==⨯⨯=⨯⨯(1)若n 为正整数,试猜想3333123n ++++等于多少? (2)请利用你的猜想比较3333123100++++与()25000-的大小.【提示】当2n =时,()23322211122322144+=⨯⨯=⨯⨯+;当3n =时,()2333222111233433144++=⨯⨯=⨯⨯+,【技巧点评】将所提供的每一个式子一般化,即当n 为这些特殊值时,把原来的式子转化为含n 的式子. 跟踪训练5 观察下列各式:1121=-21221+=- 2312221++=-猜想:(1)236312222+++++= ;(2)若n 是正整数,那么2312222n +++++= .3.探索图案中的规律例6 图4-1是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为 .【提示】思路一:分别写出每个图形中点的个数,得到一个数列,再去探寻数列的规律. 思路二:从形的角度入手,从第三、第四个图很容易看出是图形上面两个点再加上一个n 层的三角形,因此点的个数有这样的规律:1n =时,21+;2n =时,213++;3n =时,2135+++;4n =时,21357++++【技巧点评】这类图形的找规律问题,通常都可以从数和形两个角度来切入.跟踪训练6如图4-2,图①中有1个平行四边形,图②中有3个平行四边形,图③中有5个平行四边形,则图⑩中有 个平行四边形.培优训练直击中考1.★(2017·湖北荆州)如图4-3,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A.671B.672C.673D.6742.★(2017·辽宁丹东)观察下列数据:510172622345---,,,,,,它们是按一定规律排列的,依照此规律,第11个数据是 . 3.★(2017·湖北黄石)观察下列各式:11111222=-=⨯ 111112112232233+=-+-=⨯⨯ 1111111131122334223344++=-+-+-=⨯⨯⨯按以上规律,写出第n 个式子的计算结果(n 为正整数).(写出最简计算结果即可)4.★(2017·黑龙江绥化)古希腊数学家把数1,3,6,10,15,21叫做三角数,它有一定的规律.若把第一个三角数记为1a ,第二个三角数记为2a ,,第n 个三角数记为n a ,计算12a a +,23a a +,34a a +,由此推算399400a a += .5.★(2017·四川遂宁)求1232222n ++++的和,解法如下:解:设1232222n S =++++①2312222n S +=+++②②-①得:122n S +=- 所以1231222222n n +++++=-.参照上面的解法:计算:23201713333+++++= .6. ★(2017·山东束庄)一列数123,,,a a a 满足条件:112a =,111n n a a -=-(2n ≥,n 为整数),则2017a = .挑战竞赛1.★★(希望杯试题)在以下两个数串中:1,3,5,7,1991,1993,1995,1997,1999,和1,4,7,101990,1993,1996,1999,,同时出现在这两个数串中的数共有()A.333个B.334个C.335个D.336个2.★★(希望杯试题)将111111,23456---,,,,,按一定规律排成下表:从表中可以看到第4行中,自左向右第3个数是9,第5行中从左向右第2个数是112-,那么第199行中自左向右第8个数是,第1998行中自左向右第11个数是 .3.★★(迎春杯试题)一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前两个数的和,也就是1,1,2,3,5,8,13,21,34,55,问:这串数的前100个数中(包括第100个数),有多少个偶数?4.★★(华杯赛试题)自然数按下表的规律排列:(1)求上起第10行,左起第13列的数;(2)数127应在上起第几行、左起第几列?5.★★★(湖北省竞赛试题)按下列规律排成一列数:11,12,21,13,22,31,14,23,32,4 1,15,24,33,42,51,16,…(*),在(*)中左起第m个数记为()F m,当()1=2001F m时,求m的值和这m个数的积.。
(完整版)图形找规律专项练习60题(有答案).doc
图形找规律专项练习60 题(有答案)1.按如下方式放餐桌和椅子:填表中缺少可坐人数_________;_________.2.察表中三角形个数的化律:形横截012⋯n条数三角6??⋯?形个数若三角形的横截有0 条,三角形的个数是6;若三角形的横截有n 条,三角形的个数是_________(用含 n 的代数式表示).3.如,在段AB上,画 1 个点,可得 3 条段;画 2 个不同点,可得 6 条段;画 3 个不同点,可得10 条段;⋯照此律,画10 个不同点,可得段_________条.4.如是由数字成的三角形,除最端的 1 以外,以下出的数字都按一定的律排列.根据它的律,最下排数字中 x 的是_________ ,y 的是 _________ .5.下列形都是由相同大小的位正方形构成,依照中律,第六个形中有_________个位正方形.6.如,用相同的火柴棒拼三角形,依此拼律,第7 个形中共有_________根火柴棒.7. 1 是一个正方形,分接个正方形的中点,得到2;分接 2 中右下角的小正方形中点,得到 3;再分接 3 中右下角的小正方形中点,得到4;按此方法下去,第n 个的所有正方形个数是_________个.8.察下列案:它是按照一定律排列的,依照此律,第 6 个案中共有_________个三角形.9.如,依次接一个 1 的正方形各的中点,得到第二个正方形,再依次接第二个正方形各的中点,得到第三个正方形,按此方法下去,第二个正方形的面是_________;第六个正方形的面是_________.10.下列各形中的小正方形是按照一定律排列的,根据形所揭示的律我可以:第 1 个形有 1 个小正方形,第 2 个形有 3 个小正方形,第 3 个形有 6 个小正方形,第 4 个形有10 个小正方形⋯,按照的律,第10 个形有_________个小正方形.11.如,用棋子按下面的律形,第n 个形需要棋子的枚数_________.12.祝“六一”儿童,幼儿园行用火柴棒“金”比,如所示,n 条“金”需用火柴棒的根数_________.13.如,两条直相交只有 1 个交点,三条直相交最多有 3 个交点,四条直相交最多有 6 个交点,五条直相交最多有10 个交点,六条直相交最多有_________个交点,二十条直相交最多有_________个交点.14.用火柴棒按如所示的方式搭形,按照的律搭下去,填写下表:形号( 1)(2)(3)⋯n火柴根数从左到右依次____________________________________.15.( 1)是一个黑色的正三角形,次接三中点,得到如(2)所示的第 2 个形(它的中一个白色的正三角形);在( 2)的每个黑色的正三角形中分重复上述的作法,得到如(3)所示的第 3 个形.如此作下去,在得到的第 5 个形中,白色的正三角形的个数是_________.16.如,一形烙切一刀可以切成 2 ,若切两刀最多可以切成 4 ,切三刀最多可以切成7 ⋯通察、算填下表(其中S 表示切 n 刀最多可以切成的数)后,可探究一形烙切n 刀最多能切成_________ (果用n 的代数式表示).n012345⋯17.如,是用相同的等腰梯形拼成的等腰梯形案.第(1)个案只有 1 个等腰梯形,其两腰之和4,上下底之和 3,周 7;第( 2)个案由 3 个等腰梯形拼成,其周13;⋯第( n)个案由( 2n 1)个等腰梯形拼成,其周_________.(用正整数n 表示)18.下列各均是用有一定律的点成的案,用S 表示第 n 个案中点的数,S= _________(用含n 的式子表示).19.如,由若干盆花成案,每个点表示一盆花,几何形的每条上(包括两个点)都有n( n≥ 3)盆花,每个案中花盆数S,按照中的律可以推断S 与 n( n≥3)的关系是_________.20.用火柴棍象如搭形,搭第n 个形需要_________根火柴棍.21.有黑色三角形“”和白色三角形“”共有2011个,按照一定的律排列如下:黑色三角形有_________个.22.假有足多的黑白棋子,按照一定的律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●⋯第 2011 个棋子是黑的是白的?答:_________.23.察下列由等腰梯形成的形和所表中数据的律后填空:梯形的个 1 2 3 4 5 ⋯数形的周 5 8 11 14 17 ⋯当梯形个数2007 个,形的周_________24.如图,下面是一些小正方形组成的图案,第4个图案有_________个小正方形组成;第n个图案有_________个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7 个图形中火柴棒的根数是_________.26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n( n≥ 2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s 与 n 之间的关系可用式子_________表示.27.观察下列图形,它是按一定规律排列的,那么第_________个图形中,十字星与五角星的个数和为27个.28. 2 条直线最多只有 1 个交点; 3 条直线最多只有 3 个交点; 4 条直线最多只有 6 个交点; 2000 条直线最多只有_________个交点.29.以下各图分别由一些边长为 1 的小正方形组成,请填写图2、图 3 中的周长,并以此推断出图10 的周长为_________.30.如图所示,第 1 个图案是由黑白两种颜色的正六边形地面砖组成,第 2 个,第 3 个图案可以看作是第 1 个图案经过平移而得,那么设第n 个图案中有白色地面砖m块,则 m与 n 的函数关系式是_________.31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第 6、 7 两个图形各有多少颗黑色棋子?(2)写出第 n 个图形黑色棋子的颗数?(3)是否存在某个图形有 2012 颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s 表示每个点阵中点的个数,按照图形中的点的个数变化规律,( 1)猜想第n 个点阵中的点的个数s= _________.( 2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:( 1)填写下表:图形编号 1 2 3 4 5 6图中棋子数 5 8 11 14 17 20( 2)照这样的方式摆下去,写出摆第n 个图形所需棋子的枚数;( 3)其中某一图形可能共有2011 枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:( 1)数字“ 30”在_________个正方形的_________;(2)请你用含有 n( n≥ 1 的整数)的式子表示正方形四个顶点的数字规律;(3)数字“ 2011”应标在什么位置.35.如,各表示若干盆花成的形如三角形的案,每条(包括两个点)有n(n> 1)盆花,每个案中花盆的数S.:①当每条有 2 盆花,花盆的数S 是多少?②当每条有 3 盆花,花盆的数S 是多少?③当每条有 4 盆花,花盆的数S 是多少?④当每条有10 盆花,花盆的数S 是多少?⑤按此律推断,当每条有n 盆花,花盆的数S 是多少?36.如下是用棋子成的“上”字:如果按照以上律下去,那么通察,可以:( 1)第④、第⑤个“上”字分需用_________和_________枚棋子;( 2)第 n 个“上”字需用_________枚棋子;( 3)七( 3)班有 50 名同学,把每一位同学当做一枚棋子,能否 50 枚“棋子” 按照以上律恰好站成一个“上”字?若能,算最下一“横”的学生数;若不能,明理由.37.下列表格是一同一段上的个数化及段条数的探究.段上点的个数段的条数11+2=31+2+3=6⋯⋯( 1)你完成探究,并把探究果填在相的表格里;( 2)若在同一段上有10 个点,段的条数_________;若在同一段上有n 个点,有_________ 条段(用含n 的式子表示)( 3)若你所在的班有60 名学生, 20 年后参加同学聚会,面每两个同学之握一次手,共握手_________ 次.38.如图是用棋子摆成的“H”字.( 1)摆成第一个“H”字需要_________个棋子;摆第x 个“ H”字需要的棋子数可用含x 的代数式表示为_________;( 2)问第几个“H”字棋子数量正好是2012 个棋子?39.我们知道,两条直线相交只有一个交点.请你探究:( 1)三条直线两两相交,最多有_________个交点;( 2)四条直线两两相交,最多有_________个交点;( 3) n 条直线两两相交,最多有_________个交点(n为正整数,且n≥ 2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有 4 张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n 次时,手张共有S 张纸片.根据上述情况:( 1)用含 n 的代数式表示S;( 2)当小王撕到第几次时,他手中共有70 张小纸片?41.如图①是一张长方形餐桌,四周可坐 6 人, 2 张这样的桌子按图②方式拼接,四周可坐10 人.现将若干张这样的餐桌按图③方式拼接起来:( 1)三张餐桌按题中的拼接方式,四周可坐_________人;( 2) n 张餐桌按上面的方式拼接,四周可坐_________人(用含n 的代数式表示).若用餐人数为26 人,则这样的餐桌需要_________张.42.用棋子出下列一形:( 1)填写下表:形号 1 2 3 4 5 6 形中的棋子(2)照的方式下去,写出第n 个形棋子的枚数;(用含 n 的代数式表示)(3)如果某一形共有 99 枚棋子,你知道它是第几个形?43.如①,②,③,④,⋯,是用棋棋子按照某种律成的一行“广”字,按照种律,( 1)第 5 个“广”字中的棋子个数是_________.( 2)第 n 个“广”字需要多少枚棋子?44.如,用同格黑白两色的正方形瓷矩形地面,察形并解答有关:( 1)在第 n 个中共有_________黑瓷,_________白瓷;( 2)是否存在黑瓷与白瓷数相等的情形?你能通算明?45.用火柴棒按如的方式搭三角形.( 2)搭 n 个这样的三角形要用_________根火柴棒(用含n 的代数式表示).46.观察图中的棋子:( 1)按照这样的规律摆下去,第 4 个图形中的棋子个数是多少?(2)用含 n 的代数式表示第 n 个图形的棋子个数;(3)求第 20 个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.( 1)填出下表中未填的两个空格:阶梯级数一级二级三级四级石墩块数39( 2)当垒到第n 级阶梯时,共用正方体石墩多少块(用含n 的代数式表示)?并求当n=100 时,共用正方体石墩多少块?48.有一张厚度为0.05 毫米的纸,将它对折 1 次后,厚度为2× 0.05 毫米.(1)对折 3 次后,厚度为多少毫米?(2)对折 n 次后,厚度为多少毫米?(3)对折 n 次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第n 个图形,每一横行有_________块瓷砖,每一竖列有_________块瓷砖(用含n 的代数式表示)按此规律,铺设了一矩形地面,共用瓷砖506 块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.(1)在④、⑤和⑥后面的横线上分别写出相应的等式:① 1=12② 1+3=22③ 1+3+5=32④_________ ;⑤ _________ ;⑥ _________ ;( 2)通过猜想,写出第 n 个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:( 1)完成下表:所剪次数n1234 5正方形个数Sn 4( 2)剪 n 次共有 S n个正方形,请用含n 的代数式表示S n= _________;( 3)若原正方形的边长为1,则第 n 次所剪得的正方形边长是_________(用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n( n> 1)个点(即五角星),每个图案的总点数(即五角星总数)用 S 表示.( 1)观察图案,当n=6 时, S= _________;( 2)分析上面的一些特例,你能得出怎样的规律?(用n 表示 S)( 3)当 n=2008 时,求 S.53.用水平和直将平面分成若干个 1 的小正方形格子,小正方形的点,叫格点.察中每一个正方形()四条上的格点的个数,回答下列:( 1)由里向外第 1 个正方形()四条上的格点个数共有_________ 个;由里向外第 2 个正方形()四条上的格点个数共有_________ 个;由里向外第 3 个正方形()四条上的格点个数共有_________ 个;( 2)由里向外第10 个正方形()四条上的格点个数共有_________ 个;( 3)由里向外第n 个正方形()四条上的格点个数共有_________ 个.54.下列各是由若干花盆成的形如正方形的案,每条(包括两个点)有n( n> 1)个花盆,每个案花盆数是S.( 1)按要求填表:n 2 3 4 5 ⋯S 4 8 12 ⋯( 2)写出当 n=10 , S= _________ .( 3)写出 S 与 n 的关系式: S= _________ .( 4)用 42 个花盆能出似的案?55.如,用同格的黑白两色正方形瓷矩形地面,察下列形,探究并解答下列.( 1)在第 1 个中,共有白色瓷_________ .( 2)在第 2 个中,共有白色瓷_________ .( 3)在第 3 个中,共有白色瓷_________ .( 4)在第 10 个中,共有白色瓷_________ .( 5)在第 n 个中,共有白色瓷_________.56.淮北市建文明城市,各种色的菊花成如下三角形的案,每条(包括两个点)上有n( n> 1)盆花,每个案花盆的数S,当 n=2 , S=3; n=3 , S=6; n=4 , S=10.( 1)当 n=6 , S= _________;n=100,S=_________.( 2)你能得出怎的律?用n 表示 S.57.下面是按照一定律画出的一系列“ 枝” 察,(2)比( 1)多出 2 个“ 枝”,( 3)比( 2)多出 4 个“ 枝”,( 4)比( 3)多出 8 个“ 枝”,按此律:( 5)比( 4)多出_________ 个枝;( 6)比( 5)多出_________ 个枝;( 8)比( 7)多出_________ 个枝;⋯( n+1)比( n)多出_________ 个枝.58.如是用棋子成的“T”字案.从案中可以出,第一个“T”字案需要 5 枚棋子,第二个“T”字案需要 8 枚棋子,第三个“T” 案需要11 枚棋子.(1)照此律,成第八个案需要几枚棋子?(2)成第 n 个案需要几枚棋子?(3)成第 2010 个案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:( 1)当黑砖n=1 时,白砖有_________块,当黑砖n=2 时,白砖有_________块,当黑砖n=3 时,白砖有_________块.( 2)第 n 个图案中,白色地砖共_________块.60.下列图案是晋商大院窗格的一部分.其中,“ o”代表窗纸上所贴的剪纸.探索并回答下列问题:( 1)第 6 个图案中所贴剪纸“o”的个数是_________;( 2)第 n 个图案中所贴剪纸“o”的个数是_________;( 3)是否存在一个图案,其上所贴剪纸“o”的个数为2012 个?若存在,指出是第几个;若不存在,请说明理由.故答案26图形找规律 60 题参考答案:9.∵正方形的是1,1.合形和表格,不: 1 桌子座 6 人,多一所以它的斜是:= ,桌子多 2 人. 4 桌子可以座10+2=12.即 n 桌子,共座6+2( n 1) =2n+4.所以第二个正方形的面是:×= ,2.当横截有 n 条,在 6 个的基上多了n 个 6,即三角形的个数共有 6+6n=6(n+1)个.故填6( n+1)第三个正方形的面2或 6n+6=(),3.∵画 1 个点,可得 3 条段, 2+1=3;以此推,第 n 个正方形的面()n ﹣1画 2 个点,可得 6 条段, 3+2+1=6;,画 3 个点,可得10 条段, 4+3+2+1=10;所以第六个正方形的面是() 6﹣ 1= ;⋯;画 n 个点,可得( 1+2+3+⋯ +n+n+1)= 故答案:,.条段.10.∵第一个有 1 个小正方形,第二个有1+2 个,第三所以画 10 个点,可得=66 条段;个有 1+2+3 个,第四个有 1+2+3+4,第五个有 1+2+3+4+5,∴ 第 10 个形有 1+2+3+4+5+6+7+8+9+10=55 个.4.根据形可以,故答案: 55第七排的第一个数和第二数与第八排的第二个数相等,11.依意得:( 1)第 1 个“小屋子”需要 5 个点;而第八排的第二个数就是x,所以 x=61.第 2 个“小屋子”需要11 个点;另外,由形可知, x 右的数是2× 61=122,y 左的第 3 个“小屋子”需要17 个点.数是 2× 61+56=178,当 n=n ,需要的点数(6n 1)个.所以 y=178+46=224 故答案 6n 15.根据意分析可得:第 1 个案中正方形的个数 2 12.由形可知:个,第 2 个案中正方形的个数比第 1 个案中正方形第一个金需用火柴棒的根数:2+6=8;的个数多 4 个,第 3 个案中正方形的个数比第 2 个第二个金需用火柴棒的根数:2+2× 6=14;案中正方形的个数多 6 个⋯,依照中律,第六个第三个金需用火柴棒的根数:2+3× 6=20;形中有 2+4+6+8+10+12=42 个位正方形⋯;第 n 个金需用火柴棒的根数:2+n× 6=2+6n.6.形从上到下可以分成几行,第n行中,斜放故答案 2+6n的火柴有 2n 根,下面横放的有n 根,因而形13.6 条直两两相交,最多有n( n 1)= × 6×5=15,中有 n 排三角形,火柴的根数是:斜放的是2+4+⋯+2n=2(1+2+⋯+n)横放的是:1+2+3+⋯+n,20 条直两两相交,最多有 n( n 1)= × 20× 19=190.每排放 n 根有火柴数是:3(1+2+⋯+n)= 3n( n 1)把 n=7 代入就可以求出.故答案:15,190.14.如表格所示:2故第 7 个形中共有=84 根火柴棒形( 1)( 2)( 3)⋯n 号7. 1 中,是 1 个正方形;火柴 7 12 17 ⋯5n+22 中,是 1+4=5 个正方形;根数3 中,是 1+4× 2=9 个正方形;依此推,第 n 个的所有正方形个数是1+4( n 1)15.白三角形 x 个,黑三角形y 个,=4n 3.: n=1 , x=0, y=1;8.∵第 1 个案中有2× 2+2× 1=6 个三角形;n=2 , x=0+1=1, y=3;第 2 个案中有2×3+2× 2=10 个三角形;n=3 , x=3+1=4, y=9;第 3 个案中有2×4+2× 3=14 个三角形;n=4 , x=4+9=13, y=27;⋯当 n=5 , x=13+27=40,图形找规律 ---第15页共20页故答案: 40 第一个形有1=12个小正方形;16. n=1 , S=1+1=2,第二个形有1+3=4=22个小正方形;n=2 , S=1+1+2=4,第三个形有1+3+5=9=32个小正方形;n=3 , S=1+1+2+3=7,⋯n=4 , S=1+1+2+3+4=11,2个小正方形,第 n 个形共有 1+2+3+⋯ +( 2n 1) =n⋯当 n=4 ,有 n2=42=16 个小正方形.所以当切 n 刀, S=1+1+2+3+4+⋯ +n=1+ n( n+1)故答案: 16,n 225.根据已知形可以:= n2+ n+1.第 2 个形中,火柴棒的根数是7;第 3 个形中,火柴棒的根数是10;2n+1 第 4 个形中,火柴棒的根数是13;故答案 n +∵每增加一个正方形火柴棒数增加3,17.根据意得:∴第 n 个形中有的火柴棒数:4+3(n 1)=3n+1.第( 1)个案只有 1 个等腰梯形,周3× 1+4=7;当 n=7 , 4+3( n 1) =4+3× 6=22,第( 2)个案由 3 个等腰梯形拼成,其周3× 3+4=13;故答案: 22第( 3)个案由 5 个等腰梯形拼成,其周3× 5+4=19;26.察形:⋯当 n=2 , s=4,第( n)个案由( 2n 1)个等腰梯形拼成,其周当 n=3 , s=9,3( 2n 1)+4=6n+1;当 n=4 , s=16,故答案: 6n+1 当 n=5 , s=25,18.察:⋯第 1 个形有 S=9×1+1=10 个点,2 当 n=n , s=n ,第 2 个形有 S=9×2+1=19 个点,故答案: s=n2第 3 个形有 S=9×3+1=28 个点,27.∵第 1 个形中,十字星与五角星的个数和3×⋯2=6,第 n 个形有 S=9n+1个点.第 2 个形中,十字星与五角星的个数和3× 3=9,故答案: 9n+1 第 3 个形中,十字星与五角星的个数和3× 4=12,19. n=3 , S=6=3× 3 3=3,⋯n=4 , S=12=4× 4 4,而 27=3× 9,n=5 , S=20=5× 5 5,∴第 8 个形中,十字星与五角星的个数和=3× 9=27.⋯,故答案: 8依此推,数 n 数, S=n?n n=n(n 1).28. 2 条直最多的交点个数1,故答案: n( n 1). 3 条直最多的交点个数1+2=3,20.合形,:搭第 n 个三角形,需要 3+2( n 4 条直最多的交点个数1+2+3=6,1) =2n+1(根). 5 条直最多的交点个数1+2+3+4=10,故答案 2n+1 ⋯21.因 2011÷ 6=335⋯ 1.余下的 1 个根据序是黑所以 2000 条直最多的交点个数1+2+3+4+⋯色三角形,所以共有 1+335×3=1006.+1999= =1999000.故答案: 100622.从所的中可以看出,每六个棋子一个循,故答案 1999000∵ 2011÷ 6=335⋯ 1,29.∵小正方形的是1,∴第 2011 个棋子是白的.∴ 1 的周是: 1× 4=4,故答案:白 2 的周是: 2× 4=8,23.依意可求出梯形个数与形周的关系3n+2= 3 的周是3× 4=12,周,⋯当梯形个数2007 个,形的周3×第 n 个的周是4n,2007+2=6023.∴ 10 的周是10× 4=40;故答案: 6023.故答案: 8, 12, 4024.察形知:30.首先:第一个案中,有白色的是 6 个,后是依次多 4 个.所以第 n 个案中,是6+4(n 1) =4n+2.∴m与 n 的函数关系式是m=4n+2.故答案: 4n+2.31.第一个需棋子6,第二个需棋子9,第三个需棋子12,第四个需棋子15,第五个需棋子18,⋯第 n 个需棋子3(n+1)枚.(1)当 n=6 , 3×( 6+1)=21;当n=7 , 3×( 7+1) =24;(2)第 n 个需棋子 3( n+1)枚.(3)第 n 个形有 2012 黑色棋子,根据( 1)得 3( n+1) =2012解得 n=,34.( 1)由可知,每个正方形 4 个数字,∵30÷ 4=7⋯ 2,∴数字 30 在第 8 个正方形的第 2 个位置,即右上角;故答案: 8,右上角;( 2)左下角是 4 的倍数,按照逆序依次减 1,即正方形左下角点数字: 4n,正方形左上角点数字:4n 1,正方形右上角点数字:4n 2,正方形右下角点数字:4n 3;(3) 2011÷ 4=502⋯ 3,所以,数字“ 2011” 第503 个正方形的左上角点35.依意得:①n=2, S=3=3× 2 3.②n=3, S=6=3×3 3.③ n=4, S=9=3×4 3④n=10, S=27=3× 10 3.⋯⑤按此律推断,当每条有 n 盆花, S=3n 3 36.( 1)第①个形中有 6 个棋子;所以不存在某个形有2012 黑色棋子第②个形中有6+4=10 个棋子;32.( 1)由点形可得它的点的个数分:1,5,第③个形中有6+2× 4=14 个棋子;9, 13,⋯,并得出以下律:∴第⑤个形中有6+3×4=18 个棋子;第一个点数: 1=1+4×( 1 1)第⑥个形中有6+4× 4=22 个棋子.第二个点数: 5=1+4×( 2 1)故答案 18、 22;( 3 分)第三个点数: 9=1+4×( 3 1)( 2)第 n 个形中有 6+( n 1)× 4=4n+2.第四个点数: 13=1+4×( 4 1)故答案 4n+2.( 3 分)⋯( 3) 4n+2=50,因此可得:解得 n=12.第 n 个点数: 1+4×( n 1)=4n 3.最下一横人数2n+1=25.( 4 分)故答案: 4n 3;37.( 1) 5 个点,段的条数: 1+2+3+4=10,( 2)个点是 x 个,根据( 1)得: 6 个点,段的条数:1+2+3+4+5=15;1+4×( x 1) =37 ( 2)10 个点,段的条数: 1+2+3+4+5+6+7+8+9=45,解得: x=10.n 个点,段的条数: 1+2+3+⋯ +( n 1)= ;答:个点是 10 个33.( 1)察形,得出枚数分是,5, 8, 11,⋯,( 3) 60 人握手次数 = =1770.每个比前一个多 3 个,所以形号5, 6 的棋字子数分 17, 20.故答案:( 2)45,;( 3) 1770.故答案: 17 和 20.( 2)由( 1)得,中棋子数是首5,公差 3 的38.( 1)成第一个“ H”字需要 7 个棋子,等差数列,第二个“ H”字需要棋子12 个;所以第 n 个形所需棋子的枚数:5+3( n 1)=3n+2.第三个“ H”字需要棋子17 个;( 3)不可能⋯由 3n+2=2010,第 x 个中,有7+5( x 1) =5x+2(个).解得: n=669 ,( 2)当 5x+2=2012 ,解得: x=402,故第 402 个“ H”字棋子数量正好是 2012 个棋子∵ n 整数,39.( 1)如( 1),可得三条直两两相交,最多有 3 ∴ n=669 不合意个交点;( 2)如( 2),可得三条直两两相交,最多有 6 个故其中某一形不可能共有2011 枚棋子交点;( 3)由( 1)得,=3,故答案: 1544.( 1)在第 n 个形中,需用黑瓷4n+6 ,白瓷由( 2)得,=6;n(n+1);( 2)根据意得n( n+1) =4n+6,∴可得, n 条直两两相交,最多有个交点n 2 3n 6=0,此没有整数解,( n 正整数,且n≥ 2).所以不存在.故答案 3; 6;.故答案: 4n+6; n( n+1)45.( 1)合形,:后每多一个三角形,需要多 2 根火柴.搭 4 个的三角形要用3+2× 3=9 根火柴棒; 13 根火柴棒可以搭(13 3)÷ 2+1=6 个的三角形;( 2)根据( 1)中的律,得40.( 1)由目中的“每次都将其中片撕成更小的四搭 n 个的三角形要用3+2( n 1) =2n+1 根火柴棒.片”,故答案9; 6; 2n+1可知:小王每撕一次,比上一次多增加 3 小片.46.( 1)第 4 个形中的棋子个数是13;∴ s=4+3( n 1) =3n+1;( 2)第 n 个形的棋子个数是 3n+1;( 2)当 s=70 ,有 3n+1=70,n=23.即小王撕23 次( 3)当 n=20 , 3n+1=3× 20+1=6141.( 1)合形,:每个中,两端都是坐 2 人,∴第 20 个形需棋子 61 个剩下的两是每一桌子是 4 人.47.( 1)第一台中正方体石墩的数:三餐桌按中的拼接方式,四周可坐3× 4+2=14=3;(人);( 2)n 餐桌按上面的方式拼接,四周可坐( 4n+2)人;第一台中正方体石墩的数:=9;若用餐人数26 人, 4n+2=26,解得 n=6.第一台中正方体石墩的数:;故答案: 14;( 4n+2), 642.( 1)如所示:⋯1 2 3 4 5 6 依此推,可以:第几台中正方体石墩的数形: 3 与几的乘乘以几加1,然后除以 2.梯一二三四号数6 9 石墩 3 9 18 30形12 15 18 21 数中( 2)按照( 1)中的律可得:当到第n 梯的,共用正方体石墩;棋子当 n=100 ,( 2)依意可得当到第n 个形棋子的枚数:6+3( n 1) =6+3n 3=3n+3;( 3)由上可知此3n+3=99,∴当 n=100 ,共用正方体石墩 15150 .∴ n=32.答:当到第 n 梯,共用正方体石墩答:第32 个形共有99 枚棋子13.由目得:第 1 个“广”字中的棋子个数是7;;当 n=100 ,共用正方体石墩 15150第 2 个“广”字中的棋子个数是7+( 2 1)× 2=9;48.由意可知:第 3 个“广”字中的棋子个数是7+( 3 1)× 2=11;第一次折后,的厚度2× 0.05 ;可以得到折痕第 4 个“广”字中的棋子个数是7+( 4 1)× 2=13; 1 条;第 5 个“广”字中的棋子个数是 7+( 5 1)× 2=15⋯第二次折后,的厚度2× 2× 0.05=2 2× 0.05 ;可一步律:第n 个“广”字中的棋子个数是7+ 以得到折痕 3=22 1 条;(n 1)× 2=2n+5.第三次折后,的厚度2×2× 2× 0.05=2 3× 0.05 ;可以得到折痕 7=23 1 条;⋯;第 n 次折后,的厚度2×2× 2× 2×⋯× 2×0.05=2 n× 0.05 .可以得到折痕 2 n 1 条.故:( 1)折 3 次后,厚度0.4 毫米;( 2)折 n 次后,厚度n2 × 0.05 毫米;( 3)折 n 次后,可以得到2n 1 条折痕49.由形我不看出横行数量n+3,行数量 n+2,数量 n2+5n+6;若用瓷506 ,可以求2n +5n+6=506;所以答案:( 1) n+3, n+2;( 2)每一行有23 ,每一列有2250.等号左是从 1 开始,奇数相加,等号右是奇数个数也就是n 的平方.(1)① 1+3+5+7=42;2②1+3+5+7+9=5 ;③1+3+5+7+9+11=62.(2) 1+3+5+⋯ +( 2n 1) =n2( n≥1 的正整数)51.( 1)依意得:所剪次数 n 1 2 3 4 5正方形个数 4 7 10 13 16Sn(2)可知剪 n 次, S n=3n+1.(3) n=1 , = ;n=2 , =;n=3 , =;⋯;剪 n 次, =.52.( 1) S=15(2)∵ n=2 , S=3×( 2 1) =3;n=3 , S=3×( 3 1) =6;n=4 , S=3×( 4 1) =9;⋯∴S=3×( n 1) =3n 3.(3)当 n=2008 , S=3× 2008 3=6021.53.第 1 个正方形四条上的格点共有 4 个第 2 个正方形四条上的格点个数共有(4+4× 1)个第 3 个正方形四条上的格点个数共有(4+4× 2)个⋯第 10 个正方形四条上的格点个数共有(4+4× 9) =40 个第 n 个正方形四条上的格点个数共有[4+4 ×( n1) ]=4n 个54.由可知,每个形是n 的正方形,因此四条的花盆数 4n,再减去重复的四个角的花盆数,即 S=4n 4;( 1)将 n=5 代入 S=4n 4,得 S=16;(2)将 n=10 入 S=4n 4,得 S=36;(3) S=4n 4;(4)将 S=42 代入 S=4n 4 得,4n 4=42解得 n=11.5所以用 42 个花盆不能出似的案55.( 1)在第 1 个中,共有白色瓷1×( 1+1) =2,( 2)在第 2 个中,共有白色瓷2×( 2+1) =6 ,( 3)在第 3 个中,共有白色瓷3×( 3+1) =12 ,( 4)在第 10 个中,共有白色瓷10×( 10+1)=110 ,( 5)在第 n 个中,共有白色瓷n( n+1)56.( 1)由分析得:当n=6 , s=1+2+3+4+5+6=21;当n=100 , s=1+2+3+⋯+99+100=5050;( 2)用 n 表示 S 得: S=5﹣ 1=16 个;57.( 1)( 5)比( 4)多出 2(2)( 6)比( 5)多出 26﹣1 =32 个;(3)( 8)比( 7)多出 28﹣1 =128 个;(4)( n+1)比( n)多出 2n个.58.(1)首先察形,得到前面三个形的具体个数,不:在5 的基上依次多 3 枚.即第 n 个案需要 5+3(n 1) =3n+2.那么当 n=8 ,有26 枚;故成第八个案需要26 枚棋子.(2)因第①个案有 5 枚棋子,第②个案有( 5+3× 1)枚棋子,第③个案有( 5+3× 2)枚棋子,依此律可得第 n 个案需 5+3×( n 1) =5+3n 3=(3n+2)枚棋子.(3) 3× 2010+2=6032(枚)即第 2010 个案需6032 枚棋子59.( 1)察形得:当黑 n=1 ,白有 6 ,当黑 n=2 ,白有 10 ,当黑 n=3 ,白有 14 ;(2)根据意得:∵每个形都比其前一个形多 4 个白色地,∴可得律:第 n 个形中有白色地 6+4( n 1)=4n+2 .故答案6, 10, 14, 4n+260.第一个案3+2=5 个窗花;第二个案2× 3+2=8 个窗花;第三个案3× 3+2=11 个窗花;⋯从而可以探究:第n 个案所窗花数( 3n+2)个.( 1) 20(2) 3n+2(3)存在,令 3n+2=2012, 3n=2010 n=670 因此是第 670个图形找规律 ---第20页共20页。
图形分类与规律试题答案
图形分类与规律试题答案一、选择题1. 在给定的图形序列中,哪一个图形是符合前面图形变化规律的?A. ○B. △C. □D. ◇分析:观察给出的图形序列,可以发现每个图形顺时针旋转90度。
因此,下一个图形应该是当前图形顺时针旋转90度后的形状。
答案:B. △2. 如果下列图形代表了一个特定的规律,那么问号处应该填入什么图形?■ ■ ■ ■□ ○ △○ △ ?分析:观察第一行,圆形和正方形的数量之和等于三角形的数量。
应用同样的规律到第二行,我们可以得出问号处应该是一个圆形。
答案:○3. 根据图形大小变化的规律,下一个图形的面积应该是多少?○ → ○ → ○大中小分析:图形的面积每次减少一半。
因此,下一个图形的面积应该是最小的图形面积的一半。
答案:小图形面积的1/2二、填空题1. 根据下列图形的颜色变化规律,填写问号处的颜色。
红色蓝色红色蓝色 ____分析:图形的颜色在红色和蓝色之间交替变化。
因此,根据这个规律,问号处的颜色应该是与前一个图形不同的颜色。
答案:红色2. 在给定的数字序列中,下一个数字是什么?2 4 8 16 ____分析:每个数字都是前一个数字的两倍。
因此,下一个数字应该是当前最后一个数字的两倍。
答案:32三、解答题1. 请解释下列图形序列的规律,并给出接下来的三个图形。
○ ○ ○ ○ ○ ○ ○ ○分析:观察图形序列,可以发现每个图形代表一个圆点。
圆点的数量每次增加一个。
根据这个规律,接下来的三个图形应该是一个圆点、两个圆点和三个圆点。
答案:●●●●●●2. 给定以下图形序列,解释其变化规律,并预测下一个图形。
◇ ◇◇ ◇◇◇ ◇◇◇◇分析:每个图形代表一个菱形,菱形的数量每次增加两个。
根据这个规律,下一个图形应该有五个菱形。
答案:◇◇◇◇◇◇四、应用题1. 在一个图形分类游戏中,你需要根据图形的边数将它们分组。
如果给定以下图形,请写出每组的图形数量。
◇ ○ △ □ ◇◇ ○○ △△ □□分析:首先,我们需要计算每种图形的边数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形找规律例题精讲找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】请找出下面哪个图形与其他图形不一样.【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【例 2】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△. (方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出 “?”处应是三角形△.【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 (方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出 “?”处应是圆形.【例 3】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 4】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】 观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 5】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【例 6】观察下图中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?【解析】(1)数一数,前4个点群包含的点数分别是:1,4,9,16.不难发现,1=1×1,4=2×2,9=3×3,16=4×4,按照这个规律,第5个点群(即方框中的点群)包含的点数是:5×5=25(个).(2)按发现的规律推出,第十个点群的点数是:10×10=100(个).(3)前十个点群,所有的点数是:【例 7】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含多少个点?(2)第(10)个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?【解析】(1)数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可以看出,在每相邻的两个数中,后一个数都比前一个数大3.因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).(2)列表,依次写出各点群的点数,可知第(10)个点群包含有28个点.(3)前十个点群,所有点的总数是:1+4+7+10+13+16+19+22+25+28=145(个)【例 8】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【解析】(1)数一数“宝塔”每层包含的小三角形数:可见1,3,5,7是个奇数列,所以由这个规律猜出第五层应包含的小三角形是9个.(2)整个五层塔共包含的小三角形个数是:1+3+5+7+9=25(个).板块二旋转、轮换型规律【例 9】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 10】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)第1组第3组第2组(2)第1组第3组第2组(3)★★★★★第3组第2组第1组【解析】 (1)仔细观察可发现第1组和第2组中间的部分都是由三个小图形构成的.构成的规律是:当按照第1、第2、第3组的顺序观察时,6个小图形都在向左移动,而且移动的同时又在重新分组和组合,但排列顺序保持不变,当某一个小图形移动到了最左边时,下一步它就回到了最右边.按这个规律可知图中第3组中间“?”处是:□△0.(2)注意观察第1组和第2组,每组都是由三对小图形组成;而每对小图形都是由一个“空白”的和一个“黑色”的小图形组成;而且它俩的排列顺序都是“空白”的在左边,“黑色”的在右边.再按着第1、第2、第3组的顺序观察下去,可发现每对小图形在各组中的位置的变化规律:它们都在向左移动,当一对小图形移动到最左边后,下一步它就回到了最右边.按这个移动规律,可知第3组“?”处应填:○▲.(3)观察第1组与第2组,每组中有三种图形:★、□、■,我们把每组图形再分为三小组,将更明显的得出变化规律.第2组将第1组中的1、2小组按原顺序调至第3小组,根据这个规律,可得“?”中应填.【例 11】观察下图的变化规律,画出丙图.DC BA丙乙甲D CB A【解析】 (甲)图与(乙)图中,点A 、B 、C 、D 的顺序和距离都没有改变,只是每个点的位置发生了变化,如:甲图中,A 在左方;而乙图中,A 在上方,……我们把这样一种位置的变化称为图形的旋转,乙图可以看作是甲图沿顺时针方向旋转90°得到的,甲图也可以看成是乙图沿逆时针旋转90°而得到的, 同样的道理,我们可以把到的位置变化也叫做旋转,叫做沿顺时针方向旋转90°.所以丙处应填:AD【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 12】有六种不同图案的瓷砖,每种各6块.将它们砌在如下图那样的地面上,使每一横行和每一竖行都没有相同图案的瓷砖.你会怎样设计?【解析】第一排按1到6的顺序排列,从第二排起把第一个移动到最后,剩下的依次往前移.如右图所示,这样每一横行和每一竖行都没有重复.答案不唯一,类似的方法还有很多.【例 13】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【解析】【例 14】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【解析】给出图形的变化体现在四个方面:头、胡须、身子和尾巴.(1)头:第一行中三个图形的头部分别为三角形、圆形和正方形,因此第二行空白处的图形其头为三角形,第三行中空白处的图形其头为正方形.(2)胡须:第一行中三个图形的胡须分别为每边一根、两根、三根,因此,第二行中空白处的图形的胡须每边有两根,第三行中空白处的图形的胡须每边有两根.(3)身子:第一行中三个图形的身子分别为圆形、正方形和三角形,因此,第二行中空白处的图形的身子为圆形,第三行中空白处的图形的身子为三角形.(4)尾巴:第一行中三个图形的尾巴分别为向右、向左和向上,因此,第二行中空白处的图形的尾巴向左,第三行中空白处的图形的尾巴向左. 所以,空缺的图形分别是:【例 15】 琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?图1987654321 图2B CA【解析】 从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C ;8号位置放图案B ;9号位置放图案A.【例 16】请观察下图中已有的几个图形,并按规律填出空白处的图形.【解析】 首先可以看出图形的第一行、第二列都是由一个圆、一个三角形和一个正方形所组成的;其次,在所给出的图形中,我们发现各行、各列均没有重复的图形,而且所给出的图形中,只有圆、三角形和正方形三种图形.由此,我们知道这个图的特点是: (1)仅由圆、三角形、正方形组成;(2)各行各列中,都只有一个圆、一个三角形和一个正方形.因此,根据不重不漏的原则,在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形.【例 17】 观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)(2)丁丙乙甲【解析】 (1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:丁【例 18】如图,根据图中已知3个方格表中阴影的规律,在空白的方格表中也填上相应的阴影.【解析】 通过观察前三个方格表中阴影部分的规律,可以得出:把前3个方格表一列一列的看,阴影部分在一格一格的向下移动,当移到最下方时,便重新从最上面的一格重新开始循环,不难看出第4个方格表的第一列应该把最下面一个格染黑,依此可以判断出其他的3个方格,所以,答案为:【巩固】根据前三个方格表中阴影部分的变化规律,填上第(10)个方格表中阴影部分的小正方形内的几个数之和。