实验七_热重分析仪(TGA法)测定草酸钙的热分解曲线
热重分析对高分子材料中碳酸钙的定量研究
热重分析对高分子材料中碳酸钙的定量研究热重分析(Thermogravimetric Analysis,TGA)是一种常用的热分析技术,用于研究材料在升温或恒温条件下的质量变化情况。
在高分子材料中,碳酸钙(Calcium Carbonate,CaCO3)是一种常见的填充剂,常用于改善材料的力学性能和热稳定性。
因此,热重分析对高分子材料中碳酸钙的定量研究具有重要的意义。
热重分析仪器主要由天平和炉子组成,通过测量样品在升温过程中的质量变化来获得样品的热分解特性。
在高分子材料中,常常将样品制备成薄膜或颗粒形式,并在热重分析仪器中进行测试。
在测试过程中,样品首先在常温下进行预热,以去除水分等挥发性物质。
然后,样品在升温过程中逐渐失去质量,直到完全分解或热稳定。
对于高分子材料中的碳酸钙,热重分析可以定量测定其含量和分解特性。
在升温过程中,碳酸钙会发生热分解反应,产生二氧化碳和氧化钙。
热重分析曲线上的质量损失可以反映碳酸钙的含量和分解温度。
通过热重分析可以得到高分子材料中碳酸钙的含量。
在样品中加入已知质量的碳酸钙,然后进行热重分析。
通过比较样品和标准样品的质量损失,可以计算出样品中碳酸钙的含量。
这种方法适用于含有单一填充剂的高分子材料。
此外,热重分析还可以研究高分子材料中碳酸钙的热分解特性。
通过分析热重分析曲线,可以确定碳酸钙的分解温度和分解速率。
这对于了解高分子材料的热稳定性和加工温度范围具有重要意义。
需要注意的是,热重分析仅能提供定性和半定量的结果,而不能得到精确的定量数据。
因此,在进行热重分析时,需要结合其他分析方法进行验证和补充。
例如,可以使用X射线衍射(X-ray Diffraction,XRD)和扫描电子显微镜(Scanning Electron Microscope,SEM)等技术来确认热重分析结果。
总之,热重分析是一种重要的热分析技术,对于高分子材料中碳酸钙的定量研究具有重要的意义。
通过热重分析可以确定样品中碳酸钙的含量和热分解特性,为高分子材料的设计和应用提供重要的参考依据。
热重分析实验报告
热重分析实验报告热重分析(Thermogravimetric analysis,简称TGA)是一种常用的热分析技术,通过测量样品在恒定升温速率下的质量变化,可以研究样品的热稳定性、减量过程、物质含量以及化学反应等信息。
本报告将介绍一次使用TGA技术进行的实验,并对实验结果进行分析和讨论。
1. 实验目的该实验的目的是研究聚合物样品在升温过程中的失重情况,从而了解聚合物的热分解温度、热稳定性以及降解产品的性质。
通过TGA实验可以为聚合物材料的设计合成、性能改进以及应用提供重要的参考依据。
2. 实验仪器和试剂本次实验采用的TGA仪器为型号X,试样为聚合物样品A。
试样经过粉碎和筛分,得到粉末状样品。
3. 实验步骤(1) 将粉末状样品A称取约100mg放入TGA样品分析容器中。
(2) 将样品容器放入TGA仪器中,设置升温速率为X℃/min。
(3) 开始实验,记录样品的质量变化情况,并实时监测样品的温度。
(4) 实验结束后,整理实验数据,进行结果分析。
4. 实验结果实验过程中,我们观察到样品A在升温过程中出现了质量减少。
根据实验数据绘制的质量-温度曲线图,我们可以发现样品A在温度区间X到Y之间发生了明显的失重现象。
进一步分析可以得出结论,样品A在这一温度区间发生了热分解反应。
5. 结果分析聚合物样品的热分解是一个复杂的过程,涉及到分子间的键断裂、自由基的形成以及产物的生成等反应。
通过TGA实验可以了解样品在不同温度下的重量变化情况,从而推测聚合物的热分解温度以及产物的性质。
根据实验结果,我们可以推测样品A在温度区间X到Y之间发生了主要的热分解反应。
随着温度的上升,样品A开始失重,并在温度达到Y时发生质量减少的最大速率。
这表明在这个温度区间内,样品A的热分解反应达到了最大速率。
在此基础上,我们可以进一步探究产物的性质和反应机理。
此外,在实验过程中还可以通过TGA仪器的联用技术,如TGA-FTIR(Fourier transform infrared spectroscopy)和TGA-MS (mass spectrometry)等,对产物的组成进行分析。
热重分析仪(TGA)分析测试及应用
热重分析仪(TGA)分析测试及应用热重分析仪(Thermo Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。
热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。
分析方法当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。
这时热重曲线就不是直线而是有所下降。
通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O 中的结晶水)。
从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。
通过TGA实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
热重法试验得到的曲线称为热重曲线(TG曲线),TG 曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。
工作原理热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。
最常用的测量的原理有两种,即变位法和零位法。
所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。
由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。
分析应用热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。
热重法所测的性质包括腐蚀,高温分解,吸附/解吸附,溶剂的损耗,氧化/还原反应,水合/脱水,分解,黑烟末等,目前广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
cmc热重曲线
热重分析(Thermogravimetric Analysis,简称TGA)是一种通过监测材料在升温过
程中的质量变化来研究材料性质的实验技术。
热重曲线(TGA Curve)是由热重分
析仪记录的质量变化与温度或时间的关系图。
关于 TGA Curve,常见的信息包括样品质量的百分比变化、温度对应的峰值等。
下面详细解释一般的 TGA Curve 特征:
1.初始质量损失:在热重曲线的开始阶段,通常会观察到一些质量损失。
这
可能是由于样品表面的水分蒸发或其他初始挥发性物质的损失。
2.主要质量损失区域:在较高温度范围,通常会观察到主要的质量损失区域。
这表示材料中的主要成分(如聚合物、有机物等)在这个温度范围内开始分
解或燃烧。
该区域的峰值对应于最大的质量损失速率。
3.平稳区域:在主要质量损失区域之后,曲线可能会趋于平稳,表明材料已
经基本上分解完毕。
这个平稳的区域可以提供关于材料残留物的信息,比如
无机成分的含量。
4.终点温度: TGA Curve 中的终点温度是样品完全分解的温度。
在这个温度
下,样品的质量变化几乎停止,只剩下材料的无机残留物。
通过分析热重曲线,可以获取关于材料的热稳定性、分解温度、含水量等信息。
这对于研究材料的性质、质量控制和工业应用都具有重要意义。
TGA 数据通常与其
他分析技术(如差示扫描量热法DSC、红外光谱法FTIR等)结合使用,以获得更
全面的材料性质信息。
草酸钙的热重差热分析
草酸钙的热重差热分析草酸钙(CaC2O4)是一种白色结晶体,可用于配制标准溶液、分析试剂和草酸铯的纯化等。
在实验室中,草酸钙的热重差热分析常常被用于确定该化合物的热分解机制和热分解的温度范围。
本文将详细介绍草酸钙的热重差热分析方法,并对结果进行解释。
热重差热分析(TG-DTA,Thermogravimetric Analysis and Differential Thermal Analysis)是一种常用的热分析方法,通过测量样品在一定升温速率下的质量变化和相应的温度变化,来研究样品的热分解行为和热力学性质。
在草酸钙的热重差热分析中,可以使用热重仪和差热仪两种仪器进行。
首先,使用热重仪精确地称取一定质量的草酸钙样品,将样品置于热重仪的样品舟中。
然后,将热重仪设定到一定的升温速率,并在空气保护下对草酸钙样品进行升温。
在升温过程中,热重仪会实时测量草酸钙样品的质量变化,并记录下来。
在草酸钙样品加热过程中,实验中常常观察到两个主要的质量失重过程。
第一个过程是在比较低温度范围内发生的,该过程与草酸钙结构中的结晶水分子的脱除有关。
水分子脱除时,样品的质量会发生明显的减少,所以在热重曲线上会观察到一个明显的质量减少峰。
第二个过程是在较高温度范围内发生的,该过程与草酸钙的分解有关。
在这个过程中,草酸钙分解为二氧化碳和氧化钙,这也是热重曲线上的第二个质量减少峰。
通过观察这两个质量减少峰的温度,可以初步确定草酸钙的热分解温度范围。
除了热重曲线,差热仪可以提供草酸钙样品的热分解过程的差热曲线。
差热曲线是由样品和参比样品的温度差所引起的热流变化形成的曲线。
在草酸钙的热分解过程中,可以观察到一个明显的放热峰,该峰对应于草酸钙分解反应的放热。
通过测量这个放热峰的温度和峰值大小,可以进一步研究草酸钙的分解反应的热力学性质。
根据热重曲线和差热曲线的结果,可以获得草酸钙的热分解机制和热分解温度范围。
热重差热分析结果表明,草酸钙的热分解机制可以分为两个阶段。
草酸钙的热重-差热分析
综合热分析法测定草酸钙【实验目的】(1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。
(2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。
(3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。
【实验原理】热分析是物理化学分析的基本方法之一。
综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。
热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。
(1)热重分析热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。
热重法实验得到的曲线称为热重(TG)曲线。
TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。
这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。
如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。
第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。
当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。
这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。
微分热重曲线能很好地显示这些速率地变化。
图1 CaC2O4·H2O的TG-DSC曲线(文献图)图2 CaC2O4·H2O的TG曲线(文献图)(2)差热分析(DTA)和差示扫描量热分析(DSC)差热分析(DTA)是在试样与参比物处于控制速率下进行加热或冷却地环境中,在相同地温度条件时,记录两者之间地温度差随时间或温度地变化。
热重分析 实验报告
热重分析实验报告热重分析实验报告引言:热重分析(Thermogravimetric Analysis,简称TGA)是一种常用的热分析技术,通过测量样品在升温过程中的质量变化,可以分析样品的热稳定性、热分解过程以及含水量等信息。
本实验旨在通过TGA技术对某种材料的热分解特性进行研究,从而为材料的应用提供参考。
实验方法:1. 样品制备:将待测试的材料样品细细磨碎,并通过筛网筛选,以获得均匀颗粒大小的样品。
2. 仪器准备:将样品放置在热重分析仪的样品盘中,并确保样品盘平整。
3. 实验条件设定:根据样品的特性和预期结果,设置合适的升温速率和温度范围。
一般来说,较快的升温速率可以更好地展现样品的热分解特性,但过快的升温速率可能导致数据失真。
4. 实验操作:启动热重分析仪,开始实验。
在实验过程中,记录样品质量随温度变化的曲线,并观察样品的颜色、形态等变化情况。
5. 数据分析:根据实验结果,分析样品的热分解特性,包括起始分解温度、峰值温度、分解过程等。
实验结果与讨论:通过对某种材料的热重分析实验,我们得到了如下结果:在升温过程中,样品的质量随温度的升高而逐渐减少。
在温度范围X到Y之间,样品质量变化较为剧烈,表明该温度范围内发生了较为显著的热分解反应。
进一步观察发现,在温度T处,样品的质量变化达到峰值,表明该温度是样品热分解反应的峰值温度。
此后,样品质量的减少速率逐渐减缓,直至温度达到Z时,样品质量变化趋于平缓,热分解反应基本结束。
根据实验结果,我们可以推断出该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。
进一步分析样品的颜色、形态等变化情况,可以推测该材料的热分解反应可能是由于化学反应引起的。
结论:通过热重分析实验,我们成功地研究了某种材料的热分解特性。
实验结果表明该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。
这些结果对于该材料的应用具有重要意义,可以为材料的加工、储存和安全性评估提供参考。
热分析法测定草酸钙热分解机理及反应级数和活化实验报告
热分析法测定草酸钙热分解机理及反应级数和活化能刘金河一、前言随着热分析仪器的智能化和精确度的提高,热分析技术在许多领域得到广泛应用,在石油石化领域的应用也日益增多。
因此,化学化工类专业的学生有必要了解热分析技术。
本实验的目的是通过实验使同学们了解热分析技术的基本原理,掌握热分析技术用于反应动力学研究的基本原理和确定固体物质热分解反应的分解机理。
二、实验原理热分析是指在程序控制温度下测量物质的物理性质与温度关系的一类技术,是研究物质在加热或冷却过程中,所发生的物理或化学变化的一种较简便又直观的研究方法。
程序控制温度一般是指线形的升温、降温,也包括恒温和非线形的升、降温过程。
物理性质是指质量、热量、温度、力学性质、电学性质等等。
本实验所用的热分析仪为WCT —2微机差热天平,可同时记录T 、TG 、DTA 三条曲线,通过对TG 曲线的微分可得DTG 曲线。
● 热重法(Thermogravimetry,TG ):在程序控温下,测量物质的质量与温度的关系的技术,测得的记录曲线称为热重曲线(TG ),其纵坐标为试样的质量,由上向下减少;横坐标为试样的温度或时间,由左向右增加。
● 微商热重法(Derivative Thermogravimetry, DTG )是热重曲线对时间或温度一阶微商的方法,即质量变化速率作为温度或时间的函数被连续地记录下来,即dT dw =f(T)或dt dw =f(t),测得的曲线为DTG 曲线,其纵坐标为质量变化速率dt dw ,自上向下表示减小,横坐标通常表示为温度T 或时间t ,自左向右增大。
● 差热分析(Differential Thermal Analysis, DTA )是在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。
所记录的是差热分析(DTA )曲线,以温度差(△T )为纵坐标,放热效应向上,吸热效应向下,以温度或时间为横坐标,自左向右增加。
. ● 仪器测量原理WCT-2微机差热天平为DTA —TG —DTG 联用热分析仪器,可对微量试样同时进行差热分析、热重测量及热重微分测量。
热分析(TGA)
试样受热分解或升华,逸出的挥发物往往在热
重分析仪的低温区冷凝,这不仅污染仪器,而
且使实验结果产生严重的偏差。尤其是挥发物
在支撑杆上的冷凝,会使测定结果毫无意义。4. 温度测量上的误差
CHANGZHOU UNIVERSITY
在热重分析仪中,由于热电偶不与试样接触,显然试样 真实温度与测量温度之间是有差别的,另外,由升温和 反应所产生的热效应往往使试样周围的温度分布紊乱, 而引起较大的温度测量误差。
热分析
热重分析(TGA)
基本原理
热重分析(Thermogravimetric Analysis)是在程序控温下,测量
CHANGZHOU UNIVERSITY
物质的质量变化与温度关系的一种技术,其基本原理就是热天平。
热天平分为零位法和变位法两种。 变位法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用
静态法
—等压质量变化测定:在程序控制温度下,测量物质在恒定定挥 发物分压下平衡质量与温度关系的一种方法。
CHANGZHOU UNIVERSITY
—等温质量变化测定:在恒温条件下测量物质质量与温度关系的
一种方法。 —准确度高,费时。 动态法 —热重分析、微商热重分析 —热重分析:在程序升温下,测定物质质量变化与温度的关系。 —微商热重分析(Derivative thermogravimetry, DTG)。
动态力学分析基础
材料受力后会产生形变,根据除去外力后,应 变可否回复,可分为
理想弹性固体 小分子固体—弹性
CHANGZHOU UNIVERSITY
受到外力作用形变很小,符合胡克定律ζ=E1ε,E1普弹模量
特点:受外力作用瞬时达到平衡,除去外力应变立即恢复。
热重分析实验报告
热重分析实验报告热重分析实验报告热重分析(Thermogravimetric Analysis,TGA)是一种广泛应用于材料科学、化学工程和环境科学等领域的实验技术。
它通过测量样品随温度变化时的质量变化,来研究样品的热稳定性、热分解性质以及含水量等信息。
本文将介绍一次针对某种材料的热重分析实验,并对实验结果进行分析和解读。
实验目的本次实验的目的是探究某种材料的热分解行为,并分析其热稳定性。
通过热重分析实验,我们可以了解材料在不同温度下的失重情况,从而推测其热分解反应的特征和机理。
实验步骤1. 样品制备:将待测材料粉碎并均匀混合,取适量样品放入热重分析仪的样品盖中。
2. 仪器设置:根据实验要求,设置热重分析仪的加热速率、气氛气体和流量等参数。
3. 实验操作:将样品盖放入热重分析仪中,启动仪器并开始实验。
在整个实验过程中,记录样品质量随温度变化的曲线。
实验结果根据热重分析仪的输出数据,我们得到了样品质量随温度变化的曲线。
图中的曲线显示出了样品在不同温度下的失重情况。
通过观察曲线的形态和峰值位置,我们可以初步判断材料的热分解特征。
实验分析根据实验结果,我们可以看到样品在一定温度范围内发生了明显的失重现象。
这说明样品在这个温度范围内发生了热分解反应。
失重的程度和速率可以反映出样品的热稳定性。
如果样品失重较快且幅度较大,说明样品的热稳定性较差,容易发生热分解反应。
此外,通过观察曲线的峰值位置,我们可以初步判断样品的热分解峰温。
热分解峰温是指样品热分解反应速率最大的温度点。
该温度点可以反映出样品的热分解反应活化能。
峰温越高,表明样品的热分解反应活化能越大,反应难度越大。
进一步分析,我们可以将实验结果与已有文献或其他样品进行对比。
通过比较不同样品的热分解特征,我们可以了解样品的热稳定性和热分解机理的差异。
这对于材料的选取和应用具有重要的指导意义。
结论通过本次热重分析实验,我们初步了解了某种材料的热分解特征和热稳定性。
【2017年整理】实验7聚合物的热重分析(TGA)
实验7 聚合物的热重分析(TGA)热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。
此外,也可在恒定温度下,将失重作为时间的函数进行测定。
应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。
因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。
1. 实验目的(1)了解热重分析法在高分子领域的应用。
(2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度Td。
2. 实验原理热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。
现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。
通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。
温度/℃图2-40 TGA谱图开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。
图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。
TGA在高分子科学中有着广泛的应用。
例如,高分子材料热稳定性的评定,共聚物和共混物的分析,材料中添加剂和挥发物的分析,水分(含湿量)的测定,材料氧化诱导期的测定,固化过程分析以及使用寿命的预测等。
热重分析TGA完整版
热重分析TGA完整版热重分析(Thermogravimetric Analysis,TGA)是一种热分析技术,通过对样品在不同温度条件下质量的变化进行检测和分析,可以获得样品热稳定性、反应性以及成分等信息。
本文将介绍热重分析的原理、仪器设备、实验步骤以及应用等内容。
热重分析的原理是利用热电偶作为探头,将样品加热至一定温度范围内,并监测样品质量的变化。
当样品受热时,会发生热分解、脱水、脱插等反应,此时会产生质量的变化,通过记录样品质量与温度之间的关系,可以获得样品的热重曲线。
通过分析热重曲线,可以得到样品的热分解温度、失重量、反应动力学等信息。
热重分析的仪器设备主要由加热器、电子天平和温度控制系统组成。
其中,加热器提供恒定的温度场,电子天平能够检测样品质量的变化,并将数据传输到计算机上,温度控制系统能够精确控制样品的加热温度。
进行热重分析的实验步骤如下:1.准备样品:将需要进行热重分析的样品制备成适当的形式,如粉末状或块状。
2.称取样品:使用精确的天平称取适量的样品,通常是数毫克至数十毫克。
为了减小试样质量的不确定性,可以进行多次称重取平均值。
3.装样:将样品放置在热重秤上,并确保样品均匀分布在秤盘上,以减小实验误差。
4.实施实验:将热重秤放入热重仪器中,并设置合适的实验参数,如加热速率、温度范围等。
开始实验后,仪器将按照参数进行加热,并记录样品质量的变化。
5.数据处理:根据实验得到的质量变化数据,绘制热重曲线。
可以通过计算失重率、热分解温度、半失重温度等参数来进一步分析样品的性质。
热重分析广泛应用于材料科学、化学、生物科学、制药工业等多个领域。
在材料科学中,可以通过热重分析来研究材料的热稳定性、热分解机理等。
在化学领域,可以通过热重分析来研究催化剂的活性以及催化反应的动力学。
在生物科学中,可以使用热重分析来研究生物大分子的热稳定性和降解动力学。
在制药工业中,可以通过热重分析来研究药物的热稳定性,以指导药物的储存和使用。
热重法分析实验报告
现代分析测试技术实验报告实验名称:热重法分析一水草酸钙的差热姓名: 学号: 专业:有机化学实验日期:2017.10.10 指导老师: 成绩:一、实验目的:1、掌握热重分析法的一般原理;2、了解热重分析使用方法;3、掌握热分析谱图的解析方法。
二、工作原理:1、根据热电偶的测量原理,将一个热电偶制成传感器,将微量的样品置于传感器上,放入特殊的炉子内按一定的规律加热,当样品在一定的温度下发生吸放热的物理变化时,通过传感器就可以探测出样品温度的变化,进而通过专业的热分析软件,处理得出温度变化的数据或图形,根据图形再判断材料有可能发生的各种相变。
2、将传感器和样品构成的支架系统同时放在天平上, 当样品在一定的温度下发生重量的变化时,天平就可以立刻反应出来,通过专业的热分析软件,处理得出重量变化的数据或图形,同样根据图形再判断材料有可能发生的各种内在成分的变化。
3、将两张图放在一块,可以同时测试物质的重量和差热随温度的变化,进而在材料的物化分析方面得到更多的信息。
三、实验仪器和药品:1、仪器:热重分析仪TG209F1(德国耐驰仪器制造有限公司)、直径为6mm 的氧化铝坩埚2、主要试剂:CaC 2O 4·H 2O四、实验操作步骤:1、提前2小时检查恒温水浴的水位(保持液面低于顶面2cm );打开电源开关,在面板上启动运行,设定的温度值应比环境温度高约10---15℃,同时注意有无漏水现象;2、依次打开电源开关:显示器、电脑主机、仪器测量单元、控制器,以及测量单元上的天平电源开关;3、实验使用氮气,调节低压输出压力为0.03-0.05Mpa ;4、在电脑上打开对应的TG209测量软件,待自检通过后,检查仪器设置;打开炉盖,将支架升起,放入空坩埚;待程序正常结束后冷却后,打开炉子取出坩埚,将样品平整放入后(以不超过1/3容积约10mg 为好)称重,然后打开基线文件,选择基线加样品的测量模式,编程运行,结束温度值为910℃;5、待样品温度降至100℃以下时,先将支架升起方可打开炉盖,拿出坩埚;6、不使用仪器时正常关机顺序依次为:关闭软件、退出操作系统、关电脑主机、显示器、仪器控制器、天平电源、测量单元。
差热—热重联用仪对草酸钙进行差热及热重分析
注意
• • • • • • 实际上的TG曲线并非是一些理想的平台和迅速下降的区间 连续而成,常常在平台部分也有下降的趋势,可能原因有: (1)这个化合物透过重结晶或用其它溶剂进行过处理,本 身含有吸附水或溶剂,因此减重; (2)高分子试样中的溶剂,未聚合的单体和低沸点的增塑 2 剂的挥发等,也造成减重。 可用以下方法消除影响 (1)无机化合物在较低温度下干燥,如硅胶、五氧化二磷 干燥剂,把吸湿水去掉。 (2)可控温下的真空抽吸,把单体及低沸点的增塑剂、挥 发物分离出来。
一、实验目的
1用差热—热重联用仪对草酸钙进行差热及热重分析,并 定性分析所测的差热—热重谱图。 2 学习仪器的操作方法。
二、实验原理
• 1.差热分析 . • 差热分析是在程序控制温度下,测量试样与参比物(一种 差热分析是在程序控制温度下,测量试样与参比物( 在测量温度范围内不发生任何热效应的物质) 在测量温度范围内不发生任何热效应的物质)之间的温度 差与温度关系的一种技术。 差与温度关系的一种技术。 • 许多物质在加热或冷却过程中会发生熔化、凝固、晶型转 许多物质在加热或冷却过程中会发生熔化、凝固、 分解、化合、吸附、脱附等物理化学变化。 变、分解、化合、吸附、脱附等物理化学变化。这些变化 必将伴随体系焓的改变,因而产生热效应。 必将伴随体系焓的改变,因而产生热效应。其表现为该物 质与外界环境之间有温度差。选择一种对热稳定的物质作 质与外界环境之间有温度差。 为参比物, 为参比物,将其与样品一起置于可按设定速率升温的电炉 分别记录参比物的温度以及样品与参比物间的温度差。 中。分别记录参比物的温度以及样品与参比物间的温度差。 以温差对温度作图就可以得到一条差热分析曲线, 以温差对温度作图就可以得到一条差热分析曲线,或称差 热谱图,见图1。 热谱图,见图 。
实验七_热重分析仪(TGA法)测定草酸钙的热分解曲线
实验七:热重分析仪(TGA法)测定草酸钙的热分解曲线(理工楼114)一、实验目的:1. 熟悉热重分析仪的基本结构和工作原理2. 了解热重法分析物质成分的原理二、实验原理:当物质受热分解时,不同物质的分解温度和失重量也有所不同。
如一水合草酸钙受热分解在约220-400℃时以草酸钙形式存在,在约520-780℃时以碳酸钙形式存在,在830℃以上以氧化钙形式存在。
而二水合草酸镁在150℃即分解,在520-780℃时已以氧化镁形式存在。
利用物质的这一特性,可以通过检测某一特定温度下的物质失重量来分析物质的成分。
以钙镁草酸盐混合物为例,对其进行热重分析,可从热重曲线推出钙、镁离子的含量。
设x,y分别为混合液中钙和镁的质量,m和n分别为试样在600℃(MgO+CaCO3)和900℃(MgO+CaO)时由热重曲线测得的质量,则有:x•MCaCO3/MCa + y•MMgO/MMg = m (1)x•MCaO/MCa + y•MMgO/MMg = n (2)式中MCaCO3,MMgO,MCaO分别为CaCO3,MgO,CaO的化学式量,MCa,MMg分别为Ca和Mg的原子量,通过测量m,n即可算出钙、镁的含量。
三、样品:草酸钙标准品不经过处理,直接使用。
四、仪器与试剂1.TA Instrument 公司TGA Q50热重分析仪。
2.已制备好的样品3.金属铂盘,镊子,小勺五、实验步骤(下述内容随堂修改)1. 通气根据实验需要在通气口通入保护气体,将气瓶出口压力调节到一定压力(?Mpa).2.开机依次打开专用变压器开关,TGA-50开关,工作站开关,同时开启计算机及打印机开关。
3.调节气体流量将仪器左侧流量控制钮旋至25ml/min至50ml/min。
4.天平调零按TGA-50控制面板键,炉子下降,将样品托板拨至炉子瓷体端口(注意为避免操作失误导致杂物掉入加热炉中,在打开炉子操作时,一定要将样品托板拨至热电偶下),用镊子取一只空坩埚小心放入白金样品吊篮内,移开样品托板,按键升起炉子,待天平稳定后,调节控制面板上平衡钮及归零键,仪器自动扣除坩埚自重。
草酸钙的差热-热重分析
草酸钙的差热-热重分析一、实验目的1. 掌握差热-热重分析原理,了解微机差热天平的构造。
2. 掌握微机差热天平的基本操作。
3. 用微机差热天平测定CaC2O4·H2O的差热-热重曲线,并通过微机处理差热和热重数据。
二、实验原理1. 热重分析物质在加热过程,发生物理化学变化,引起质量随之改变,测定物质质量的变化就可研究其变化过程。
热重法(TG)就是在程序控制温度下,测量物质质量与温度关系的一种技术。
热重法实验得到的曲线称为热重曲线(即TG曲线)。
TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)为横坐标,自左至右表示温度(或时间)增加。
当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测物质的质量就会减少,热重曲线就下降;当被测物质在加热过程中被氧化时,被测物质的质量就会增加,热重曲线就上升。
通过分析热重曲线,就可以知道被测物质在多少温度时产生变化,并且根据失重量,可以计算失去了多少物质。
热重法的主要特点是定量性强,能准确地测量物质的变化及变化的速率。
热重法的实验结果与实验条件有关。
从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。
实验时可同时得到DTG曲线和TG曲线。
DTG曲线能精确地反映出起始反应温度、达到最大反应速率的温度和反应终止的温度。
在TG上,对应于整个变化过程中各阶段的变化互相衔接而不易区分开,同样的变化过程在DTG曲线上能呈现出明显的最大值。
故DTG能很好地显示出重叠反应,区分各个反应阶段,这是DTG的最可取之处。
另外,DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定量分析。
2.差热分析许多物质在加热过程中会发生熔化、晶型转变、分解、化合、氧化、脱附等物理化学变化。
这些变化必将伴随体系焓的改变,因而产生热效应,其表现为该物质与外界环境之间有温度差。
选择一种对热稳定的物质作为参比物(常用经1270K煅烧的高纯氧化铝粉α-Al2O3晶型),将其与样品一起置于电炉中,分别记录参比物的温度以及样品与参比物间的温度差。
热重分析法(TGA
2.升温速率的影响:升温速率越大,所得特征温 度越高 3.气氛的影响:一般采用动态气氛,热降解用氮 气,热氧降解用空气或氧气
TG在聚合物研究中的应用
比较不同高聚物的相对热稳定性
五种聚合物的TGA曲线
实验条件
相同测试条件 温度范围:室温~800oC; 升温速率:10oC/min;
流动N2保护
同一热失重仪上 分解温度顺序为: PI>PTFE>HDPE>PMMA>PVC.
热氧稳定性
TG thermograms of LLDPE filled with different nano-SiO2 content (air atmosphere) 1:LLDPE 2:U1 3:U2 4:U3
基体热氧稳定性提高的原因
由于纳米SiO2比表面积大,表面活性 高,孔体积大,对抗氧剂的吸附作用显 著,控制释放作用较强所致。 吸附与控 制释放作用导致抗氧剂的活性降低,试 样的热氧稳定性显著提高
6.聚合物热降解和热氧降解动 力学研究
热分析联用技术
• DTA-TGA联用 • DSC-TGA联用 • 高温裂解质谱-TGA 联用 • IR-TGA联用
综合实例:纳米SiO2填充LLDPE复合材料
的热稳定性和热氧稳定性研究
• LDPE(LLDPE)具有优异的柔韧性和延展性, 广泛应用于吹塑薄膜、制造器皿、挤出管材等。 其主要缺点是刚性较差、软化点较低等。 • 纳米SiO2是一种新型无机填料,具有特殊纳米 尺寸效应和表面界面效应。纳米SiO2与LDPE 填充共混可提高基体的模量,热稳定性和改善 基体的保温性
聚酰亚胺(PI--Polyimide)的结构
• PI分子结构中含有大量芳杂环,因而其热稳定性很好; 长期使用温度可达到250oC,短期使用温度可达到450源自oCOCO
草酸钙的热重-差热分析【精选】
综合热分析法测定草酸钙【实验目的】(1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。
(2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。
(3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。
【实验原理】热分析是物理化学分析的基本方法之一。
综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。
热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。
(1)热重分析热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。
热重法实验得到的曲线称为热重(TG)曲线。
TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。
这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。
如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。
第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。
当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。
这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC O·H O的微分热重曲线(DTG)]。
微分热重曲线能很好地显示这些速率地变化。
图1 CaC 2O 4·H 2O 的TG-DSC曲线(文献图)图2 CaC 2O 4·H 2O 的TG 曲线(文献图)(2)差热分析(DTA )和差示扫描量热分析(DSC )差热分析(DTA )是在试样与参比物处于控制速率下进行加热或冷却地环境中,在相同地温度条件时,记录两者之间地温度差随时间或温度地变化。
热分析法测定草酸钙热分解机理及反应级数和活化实验报告
热分析法测定草酸钙热分解机理及反应级数和活化能刘金河一、前言随着热分析仪器的智能化和精确度的提高,热分析技术在许多领域得到广泛应用,在石油石化领域的应用也日益增多。
因此,化学化工类专业的学生有必要了解热分析技术。
本实验的目的是通过实验使同学们了解热分析技术的基本原理,掌握热分析技术用于反应动力学研究的基本原理和确定固体物质热分解反应的分解机理。
二、实验原理热分析是指在程序控制温度下测量物质的物理性质与温度关系的一类技术,是研究物质在加热或冷却过程中,所发生的物理或化学变化的一种较简便又直观的研究方法。
程序控制温度一般是指线形的升温、降温,也包括恒温和非线形的升、降温过程。
物理性质是指质量、热量、温度、力学性质、电学性质等等。
本实验所用的热分析仪为WCT —2微机差热天平,可同时记录T 、TG 、DTA 三条曲线,通过对TG 曲线的微分可得DTG 曲线。
● 热重法(Thermogravimetry,TG ):在程序控温下,测量物质的质量与温度的关系的技术,测得的记录曲线称为热重曲线(TG ),其纵坐标为试样的质量,由上向下减少;横坐标为试样的温度或时间,由左向右增加。
● 微商热重法(Derivative Thermogravimetry, DTG )是热重曲线对时间或温度一阶微商的方法,即质量变化速率作为温度或时间的函数被连续地记录下来,即dT dw =f(T)或dt dw =f(t),测得的曲线为DTG 曲线,其纵坐标为质量变化速率dt dw ,自上向下表示减小,横坐标通常表示为温度T 或时间t ,自左向右增大。
● 差热分析(Differential Thermal Analysis, DTA )是在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。
所记录的是差热分析(DTA )曲线,以温度差(△T )为纵坐标,放热效应向上,吸热效应向下,以温度或时间为横坐标,自左向右增加。
. ● 仪器测量原理WCT-2微机差热天平为DTA —TG —DTG 联用热分析仪器,可对微量试样同时进行差热分析、热重测量及热重微分测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七:热重分析仪(TGA法)测定草酸钙的热分解曲线(理工楼114)
一、实验目的:
1. 熟悉热重分析仪的基本结构和工作原理
2. 了解热重法分析物质成分的原理
二、实验原理:
当物质受热分解时,不同物质的分解温度和失重量也有所不同。
如一水合草酸钙受热分解在约220-400℃时以草酸钙形式存在,在约520-780℃时以碳酸钙形式存在,在830℃以上以氧化钙形式存在。
而二水合草酸镁在150℃即分解,在520-780℃时已以氧化镁形式存在。
利用物质的这一特性,可以通过检测某一特定温度下的物质失重量来分析物质的成分。
以钙镁草酸盐混合物为例,对其进行热重分析,可从热重曲线推出钙、镁离子的含量。
设x,y分别为混合液中钙和镁的质量,m和n分别为试样在600℃(MgO+CaCO3)和900℃(MgO+CaO)时由热重曲线测得的质量,则有:x•MCaCO3/MCa + y•MMgO/MMg = m (1)
x•MCaO/MCa + y•MMgO/MMg = n (2)
式中MCaCO3,MMgO,MCaO分别为CaCO3,MgO,CaO的化学式量,MCa,MMg分别为Ca和Mg的原子量,通过测量m,n即可算出钙、镁的含量。
三、样品:
草酸钙标准品不经过处理,直接使用。
四、仪器与试剂
1.TA Instrument 公司TGA Q50热重分析仪。
2.已制备好的样品
3.金属铂盘,镊子,小勺
五、实验步骤(下述内容随堂修改)
1. 通气根据实验需要在通气口通入保护气体,将气瓶出口压力调节到一定压力(?Mpa).
2.开机依次打开专用变压器开关,TGA-50开关,工作站开关,同时开启计算机及打印机开关。
3.调节气体流量将仪器左侧流量控制钮旋至25ml/min至50ml/min。
4.天平调零按TGA-50控制面板键,炉子下降,将样品托板拨至炉子瓷体端口(注意为避免操作失误导致杂物掉入加热炉中,在打开炉子操作时,一定要将样品托板拨至热电偶下),用镊子取一只空坩埚小心放入白金样品吊篮内,移开样品托板,按键升起炉子,待天平稳定后,调节控制面板上平衡钮及归零键,
仪器自动扣除坩埚自重。
5.放样按down键,炉子下降,移过样品托板,小心取出坩埚,装入约占坩埚1/3-1/2高度的样品,轻轻敲打,将坩埚放入样品吊篮内,移开样品托板,升起炉子。
6.测量电脑屏幕上进入TA-60WS COLLECT界面,点击TGA-50,进入Measure,进行实验参数设定,输入升温速率,终止温度等等,进入PID Parameters,确定P:10;I:10;D:10;进入Sampling Parameters,确定Sampling Time:10;进入File Information,依次输入测量序号,样品名称,重量(点击Read Weight,电脑会直接显示出样品重量),分子量,坩埚名称,气氛,气体流速,操作者姓名,回到Measure,点击Sart,测量开始,炉内开始加热升温,记录开始。
当试样达到预设的终止温度时,测量自动停止。
7.关机等炉温降下来再依次关TA-60WS工作站开关,TGA -50开关,专用变压器开关,关冷却水,关气瓶(为保护仪器,注意炉温在500℃以上不得关闭TGA-50主机电源)。
8.数据分析进入分析界面(Analysis),打开所做测量文件,对原始热重记录曲线进行适当处理,先对其求导,得到DTG曲线;选定每个台阶或峰的起止位置,算出各个反应阶段的TG失重百分比,失重始温,终温,失重速率最大点温度。
最后数据存盘,打印热重曲线图。
六、数据处理
依据所测TG曲线,推测草酸钙分解反应方程式。
七、思考题
由热重曲线的各失重台阶,讨论各阶段的可能反应,如与理论值比较有差异,讨论原因。