习题反常积分的收敛判别法
反常积分的收敛判别法
反常积分的收敛判别法阿文摘 要:掌握不同类型函数反常积分收敛性的多种判别方法,对于需要计算出其收敛值的,也可以方便的计算出其收敛的数值.关键词:Cauchy 判别法; Abel 判别法; Dirichlet 判别法引 言一般情况下,只需确定一个反常积分函数的收敛性,而不一定需要求出其具体的收敛数值.因此,掌握不同类型函数的反常积分收敛判别法是极其必要的.一 非负函数反常积分的收敛判别法1.比较判别法设在),[+∞a 上恒有)()(0x K x f ϕ≤≤,其中K 是正常数,则(1) 当⎰+∞adx x )(ϕ收敛时⎰+∞a dx x f )(也收敛;(2) 当⎰+∞a dx x f )(发散时⎰+∞a dx x )(ϕ也发散.2.Cauchy 判别法设在),[+∞a ),0(+∞⊂上恒有0)(≥x f ,K 是正常数,(1)若p xK x f ≤)(,且p>1,则dx x f a ⎰+∞)(收敛; (2)若p xx f K ≥)(,且p 1≤,则⎰+∞a dx x f )(发散. 二 一般函数反常积分的收敛判别法1.Abel 判别法dx x f a ⎰+∞)(收敛,)(x g 在),[+∞a 单调有界,则dx x g x f a )()(⎰+∞收敛;2.Dirichlet 判别法F(A)=dx x f A a ⎰)(在[),+∞a 上有界,)(x g 在[),+∞a 上单调且+∞→x lim 0)(=x g ,则dx x g x f a )()(⎰+∞收敛.三 无界函数反常积分的收敛判别法1.Cauchy 判别法设在[),b a 上恒有0)(≥x f ,当x 属于b 的某个领域),[0b b η-时,存在正常数K ,使得 (1) ,)()(p x b K x f -≤且p<1,则⎰b a dx x f )(收敛; (2) ,)()(px b K x f -≥且p 1≥则⎰b a dx x f )(发散. 2.Abel 判别法⎰ba dx x f )(收敛,)(x g 在),[b a 上单调有界,则⎰ba dx x g x f )()(收敛. 3.Dirichlet 判别法⎰-=ηηb a dx x f F )()(在],0(a b -上有界,)(x g 在),[b a 上单调且0)(lim =-→x g b x , 则⎰ba dx x g x f )()(收敛.总 结函数的类型不同,其相应的反常积分收敛判别法也就不同.熟练掌握多种判别法可以对不同类型函数的敛散性做出正确的估计及计算.一般的,同一类函数也可用不同的方法来计算,既省时间,正确度又高.参考文献[1]陈纪修,於崇华,金路.数学分析(第二版)[M],北京:高等教育出版社,2004.6.。
ch反常积分的收敛判别法
于是,由比较判别法,当 a ( x)dx 发散时 a
f ( x)dx 也发散。
数学分析
例 8.2.2
解 因为
3
讨论 1
3
dx 的敛散性。 x 3x 5x 2x 1
4 3 2
1
由于 1
3
x 3x 5x 2x 1 1 1 dx 收敛,所以 1 3 4 dx 收敛。 4 3 2 x x 3x 5x 2x 1
f ( x ) dx 。
A
A
f ( x)dx
数学分析
cos 2 x sin x 例 8.2.1 讨论 1 dx 的敛散性( a 是常数)。 3 2 x a 解 因为当 x 1时有 cos 2 x sin x 1 , 3 2 x x x a cos 2 x sin x 1 dx 收敛,由比较判别法, 1 已知 1 dx 绝 3 2 x x x a cos 2 x sin x 对收敛,所以 1 dx 收敛。 3 2 x a
推论
证1 对任意给定的 0 ,由于 a
f ( x)dx 收敛而非绝对收敛,则称 a
f ( x)dx
若反常积分 a
f ( x)dx 绝对收敛,则它一定收敛。
f ( x ) dx 收敛,所以存在
A0 a ,使得对任意 A, A A0 ,成立 利用定积分的性质,得到
A
A
1、非负函数反常积分的收敛判别法
)上恒有 定理 8.2.2(比较判别法) 设在[a , 0 f ( x) K( x),其中 K 是正常数。则
(1) 当 a ( x)dx 收敛时 a (2) 当 a
反常积分收敛判别法
些 新 的判 别 方 法 .
二 、 常 积 分 基 本 判 别 方 法 反
反常积分与数值级数 ∑ n之间的 如下 类比
级 数 的通 项 : a 被 积 函数 )
级数的 部分和: n ∑N a
专 题 研 究
浆 § T 鼍 zH A I Y
’一
・
ห้องสมุดไป่ตู้
~ ●
Ju≮一 ——璃 r i 一…
…
一
●’-
≮≥ 9・
●
●
反常积分收敛判别法
◎高建平 刘 声 ( 州大学理学院 贵 ◎ 张 蕊 ( 南 信 阳 师 范 学 院 教 育 学 院 河
+… 的 和 问 题
单调有界, I _ ) ( d 则 厂 g ) x收敛; i h t ( Dr l 判别法: i e c 若 , A =f ()x n +。 上有界,( ) 。 +。) () 厂 d 存[ , 。) g 在[ , 。 上
因此要反常积分 f 厂 ) x存 在 , 须也 只需 对于任 ( d 必
知 , 些 反 常 积 分 能 化 为 级数 . 有
设 , xx … 有 d
g
一 () g 等= ÷
2 .级 数 判 别 法
函数的极限可以用两种方法来 表达 , “ 即 s一6说 法 ”与
(). ÷等
“ 整 序 变 量 说 法 ” 若 把 极 限 的 第 二 种 定 义 法 用 到 函 数 用 .
设 函数 _ 在 区 间 [ ,] 连 续 , 厂 ( ) 。 b上 b为瑕 点 . 有 则
£:
l _ _
反常积分习题及积分的收敛性质习题解答.doc
r+oc⑵xe dx ;(4)1 X2 (1 + x)-Foo(6) e sin xdx :Jo(7)e sinxdx ; (8)+8 dx+<50xe" v dx olimJ AA —>4-oo 21 1 c=lim川-日2 2「+ 8 故Lxe 弘:收敛,其值为1。
2(2)C 》—X I '_ Xxe dx= xe^xdx +Jo10 2xe^x dx—8,+°° .2xe^x dx = OJoL+8故]必:收敛,其值为0。
反常积分概念习题解答1、讨论下列无穷积分是否收敛?若收敛,则求其值:解(1)因为_ 2 . M _ .xe~x dx = lim 把一' dx+8 1——dxdx = lim | e 2A —>+o© Jo. T A =lim -2-e 2AT+OOA lim (2 - 2广)=2 AT+OOX⑶JorA=lim IA —>+ooJ Ii x~r1 + x x2 >dx1、A1〜、fg 公 i- f 4 dx(4)— ------ = hm —r- ------Ji x 2(l + x) AT +8 J I x -(1 + x)lim (ln(l + jc) — \nx ——) AT+OO JQ=lim (In I + △ - L - In A +1)A A= l — ln2因此广 一收敛,其值为i-m2。
Ji x 2(l + x)收敛,其值为2C>dx--------------- 4x +4x + 5 +co—8dx• 4-DO1 ------------- 1 -------- H-i (2" 1)2 +4dx2(x + l)2 +4dxdt •-f-oon 0 t 2+4 +-dt o 2t 2 +4—8du1 ( AA 、 lim arctan + arctanA T +<» 4 0 0 7—oo0 血、以2 + 1)—lim [arctan A 一 arctan(-A)] 4 AT+OOA 1 、丸 丸 —lim2 arctan A = — • 2 ——二— 4 ats 4 2 4r+oodx 7E所以]——收敛,其值为上J-84x + 4x + 54(6)因为=一。
ch-8-2反常积分的收敛判别法
+∞
f ( x )dx , ∫a
2
+∞
1 dx 收敛, 收敛, 2 x
由比较判别知
故
∫a
+∞
f ( x) | | dx 收敛, 收敛, x
∫a
+∞
f ( x) dx 收敛。 收敛。 x
数学分析 3、一般函数反常积分的收敛判别法
8.2.4(积分第二中值定理) b 定理 8.2.4(积分第二中值定理) 设 f ( x)在[a, ]上可 b 上单调, 积, g( x)在[a, ]上单调,则存在ξ ∈ [a ,b],使得
+∞
+∞ +∞
f ( x )dx 收敛; 收敛; f ( x )dx 发散。 发散。
例 8.2.3
解
的敛散性( 讨论 ∫0 x a e − x dx 的敛散性( a ∈ R )。
因为对任意常数 a ∈ R ,有 lim x 2 ( x a e − x ) = 0 ,
x → +∞
+∞
判别法的极限形式( ),可知 收敛。 由 Cauchy 判别法的极限形式(1),可知 ∫0 x a e − x dx 收敛。
即 ∫a
+∞
f ( x ) dx = 2 ∫a ϕ ( x ) dx −
+∞
∫a
+∞
f ( x ) dx , 收敛 收敛.
数学分析 例1 设 ∫a f ( x )dx 收敛,证明 收敛,
2 +∞
∫a
+∞
f ( x) dx 收敛(a>0)。 收敛( ) x
f ( x) 1 1 |≤ [ 2 + f 2 ( x )] 证 Q | x 2 x
含参量反常积分的一致收敛发判别法及推广汇总
含参量反常积分的一致收敛发判别法及推广汇总含参数的反常积分是指在积分中包含一个或多个参数的情况下的积分运算。
一致收敛是指在定义域上的每个点上,函数项级数都收敛于同一个函数。
一致收敛的发散判别法是用来判断含参数的反常积分是否一致收敛的方法。
它的基本思想是先对含参数的反常积分的被积函数进行求和,然后通过逐项求和的结果进行判断。
一般来说,当积分区间是有界区间时,可以直接采用一般的单调收敛判别法,若积分区间是无界区间,则需要使用其他方法来判断其一致收敛性。
以下是一些常见的含参数反常积分的一致收敛发判别法及推广:1.魏尔斯特拉斯判别法:该判别法适用于被积函数在区间上无上界的情况。
若函数项级数的每一项在区间上都存在可求得的上界,并且级数的系数与参数无关,即参数只出现在积分区间上,则该函数项级数在该区间上一致收敛。
2.绝对收敛发散判别法:若被积函数在积分区间上绝对收敛,则函数项级数在该区间上一致收敛。
3.阿贝尔判别法:若函数项级数在积分区间上逐项收敛,且在积分区间上一致有界,则函数项级数在该区间上一致收敛。
4.一致收敛的推广汇总:对于参数函数项级数的一致收敛判别,可以将其推广为参数函数项广义积分的一致收敛判别。
具体而言,可以参考以下几种情况的判别方法:a.线性组合的情况:若参数函数项级数与常数函数项级数的线性组合在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。
b.积分换元法的情况:若参数函数项级数的积分变量进行换元,得到的新的参数函数项级数在积分区间上一致收敛,则原参数函数项级数在该区间上一致收敛。
c.参数函数项级数的逐项积分的情况:若参数函数项级数的逐项积分在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。
d.参数函数项的相对收敛性:若参数函数项级数的每一项与参数的函数项级数的每一项的绝对值相比,在积分区间上一致有界,并且参数的函数项级数在该区间上一致收敛,则原参数函数项级数在该区间上一致收敛。
最新习题82反常积分的收敛判别法
习题82反常积分的收敛判别法习题 8.2 反常积分的收敛判别法⒈⑴证明比较判别法(定理8.2.2);⑵举例说明,当比较判别法的极限形式中«Skip Record If...»或«SkipRecord If...»时,«Skip Record If...»和«Skip Record If...»的敛散性可以产生各种不同的的情况。
解(1)定理8.2.2(比较判别法)设在«Skip Record If...»上恒有«Skip Record If...»,其中«Skip Record If...»是正常数。
则当«Skip Record If...»收敛时«Skip Record If...»也收敛;当«Skip Record If...»发散时«Skip Record If...»也发散。
证当«Skip Record If...»收敛时,应用反常积分的Cauchy 收敛原理,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»:。
«Skip Record If...»于是,«Skip Record If...»«Skip Record If...»所以«Skip Record If...»也收敛;当«Skip Record If...»发散时,应用反常积分的Cauchy 收敛原理,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»:。
「高等数学」反常积分的计算,并判断它的收敛性
「高等数学」反常积分的计算,并判断它的收敛性反常积分:反常积分又叫做广义积分,指含有无穷上限/下限,或者被积函数含有瑕点的积分,也就是分为无穷区间上的反常积分和无界函数的反常积分。
无穷区间上的反常积分:设f(x)在区间[a,∞)上连续,称为f(x)在[a,+∞)上的反常积分.如果右边极限存在,称此反常积分收敛;如果右边极限不存在,就称此反常积分发散。
无界函数的反常积分:设f(x)在区间[a,b)上连续,且f(x)在趋向于点b上的极限为∞,成为f(x)在区间[a,b)上的反常积分(也称瑕积分),使f(x)极限为∞的点b称为f(x)的奇点(也称瑕点),这个点上是无法积分的。
图一如图所示,给出一个反常积分,并告诉我们该反常积分收敛,则我们可以得到哪些信息。
通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。
那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。
(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。
)如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。
由第一个区间判断可以得到,a<1;由第二区间判断可以得到当a+b>1时,收敛。
最后得到的结果便是,a<1,a+b>1,该反常积分收敛。
最后给出解答过程:图二虽然有这道实例的支撑,但我对反常积分还是不够理解,直到我看到了瑕积分的判敛性定理:定理一,f(x)在区间(a,b]上连续并且f(x)>=0,设该区间趋向于a 的极限存在,那就可以得到当x的幂次方小于1,该反常积分收敛,根据这个定理我们就能够得到a<1这个结果的存在。
反常积分收敛发散怎么判断
反常积分的判敛法,主要考查三类:1.直接计算法 2.比较判敛法的极限形式 3.极限审敛法第一步:先找出来所有的反常点,第一是无穷反常点,也就是积分限中含有+∞,-∞时,他们就是反常点。
第二,找到分母为零的点,注意分母为0的点a,还要分成a+,a-两个反常点,第三,找到ln(□),使□=0+的点。
第四,题目声明的反常点。
第二步,对每一个反常点,判断它是否收敛。
第二部的第一点:这里面最容易判别的就是反常点x=+∞,这里我们只讲利用极限比较判别法来进行判别的内容:这时我们找的标杆函数是g(x)=1/x^p,1/{x•(lnx)^p},1/{x•(lnx)•[ln(lnx)]^p},………这些标杆函数的收敛性也非常容易记下来,就是p>1的时候是收敛的,其他的时候是发散。
那么有了这个标杆函数之后,我们就可以利用下列定理:如果lim[x→+∞]{f(x)/g(x)}=L,则(计算这个极限经常使用下面的一个结论就是指数增长快于幂增长,幂增长快于正数增长:好了,关于如何看待极限的速度就到此为止了,下面接的是我们的定理)(1)当L是一个非零常数的时候,两个反常积分在正无穷点的收敛性相同,也就是说p>1时收敛,其他情况发散。
(2)当L=0时,在x→+∞时,|f(x)|≤g(x),因此反常积分g(x)在正无穷敛收敛时(也就是p>1时),f(x) 在正无穷大点绝对收敛。
(3)当L=∞时,在x→+∞时,|f(x)|≥g(x),因此,反常积分g(x)在正无穷处发散时(也就是p≤1时),f(x)在正无穷大点是发散的(如果不是标杆函数,那它的发散性还是需要单独考虑)。
第二步的第二点,反常点是x=-∞,这时,只要做一个变换s=-x,就可以变成∫[a→+∞]f(-s)ds也就是关于s的反常积分,而且反常点也变成了正无穷,这样也就可以用第二部的第一点解决问题了。
第二步的第三点,反常点x=0+(注意如果函数含有因子ln□,且□→1时,要用ln□~□-1),这时候的标杆函数,我们只推荐一个g(x)=1/x^p,不过要记住了,此时的收敛情况(与x=+∞的情况正好相反)为p<1,发散情况为p≥1(另外,其他的g(x)需要自己寻找,总的原则是找出来的函数要容易判别,而且能够使比的极限存在,且最好是非零常数)找到标杆函数g(x)以后,又可以使用极限判别法:如lim[x→0+]{f(x)/g(x)}=L(注意这里一般也是令s=1/x,然后用s →+∞相关的比较定理,即指数增长快于幂增长,幂增长快于对数增长来判别),同样有三个结论(1)如L≠0,且g(x)不变号(我们的标杆肯定不变号,这里指的是自己找的标杆,不能变号,要么都是大于0的,要么都是小于0的(在x→0+过程中))则f(x)在x=0+这个反常点,与标杆函数同敛散(如果是我们选择标杆,就是p小于1收敛,p大于等于1发散);(2)如L=0,且g(x)不变号(解释同(1)),则因为x→0+时,|f(x)|≤|g(x)|,所以g(x)在反常点x=0+收敛(所以用我们的标杆时,就是p<1),可以推出f(x)在该反常点也收敛(类似于级数比较判别法:大收小必收);(3)如L=∞,且g(x)不变号(解释同(1)),则因为|f(x)|≥|g(x)|,所以g(x)在反常点x=0+发散(如果是我们选择标杆,就是p≥1)时,且f(x)也不变号时,f(x)在反常点也发散(类似于级数比较判别法:小发大必发)。
高等数学第五章第5节反常积分收敛性判别
第 五 章 定 积 分
M M 0 及 q 1,使得 f ( x ) ( a x b ), 则 q ( x a) 瑕积分
b
a
f ( x )dx 收敛;若存在常数N 0 及 q 1,
N 使得 f ( x ) ( a x b ), 则瑕积分 q ( x a) 发散 .
f ( x ) g( x )
(1) 若 g( x )dx 收敛, 则 f ( x )dx 一定收敛; a a (2) 若
b
b
a f ( x )dx 发散, 则 a g( x )dx 一定发散.
- 10 -
b
b
第五节
反常积分收敛性判别法
定理8 (比较审敛法2) 设函数 f ( x ) 在区间 ( a , b] 上连续,且 f ( x ) 0, lim f ( x ) .如果存在常数
第 五 章 定 积 分
且 0 f ( x ) g( x ) (a x ), 则 [a , ) 连续, 则无穷积分 (1) 如果无穷积分 g( x )dx 收敛,
a
a
f ( x )dx 也收敛; f ( x )dx 也发散。
a
则无穷积分 (2) 如果无穷积分 a g( x )dx 发散,
a
f ( x )dx 2 ( x )dx f ( x ) dx,
a a a
b
b
b
即
a
f ( x )dx 2 ( x )dx
a
-8-
a
f ( x ) dx.
收敛.
第五节
反常积分收敛性判别法
习题参考解答(第四部分) 收敛判定
无穷级数部分练习题参考解答1、 判断级数()()31ln ln ln pqn n n n ∞=∑的敛散性.解:考察反常积分()()3ln ln ln p q dx x x x +∞⎰()ln3ln tx eq pdt t t =+∞=⎰当1p >时,取充分小的0ε>,使1p ε->,则有()1lim 0ln p q p t tt t ε-→+∞=,从而()ln3ln q p dt t t +∞⎰收敛. 当1p <时,取充分小的0δ>,使1p δ+<,则有()1lim ln p q p t tt t δ+→+∞=+∞,从而()ln3ln q p dt t t +∞⎰发散.当1p =时,()ln3ln ln3ln ut eq qdt dt u t t =+∞+∞=⎰⎰,知1q >时,()ln3ln q dt t t +∞⎰ 收敛,1q ≤时()ln3ln q dt t t +∞⎰发散.又显然函数()()()1ln ln ln pqf x x x x =在()3,+∞上非负递减,于是由积分判别法知:当1p >或1p =且1q >时级数收敛,其余情况级数发散. 2、讨论级数111(1)n p n n-∞+=-∑的敛散性,如果收敛,讨论是绝对收敛还是条件收敛.解:当0p ≤时,通项不趋于零,发散;当1p >时,111p p n n n+<,原级数绝对收敛;当01p <≤时,11(1)n p n n -∞=-∑收敛,11nn 单调有界,由Abel 判别法知原级数收敛. 又 11(1)lim11n p nn pnn -+→∞-=,知111(1)n p n nn-∞+=-∑发散. 故原级数条件收敛.3、已知1221(1)12n n n π-∞=-=∑,计算10ln(1)x dx +⎰. 解:函数ln(1)x +在0x =点的Taylor 级数为123(1)ln(1)23n n x x x x x n--+=-+-++ ,(1,1)x ∈- 112ln(1)(1)123n n x x x x x n --+-=-+-++ ,1232220ln(1)(1)23n n x t x x x dt x t n -+-=-+-++⎰ 10ln(1)x dx x +⎰1232222011ln(1)(1)lim lim 1223n n x x x t x x x dt x t n π-→→+-⎛⎫==-+-++= ⎪⎝⎭⎰ . 4、证明(1)方程10nx nx +-=(n 为正整数)存在唯一正实根n x ;(2)级数1n n x α∞=∑当1α>时收敛.证:(1)令()1nn f x x nx =+-,[]0,1x ∈ 则()01n f =-,()10n f n =>,∴()0n f x =在()0,1内有根n x .由()10n n f x nx n -'=+>知()1n n f x x nx =+-在()0,+∞ .∴ ()0n f x =即10nx nx +-=存在唯一正实根n x .(2)由10nnn x nx +-=, 110nn n x x n n -<=<,当1α>时,10n x nαα<<, 而11n n α∞=∑是1p α=>的p 级数,收敛. ∴ 级数1nn x α∞=∑收敛.5、用多种方法求级数1212nn n∞=-∑的和S.解法1: 2n n n S S S =-=121111212121112122212n n n n n n -----++++-=+-- ,∴ lim 3n n S S →∞==. 解法2: ()112121222n n n n n n n ∞∞==-=-∑∑,而111211212n ∞===-∑;对12n n n ∞=∑:1211(1)n n nx x ∞-==-∑. 21,1(1)nn x n x x x ∞==<-∑.12x =时,12n n n ∞=∑=2 . ∴ 1214132n n n ∞=-=-=∑.解法3:考虑级数()()2021nn n xs x ∞=+=∑,从0到x 逐项积分,得()2121xn n x s t dt x x ∞+===-∑⎰,1x <.再求导,得()()22211x s x x +=-,1x <.令()1,1x =- 得()201121262112n n n s ∞=++===-∑ ∴ 1212nn n ∞=-∑= 100211213222n n n n n n ∞∞+==++==∑∑.6、证明函数项级数1(1)cos n n n x∞=-+∑在,22ππ⎡⎤-⎢⎥⎣⎦上一致收敛.证法1:记1()(1),()c o s nn n a x b x n x =-=+.显然1()n n a x ∞=∑的部分和函数列在[,22ππ-]上一致有界,{}()n b x 关于n 单调递减趋于零,且[,]22lim sup()00n n x b x ππ→∞∈--=.即,22()0n b x ππ⎡⎤-⎢⎥⎣⎦−−−−→−−−−→.由Dirichlet 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.证法2:记(1)(),()cos n n n n a x b x n n x -==+.1()n n a x ∞=∑是收敛的数项级数,当然在[,22ππ-]上一致收敛;{}()n b x 关于n 单调,且在[,22ππ-]上一致有界.由Abel 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.7、证明:① 1ln nn x x ∞=∑在(]0,1不一致收敛;② 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰.证:① 级数1ln nn x x ∞=∑的每一项在(]0,1都连续,容易求出其和函数()()ln ,0,110,1x x x x S x x ⎧∈⎪-=⎨⎪=⎩由()10lim 1x S x →-=,知()S x 在(]0,1不是处处连续,所以1ln nn xx ∞=∑在(]0,1不一致收敛.② 对01x δ∀<<<,易知ln ln 1nn t tt t∞==-∑在[],x δ上一致收敛,有()110000ln ln ln 1x x nnxn n t dt t tdt t tdtt δδδ∞∞====---∑∑⎰⎰⎰⎰⎰ (*)∵ ()1201ln 1nt tdt n =-+⎰, ∴ 2100ln 6n n t tdt π∞==-∑⎰.又∵ ()21ln 1nt tdt n δ≤+⎰,()121ln 1n xt tdt n ≤+⎰∴ln nn t tdt δ∞=∑⎰和1ln n xn t tdt ∞=∑⎰分别在01δ≤≤和01x ≤≤上一致收敛.在(*)式两端令0,1x δ→→,得 210ln t dt π=-⎰,或 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰. 8、给出1sinpn nx n∞=∑(0)p >一致收敛的区间,并证明之.证:当1p >时,sin 1p p nx n n ≤,(,),1,2,x n ∈-∞+∞= ,且11p n n∞=∑收敛. 由Weierstarss 判别法,知1sinpn nx n∞=∑在(,)-∞+∞上一致收敛.当01p <≤时,因对n N ∀∈,有 1212sin sin cos cos 222nk x n x kx x =+-=-∑.对(0,)επ∀∈,[,2]x επε∈-,有 121cos cos 2211sin 2sin 2sin sin 222nk n xx kx x x ε=++≤≤≤∑ 由Dirichlet 判别法知:1sinpn nx n∞=∑在[,2]επε-上一致收敛,即在(0,2)π上内闭一致收敛.同理可证:1sinpn nx n∞=∑在任意不包含2,0,1,2,k k π=±± 的闭区间上一致收敛.。
习题82反常积分的收敛判别法20页word文档
习 题 8.2 反常积分的收敛判别法⒈ ⑴ 证明比较判别法(定理8.2.2);⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,⎰∞+a dx x )(ϕ和⎰∞+adx x f )(的敛散性可以产生各种不同的的情况。
解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ϕ≤≤,其中K 是正常数。
则当⎰∞+a dx x )(ϕ收敛时⎰∞+adx x f )(也收敛;当⎰∞+adx x f )(发散时⎰∞+adx x )(ϕ也发散。
证 当⎰∞+a dx x )(ϕ收敛时,应用反常积分的Cauchy 收敛原理,0>∀ε ,a A ≥∃0,0,A A A ≥'∀:Kdx x A A εϕ<⎰')(。
于是≤⎰'A Adx x f )(εϕ<⎰'A A dx x K )(,所以⎰∞+adx x f )(也收敛;当⎰∞+adx x f )(发散时,应用反常积分的Cauchy 收敛原理,00>∃ε,a A ≥∀0,0,A A A ≥'∃:εK dx x f A A ≥⎰')(。
于是≥⎰'A A dx x )(ϕ0)(1ε≥⎰'A A dx x f K ,所以⎰∞+a dx x )(ϕ也发散。
(2)设在[,)a +∞上有0)(,0)(≥≥x x f ϕ,且0)()(lim=+∞→x x f x ϕ。
则当⎰∞+a dx x f )(发散时,⎰∞+a dx x )(ϕ也发散;但当⎰∞+a dx x f )(收敛时,⎰∞+a dx x )(ϕ可能收敛,也可能发散。
例如21)(x x f =,)20(1)(<<=p xx p ϕ,则0)()(lim =+∞→x x f x ϕ。
显然有 ⎰∞+1)(dx x f 收敛,而对于⎰∞+1)(dx x ϕ,则当21<<p 时收敛,当10≤<p 时发散。
反常积分判敛的方法
反常积分判敛的方法在数学中,积分是一种非常重要的概念,而对于一些特殊的积分,我们需要进行判敛来确定其是否收敛。
在处理反常积分时,有一些特殊的方法可以帮助我们进行判敛,本文将介绍一些常用的反常积分判敛方法。
一、无穷积分的判敛方法对于形如$\int_{a}^{+\infty}f(x)dx$的无穷积分,我们可以通过比较判别法来确定其是否收敛。
比较判别法主要包括以下几种情况: 1. 若存在常数$M>0$和$a$,使得对充分大的$x$有$|f(x)|\leqM\cdot g(x)$,其中$\int_{a}^{+\infty}g(x)dx$收敛,则$\int_{a}^{+\infty}f(x)dx$也收敛。
2. 若存在常数$a$,使得对充分大的$x$有$0\leq f(x)\leqg(x)$,其中$\int_{a}^{+\infty}g(x)dx$发散,则$\int_{a}^{+\infty}f(x)dx$也发散。
通过比较判别法,我们可以对无穷积分的收敛性进行初步的判断。
二、无界函数积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,如果被积函数在区间$(a,b)$上无界,我们可以通过以下方法进行判敛:1. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以将积分区间分割成多个小区间,分别处理每个小区间上的积分。
2. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以通过换元积分的方法将无界函数转化为有界函数,然后再进行积分计算。
通过以上方法,我们可以处理一些在有界区间上无界的函数积分,从而判断其收敛性。
三、奇异点附近积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,在奇异点附近积分时,我们可以通过留数定理来判断其收敛性。
留数定理是一种处理奇异点的有效方法,可以帮助我们求解一些复杂的积分。
在处理奇异点附近积分时,我们需要注意以下几点:1. 确定奇异点的类型,包括可去奇点、极点和本性奇点。
反常积分的收敛判别法
条件收敛(或称 f( x)在[a,)上条件可积)。
推论
若反常积分
a
f( x)dx绝对收敛,则它一定收敛。
证1
对任意给定的
0,由于 a
f ( x) dx 收敛,所以存在
A0
Байду номын сангаас
a,使得对任意 A, A
A0,成立
A
A
f ( x) dx
。
利用定积分的性质,得到
A
数学分析
第二节 反常积分的收敛判别法
一、Cauchy收敛原理 二、无穷区间形式
三、无界函数形式
四、小 结
重点:反常积分收敛的判别 难点: 反常积分的收敛的应用
一、反常积分的Cauchy收敛原理
数学分析
下面以 a
f( x)dx为例来探讨反常积分敛散性的判别法。
由于反常积分
a
f
(
x)dx
数学分析
推论(比较判别法的极限形式)设在[a,)上恒有 f( x) 0和
( x) 0,且
lim f(x)
x ( x)
l,
则
(1)若0
l
,则
a
(
x)dx
收敛时
a
f( x)dx也收敛;
(2)若0
l
,则
a
(
x)dx
发散时
a
f( x)dx也发散。
(1)
当
a
(
x)dx
收敛时
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页脚内容278习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2);⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,⎰∞+a dx x )(ϕ和⎰∞+adx x f )(的敛散性可以产生各种不同的的情况.解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ϕ≤≤,其中K 是正常数.则当⎰∞+a dx x )(ϕ收敛时⎰∞+adx x f )(也收敛;当⎰∞+adx x f )(发散时⎰∞+adx x )(ϕ也发散.证 当⎰∞+a dx x )(ϕ收敛时,应用反常积分的Cauchy 收敛原理,0>∀ε ,a A ≥∃0,0,A A A ≥'∀:Kdx x A A εϕ<⎰')(.于是≤⎰'A Adx x f )(εϕ<⎰'A A dx x K )(,所以⎰∞+adx x f )(也收敛;当⎰∞+adx x f )(发散时,应用反常积分的Cauchy 收敛原理,00>∃ε,a A ≥∀0,0,A A A ≥'∃:εK dx x f A A ≥⎰')(.于是页脚内容279≥⎰'A A dx x )(ϕ0)(1ε≥⎰'A A dx x f K ,所以⎰∞+a dx x )(ϕ也发散.(2)设在[,)a +∞上有0)(,0)(≥≥x x f ϕ,且0)()(lim=+∞→x x f x ϕ.则当⎰∞+a dx x f )(发散时,⎰∞+a dx x )(ϕ也发散;但当⎰∞+a dx x f )(收敛时,⎰∞+a dx x )(ϕ可能收敛,也可能发散.例如21)(x x f =,)20(1)(<<=p xx p ϕ,则0)()(lim =+∞→x x f x ϕ.显然有 ⎰∞+1)(dx x f 收敛,而对于⎰∞+1)(dx x ϕ,则当21<<p 时收敛,当10≤<p 时发散.设在[,)a +∞上有0)(,0)(≥≥x x f ϕ,且+∞=+∞→)()(limx x f x ϕ.则当⎰∞+a dx x f )(收敛时,⎰∞+a dx x )(ϕ也收敛;但当⎰∞+a dx x f )(发散时,⎰∞+a dx x )(ϕ可能发散,也可能收敛.例如xx f 1)(=,)21(1)(>=p xx p ϕ,则+∞=+∞→)()(lim x x f x ϕ.显然有 ⎰∞+1)(dx x f 发散,而对于⎰∞+1)(dx x ϕ,则当121≤<p 时发散,当1>p 时收敛. ⒉ 证明Cauchy 判别法及其极限形式(定理8.2.3).证 定理8.2.3(Cauchy 判别法) 设在[,)a +∞⊂+∞(,)0上恒有f x ()≥0,K 是正常数.⑴ 若f x Kxp ()≤,且p >1,则⎰∞+a dx x f )(收敛;页脚内容280⑵ 若f x Kx p()≥,且p ≤1,则⎰∞+a dx x f )(发散. 推论(Cauchy 判别法的极限形式)设在[,)a +∞⊂+∞(,)0上恒有f x ()≥0,且lim ()x p x f x l →+∞=,则⑴ 若0≤<+∞l ,且p >1,则⎰∞+adx x f )(收敛; ⑵ 若0<≤+∞l ,且p ≤1,则⎰∞+adx x f )(发散.证 直接应用定理8.2.2(比较判别法)及其推论(比较判别法的极限形式),将函数)(x ϕ取为p x1. ⒊ 讨论下列非负函数反常积分的敛散性:⑴11321x ex dx x-++-+∞⎰ln ; ⑵⎰∞++131tan arc dx xx; ⑶110++∞⎰x x dx |sin |;⑷x x dxq p11++∞⎰(+∈R q p ,). 解 (1)当+∞→x 时,1ln 123++--x ex x~231x ,所以积分11321x e x dx x -++-+∞⎰ln 收敛.页脚内容281(2)当+∞→x 时,31arctan x x +~32x π, 所以积分⎰∞++131tan arc dx x x收敛.(3)因为当0≥x 时有xx x +≥+11sin 11,而积分dx x⎰∞++011发散,所以积分110++∞⎰x x dx |sin |发散. (4)当+∞→x 时,pqxx +1~q p x -1, 所以在1>-q p 时,积分x x dx qp11++∞⎰收敛,在其余情况下积分 x x dx qp11++∞⎰发散. ⒋ 证明:对非负函数f x (),)cpv (f x dx ()-∞+∞⎰收敛与f x dx ()-∞+∞⎰收敛是等价的. 证 显然,由f x dx ()-∞+∞⎰收敛可推出)cpv (f x dx ()-∞+∞⎰收敛,现证明当0)(≥x f 时可由)cpv (f x dx ()-∞+∞⎰收敛推出f x dx ()-∞+∞⎰收敛.由于)cpv (f x dx ()-∞+∞⎰收敛,可知极限页脚内容282+∞→A lim =)(A F +∞→A lim⎰-AAdx x f )(存在而且有限,由Cauchy 收敛原理,0>∀ε,00A ∃>,0,A A A ≥'∀:ε<-)'()(A F A F , 于是0,A A A ≥'∀与0',A B B ≥∀,成立≤⎰'A Adx x f )(ε<-)'()(A F A F与≤⎰--BB dx x f ')(ε<-)'()(B F B F ,这说明积分⎰∞+0)(dx x f 与⎰∞-0)(dx x f 都收敛,所以积分f x dx ()-∞+∞⎰收敛.⒌ 讨论下列反常积分的敛散性(包括绝对收敛、条件收敛和发散,下同):⑴ln ln ln sin xxxdx 2+∞⎰; ⑵sin x x dxp1+∞⎰(+∈R p ); ⑶⎰∞+1tan arc sin dx xx x p(+∈R p )⑷sin()x dx 20+∞⎰;⑸⎰∞+an m xdx x q x p sin )()( (p x m ()和q x n ()分别是m 和n 次多项式, q x n ()在),[+∞∈a x 范围无零点.)解 (1)因为⎰=Axdx A F 2sin )(有界,xx ln ln ln 在),2[+∞单调,且0ln ln ln lim=+∞→x xx ,由Dirichlet 判别法,积分ln ln ln sin xxxdx 2+∞⎰收敛; 由于≥x x x sin ln ln ln x x x 2sin ln ln ln )2cos 1(ln ln ln 21x xx-=,而积分页脚内容283⎰∞+2ln ln ln dx xx发散,⎰∞+22cos ln ln ln xdx xx收敛,所以积分⎰∞+2sin ln ln ln dx x xx发散,即积分ln ln ln sin xxxdx 2+∞⎰条件收敛. (2)当1>p 时,ppx x x 1sin ≤,而⎰∞+11dx x p 收敛,所以当1>p 时积分 sin xx dx p1+∞⎰绝对收敛; 当10≤<p 时,因为⎰=Axdx A F 1sin )(有界,p x 1在),1[+∞单调,且01lim =+∞→p x x,由Dirichlet 判别法,积分sin x x dx p1+∞⎰收敛;但因为当10≤<p 时积分⎰∞+1|sin |dx x x p发散,所以当10≤<p 时积分sin x x dx p 1+∞⎰条件收敛.(3)当1>p 时,≤px xx arctan sin px 2π,而⎰∞+11dx xp 收敛,所以当1>p 时积分⎰∞+1tan arc sin dx x x x p 绝对收敛;当10≤<p 时,因为⎰=Axdx A F 1sin )(有界,p x x arctan 在),1[+∞单调,且0arctan lim =+∞→p x xx ,由Dirichlet 判别法,积分⎰∞+1arctan sindx x x x p 收敛;但因为当10≤<p 时积分⎰∞+1sin arctan dx x xxp 发散,所以当10≤<p 时积分⎰∞+1arctan sindx x xx p条件收敛.(4)令2x t =,=⎰∞+02)sin(dx x ⎰∞+02sin dt tt ,由于⎰∞+02sin dt tt 条件收敛,可知积分sin()x dx 20+∞⎰条件页脚内容284收敛.(5)当1+>m n 且x 充分大时,有x x q x p n m sin )()(2xK ≤,可知当1+>m n 时积分⎰∞+a n mxdx x q x p sin )()(绝对收敛.当1+=m n 时,因为⎰=Axdx A F 1sin )(有界,且当x 充分大时,)()(x q x p n m 单调且0)()(lim =+∞→x q x p nmx ,由Dirichlet 判别法可知⎰∞+an m xdx x q x p sin )()(收敛;但由于当+∞→x 时,)()(x q x p n m ~x a ,易知⎰∞+1sin )()(dx x x q x p n m 发散,所以当1+=m n 时,积分⎰∞+an m xdx x q x p sin )()(条件收敛. 当1+<m n 时,由A x q x p n m x =+∞→)()(lim,A 为非零常数、∞+或∞-,易知积分⎰∞+a n mxdx x q x p sin )()(发散.⒍ 设f x ()在[,]a b 只有一个奇点x b =,证明定理8.2.'3和定理8.2.'5.定理8.2.'3(Cauchy 判别法) 设在[,)a b 上恒有f x ()≥0,若当x 属于b 的某个左邻域[,)b b -η0时,存在正常数K ,使得⑴ f x K b x p ()()≤-,且p <1,则f x dx ab()⎰收敛; ⑵ f x K b x p()()≥-,且p ≥1,则f x dx ab()⎰发散. 证 (1)当p <1时,积分⎰-bapdx x b )(1收敛,由反常积分的Cauchy 收敛原理,页脚内容2850>∀ε,0>∃δ,),0(',δηη∈∀:K dx x b b b pεηη<-⎰--')(1. 由于≤⎰--')(ηηb b dx x f εηη<-⎰--')(b b pdx x b K,所以f x dx a b ()⎰收敛. (2)当1≥p 时,积分⎰-bapdx x b )(1发散,由反常积分的Cauchy 收敛原理, 00>∃ε,0>∀δ,),0(',δηη∈∃:K dx x b b b p0')(1εηη≥-⎰--. 由于≥⎰--')(ηηb b dx x f 0')(εηη≥-⎰--b b pdx x b K,所以f x dx a b ()⎰发散. 推论(Cauchy 判别法的极限形式)设在[,)a b 上恒有f x ()≥0,且lim()()x b p b x f x l →--=,则⑴ 若0≤<+∞l ,且p <1,则f x dx a b()⎰收敛; ⑵ 若0<≤+∞l ,且p ≥1,则f x dx a b()⎰发散.证 (1)由lim()()x b p b x f x l →--= (+∞<≤<l p 0,1),可知0>∃δ,),(b b x δ-∈∀:px b l x f )(1)(-+<, 再应用定理8.2.'3的(1).页脚内容286(2)由lim()()x b p b x f x l →--= (+∞≤<≥l p 0,1),可知0>∃δ,),(b b x δ-∈∀:px b lx f )(2)(->, 再应用定理8.2.'3的(2).定理8.2.'5 若下列两个条件之一满足,则f x g x dx a b()()⎰收敛: ⑴(Abel 判别法)f x dx a b()⎰收敛,g x ()在[,)a b 上单调有界;⑵(Dirichlet 判别法)⎰-=ηηb adx x f F )()(在],0(a b -上有界,g x ()在[,)a b 上单调且0)(lim =-→x g b x .证 (1)设G x g ≤|)(|,因为f x dx a b()⎰收敛,由Cauchy 收敛原理,0>∀ε,0>∃δ,),(,b b A A δ-∈'∀:Gdx x f A A2)(ε<⎰'.由积分第二中值定理,⎰'A Adx x g x f )()(⎰⎰'⋅'+⋅≤A Adx x f A g dx x f A g ξξ)()()()(⎰⎰'+≤A A dx x f G dx x f G ξξ)()(εεε=+<22.(2)设M F ≤|)(|η,于是),[,b a A A ∈'∀,有M dx x f A A2)(<⎰'.因为0)(lim =-→x g b x ,0>∀ε,0>∃δ,),(b b x δ-∈∀,有Mx g 4)(ε<.由积分第二中值定理,⎰'A Adx x g x f )()(⎰⎰'⋅'+⋅≤A Adx x f A g dx x f A g ξξ)()()()(页脚内容287|)(|2|)(|2A g M A g M '+≤εεε=+<22.所以无论哪个判别法条件满足,由Cauchy 收敛原理,都有⎰∞+adx x g x f )()(收敛的结论.⒎ 讨论下列非负函数反常积分的敛散性:⑴112301x x dx ()-⎰;⑵ln xx dx 2011-⎰;⑶12202cos sin x xdx π⎰; ⑷102-⎰cos xxdx pπ; ⑸|ln |x dx p 01⎰; ⑹x x dx p q ---⎰11011();⑺⎰---1011|ln |)1(dx x x xq p .解 (1)因为32)1(1x x -~321x )0(+→x ,32)1(1x x -~31)1(1x -)1(-→x ,所以积分112301x x dx()-⎰收敛.(2)因为1ln lim 21--→x x x 21=,且对任意10<<δ,01ln lim 20=-+→x x x x δ,即当0>x 充分小时,有δxx x 11ln 2<-,所以积分ln xx dx 2011-⎰收敛. (3)因为x x 22sin cos 1~21x )0(+→x ,x x 22sin cos 1~2)2(1x -π)2(-→πx ,所以积分12202cos sin x xdx π⎰发散.页脚内容288(4)因为p x x cos 1-~221-p x )0(+→x ,所以当3<p 时积分102-⎰cos x x dx p π收敛,当3≥p 时积分102-⎰cos xxdx pπ发散. (5)首先对任意的10<<δ与任意的p ,有0]|ln |[lim 0=+→p x x x δ,即当0>x 充分小时,有δxxp1ln <;且 px ln ~p x --)1(1)1(-→x .所以当1->p 时,积分|ln |x dx p 01⎰收敛,当1-≤p 时,积分|ln |x dx p 01⎰发散.(6)11)1(---q p x x ~px -11)0(+→x ,11)1(---q p x x ~qx --1)1(1)1(-→x ,所以在0,0>>q p 时积分x x dx p q ---⎰11011()收敛,在其余情况下积分x x dx p q ---⎰11011()发散.(7)|ln |)1(11x x x q p ---~qx --)1(1)1(-→x ,且 0|)]ln |)1(([lim 11210=----+→x x x xq p p x ,即当0>x 充分小时,有21111ln )1(p q p xx x x ---<-,所以当1,0->>q p 时积分⎰---1011|ln |)1(dx x x x q p 收敛,在其余情况下积分⎰---1011|ln |)1(dx x x x q p 发散.⒏ 讨论下列反常积分的敛散性:页脚内容289⑴x x xdx p q ---⎰111ln (+∈R q p ,);⑵11223x x x dx ()()--+∞⎰; ⑶ln()10++∞⎰x x dx p; ⑷⎰∞+0tan arc dx xxp; ⑸⎰2/0tan πdx x x p;⑹x dx p x --+∞⎰10e ;⑺1x x dx p q++∞⎰;⑻⎰∞+2ln 1dx xx qp . 解(1)x x x dx p q ---⎰1101ln ⎰-=2101ln dx x x p ⎰--2101ln dx x x q ⎰---+12111ln dx xx xq p . 当0>p ,0>q 时积分⎰-211ln dx x x p 与积分⎰-2101ln dx xxq 显然收敛,且当-→1x 时, =---x x x q p ln 11()[]()[]())1(1ln 1)1(11)1(111-+--+---+--x x x q p ~q p x x q p -=---1)1)((,即⎰---12111ln dx xx x q p 不是反常积分,所以积分x x x dx p q ---⎰1101ln 收敛.(2)=--⎰∞+032)2()1(1dx x x x ⎰--1032)2()1(1dx x x x ⎰--+2132)2()1(1dx x x x⎰∞+--+232)2()1(1dx x x x .页脚内容290因为32)2()1(1--x x x ~313121x ⋅-)0(+→x ,32)2()1(1--x x x ~32)1(1--x)1(-→x ,所以积分⎰--1032)2()1(1dx x x x 收敛;因为32)2()1(1--x x x ~32)1(1--x)1(+→x ,32)2()1(1--x x x ~313)2(121-⋅x)2(-→x ,所以积分⎰--2132)2()1(1dx x x x 收敛;因为32)2()1(1--x x x ~313)2(121-⋅x)2(+→x ,32)2()1(1--x x x ~341x )(+∞→x ,所以积分⎰∞+--232)2()1(1dx x x x 收敛.页脚内容291由此可知积分11223x x x dx ()()--+∞⎰收敛.(3)=+⎰∞+0)1ln(dx xx p++⎰10)1ln(dx x x p⎰∞++1)1ln(dx xx p. 由px x )1ln(+~11-p x )0(+→x ,可知当2<p 时,积分⎰+10)1ln(dx xx p收敛,当2≥p 时,积分⎰+10)1ln(dx xx p发散;当1>p 时,0)1ln(lim 213=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+∞→p p x x x x ,即当0>x 充分大时,有 2131)1ln(-<+p px xx ,其中1213>-p ,可知当1>p 时,积分⎰∞++1)1ln(dx xx p 收敛,当1≤p 时,积分⎰∞++1)1ln(dx xx p发散; 综上所述,当21<<p 时,积分⎰∞++0)1ln(dx x x p 收敛,在其余情况下积分⎰∞++0)1ln(dx x x p发散.(4)⎰∞+0tan arc dx x x p ⎰=10tan arc dx x x p ⎰∞++1tan arc dx xxp. 由p x x arctan ~11-p x )0(+→x ,可知当2<p 时积分⎰10tan arc dx xx p 收敛; 由p x x arctan ~p x 2π)(+∞→x ,可知当1>p 时积分⎰∞+1tan arc dx xxp 收敛. 所以当21<<p 时积分⎰∞+0tan arc dx xxp收敛,在其余情况下积分页脚内容292⎰∞+0tan arc dx xxp发散. (5)⎰2/0tan πdx xx p⎰=4/0tan πdx xx p⎰+2/4/tan ππdx xx p.由pxxtan ~211-p x)0(+→x ,可知当23<p 时积分⎰4/0tan πdx x x p收敛,当23≥p 时积分⎰4/0tan πdx xx p发散;由pxx tan ~122()2pp x ππ-)2(-→πx ,可知积分⎰2/4/tan ππdx xx p收敛.所以当23<p 时积分⎰2/0tan πdx x x p收敛,当23≥p 时积分 ⎰2/0tan πdx xx p发散.(6)x dx p x --+∞⎰10e ⎰--=101e dx x x p ⎰∞+--+11e dx x x p .由于积分⎰∞+--11e dx x x p 收敛,及x p e x --1~px -11)0(+→x ,所以当0>p 时积分x dx p x --+∞⎰10e 收敛,当0≤p 时积分x dx p x --+∞⎰10e 发散.(7)10x x dx p q++∞⎰⎰+=101dx x x q p ⎰∞+++11dx x x q p . 当q p =时,显然积分1x x dx p q++∞⎰发散;页脚内容293当q p ≠时,由于q p x x +1~),min(1q p x )0(+→x ,q p x x +1~),max(1q p x)(+∞→x , 所以当1),min(<q p ,且1),max(>q p 时积分10x x dx p q++∞⎰收敛,其余情况下积分10x x dx p q ++∞⎰发散.(8)设1>p ,则对任意的q ,当x 充分大时,有211ln 1+<p qp xxx ,因为121>+p ,可知积分⎰∞+2ln 1dx xx qp 收敛. 设1<p ,则对任意的q ,当x 充分大时,有211ln 1+>p qp xxx ,因为121<+p ,可知积分⎰∞+2ln 1dx xx qp 发散.设1=p ,令t x =ln ,则⎰∞+2ln 1dx x x q p ⎰∞+=2ln qtdt,由此可知当1>p 或 1,1>=q p 时积分⎰∞+2ln 1dx x x q p 收敛,在其余情况下积分⎰∞+2ln 1dx x x q p 发散. ⒐ 讨论下列反常积分的敛散性:⑴x x dx p -+∞+⎰121; ⑵x xx dx q psin 11++∞⎰ (p ≥0);⑶⎰∞+0sin cos e dx xxpx ; ⑷⎰∞+0sin 2sin e dx xxpx ;页脚内容294(⎰1021cos 1dx xx p ; (⎰∞+⎪⎭⎫ ⎝⎛+11sin dx xx x p(0>p ). 解(1)x x dx p -+∞+⎰1201⎰+=-10211dx x x p ⎰∞+-++1211dx x xp . 由211x x p +-~p x -11)0(+→x ,211xx p +-~p x -31)(+∞→x ,可知当20<<p 时积分x x dx p -+∞+⎰1201收敛,在其余情况下积分x x dx p -+∞+⎰121发散. (2)当1-<p q 时,由q p p q xx x x -<+11|sin |,可知积分x x x dx qpsin 11++∞⎰绝对收 敛.当p q p <≤-1时,因为⎰=Axdx A F 1sin )(有界,当x 充分大时pqxx +1单 调减少,且01lim =++∞→p q x x x ,由Dirichlet 判别法,积分⎰∞++11sin dx xxx p q收敛; 但因为积分⎰∞++11|sin |dx xx x pq 发散,所以当p q p <≤-1时积分sin x x dx p 1+∞⎰条 件收敛.当p q ≥时,由于n →∞时22sin 1q n pn x xdx xπππ++⎰不趋于零,可知积分 x xx dx q psin 11++∞⎰发散.页脚内容295(3)⎰∞+0sin cos e dx x x p x ⎰=10sin cos e dx x x p x ⎰∞++1sin cos edx xx p x. 由px xxe cos sin ~p x 1)0(+→x ,可知当1<p 时积分⎰10sin cos edx xxpx收敛,在其余情况下积分⎰10sin cos edx xxpx发散.当1<p 时,易知积分⎰∞+1sin |cos |e dx x x p x 发散;当0≤p 时,易知积分⎰∞+1sin cos edx xx p x发散. 当10<<p 时,因为1cos 1sin -<⎰e xdx e A x,p x 1单调减少,且01lim =+∞→p x x,由Dirichlet 判别法;可知积分⎰∞+1sin cos e dx xxpx 收敛. 综上所述,当10<<p 时,积分⎰∞+0sin cos e dx x x p x 条件收敛,在其余情况下积分⎰∞+0sin cos edx xx p x发散.(4)⎰∞+0sin 2sin e dx x x p x ⎰=10sin 2sin e dx x x p x ⎰∞++1sin 2sin edx xx p x. 由p x x x e 2sin sin ~12-p x )0(+→x ,可知当2<p 时积分⎰10sin 2sin e dx x x p x收敛,在其余情况下积分⎰10sin 2sin e dx xxpx发散. 当21<<p 时,显然积分⎰∞+1sin |2sin |e dx x x p x 收敛;当1≤p 时,易知积分⎰∞+1sin |2sin |edx xx p x发散;页脚内容296当0≤p 时,易知积分⎰∞+1sin 2sin e dx x xpx 发散. 当10≤<p 时,因为⎰+=ππ)1(sin 02sin k k x xdx e ,可知⎰A x xdx e 0sin 2sin 有界,且p x1单调减少,01lim=+∞→p x x ,由Dirichlet 判别法,可知积分⎰∞+1sin 2sin e dx xxpx 收敛. 综上所述,当21<<p 时积分⎰∞+0sin 2sin e dx x x p x 绝对收敛,当10≤<p 时积分⎰∞+0sin 2sin edx xx p x条件收敛,在其余情况下积分⎰∞+0sin 2sin e dx xxpx 发散. (5)令21x t =,则 ⎰=1021cos 1dx xx p tdt t p cos 121123⎰∞+-. 于是可知当1<p 时积分⎰121cos 1dx x x p 绝对收敛;当31<≤p 时积分⎰1021cos 1dx x x p 条件收敛,当3≥p 时积分⎰121cos 1dx xx p 发散. (6)当1>p 时,因为pp xx x x 11sin ≤⎪⎭⎫ ⎝⎛+,可知积分⎰∞+⎪⎭⎫ ⎝⎛+11sin dx x x x p 绝对收敛.页脚内容297当10≤<p 时,因为⎰++⎪⎭⎫ ⎝⎛+261sin ππππn n p dx x x x p n ⎪⎭⎫ ⎝⎛+⋅>2321πππ,而级数 ∑∞=⎪⎭⎫⎝⎛+121n pn ππ发散,所以积分⎰∞+⎪⎭⎫ ⎝⎛+11sin dx xx x p发散;又因为 =+⎰∞+dx x x x p1)1sin(dx x x x x x p⎰∞++1sin 1cos cos 1sin ,注意到当x 充分大时,p x x 1sin 与p xx 1cos 都是单调减少的,由Dirichlet 判别法可知积分⎰∞+⎪⎭⎫ ⎝⎛+11sin dx x x x p 收敛,所以积分⎰∞+⎪⎭⎫ ⎝⎛+11sin dx xx x p 条件收敛. 10.证明反常积分⎰∞+04sin sin xdx x x 收敛. 证 对任意A A A >>'",由分部积分法,⎰="'4sin sin A A xdx x x ⎰-"'42)(cos 4sinA A x d x x"'244cos sin A A x xx ⎪⎪⎭⎫ ⎝⎛-=⎰-+"'244cos cos A A dx x x x ⎰"'342sin cos A A dx x x x . 显然,当+∞→A 时,等式右端的三项都趋于零,由Cauchy 收敛原理,可知反常积分⎰∞+04sin sin xdx x x 收敛.11.设f x ()单调,且当x →+0时f x ()→+∞,证明:f x dx ()01⎰ 收敛的必要条件是lim ()x xf x →+=00.页脚内容298证 首先由f x ()的单调性,对于充分小的10<<x ,有⎰≤≤xx dt t f x f x 2)()(20. 由Cauchy 收敛原理,⎰=+→x xx dt t f 200)(lim,于是得到0)(lim 0=+→x xf x .12.设⎰∞+adx x f )(收敛,且)(x xf 在),[+∞a 上单调减少,证明:0)()(ln lim =+∞→x f x x x .证 首先容易知道当+∞→x 时,)(x xf 单调减少趋于0,于是有0)(≥x xf ,且⎰=⋅≤≤xx dt tt tf x f x x 1)()()(ln 210⎰x xdt t f )(.然后由Cauchy 收敛原理,0)(lim=⎰+∞→xxx dt t f ,于是得到0)()(ln lim =+∞→x f x x x .13.设f x ()单调下降,且lim ()x f x →+∞=0,证明:若'f x ()在[,)0+∞上连续,则反常积分'+∞⎰f x x dx ()sin 20收敛.证 首先由分部积分法,⎰∞+=2sin )('xdx x f ⎰∞+02)(sin x xdf ⎰∞+-=02sin )(xdx x f .页脚内容299由于⎰=Axdx A F 02sin )(有界,f x ()单调下降,且lim ()x f x →+∞=0,由Dirichlet 判别法,可知积分⎰∞+02sin )(xdx x f 收敛,从而积分'+∞⎰f x x dx ()sin 20收敛.14. 设⎰∞+adx x f )(绝对收敛,且lim ()x f x →+∞=0,证明f x dx a 2()+∞⎰收敛.证 首先由lim ()x f x →+∞=0,可知a A >∃,A x >∀,有1)(<x f ,即当A x >时,成立)()(2x f x f ≤.因为积分⎰∞+adx x f )(绝对收敛,于是由比较判别法,积分f x dx a 2()+∞⎰收敛.15. 若f x dx a 2()+∞⎰收敛,则称f x ()在[,)a +∞上平方可积(类似可定义无界函数在[,]a b 上平方可积的概念).⑴ 对两种反常积分分别探讨f x ()平方可积与f x ()的反常积分收敛之间的关系; ⑵ 对无穷区间的反常积分,举例说明,平方可积与绝对收敛互不包含;⑶ 对无界函数的反常积分,证明:平方可积必定绝对收敛,但逆命题不成立.解 (1)⎰∞+adx x f )(收敛不能保证f x dx a 2()+∞⎰收敛,例如:xx x f sin )(=,则⎰∞+1)(dx x f 收敛,但⎰∞+12)(dx x f 发散;f x dx a 2()+∞⎰收敛不能保证⎰∞+a dx x f )(收敛,例如:x x f 1)(=,则 ⎰∞+12)(dx x f 收敛,但⎰∞+1)(dx x f 发散.页脚内容300(2)f x dx a 2()+∞⎰收敛不能保证⎰∞+adx x f )(绝对收敛,例如:xx x f sin )(=,则⎰∞+12)(dx x f 收敛,但⎰∞+1)(dx x f 不是绝对收敛的;⎰∞+a dx x f )(绝对收敛不能保证f x dx a 2()+∞⎰收敛,例如:⎪⎩⎪⎨⎧+∈=∞=其他0]1,[)(23n n n n x n x f ,则⎰∞+1)(dx x f 绝对收敛,但⎰∞+12)(dx x f 发散.(3)由)](1[21)(2x f x f +≤,可知⎰b a dx x f )(2收敛保证⎰ba dx x f )(绝对收敛;但⎰b a dx x f )(绝对收敛不能保证⎰ba dx x f )(2收敛,例如:xx f 1)(=,则⎰1)(dx x f 绝对收敛,但⎰102)(dx x f 发散.16. 证明反常积分sin sin xx xdx p++∞⎰1当p ≤12时发散,当121<≤p 时条件收敛,当p >1时绝对收敛.证 当p >1时,对充分大的x ,有x x x p sin sin +p x 2≤,由于积分⎰∞+12dx xp 收敛,可知积分sin sin xx xdx p ++∞⎰1绝对收敛.当10≤<p 时,利用等式)sin (sin sin sin sin 2x x x xx x x x x pp p p+-=+.页脚内容301这时积分⎰∞+1sin dx x x p 收敛;积分⎰∞++12)sin (sin dx x x x x p p 当121<≤p 时收敛,当210≤<p 发散. 当121<≤p 时,由于⎰+++434sin sin ππππn n p dx x x x 1)1(122++⋅≥pp n ππ,因为级数1)1(11++∑∞=pp n n π发散,所以积分⎰∞++1sin sin dx xx xp发散. 综上所述,当121<≤p 时,积分sin sin x x x dx p ++∞⎰1条件收敛;当210≤<p 时,积分sin sin x x x dx p++∞⎰1发散.当0≤p 时,因为有⎰+++2242sin sin ππππn n p dx x x x 2224sin 2n n x dx ππππ++>⎰π162>,由 Cauchy 收敛原理,可知积分sin sin xx xdx p ++∞⎰1发散.。