自动控制原理方框图
自动控制原理:方框图的化简..
X1 (s) G(s) X (s)
X 2 ( s) X ( s)
X (s)
G (s)
X1 (s) G(s) X (s)
X (s)
G (s)
X1 (s) G(s) X (s)
G (s)
X 2 (s) G(s) X (s)
1 / G ( s)
X 2 ( s) X ( s)
5. 相加点移动的规则
E ( s)
d
1 ( Ls R )
I a (s)
Ed (s) kd (s)
1 ( s ) [ M ( s ) M L ( s )] Js
( s )
kd
Ed (s)
M ( s)
M ( s)
L
1 Js
( s )
M ( s) km I a ( s)
I a (s)
km
X o ( s)
X i ( s)
B( s )
G (s) 1 G (s)
X o ( s)
U a ( s)
例
1 ( Ls R )
I a (s)
km
M ( s)
M L ( s)
1 Js
( s )
Ed (s)
kd
( s ) 为输出时,令 M L (s) 0
I a (s) 1 ( Ls R )
X i ( s) E ( s ) G ( s )
X o ( s)
X i ( s)
B( s )
H (s)
G(s) 1 G( s) H ( s)
X o ( s)
当反馈回路传递函数 H ( s) 1 时,系统为单位反馈 系统。
自动控制原理方框图
自动控制原理方框图自动控制原理方框图是指在自动控制原理的基础上,通过方框图的形式来描述和分析控制系统的结构和动态特性。
方框图是一种直观、简洁的表示方法,能够清晰地展现控制系统的各个组成部分之间的关系,有利于工程师们对控制系统进行分析、设计和调试。
在自动控制系统中,方框图是一种非常重要的工具,它能够帮助工程师们更好地理解系统的结构和工作原理,从而更好地进行系统的设计和优化。
方框图可以将控制系统的各个组成部分以及它们之间的相互作用清晰地表示出来,有利于工程师们对系统进行全面的分析和评估。
自动控制原理方框图主要包括系统的输入、输出、控制器、执行器和被控对象等几个基本组成部分。
通过方框图,我们可以清晰地看到这些组成部分之间的关系,以及它们是如何相互作用的。
这有助于工程师们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
在实际工程中,方框图常常被用于描述和分析各种类型的控制系统,比如PID控制系统、模糊控制系统、神经网络控制系统等。
通过方框图,工程师们可以清晰地看到系统的结构和动态特性,有助于他们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
除此之外,方框图还可以用于系统的故障诊断和故障排除。
通过对系统的方框图进行分析,工程师们可以清晰地看到系统中存在的问题,并且能够有针对性地进行故障排除。
这对于提高系统的可靠性和稳定性非常重要。
总的来说,自动控制原理方框图是一种非常重要的工具,它能够帮助工程师们更好地理解和分析控制系统,有助于他们更好地进行系统的设计和调试。
因此,掌握方框图的绘制和分析方法对于自动控制工程师来说是非常重要的。
希望通过本文的介绍,能够对方框图有一个更加清晰的认识。
自动控制原理控制系统的结构图
比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
+
C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)
[R(s) Q(s) ]G(s) G(s)
R(s)
C(s) G(s)
+
Q(s)
G(s)
C(s) [R(s) Q(s)]G(s)
R(s)G(s) Q(s)G(1s6 )
(5)引出点旳移动(前移、后移)
引出点前移
R(s)
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
将 C(s) E(s)G(s) 代入上式,消去G(s)即得:
E(s) R(s)
1
H
1 (s)G(s)
1
1 开环传递函数
31
N(s)
+ E(s)
++
C(s)
R(s)
G1(s)
G2 (s)
-
B(s)
H(s)
(1)
打开反馈
C(s) R(s)
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
注意:进行相加减旳量,必须具有相同旳量纲。
X1 +
+
X1+X2 R1(s)
自动控制原理方框图的化简课件
化简过程中的误差分析
误差来源分析
分析化简过程中可能产生的误差来源,如近似处理、线性化等。
误差传递与影响
评估误差对系统性能的影响,了解误差传递的方式和程度。
误差补偿与修正
根据误差分析结果,采取适当的补偿和修正措施,减小误差对系 统性能的影响。
化简后系统的性能分析
稳定性分析
通过化简后系统的传递函数或状态方程,分析系统的 稳定性。
方框图的组成元素
总结词
方框图由输入、输出、转换和反馈四个基本元素组成。
详细描述
方框图由输入、输出、转换和反馈四个基本元素组成。输入是系统接收的信号 或信息,输出是系统输出的信号或信息,转换是系统内部对输入进行处理的过 程,反馈则是系统对输出的反应或调整。
方框图的作用
• 总结词:方框图可以清晰地表示系统的结构、功能和动态特性。
04
方框图化简的注意事项
化简方法的适用性
确定化简方法的适用范围
01
不同的化简方法适用于不同类型和规模的方框图,应先判断所
处理的方框图是否适用。
理解化简方法的原理
02
掌握化简方法的原理和步骤,确保正确应用化简方法。
考虑化简后的系统性能
03
在化简方框图时,应考虑化简对系统性能的影响,如稳定性、
动态响应等。
02
通过化简方框图,可以快速识 别故障传递路径和关键环节, 提高故障诊断的效率和准确性 。
03
化简后的方框图可以作为故障 诊断的参考模型,为故障排除 提供指导和支持。
谢谢观看
• 详细描述:方框图具有多种作用。首先,它可以清晰地表示系统的结构,将复杂的系统分解为若干个简单的组成部分, 便于理解和分析。其次,通过方框图可以明确地表示出系统的功能,即各个组成部分的作用及其相互关系。此外,方框 图还可以表示系统的动态特性,例如信号的传递、处理和反馈过程,有助于揭示系统的动态行为和性能。在自动控制原 理中,方框图是分析和设计控制系统的重要工具之一。通过对方框图的分析,可以了解系统的性能、稳定性、可控性和 可观测性等方面的问题,为控制系统的设计和优化提供依据。
自动控制原理第二章方框图
R1C2s
(R1C1s 1)(R2C2s 1) R1C2s
(R1C1s 1)(R2C2s 1)
解法二:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s) 1
R1
ui (s) 1
R1
-
1
-
C1s
1 R1
-
1
-
C1s
1 R1
1
自动控制原理第二章方框图自动控制方框图闭环控制系统方框图串级控制系统方框图前馈控制系统方框图控制系统方框图单回路控制系统方框图过程控制系统的方框图自动调节系统方框图控制方框图
传递函数的表达形式
有理分式形式:G(s)
b0 s m a0 s n
b1s m1 a1s n1
bm1s an1s
bm an
H3
相加点移动 G3 G1
G3 G1
向同无类用移功动
G2
错!
G2
H1
G(s) G1G2 G2G3 1 G1G2 H1
G2
G1 H1
总的结构图如下:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s)
-
C2s
1 I1(s) - 1 u(s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
X 3 (s)
X (s)
自动控制原理 控制系统的结构图
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
自动控制原理--系统的结构图
R(s)
C(s)
G(s)
(-)
B(s)
R(s) G(s)
B(s) G(s)
C(s) (-)
•相 加 点 的 移 动
3. 交换或合并相加点
C(s)=E1(s)+V2(s) = R(s)-V1(s)+V2(s) = R(s)+V2(s)-V1(s)
V2(s)
R(s)
E1(s)
C(s)
(-) V1(s)
系统动态结构图
定义:将系统中所有的环节用方框图表示, 图中标明其传递函数,并且按照在系统中各 环节之间的联系,将方框图连接起来。
系统动态结构图的绘制步骤:
● (1)首先按照系统的结构和工作原理,分解出各环 节并写出它的传递函数。
● (2)绘出各环节的动态方框图,方框图中标明它的 传递函数,并以箭头和字母符号表明其输入量和输 出量,按照信号的传递方向把各方框图依次连接起 来,就构成了系统结构图。
C(s)
G(s)
R(s)
1 G(s)H(s)
• 例2.9
R(s) G1(s)
G2(s)
(-)
G3(s)
(-)
C(s) G6(s)
G4(s) G5(s)
G 236 (G 2 G 3 )G 6
G 54 G 5 G 4
G
1
G 236 G 236G 54
G1
● 比较点和引出点的移动: 等效原则:前向通道和反馈通道传递函数都不变。
G4
(a)
(b)
•其 它 等 价 法 则
1. 等效为单位反馈系统
R(s)
C(s)
G(s)
(-)
H(s)
R(s) 1
自动控制原理第二章方框
在自动控制原理中,串联方框通常表示线性元件或环节,它们的输出是输入的线性变换。因此,当多 个串联方框连接在一起时,可以将它们的输出和输入端连接在一起,简化为一个单一的方框,这个方 框的传递函数是所有串联方框传递函数的乘积。
并联方框的简化
总结词
并联方框的简化是将多个并联的方框简化为单一方框,通过将多个方框的输出端合并为单一输出实现。
输入信号的特性
决定了系统输出信号的变 化规律,是分析系统性能 的重要依据。
常见的输入信号
阶跃信号、正弦信号数
描述系统内部动态特性的数学模型, 表示系统输出与输入之间的函数关系。
传递函数的定义
传递函数的性质
与时间变量无关,只与系统内部参数 有关,决定了系统对输入信号的响应 特性。
方框图的绘制方法
01
02
03
确定系统组成部分
首先需要确定系统的各个 组成部分,并了解它们的 功能和相互关系。
绘制方框图
根据各组成部分之间的关 系,使用方框、箭头和文 字绘制方框图。
标注参数和变量
在方框图中标注各组成部 分的参数和变量,以便于 分析和设计。
02
方框图的组成
输入信号
输入信号
表示系统外部对系统的激 励或作用力,是系统输入 端所接收的信号。
VS
详细描述
在自动控制原理中,反馈环是由一系列的 串联和并联方框组成的闭环系统。为了简 化方框图,可以将反馈环中的某些环节省 略,从而消除反馈环。这种简化方法可以 减少系统的复杂性和计算难度,但需要注 意保留必要的反馈环节以保持系统的稳定 性和性能。
04
方框图的分析
稳定性分析
1
稳定性分析是控制系统的重要特性,它决定了系 统在受到扰动后能否回到平衡状态。
自动控制原理控制系统的结构图
I1(s)
I2 (s)
CR1s
7
i2
C
i
i1 R1
ui
R2
uo
(3)
I(s) I1(s) I2 (s)
I2 (s)
I (s)
I1(s)
(4)U o (s) R2 I (s)
I (s)
Uo (s)
R2
8
(1)Ui (s)
(3)
- Uo(s)
I2 (s)
(2)
1
I1(s)
I1(s)
I2 (s)
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)
方框图等效变换和信号流图——《自动控制原理-理论篇》第2
x1
x2
x1
x2x3 x3x1源自x3合点分点互移所需要的变换规则很麻烦,不 易记。所以最好避开合点分点的互移。只用分点 前移或后移及合点前移和后移的变换处理。
(6)各分点或合点之间互移
x
x
x
x
x
x
x1
x4
x2
x3
x1
x4
x3
x2
相邻分点可互换位置、可合并 相邻合点可互换位置、可合并
方框图等效变换基本规律
公式中: Δ……信号流图的特征式; n……输入节点到输出节点前向通道的总条数; Pk……从输入节点到输出节点第k条前向通路的增益;
La……为所有不同回路的增益和;
LbLc……为每两个互不接触回路的增益乘积之和; LaLbLc……为每三个互不接触回路增益乘积之和; k ……为在除去与第k条前向通路相接触的回路的
特点:并联环节的等效传递函数等于各个环节传递 函数的代数和。
即: G(S)= G1(S)+ G2(S)+…+ Gn(S)
(3)反馈
x1
x2
G1
G2
x1
G1
x2
1 G1G2
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输入 信号的一部分。这种连接形式称为反馈连接。 反馈分正反馈和负反馈两种。 当G2(s)=1时,称为单位反馈系统。
1、分点前移则函数相乘;分点后移则函数相除; (信息取出点等效变换) 2、而合点前移则函数相除;合点后移则函数相乘; (信息注入点等效变换) 3、串联时函数相乘;并联时函数相加;反馈时分 子式为前向通道传函,分母式则为1减或加回路传 函,正反馈时为减,负反馈时为加。(环节合并等 效变换)
自动控制原理第二章方框图
X 3 (s)
X (s)
G(s)
X (s)
X 2 (s)
X 3 (s)
G(s)
X 2 (s)
故:一般情况下,相加点向相加点移动,分支点向分支点移动
注: (1) 结构图简化的关键是解除环路与环路的交叉,使之分开或 形成大环套小环的形式。 (2)解除交叉连接的有效方法是移动相加点或分支点。 (3)当分支点与综合点相邻时,它们的位置就不能作简单的交 换。
R(s) G1(S)
G2(S) G3(S)
C(s) G4(S)
R(s)
C(s)
G1(S)
G2(S)
G3(S)
G4(S)
U1(s)+
- U3(s)
I2(s) 1 I1(s) -
R1 +
1 U3(s) C1s + -
1
1 U2(s)
R2 I2(s) C2 s
U2(s)
考虑移动某些信号的相加点和分支点
环节的并联:
和
G1 ( s )
X (s)
Gn (s)
Y (s)
G(s)
Y (s) X (s)
n i 1
Gi (s)
反馈联接:
X (s) E(s) G(s) Y (s)
B(s)
H (s)
Y (s) E(s)G(s)
E(s) X (s) H (s)Y (s),
G(s)
Y (s) X (s)
1
G(s) G(s)H (s)
U c (s) I (s)R2
U r (s)
1 I1(s)
U c (s)
R1
I 2 (s)C
I1 (s) R1Cs I 2 (s)
I (s)
自动控制原理 第2章数学模型
y y0 K ( x x0 ) 或写为 y Kx
即:线性化方程
式中,
y0
f ( x0 ),K
df dx
,y
x x0
y
y0,x
x x0
严格地说,经过线性化后的所得的系统微分方程式,只 是近似地表征系统的运动情况。
实践证明,对于绝大多数的控制系统,经过线性化后所 得的系统数学模型,能以较高的精度反映系统的实际运动过 程,所以线性化方法是很有实际意义的。
绝对的线性元件和线性系统不存在
非线性微分方程的线性化
实际物理元件或系统都是非线性的,构成系统的元件 都具有不同程度的非线性。
建立的动态方程就是非线性微分方程,对其求解有诸 多困难,因此,对非线性问题做线性化处理确有必要。
线性化:在满足一定条件的前提下,用近似的线性系统代 替非线性方程。
线性化的基本条件:非线性特性必须是非本质的,系统各 变量对于工作点仅有微小的偏离。
第二章 控制系统的数学模型
本章内容
2.1 控制系统的时域数学模型 2.2 控制系统的复数域数学模型 2.3 控制系统的结构图/方框图 2.4 梅森公式与信号流图
系统的数学模型
数学模型
描述系统输入、输出变量以及内部各变量之间关系的 数学表达式。
分析和设计任何一个控制系统,首要任务是建立系统 的数学模型。
b0s m a0s n
b1s m 1 a1s n 1
... bm 1s ... an 1s
bm an
N(s)=0 系统的特征方程,特征根 特征方程决定着系统的动态特性。 N(s)中s的最高阶次等于系统的阶次。
系统传递函数的极点就是系统的特征根。 零点和极点的数值完全取决于系统的结构参数。
自动控制原理第二章
1 ui (t ) 1(t ), U i ( s) s Ui 0.1s 0.2 1 1 u0 (t ) L [U 0 ( s )] L [ 2 2 ] s s 1 s s 1 1 0.1s 0.2 1 L [ 2 ] 2 s ( s s 1) s s 1
m=10, f=1, k=1
m=10, f=1, k=5
输入: Fi 1(t )
m=10, f=1, k=1
m=10, f=1, k=5
相似系统
RLC无源网络和弹簧-质量-阻尼器机械系 统的数学模型均是二阶微分方程,为相似 系统。 相似系统便于用一个简单系统去研究与其 相似的复杂系统,也便于控制系统的计算 机数字仿真。
化的过程。
4、线性系统的基本特性 叠加性:系统在几个输入信号同时作用 下的总响应,等于这几个输入信号单独 作用的响应之和。
如果元件输入为: r1(t)、r2(t)、r(t) ,
对应的输出为: c1(t)、c2(t)、c(t) 。
如果 r(t)=r1(t)+r2(t) 时, c(t)=c1(t)+c2(t) 满足叠加性。
满足齐次性。
满足叠加性和齐次性的元件才是线性元件
例如 y=kx 是线性元件
输入 x1 输出 y1=kx1 x2 输入x1 +x2 C为常数, Cx1 y2=kx2 y1 + y2 满足迭加性 Cy1 满足齐次性
所表示的元件 为线性元件
线性方程不一定满足迭加性和齐次性
y=kx+b(b为常数 0)线性方程,所表示的元件不是 线性元件 . 输入 x1y1 输出 y1= kx1+b x2 y2 y2 =kx2+b 输入 x1 + x2 输出 y=k(x1 + x2)+b =k x1 +kx2+b y1 +y2 不满足迭加性 k为常数 :kx1输出y=k(kx1)+b=k2x1+b ky1=k(kx1+b)= k2x1+kb yky1 不满足齐次方程。 所表示的元件不是线性元件。
总结自动控制系统实例框图
文件编号: 31-C7-EC -7D -7A整理人 尼克自动控制系统实例框图自动控制原理知识要点与习题解析第2章 控制系统的数学模型数学模型有多种表现形式:传递函数、方框图、信号流图等。
r(t) n(t); c(t) e(t) ⋯ ; G(s) H(s) Φ(s) Φe (s) Φn (s) Φen (s);P32 (自动控制原理p23)1.知控制系统的方框图如题2-17图所示,试用方框图简化方法求取系统的传递函数。
P33解: 方框图简化要点,将回路中的求和点、分支点等效移出回路,避免求和点与分支点交换位置。
(e)Φ(s)=G 1G 2G 31+G2H 1−G 1G 2H 1+G 2G 3H 2+G 4;P37 (p73)2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s )E (s)C (s)R (s)G 4(s) G 1(s)G 2(s)G 3(s)题2-1 7图 控制系统方框图(e)C (s)R (s) - - G 4(s)H 1(s)H 2(s) G 1(s) G 2(s) G 3(s)C (s)R (s)-G 4(s)H 1(s)/G 3(s) H 2(s)G 1(s)G 2(s)G 3(s)/[1+G 2 (s)H 1(s)] 题2-17解图 控制系统简化方框图H 1(s) C (s)R (s)--G 4(s)H 1(s) H 2(s)G 1(s)G 2(s)G 3(s) 1/G 3(s) 1/G 3(s)注:P21(2) 依据系统方框图绘制信号流图首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及相应的传输连接信号节点。
步骤如下,(a)系统的输入为源点,输出为阱点;(b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号,两信号是同一个信号时只作为一个节点;(c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。
自动控制原理
1 C2s
C ( s)
(a)
39
(b)
方块图 消除局部反馈回路
2-3
R(s)
+ _
1 R1C1s + 1
1 R2C2s + 1
C (s)
R1C2 s
(b)
40
2-3 方块图
(C) 消除主反馈回路
R( s)
1 R1C1R2C2 s 2 + ( R1C1 + R2C2 + R1C2 ) s + 1
G(s) Q(s) 1/G(s)
23
综合点之间的移动
X(s) R(s)
±
X(s) C(s) R(s)
± ±
Y(s) ±
C(s)
Y(s)
24
4.综合点之间的移动 4.综合点之间的移动
结论: 结论:
X(s) R(s)
±
X(s) C(s) R(s)
± ±
Y(s) ±
C(s)
Y(s)
结论:多个相邻的综合点可以随意交换位置。 结论:多个相邻的综合点可以随意交换位置。
反馈结构图
R(s) B(s) ±
E(s)
C(s)
G(s) H(s)
C(s) = ?
9
3.
反馈结构的等效变换
等效变换证明推导
C (s) = G(s)E (s) B(s) = C ( s)H ( s) E ( s ) = R( s) ± B( s) 消去中间变量 E ( s ), B ( s )得 G(s) C (s) = R( s) 1 m G ( s)H ( s)
两个串联的方框可以 合并为一个方框, 合并为一个方框,合 并后方框的传递函数 等于两个方框传递函 数的乘积。 数的乘积。G1(Leabharlann )G2(s)R(s)
自动控制原理方框图
自动控制原理方框图自动控制原理方框图是指利用方框图的形式来描述自动控制系统的结构和工作原理。
方框图是自动控制原理中的重要工具,它能够直观地展示控制系统的各个部分之间的关系和作用,有助于工程师们更好地理解和设计控制系统。
在自动控制原理方框图中,通常包括输入端、输出端、控制器、执行器和被控对象等几个基本部分。
输入端是控制系统接收外部信号的地方,输出端则是控制系统输出控制信号的地方,控制器是控制系统的核心部分,它根据输入信号和系统反馈信息来生成控制信号,执行器则是根据控制信号执行相应的动作,被控对象则是控制系统需要控制的对象。
在方框图中,这几个部分通过箭头和线段连接起来,箭头表示信号的传递方向,线段则表示信号的传递路径。
通过这种方式,工程师们可以清晰地看到控制系统中各个部分之间的联系和作用,有助于他们更好地进行系统设计和调试。
在实际工程中,自动控制原理方框图被广泛应用于各种自动控制系统的设计和分析中。
无论是传统的PID控制系统,还是现代的模糊控制系统和神经网络控制系统,方框图都能够为工程师们提供直观的工具,帮助他们更好地理解和分析系统的结构和性能。
除此之外,自动控制原理方框图还能够为工程师们提供一个统一的语言和标准,方便他们之间的沟通和交流。
在实际工程中,不同的工程师可能来自不同的专业背景,有着不同的知识和经验,通过方框图,他们可以用统一的语言和标准来描述和分析控制系统,避免了因为专业术语和理论差异而导致的沟通障碍。
总的来说,自动控制原理方框图是自动控制原理中的重要工具,它能够直观地展示控制系统的结构和工作原理,有助于工程师们更好地理解和设计控制系统。
在实际工程中,方框图被广泛应用于各种自动控制系统的设计和分析中,为工程师们提供了一个统一的语言和标准,方便他们之间的沟通和交流。
因此,掌握自动控制原理方框图的基本原理和应用方法对于每一位自动控制工程师来说都是非常重要的。
自动控制原理实验
自动控制原理实验实验1 控制系统典型环节的模拟利用运算放大器的基本特性,如:开环增益高,输入阻抗大、输出阻抗小等,通过设置不同的反馈网络,可以模拟各种典型环节。
一.实验目的● 掌握用运算放大器组成控制系统典型环节的电子电路原理。
●观察几种典型环节的阶跃响应曲线。
● 了解参数变化对典型环节输出动态性能(即阶跃响应)的影响。
二.实验仪器●THSCC-1实验箱一台。
● 示波器一台。
三.实验内容 1.比例环节比例(P )环节的方框图如图1-1所示。
图1-1比例环节方框图K Z Z S u S u S G i o ==-=12)()()(当输入为单位阶跃信号,即u i =-1V 时,u i (s )=s 1,则u o (s )=K s1,所以输出响应为:u o (t )=K (t ≥0)。
比例环节实验原理图如图1-2所示。
选择:K=R2/R1=2,例如选择R2=820k ,R1=410k ,或选择R2=100k ,R1=51k 。
R2图1-2 比例环节实验原理图和输出波形实验步骤: (1)调整示波器: ● 选择输入通道CH1或CH2。
● 逆时针调节示波器的时间旋钮“TIME/DIV ”到底,使光标为一点,并调节上下“位移”旋钮使光标位于0线上。
●调整示波器的输入幅度档位选择开关,选择合适的档位使信号幅度便于观察,例如选择档位为1V 档。
● 将输入幅度档位选择开关中心的微调旋钮顺时针旋到底。
● 将信号选择开关打到DC 档。
(2)顺时针调节实验箱的旋钮,使阶跃信号为负(绿灯亮)。
(3)阶跃信号接到示波器上,调节实验箱的幅度旋钮。
使负跳变幅度为一格(即Ui=-1V )。
(4)接好实验线路,按下阶跃信号按钮,观察示波器的波形。
预习思考:输出幅度跳变应为……? 2.惯性环节惯性环节实验原理图如图1-3所示。
其传递函数为:11)()()(+==TS K s u s u S G i o , K= R2/R1,T=R2*C 当输入为单位阶跃信号,即u i (t )=-1V 时,u i (s )=S 1,则u o (s )=S11TS 1⋅+ 所以输出响应为u o (t )=)e1(K Tt--。
自动控制原理课件2-2
3 典型环节传递函数 4、传递 函数计算举例
本节计划内容:控制系统方框图及等效变换
1、控制系统的方框图 (1)控制系统方框图/方块图/动态结构图/框图的 基本概念与组成; 1)函数方块 2)信号流线 3)相加点 4)分支点 (2)控制系统方框图的绘制方法; (3)控制系统方框图的绘制举例;
2、控制系统方框图的等效变换规则 (1)串联环节的简化 (2)并联环节的简化 (3)反馈回路的简化 (4)相加点和分支点的移动 1)相加点前移 2)相加点之间的移动 3)分支点后移 4)相邻分支点之间的移动
重点:绘制方框图并求传递函数;方框图的变换与化简 难点:方框图的变换与化简。
• 被控信号c(t)对控制信号r(t)的闭环传递函数:
若 f(t)=0,则系统的被控制信号的拉氏变换C(s)与控制信号的拉 氏变换R(s)之比,称之为被控制信号c(t)对于控制信号r(t)的闭环 传递函数,记作Фr(s)(或 Ф(s) )。
整理得:
对于单位反馈系统有:
• 被控制信号对于干扰信号的闭环传递函数
解:(1)根据电路定理列出方程,写出对应的拉氏 变换,也可直接画出该电路的运算电路图如图(b);
(2)根据输出量——中间量——输入量列出4个含s 的代数式;
(3)根据上述四个表达式,画出各个表达式的框图, 再根据信号的流向将各方框依次连接起来;
2、控制系统方框图的等效变换规则 目的:为了从一个闭环控制系统方便的得到其对应的闭 环传递函数,通常需要对方块图进行等效变换;
chap2:控制系统数学模型
本节计划内容:控制系统方框图及等效变换
建立自动控制系统传递函数数学模型的方法(复习) (1)传递函数的定义和性质 1)定义 2)性质 (2)传递函数的极点和零点对输出的影响 (3)典型环节及其传递函数 1)比例环节 2)惯性环节 3)微分环节 4)积分环节 5)振荡环节 6)纯时间延时环节 (4)传递函数计算举例
自动控制原理:方框图的化简..56页PPT
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[注意]:
相临的信号相加点位置可以互换;见下例
X1(s)
X2(s)
X3(s)
Y (s)
X1(s)
X3(s)
X 2 (s)
Y (s)
同一信号的分支点位置可以互换:见下例
X1(s)
X (s) G(s) Y (s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
§2-3 控制系统的结构图与信号流图
一、结构图的组成和绘制
1、结构图的组成 由四种基本图形符号组成
(1)函数方块
R(s) r(t) G(s)
C(s) c(t)
(2)信号线
R(s) r(t)
(3)分支点(引出点)
R(s) r(t)
R(s) r(t) R(s) r(t)
(4)综合点(比较点或相加点)
R(s)
R
R1Cs
2I
2
(s)
UI (cs)(s)
R2
R1
Uc (s)
U c (s)
I1 (s)
Uc (s)
几点说明:
(1)在结构图中,每一个方框中的传递函数都应是考虑了负 载效应后的传递函数。
(2)描述一个系统的结构图不是唯一的,选择不同的中间变 量得到不同的结构图;
(3)结构图中的方框与实际系统的元部件并非一定是一一对 应的;
X1(s) G(s) X2(s) N(s)
Y (s)
N(s) ? Y (s) [X1(s) X 2 (s)]G(s), 又 : Y (s) X (s)1G(s) X 2 (s)N(s), N(s) G(s)
把相加点从环节的输出端移到输入端:
X1(s) G(s) X 2 (s)
Y (s)
X1(s) G(s)
Y (s)
N(s) X1(s)
N(s) ?
X1(s)G(s)N
(s)
X1(s),
N
(s)
11(s) G(s) Y (s) Y (s)
X1(s) G(s) Y (s) N(s) Y (s)
N(s) ? X1(s)G(s) Y(s), X1(s)N(s) Y(s),N(s) G(s)
R(s)±B(s)
r(t) ± r(t)±b(t)
B(s) b(t)
二、建立结构图的方法
步骤:
(1)建立系统各元部件的微分方程; (2)对各微分方程进行拉氏变换,并作出各元件的结构图; (3)按系统中各变量的传递顺序,依次将各元件的结构图连接起
来;置系统的输入变量于左端,输出变量于右端,得到系统的结 构图。
考虑移动某些信号的相加点和分支点
(二)信号相加点和分支点的移动和互换: 将信号引出点和汇合点前后移动的规则:
• 变换前和变换后前向通道中的传递函数的乘积保持不变; • 变换前和变换后回路中的传递函数的乘积保持不变。
①信号相加点的移动: 把相加点从环节的输入端移到输出端
X1(s) X2(s)
G(s) Y (s)
(4)用系统的结构图经过等效变换,可方便地求系统的传递 函数。
三、结构图的等效变换
常用的结构图变换方法有二: 环节的合并 分支点或相加点的移动
原则是:变换前、后的数学关系(输入量、输出量)保持不变。
(一)环节的合并:有串联、并联和反馈三种形式。
环节的串联:
积
X (s) G1(s)
…
Y (s) Gn (s)
X 3 (s)
X (s)
G(s)
X (s)
X 2 (s)
X 3 (s)
G(s)
X 2 (s)
故:一般情况下,相加点向相加点移动,分支点向分支点移动
注: (1) 结构图简化的关键是解除环路与环路的交叉,使之分开或 形成大环套小环的形式。 (2)解除交叉连接的有效方法是移动相加点或分支点。 (3)当分支点与综合点相邻时,它们的位置就不能作简单的交 换。
X1(s)
G(s) Y (s)
X2(s) N(s)
N(s) ? Y (s) X1(s)G(s) X 2(s), Y (s) X1(s)G(s) X 2(s)N(s)G(s), N(s) 1
G(s)
②信号分支点的移动: 分支点从环节的输入端移到输出端
X1(s) G(s) Y (s)
X1(s)
I 2 (s)C
I (s)
U r (s)
I1(s) R1 R2
U c (s)
U r (s) I
U c (s) I
1
I
2
(s)
sC
1 (s)R1 U (s)R2
I1 (s)R1
c
(s)
整理次序
I I I
1 (s)
1 R1
[U r
(s)
2 (s) I1 (s)R1Cs
(s) I1(s) I 2 (s)
G(s)
Y (s) X (s)
n i 1
Gi (s)
环节的并联:
和
G1 ( s )
X (s)
Gn (s)
Y (s)
Y (s) n
G(s) X (s) i1 Gi (s)
反馈联接:
X (s) E(s) G(s) Y (s)
B(s)
H (s)
Y (s) E(s)G(s) E(s) X (s) H (s)Y (s), G(s) Y(s) G(s)
U
c
(s)]
I1 (s) I 2 (s) I (s)
U c (s) I (s)R2
U r (s)
1 I1(s)
U c (s)
R1
I 2 (s)C
I1 (s) R1Cs I 2 (s)
I (s)
I 2 (s)
I (s)
R2
I (s)
I1(s) R1
I1 (s)
U r (s)
U r (s)
1
I1 (s)
U1(s)+
- U3(s)
I2(s) 1 I1(s) -
R1 +
1 U3(s) C1s + -
1
1 U2(s)
R2 I2(s) C2 s
U2(s)
引出点移动
G1
H2 G2
G1G2G3G4
H1
X (s) 1 G(s)H (s)
R(s) G1(S)
G2(S) G3(S)
C(s) G4(S)
R(s)
C(s)
G1(S)
G2(S)
G3(S)
G4(S)
U1(s)+
- U3(s)
I2(s) 1 I1(s) -
R1 +
1 U3(s) C1s + -
1
1 U2(s)
R2 I2(s) C2 s
U2(s)
典型环节的传递函数
比例环节:G(s) K
惯性环节:G(s) K Ts 1
积分环节:G(s) 1 s
微分环节:G(s) s
一阶微分:G(s) s 1
二阶微分:G(s) T 2 s 2 2Ts 1
振荡环节:G(s)
1
2 n
T 2 s 2 2Ts 1
s2
2 n s
2 n
纯滞后环节:G(s) es