遥感原理与应用课程上机实验报告
遥感原理及应用实验报告-V1
遥感原理及应用实验报告-V1遥感原理及应用实验报告遥感是指通过对地球表面的遥感器获取数据,对地球资源和环境进行监测和研究的一种技术。
在遥感中,主要采用遥感仪器和卫星发射器等装置,并通过遥感技术对获取的数据进行处理和分析,以实现对地球表面的监控和感知。
本实验中我们通过学习遥感原理,并运用相关仪器进行实验,以更深入地了解遥感技术的基本原理和应用。
实验过程实验步骤如下:1.准备工作首先,我们需要进行一些准备工作,包括将遥感仪器和其他相关设备准备好,同时还需要校准测量设备,以确保实验数据的准确度。
2.选择实验区域接下来,我们需要选择一个适合的实验区域,以便进行实验。
在这一步中,我们可以通过查阅相关资料和地图来选择一个地点,并记录其经纬度信息。
3.数据采集在实验区域确定之后,我们开始进行数据采集。
这一步需要使用遥感仪器,并通过其收集特定范围内的地表数据。
我们需要测量并记录数据,以便后续分析。
4.数据处理和分析一旦完成了数据采集,我们需要对其进行处理和分析,以提取出对应的信息。
在处理和分析过程中,我们可以使用一些常用的遥感软件和算法,如NDVI算法,来实现数据处理和分析。
我们可以通过查看结果图像,了解地表状况,如地表覆盖情况、土地利用状态、植被生长情况等信息。
实验结果通过本次实验,我们了解了遥感技术的基本原理,并掌握了遥感仪器和软件的使用方法。
通过数据采集和分析,我们可以得到该实验区域的地表信息,如地表覆盖情况、土地利用状态、植被分布情况等。
结论综上所述,遥感技术是一种重要的地球监测和研究技术,可以通过遥感仪器和软件等工具对地表进行监测和分析,为环境保护、农业生产、城市规划、自然资源管理等提供重要支持。
本次实验通过学习遥感原理和仪器的使用方法,为我们了解遥感技术及其应用提供了重要基础。
《遥感原理与应用》实验报告一
《遥感原理与应用》实验报告一前言一、实验目的与任务《遥感原理与应用》是测量学科的基础课,也是一门实践性很强的课程,实验的目的一方面是为了验证、巩固课堂上所学的知识,另一方面是熟悉遥感平台的应用方法,培养学生进行遥感平台的基本操作技能,使学到的理论与实践相结合。
通过实验,培养学生的动手能力和严格的科学态度,以及爱护仪器、热爱劳动、热爱集体的良好思想。
二、实验内容与学时分配三、实验注意事项1.在实验之前,必须复习教材中的有关内容,认真仔细地预习实验,明确目的要求、方法步骤及注意事项,以保证按时完成实验。
2.每人必须认真、仔细地操作,培养独立工作能力和严谨的科学态度,同时要发扬互相协作精神。
3.实验应在规定的时间和地点进行,不得无故缺席或迟到早退,不得擅自改变地点或离开现场。
在实验或实习过程中或结束时,发现有损坏情况,应立即报告指导教师,同时要查明原因,根据情节轻重,给予适当处理。
四、实验成绩考核单个实验成绩由两部分组成:课程成绩 = 过程考核30% + 实验报告×70%。
实验一认识遥感影像并熟悉遥感影像处理软件一、实验目的1.掌握遥感影像的下载方式,了解相关平台。
2.掌握ENVI的基本视窗操作,能够进行系统设置,查看并理解遥感卫星影像的相关参数。
3.掌握使用ENVI进行遥感影像裁剪的方法和步骤。
4.了解遥感影像的格式,能够将遥感影像存储成特定格式。
5.掌握遥感影像的合成方法,包括真彩色合成和伪彩色合成。
二、实验原理1.图像裁剪图像裁剪的目的是将研究区之外的区域去除,常用的方法是按照行政区边界或者自然区划边界进行图像裁剪。
同时,还可以按照矩形,任意多边形,影像对其进行裁剪。
规则裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形范围获取途径包括:行列号、左上角和右下角两点坐标、图像文件、ROI/矢量文件。
2.多波段组合以Landsat8 OLI传感器为例,多波段组合方式及用途如下表所示。
表1.1 Landsat8数据波段参数三、实验内容1.通过网络(如地理空间云等),免费下载一幅遥感影像。
遥感应用上机实验报告
2010 12《遥感应用》实验报告1实验一 数据输入一、 实习目的掌握TM 图像数据输入的主要方法。
二、 实习内容主要包括单波段TM 图像数据输入、多波段组合文件的生成。
三、 实习过程1、单波段二进制图像数据输入1) 打开ERDAS ,在ERDAS 图标面板工具条中,点击打开输入输出对话框,如图所示。
并做如下图的选择点击OK 弹出Import Generic Binary Data 对话框,如下图所示在Data Format下拉框中选择BSQ,在Data Type下拉框中选择Unsigned 8 Bit,文件行列数的输入:在实验一TM数据中右击header.dat文件,点击用记事本打开,找到相关的行列数据,在Row中填入5733,在Cols填入6773,在Bands中选择1,然后点击Save Option,最后点击OK 执行数据输入,完成后关闭窗口。
用viewer打开转换后的band1.img文件,如图2重复上述过程,依此将七个波段的数据全部输入,完成了7个波段的输入。
2、组合波段数据:为了图像处理与分析,需要将上述转换的单波段文件组合为一个多波段图像文件。
步骤:在ERDAS图标面板工具条中,点击Interpreter--Utilities--Layer Stack打开Layer Selection and Stacking的对话框。
在input file中选择输入文件路径,将转换后的img图像文件逐一选入layer框,勾选ignore zero instats选项点击ok完成波段组合。
合成后的图像如图所示。
3四、实验小结:在此次实验的过程中遇到了很多问题,由于是初次接触遥感图像处理的软件,刚开始软件的安装就出现了很多问题,没有认真的阅读实验安装过程,造成软件证书无效,不能正常运行。
在今后的学习过程中要更加踏实,努力按照老师的要求去做,做实验的时候多思考,勤尝试。
实验二遥感图像几何纠正一、实验目的掌握遥感图像的纠正过程二、实验内容根据实验的数据,对两张图片进行几何纠正4三、 实验流程显示图像模型→调用几何纠正模型→启动控制点工具→采集地面控制点和地面检查点→计算变换参数→灰度重采样→纠正精度评定四、 实验步骤1、在开始---程序菜单中打开ERDAS ,点击Viewer 菜单,则出现了Viewer2。
遥感上机实习报告
《遥感原理与应用》课程上机班级:学号:姓名:目录一实验目的 (2)二实验数据介绍 (2)三实验过程 (2)1.空间域增强点运算 (2)线性变换 (3)非线性变换 (4)直方图均衡化 (6)直方图规定化 (7)2.空间域增强领域运算 (9)图像锐化 (10)图像平滑 (10)3.频率域增强 (11)图像平滑 (12)图像锐化 (14)4.彩色增强 (16)伪彩色增强 (16)假彩色增强 (17)5.多图像代数运算 (18)差值法................................................................................................. 错误!未定义书签。
比值法 (20)混合运算法 (21)6.多光谱图像变换 (22)主成分变换 (22)缨帽变换............................................................................................. 错误!未定义书签。
四实验体会.. (24)ENVI初步学习和影像增强处理一.实验目的了解ENVI基本信息、基本概念及其主要特性。
对ENVI操作界面有一个基本的熟悉,对各菜单功能有一个初步了解,为后面的实习作好准备。
通过使用ENVI对TM影像数据的处理,掌握ENVI的基本操作,同时探究ENV 的主要功能。
实现空间域增强,点运算中的线性变换,非线性变换,直方图均衡化,直方图规定化,领域运算中的图像锐化,图像平滑。
频率域增强中的图像锐化,图像平滑。
彩色增强中为彩色增强和假彩色增强。
多图像代数运算中的差值法、比值法和混合运算法。
多光谱图像变换中的主成分变换和缨帽变换的实验操作。
二.实验数据介绍TM1 0.45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
《遥感原理与应用》实验报告
《遥感原理与应用》实验报告实验报告:遥感原理与应用一、实验目的通过实验了解遥感的基本原理,掌握遥感技术的基本应用方法。
二、实验仪器和材料1.遥感软件:ENVI、ERDAS、IDRISI等2.遥感数据:卫星遥感影像数据三、实验内容1.遥感影像地理信息提取通过遥感软件导入遥感影像数据,利用图像处理方法提取地理信息,如土地利用类型、植被覆盖度等。
2.遥感影像分类利用遥感影像数据进行分类分析,将影像中的不同对象或地物进行分类,如建筑物、农田、水域等。
3.遥感影像变化检测利用不同时间的遥感影像数据进行变化检测,观察地物变化的情况,如城市扩张、植被变化等。
四、实验步骤1.打开遥感软件,导入遥感影像数据。
2.使用图像处理方法提取地理信息,如选择适当的阈值进行植被覆盖度的提取。
3.利用分类分析方法将影像中的不同对象进行分类,可以使用最大似然分类方法或支持向量机分类方法等。
4.比较不同时间的遥感影像数据,通过图像差异分析方法进行变化检测。
五、实验结果通过实验,我们成功使用遥感软件导入遥感影像数据,并提取了植被覆盖度等地理信息。
同时,我们还使用分类分析方法将影像中的不同对象进行了分类,得到了建筑物、农田、水域等分类结果。
最后,我们通过比较不同时间的遥感影像数据,成功进行了变化检测,观察到了城市扩张和植被变化的情况。
六、实验感想通过这次实验,我们深入了解了遥感技术的基本原理和应用方法。
遥感技术具有非常广泛的应用领域,如环境监测、农业管理、城市规划等。
遥感影像数据可以提供大量的地理信息,通过图像处理和分类分析可以提取出有用的地理信息,同时通过变化检测可以观察到地物的变化情况。
掌握遥感技术对于我们理解地球变化、环境保护和资源利用具有重要意义。
总结:通过这次实验,我们不仅学习到了遥感技术的基本原理和应用方法,还亲自进行了实验操作,掌握了使用遥感软件进行遥感影像地理信息提取、分类分析和变化检测的基本技能。
希望今后能够将所学的遥感知识应用到实际工作中,为地球环境的保护和资源的利用做出贡献。
遥感原理与应用实验报告.doc
遥感原理与应用ENVI初步学习和影像增强处理一、实验目的1、初步学习ENVI 软件和掌握其基本操作;2、了解遥感图像处理的基本原理、流程以及软件系统的基本构成和功能;3、理解和掌握影像增强处理的基本内容,包括直方图的概念、生成方法,理解直方图所反映的图像性质;4、了解图像增强和滤波的多种方法,掌握直方图均衡、分段线性拉伸、密度分割、平滑、锐化、边缘增强的方法;5、掌握了改善遥感图像视觉效果的有效方法。
二、实验数据介绍ENVIdescription = {Bighorn Basin, Landsat TM, Calibrated to Reflectance}samples = 512lines = 512bands = 6header offset = 0file type = ENVI Standarddata type = 1interleave = bsqsensor type = Landsat TMbyte order = 0map info = {UTM, 1.000, 1.000, 277904.645, 4906894.331, 2.8500000000e+001, 2.8500000000e+001, 13, North, units=Meters}coordinate system string ={PROJCS["UTM_Zone_13N",GEOGCS["GCS_North_American_1927",DATUM["D _North_American_1927",SPHEROID["Clarke_1866",6378206.4,294.9786982]],PRI MEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Tra nsverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False _Northing",0.0],PARAMETER["Central_Meridian",-105.0],PARAMETER["Scale_F actor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Micrometersz plot range = {0.00, 100.00}z plot titles = {Wavelength, Reflectance}band names = {TM Band 1, TM Band 2, TM Band 3, TM Band 4, TM Band 5, TM Band 7} wavelength = {0.485000, 0.560000, 0.660000, 0.830000, 1.650000, 2.215000}三、实验过程- 1 -A、初步学习初步学习遥感图像的输入/输出、波段组合及图像显示。
遥感实习报告(报告)
重庆交通大学测绘工程《遥感原理及应用》实验报告班级:学号:姓名:指导老师:实验室:地理信息中心实验室实验一ENVI 视窗的基本操作一、实验的目的初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。
二、实验软件与数据软件:Envi遥感图像处理软件.数据:重庆地区UTM第八波段数据。
三、实验方法与步骤Envi软件的主菜单:这个是ENVI软件的主菜单,其中包括了文件的载入,基本工具栏,以及图像处理的一些必要的功能。
四、实验体会与建议本次实验主要是熟悉Envi软件的菜单,以及一些常用的方法。
还有就是将Envi软件菜单的界面转换成中文菜单。
1、在ENVI安装目录..\RSI\IDL60\products\envi40\menu下建立新文件夹,命名为orgmenu2、拷贝.。
\RSI\IDL60\products\envi40\menu下原有的英文菜单文件display。
men、display_shortcut。
men和envi。
men到新建的orgmenu目录中进行备份3、拷贝下载的display。
men、display_shortcut。
men和envi。
men文件到。
.\RSI\IDL60\products\envi40\menu中,覆盖原文件.4、启动ENVI4.0。
实验二遥感图像的几何校正一、实验的目的通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
二、实验软件与数据软件:Envi遥感图像处理软件.数据:重庆地区UTM第八波段数据以及未经校核的重庆地区jpg图片。
三、实验方法与步骤1、打开ENVI软件将UTM图像和jpg格式的图片载入,上述图像中我们可以看出,12840-8图像下面有图像的地理信息,而重庆城区图片是没有信息说明的。
2、选择校正与镶嵌菜单下的校正图像选取控制点(图像到图像),分别选取基础图像和校正图像,分别在图像上面选择控制点,通过Add Point按钮增加选择的控制点,用这个方法选择5个控制点,单击Show List按钮查看所选控制点的信息3、在控制点选择窗口中选择options菜单,再选择warp file,选择输出校正后的图像文件。
《遥感原理与应用》实验报告三
《遥感原理与应用》实验报告三实验五图像融合一、实验目的1.掌握多源遥感影像融合的概念和意义。
2.掌握遥感影像融合的原理和方法。
3.掌握使用ENVI进行图像融合的方法和步骤。
二、实验原理遥感影像融合技术采用一定的算法对同一地区的多源遥感影像进行处理,生成一幅新的图像,从而获取单一传感器所不能提供的某些特征信息。
例如,全色图像一般具有较高的空间分辨率,但光谱分辨率较低,而多光谱图像则具有光谱信息丰富、空间分辨率低的特点,为了有效的利用两者的信息,可以对他们进行融合处理,在提高多光谱图像分辨率的同时,又保留了其多光谱特性。
表5.1 融合方法三、实验内容以GS变换为例:1.打开多光谱图像和全色波段图像2.在工具箱中,选择Image Sharpening→Gram-Schmidt Pan Sharpening,在输入低分辨率多光谱对话框中,选择多光谱文件;3.在输入高分辨率多光谱对话框中,选择全色波段文件;4.在Pan Sharpening Parameters对话框中设定输出文件名和路径。
以Brovey变换为例:1.打开多光谱图像和全色波段图像,并将图像转变为无符号8bit数据,Raster Management→Masking→Stretch Data,在Data Stretching面板中Data Type选择Byte;2.在工具箱中,选择Image Sharpening→Color Normalized (Brovey),在输入低分辨率多光谱对话框中,选择红、绿、蓝波段;3.在输入高分辨率多光谱对话框中,选择全色波段;4.在Color Normalized (Brovey)输出面板中选择重采样方式,并设定输出文件名和路径。
四、实验要求1.应用ENVI软件对遥感影像进行HSV变换融合。
2.应用ENVI软件对遥感影像进行Brovey变换融合。
3.应用ENVI软件对遥感影像进行PC变换融合。
4.应用ENVI软件对遥感影像进行GS变换融合。
遥感原理与应用实习报告
实验一、ERDAS视窗的基本操作实验目的:初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。
实验内容:视窗功能介绍;文件菜单操作;实用菜单操作;显示菜单操作;矢量和删格菜单操作等。
视窗操作是ERDAS软件操作的基础, ERDAS所有模块都涉及到视窗操作。
本实验要求掌握视窗的基本功能,熟练掌握图像显示操作和矢量菜单操作,从而为深入理解和学习ERDAS软件打好基础。
1.视窗功能简介二维视窗(图1-1)是显示删格图像、矢量图形、注记文件、AOI等数据层的主要窗口。
通过实际操作,掌握视窗菜单的主要功能、视窗工具功能。
图1-1 二维视窗2、图像显示操作(Display an Image )第一步:启动程序(Start Program )视窗菜单条:File →open → RasterLayer →Select Layer To Add 对话框。
第二步:确定文件(Determine File )在Select Layer To Add 对话框中有File 和Raster Option 两个选择项,其中File 就是用于确定图像文件的,具体内容和操作实例如表。
表1-1 图像文件确定参数第三步:设置参数(Raster option )图1-2 参数设置第四步:打开图像(Open Raster Layer )3.实用菜单操作了解光标查询功能;量测功能;数据叠加功能;文件信息操作。
4、显示菜单操作掌握文件显示顺序(图1-3);显示比例;显示变换操作等。
5、矢量菜单操作矢量菜单操作功能是ERDAS软件将遥感与地理信息系统相结合的一个体现。
主要介绍矢量操作的有关命令,这是本次实验的重点掌握内容。
指导学生掌握适量工具面板功能,在此基础上重点掌握矢量文件的生成与编辑。
矢量文件的生成与编辑:第一步:打开图像文件第二步:创建图形文件第三步:绘制图形要素第四步:保存矢量文件在此基础上,指导学生掌握:改变矢量要素形状;调整矢量要素特征;编辑矢量属性数据等有关矢量操作。
遥感实习报告5则范文
遥感实习报告5则范文第一篇:遥感实习报告《遥感原理与应用》课堂实验报告(2015-2016学年第一学期)专业班级:学号:姓名:实验成绩:□ 优秀:格式完全符合规范要求,内容完整,图表规范美观;实验原理清楚,实验步骤合理,结果正确;严格遵守实验纪律,按时上交实验报告。
□ 良好:格式符合规范要求,内容完整,图表规范;实验原理较清楚,实验步骤合理,结果正确;遵守实验纪律,按时上交实验报告。
□ 中等:格式基本符合规范要求,内容较完整;实验原理较清楚,实验步骤基本合理,结果正确;能遵守实验纪律,能按时上交实验报告。
□ 及格:格式问题较多,内容基本完整;实验原理较清楚,实验步骤基本合理,结果基本正确;能遵守实验纪律,能按时上交实验报告。
□不及格:格式问题突出,内容不完整;实验原理不清楚,实验步骤欠合理,结果不正确;有抄袭现象,不遵守实验纪律,未时上交实验报告。
指导教师签名:2015年 11月 5日实验项目(一):遥感图像几何纠正(4学时)实验目的:掌握遥感图像几何纠正的原理方法;熟悉几何纠正中控制点的选择原则和方法;熟练掌握有关遥感图像处理软件的主要功能和操作步骤;针对变形的遥感图像能进行几何纠正。
实验器材:1、计算机;2、基准遥感图像、待纠正遥感图像;3、遥感数字图像处理ENVI软件。
实验要求:掌握遥感图像几何纠正的主要步骤;自己独立完成遥感图像几何纠正;对几何校正结果进行评价。
实习时间及地点:2015年10月15日软件与数据源描述:ENVI提供以下选择方式:从栅格图像上选择如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。
从矢量数据中选择如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。
从文本文件中导入事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map(x,y), Image(x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。
《遥感原理与应用》实验报告四
《遥感原理与应用》实验报告四实验七图像特征变换一、实验目的1.掌握图像特征变换的意义和概念。
2.掌握主成分变换(K-L变换)的原理。
3.掌握穗帽变换(K-T变换)的原理。
4.掌握使用ENVI对遥感影像进行图像特征变换的方法和步骤。
二、实验原理特征变换是将原有的m个测量值集合并通过某种变换,产生n个(n≤m)新的特征。
特征变换的作用表现在两个方面:一方面减少特征之间的相关性,使得尽可能少的特征来最大限度包含原始数据的信息;另一方面使得待分类别之间的差异在变换后的特征中更明显,从而改善分类效果。
主成分变换是生成互不相关的输出波段,达到隔离噪声和减少数据集的维数的方法。
主成分波段是原始波段的线性合成,一般情况下,前三个主成分包含波段的绝大部分信息。
由于数据不相关,主成分可以生成颜色更多、饱和度更好的彩色合成图像。
穗帽变换是一种线性特征变换,变换后的前三个分量表示亮度、绿度和湿度,可以较好地分离土壤和植被。
三、实验内容1.主成分变换(1)主成分正变换,选择Transform→PCA Rotation→Forward PC Rotation New Statistics andRotate,在弹出的对话框中选择图像文件。
(2)在弹出的Forward PC Parameters对话框中,选择默认参数,设定输出路径和文件名,注意要保存统计文件(.sta),输出类型为Floating Point。
完成主成分正变换,变换后的波段主要信息集中在第一主成分中。
(3)选择Statistics→View Statistics File,查看统计文件(.sta),了解基本统计值、协方差矩阵、相关系数、特征向量和特征值。
(4)主成分逆变换,选择Transform→PCA Rotation→Inverse PCA Rotation,选择逆变换图像文件,点击OK,再选择统计文件(.sta),完成逆变换。
2.穗帽变换(1)穗帽变换,选择Transform→Tasseled Cap,设置穗帽变换参数,选择输入的文件类型,制定输出的文件名。
遥感原理与应用实习报告
遥感原理与应用课程设计—“遥感专题信息提取与专题图制作”设计报告遥感专题信息提取和专题图制作一、课程设计的目的和意义1、加深理解和巩固理论课上所学的有关遥感的基本原理、遥感传感器的成像机理、遥感图像的处理方法、专题信息提取以及遥感综合应用技术;2、锻炼自主编程设计遥感图像处理算法和熟练运用遥感软件独立分析问题、解决具体问题的实际工作能力;3、培养良好的工作习惯和科学素养,为今后参加科学研究工作以及毕业设计打下良好的基础。
二、课程设计的原理和方法结合在遥感原理与应用课程设计中学习过的有关遥感图像的相关知识,包括使用多项式对遥感影像的进行几何纠正,遥感影像的镶嵌,图像融合,使用模式识别技术对遥感影像进行监督分类和非监督分类,并对分类结果进行评价和处理,最终得到有实际使用价值的专题地图,使用ERDAS软件对遥感图像进行处理,提取专题要素并制作专题地图。
在本次课程设计中使用的ERDAS软件,是成熟的商业化遥感图像处理软件,功能强大,能够对遥感图像进行专业化的处理,并且处理速度高,准确度好,同时操作方便,但需要用户具备一定的遥感专业知识。
三、课程设计的过程与步骤3.1方案设计由于本次实习并没有向以往的实习一样有详细的实习步骤说明,需要自行设计实习的具体方案和步骤,根据老师提供的实习任务书中有关要求,结合课程所学知识,首先设计出总体方案,主要包括图像专题信息提取的流程,以及专题地图制作的流程。
然后对每一步进行细化,比如影像的几何纠正应该怎样进行,但应该注意这一部分应该不涉及到具体的软件操作,也就是说使用任意一个遥感图像处理软件按照设计的流程,在结合软件的具体操作,都应该能够正确的提取出感兴趣的专题信息。
3.2影像预处理由于实习提供的标准影像文件没有投影信息和地理坐标信息,为了能够使用该影像对需要处理的影像进行几何纠正,首先需要将相关的信息添加到影像中。
使用ERDAS打开标准影像sp_yc.img,点击快捷按钮中的影像信息按钮,弹出影像信息对话框,在地图信息和投影信息中可以看到没有相应的信息,此时选择Edit->ChangeMap Model,弹出地图模型对话框并根据老师提供的数据修改左上角像素的地理坐标信息和影像投影信息,修改完成如下图。
《遥感上机操作》 实验报告 (3)
生物与地理科学学院 2018-2019学年第二学期
《遥感上机操作》实验报告
二、形态学滤波
数学形态学滤波包括膨胀,腐蚀,开运算,闭运算。
三、自适应滤波
自适应滤波运用围绕每个像元的标准差来计算一个新的像元值。
TM5-lanzhou.dat 自适应滤波结果
四、傅里叶变换
傅里叶变换能将满足一定条件的某个函数表示成三角函数或它们的积分的线性组合。
1.正向傅里叶变换
2.定义FFT滤波器
ENVI可以交互式直接定义滤波器,也可以通过在显示的正向变换图像来绘制定义滤波器。
遥感上机实习报告
遥感上机实习报告在本学期,我参与了遥感上机实习课程,这是一次充满挑战和收获的学习经历。
通过实际操作和实践,我对遥感技术有了更深入的理解和认识。
遥感作为一门获取和分析地球表面信息的科学技术,在资源调查、环境监测、城市规划等众多领域都发挥着重要作用。
而这次上机实习,则为我们提供了一个将理论知识应用于实际操作的宝贵机会。
实习的开始,我们首先熟悉了遥感数据处理软件的基本操作界面和功能。
这些软件工具功能强大,但初学时也让人感到有些复杂和陌生。
好在老师耐心地为我们讲解和演示,让我们逐渐掌握了数据导入、图像显示与浏览等基本操作。
在数据预处理阶段,我们学会了对遥感影像进行辐射校正和几何校正。
辐射校正旨在消除传感器自身以及大气等因素对影像辐射亮度的影响,从而得到更准确反映地物真实辐射特性的影像数据。
几何校正则是通过一系列的数学变换和控制点选取,纠正影像的几何变形,使其具有准确的地理位置和几何形状。
这两个步骤看似简单,实则需要我们对相关原理有清晰的理解,并且在操作中要十分细心,否则微小的误差都可能导致后续分析结果的偏差。
接下来是图像增强处理。
这一步骤的目的是突出影像中的有用信息,增强图像的可读性和可解译性。
我们尝试了多种增强方法,如直方图均衡化、滤波处理等。
直方图均衡化通过调整影像的灰度分布,使影像的对比度得到增强;滤波处理则可以去除噪声,突出边缘等特征。
在实际操作中,我们需要根据影像的特点和分析目的,选择合适的增强方法,并不断调整参数,以获得最佳的效果。
遥感图像分类是实习中的重要环节。
我们学习了监督分类和非监督分类两种方法。
监督分类需要我们事先选择具有代表性的训练样本,然后根据这些样本的特征对整个影像进行分类。
非监督分类则是在没有先验知识的情况下,根据影像像元之间的相似度自动进行分类。
在实际操作中,我们发现分类结果的准确性不仅取决于分类方法的选择和参数的设置,还受到训练样本的质量和数量、影像的分辨率等多种因素的影响。
遥感原理与应用实习报告
遥感原理与应用课程设计—“遥感专题信息提取与专题图制作”设计报告遥感专题信息提取和专题图制作一、课程设计的目的和意义1、加深理解和巩固理论课上所学的有关遥感的基本原理、遥感传感器的成像机理、遥感图像的处理方法、专题信息提取以及遥感综合应用技术;2、锻炼自主编程设计遥感图像处理算法和熟练运用遥感软件独立分析问题、解决具体问题的实际工作能力;3、培养良好的工作习惯和科学素养,为今后参加科学研究工作以及毕业设计打下良好的基础。
二、课程设计的原理和方法结合在遥感原理与应用课程设计中学习过的有关遥感图像的相关知识,包括使用多项式对遥感影像的进行几何纠正,遥感影像的镶嵌,图像融合,使用模式识别技术对遥感影像进行监督分类和非监督分类,并对分类结果进行评价和处理,最终得到有实际使用价值的专题地图,使用ERDAS软件对遥感图像进行处理,提取专题要素并制作专题地图。
在本次课程设计中使用的ERDAS软件,是成熟的商业化遥感图像处理软件,功能强大,能够对遥感图像进行专业化的处理,并且处理速度高,准确度好,同时操作方便,但需要用户具备一定的遥感专业知识。
三、课程设计的过程与步骤3.1方案设计由于本次实习并没有向以往的实习一样有详细的实习步骤说明,需要自行设计实习的具体方案和步骤,根据老师提供的实习任务书中有关要求,结合课程所学知识,首先设计出总体方案,主要包括图像专题信息提取的流程,以及专题地图制作的流程。
然后对每一步进行细化,比如影像的几何纠正应该怎样进行,但应该注意这一部分应该不涉及到具体的软件操作,也就是说使用任意一个遥感图像处理软件按照设计的流程,在结合软件的具体操作,都应该能够正确的提取出感兴趣的专题信息。
3.2影像预处理由于实习提供的标准影像文件没有投影信息和地理坐标信息,为了能够使用该影像对需要处理的影像进行几何纠正,首先需要将相关的信息添加到影像中。
使用ERDAS打开标准影像sp_yc.img,点击快捷按钮中的影像信息按钮,弹出影像信息对话框,在地图信息和投影信息中可以看到没有相应的信息,此时选择Edit->ChangeMap Model,弹出地图模型对话框并根据老师提供的数据修改左上角像素的地理坐标信息和影像投影信息,修改完成如下图。
遥感上机实习报告
遥感上机实习报告一、实习目的了解ENVI基本信息、基本概念及其主要特性。
对ENVI操作界面有一个基本的熟悉,对各菜单功能有一个初步了解,为后面的学习作好准备,初步接触遥感影像的处理。
通过ENVI软件对TM影像数据的处理,掌握ENVI的基本操作,能够简单地处理遥感数据影像。
二、实习内容1、了解ENVI的基本操作;2、实现影像图像的几何校正、融合、镶嵌、及裁剪;3、掌握ENVI对影像信息的提取4、了解ENVI的一些应用分析三、实习过程打开envi5.1,单机左上角file open 所需打开的文件。
1、栅格影像的保存1File->Save As,可以将影像另存为ENVI、NITF、TIFF等格式文件,保存的为原始数据,没有拉伸;2File -> Chip View To -> File,可以将当前视窗显示的图像保存为NITF、ENVI、TIFF、JPEG、JPEG2000等图像格式,相当于截屏;3File -> Chip View To -> PowerPoint,可以将当前视窗中的图像导入新建的PowerPoint文件。
之后就是导入GeoTIFF格式的TM原始数据,选择波段4、3、2,点击OK进行假彩色合成。
2、感兴趣区选择1.右键图片文件,点击Region of Interest,弹出如图所示面板2.设置好参数,包括名字,颜色等3.最后完成,大致如下图4.在图层管理器中,选择Region of interest ,点击右键,save as,保存为.xml格式的样本文件。
3、图片的几何校正(如上图)第一步:打开并显示图像文件打开两个数据图像,flie-open第二步:启动几何校正模块Map>Registration>Select GCPs:Image to Image,打开几何校正模块。
选择显示SPOT文件的Display为基准影像(Base Image),显示TM文件的Display为待校正影像(Warp Image),点击OK 进入采集地面控制点。
ENVI上机大实验报告
ENVI上机⼤实验报告遥感原理与应⽤⽬录1、实验⼀⾼光谱数据分析 (2)2、实验⼆影像镶嵌 (15)3、实验三影像配准 (26)4、实验四⾮监督分类 (38)5、实验五监督分类 (41)6、实习总结 (49)- 1 -实验⼀⾼光谱数据分析⼀、实验⽬的本专题旨在向⽤户介绍波谱库的概念,并描述如何从感兴趣区中提取波谱信息,然后还将进⾏彩⾊合成,并使⽤⼆维散点图进⾏简单的分类。
让学⽣学会如何使⽤ENVI 先进的⾼光谱⼯具对多光谱数据进⾏分析。
更好地理解⾼光谱处理的概念及其⼯具。
本专题将从特定矿物质的感兴趣区中提取其波谱曲线,并与波谱库中的波谱曲线进⾏⽐较,找出显⽰波谱信息的最佳RGB 彩⾊组合。
使⽤⼆维散点图定位独特的像元,探究其数据的分布特点,然后进⾏简单的分类。
⼆、实验数据介绍Imaging Spectrometer,简称为A VIRIS)所采集的表观反射率数据,该数据是美国内华达州(Nevada)Cuprite 地区的表观反射率数据,它使⽤ATREM ⼤⽓纠正建模软件进⾏了校正。
这个数据⼦集共包含50 个波段,波谱分辨率近似为10nm 宽,其波长范围为1.99~2.48µm。
三、实验内容本部分将介绍以下内容:波谱库操作、浏览和提取影像反射率波谱、ENVI 中感兴趣区(ROI)的定义及进⾏彩⾊合成影像的选取,其⽬的是为了鉴别波谱类型。
1加载A VIRIS影像数据并显⽰灰阶影像在 ENVI 主菜单中,选择 File → Open Image File,然后选择进⼊envi47/data⽬录。
选择zhumuqian 95_at.int ⽂件作为输⼊⽂件名,点击Open 弹出可⽤波段列表,它将列出 50 个波段的名字。
在可⽤波段列表对话框中,选择 Band 193(2.2008um),点击 Gray Scale 单选按钮,然后点击 Load Band。
将灰度影像加载到显⽰窗⼝中。
从主影像窗⼝菜单中选择 Tools> Profiles>Z Profile (Spectrum),提取表观反射率波谱曲线。
遥感原理及应用实验报告(1)
遥感原理及应用实验报告(1)遥感原理及应用实验报告一、实验目的本次实验的主要目的是通过对遥感原理的学习,了解遥感技术的基本概念和原理,并掌握遥感技术的基本应用。
二、实验原理1.遥感技术的基本概念遥感技术是指利用空间平台载体进行成像和非成像观测的科学与技术,以获取地球自然和人文环境信息的一种技术手段。
遥感技术通过对地物的光谱、空间和时序等特征进行分析,可以反映出地球表面各种信息,是现代研究地球环境的重要工具之一。
2.遥感技术的基本原理遥感技术主要依据电磁波在不同介质中的传播和反射、折射、散射等现象进行信息获取和分析。
遥感技术的主要原理可归纳为以下几个方面:(1)电磁波的能量吸收和反射特性:不同类型的地物对电磁波的吸收和反射特性不同,可用于了解它们的构成和性质;(2)电磁波在不同频段的反射和穿透特性:不同波段的电磁波对不同深度的地物有所区别,用于获取不同深度的地物信息;(3)电磁波传输与遥感器探测原理:了解遥感器的探测方式和数据处理方式,实现对地表信息的提取。
三、实验步骤及结果本次实验主要包括遥感影像解译和遥感应用两个部分。
1.遥感影像解译:采用卫星影像的高精度解译技术,利用专业软件对影像进行解译,获取有用信息。
解译结果主要包括场地牧草的种类、植被覆盖程度、植被指数等信息。
2.遥感应用:利用遥感数据和分析结果,实现对地球环境变化的监测和预警。
应用结果主要包括草原植被退化与恢复、水资源分析与管理等信息分析。
四、实验结论本次实验通过对遥感原理与应用实现的学习和实践,了解了遥感技术的基本概念、原理和应用,掌握了遥感技术的基础操作与处理方法。
同时,通过遥感数据的分析,对草原植被的生态环境进行了监测和预警,对于推动生态文明建设和可持续发展具有重要意义。
遥感原理与应用实验报告
遥感原理与应用实验报告一、实验目的本次实验旨在通过实际操作和数据分析,深入理解遥感的基本原理,并掌握其在不同领域的应用方法。
具体包括:1、熟悉遥感数据的获取、处理和分析流程。
2、学会运用遥感图像处理软件,对遥感影像进行几何校正、辐射校正、图像增强等操作。
3、掌握遥感图像的分类方法,如监督分类和非监督分类,并对分类结果进行精度评价。
4、应用遥感技术解决实际问题,如土地利用/覆盖变化监测、植被指数提取等。
二、实验原理遥感是一种非接触式的对地观测技术,它通过传感器接收来自地面物体反射或发射的电磁波信息,并对这些信息进行处理、分析和解译,从而获取有关地球表面的特征和现象。
遥感的物理基础是电磁波与物质的相互作用。
不同的地物具有不同的电磁波反射、吸收和发射特性,这些特性可以通过遥感传感器测量的电磁波谱来表征。
例如,植被在近红外波段具有高反射率,而水体在可见光和近红外波段的反射率较低。
遥感图像的处理和分析基于数字图像处理技术。
几何校正用于消除遥感图像的几何变形,使其与实际地理坐标相匹配;辐射校正用于消除传感器误差和大气影响,使图像的辐射值准确反映地物的真实反射或发射特性;图像增强用于突出图像中的有用信息,提高图像的可读性和可解译性;图像分类则是根据图像中像元的特征将其划分为不同的类别,以提取地物信息。
三、实验设备与数据1、计算机:配置较高的个人计算机,用于运行遥感图像处理软件。
2、遥感图像处理软件:如 ENVI、ERDAS 等。
3、实验数据:包括不同分辨率的卫星遥感影像,如 Landsat、SPOT 等,以及相应的辅助数据,如地形图、土地利用现状图等。
四、实验步骤1、数据导入与预处理将遥感影像数据导入图像处理软件。
对影像进行辐射定标和大气校正,以消除大气对电磁波传输的影响。
2、几何校正选取地面控制点(GCP),这些点在遥感影像和参考地图上具有明确的地理位置。
通过计算 GCP 的坐标偏差,建立几何校正模型,对影像进行几何校正。
(完整word版)遥感原理与应用实验报告
《遥感原理与应用》课程Remote Sensing Principle and Application黑龙江工程学院·测绘工程学院2016年10月目录实验一ENVI软件安装与基本功能操作 (3)实验二影像的地理坐标定位和校正 (18)实验三图像融合、镶嵌、裁减 (28)实验四遥感图像分类 (35)Spectral:波谱分析工工具,为多光谱、高光谱和其他波谱数据提供的专业工具。
包括:流程化图像处理工具、波谱库建立、重采样和浏览、波谱分割、波谱运算、波谱端元的判断、波谱数据的n-维可视化,波谱分类、线性波谱分离、匹配滤波、包络线去除、波谱特征拟合等。
Map:地图工具。
包括图像几何校正、图像配准、图像正射校正、图像镶嵌、图像投影坐标转换、自定义投影坐标、ASCII文件坐标转换、GPS连接。
Vector:矢量处理工具。
包括对矢量格式支持、矢量数据的编辑、矢量数据生成、矢量数据转化、矢量数据分析。
Topographic:地形分析工具。
包括DEM数据格式打开、地形建模、地形特征提取、等高线生成DEM、点数据栅格化等。
Radar:基本雷达处理。
提供了雷达影像的标准化工具。
这些工具可以对ERS-1,JERS-1,RADARSAT、SIR-C、X-SAR、AIRSAR数据和其它方式获取的SAR数据进行处理。
此外还可以处理CEOS格式的雷达数据。
包括,雷达文件定标、消除天线增益畸变、斜距校正、生成入射角图像、滤波、彩色图像合成、极化雷达处理、TOPSAR工具等。
Window:窗口菜单。
Help:帮助菜单。
可用波段列表窗口:用于存取ENVI图像文件和显示图像文件的主要控制面板。
无论何时何地打开一个图像文件,可用波段列表将同步出现的波段和信息。
选择显示图像文件的方式(Gray或RGB),利用波长来定位文件。
三窗口显示方式:主窗口( Image):按图像文件实际分辨率显示图像的一部分。
该窗口在第一次载入一幅图像时自动地被启动,它也能动态地被缩放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学成绩:《遥感原理与应用》上机实验报告学号: 07113021姓名:田孟浩班级:测绘11-3班指导教师:赵银娣学院:环境与测绘学院2013年11月11日目录1、实验一、电磁辐射与地物电磁波谱2、实验二、遥感图像目视解译与制图3、实验三、遥感图像几何配准4、实验四、遥感图像增强处理实验一、电磁辐射与地物电磁波谱一、实验任务与目的熟悉ENVI软件提供的各种光谱库,针对五种典型地物:雪、植被、水体、土壤、矿物岩石,通过绘制地物的反射光谱特性曲线,说明典型地物的反射光谱特性,并分别比较属于同一大类但处于在不同状态下的地物反射光谱特性。
二、实验数据ENVI自带的波谱库。
三、实验过程启动ENVI软件,在主菜单中打开Spectral>>Spectral Libraries>>Spectral Library Viewer;打开Spectral Library Input File 对话框,点击open>>new file;打开原始文件夹,然后分别选择雪、植被、水体、土壤、矿物岩石的波普图文件,得到五种物质在不同状态下的波普曲线图。
实验过程中间图:四、实验结果及分析Minerals:岩石成分、矿物质含量、含水情况、风化程度等都影响反射光谱特性曲线的形态,在遥感探测中可以根据所测岩石的具体情况选择不同的波段。
Snow:由图可知,不同状态的雪在波长0.5微米附近有个波峰,随着波长增加反射率逐渐降低,在可见光波段基本上是非选择性吸收体,既高反射体,但在近红外波段吸收很强。
由图可知,土壤的反射光特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度并不明显。
Vegetation:三种植物分别为confier(针叶树)、decidous(落叶植物)、grass(草)。
观察图可看出在可见光波段0.55微米(绿光)附近的反射率较低,10%~20%左右,两侧0.45微米(蓝光)和0.67微米(红光)则有两个吸收带。
在近红外波段1.2~1.5微米件有一个反射的陡坡,至1.6微米附近有一峰值在2~3微米件吸收率大增,反射率大大下降。
由图可知,出水在波长1微米左右的反射率较高,近红外波段的反射率很低。
实验二、遥感图像目视解译与制图一、实验任务与目的利用徐州地区的Landsat-5 TM遥感影像进行目视解译。
二、实验数据三、实验过程File ---Open Image File,选择徐州Landsat-5TM影像图。
在主影像窗口中选择overlay —Annotation ,利用注记功能在地物上添加文字和符号。
四、实验结果及分析通过本次实验,我明白了如何通过目视解译和判读来看遥感地图,目视解译过程中可能要用到遥感图像的色、形、位,而这些方法也不是独立的,有时要判断某个地物,可以综合的运用这些东西。
图像的形状、纹理、大小、位置、图型、相关布局等都是目标地物的特征,都可以用来对目标地物的识别和判读。
目视解译目标地物的特征作为分析、解译、理解和识别遥感图像的基础,有非常重要的意义。
实验三、遥感图像几何配准一、实验任务与目的本专题的这一部分将逐步演示影像到影像的配准处理过程。
带有地理坐标的SPOT 影像被用作基准影像,一个基于像素坐标的 Landsat TM 影像将被进行校正,以匹配该 SPOT 影像。
二、实验数据三、实验过程♦打开并显示 Landsat TM 影像文件 1. 从 ENVI 主菜单中,选择 File →Open Image File。
2. 当 Enter Data Filenames 对话框出现后,选择进入 envidata 目录下的bldr_reg 子目录,从列表中选择 tmhbldr_tm.img 文件。
3. 在文件选择对话框中,点击 Open(在 UNIX 操作系统下为 OK),把 TM 影像波段加载到可用波段列表中。
4. 在列表中选中波段 3 ,点击 No Display 按钮,并从下拉式菜单中选择 New Display。
5. 点击 Load Band 按钮,来把 TM 第 3 波段的影像加载到一个新的显示窗口中。
♦开始进行影像配准并加载地面控制点 1. 从ENVI 主菜单栏中,选择Map →Registration →Select GCPs: Image to Image。
2. 在Image to Image Registration 对话框中,点击并选择Display #1 (SPOT 影像),作为Base Image。
点击Display #2(TM 影像),作为Warp Image。
3.点击OK,启动配准程序。
通过将光标放置在两幅影像的相同地物点上,来添加单独的地面控制点。
4. 在 Ground Control Points Selection 对话框的 Base X 和 Y 文本框中,分别输入 753 和 826,将 SPOT影像中的光标移动到相应的点上。
5. 使用同样的方法,在 Warp X 和 Y 文本框中,分别输入 331 和 433,将 TM 影像中的光标移动到相应的点上。
6. 在两个缩放窗口中,查看光标点所处位置。
如果需要,在每个缩放窗口所需位置上,点击鼠标左键,调整光标点所处的位置。
7. 在 Ground Control Points Selection 对话框中,点击 Add Point,把该地面控制点添加到列表中。
点击 Show List 查看地面控制点列表。
尝试选择几个地面控制点找到选择地面控制点的感觉。
注意对话框中所列的实际影像点和预测点坐标。
一旦已经选择了至少 4 个地面控制点以后,RMS 误差就会显示出来。
8. 在 Ground Control Points Selection 对话框中,选择 Options → Clear All Points,可以清除掉所有已选择的地面控制点。
9. 从 Ground Control Points Selection 对话框中,选择 File → Restore GCPs from ASCII。
10. 在Enter Ground Control Points Filename 对话框中,选择文件bldr_tm.pts,然后点击 OK,加载这个预先保存过的地面控制点坐标。
11. 在 Image to Image GCP List 对话框中,点击单独的地面控制点。
查看两幅影像中相应地面控制点的位置、实际影像点和预测点的坐标以及 RMS 误差。
调整对话框的大小,观察 Ground Control Points Selection 对话框中所列的合计 RMS 误差(RMS Error)。
♦操作处理地面控制点下面的内容仅提供处理方法,并且只对有限的地面控制点按钮的处理功能进行操作。
在 Image to Image GCP List 对话框中,选择相应的地面控制点,然后在Ground Control Points Selection 对话框中进行修改,这样可以编辑单个控制点的坐标位置。
可以通过输入一个新的像素坐标,或使用对话框中的方向箭头逐像素地移动坐标位置。
在 Image to Image GCP List 对话框中,点击 On/Off 按钮,屏蔽掉所选择的地面控制点。
这样在校正模型和 RMS 计算中都将不会考虑这个地面控制点坐标。
这些地面控制点并没有被真正地删除,仅仅是被忽略掉了,可以使用On/Off 按钮重新激活这些地面控制点。
在 Image to Image GCP List 对话框中,点击 Delete 按钮,可以从列表中删除一个地面控制点。
在两个缩放窗口中调整光标位置,然后点击 Image to Image GCP List 对话框中的 Update 按钮,更新所选的地面控制点,将其修改到当前光标的所在位置。
Image to Image GCP List 对话框中的 Predict 按钮,允许对新的地面控制点进行预测。
它以当前的校正模型为基础。
1. 将包含 SPOT 影像的那个主影像窗口的光标放置到一个新的位置上。
然后点击 Predict 按钮,放置在 TM 影像上的光标就会根据校正模型,移动到预测的匹配点上去。
2. 通过在 TM 数据中,轻微地移动光标,能够对所提取的位置点进行交互式的精确定位。
3. 在 Ground Control Points Selection 对话框中,点击 Add Point,把这个新的控制点添加到列表中。
♦校正影像我们可以校正显示的影像波段,也可以同时校正多波段影像中的所有波段。
这里我们仅对已显示的波段进行校正。
1. 从Ground Control Points Selection 对话框中,选择Options →Warp Displayed Band。
2. 在Registration Parameters 对话框中的Warp Method 按钮菜单中,选择RST。
在Resampling 的按钮菜单中选择Nearest Neighbor 重采样法。
3. 输入文件名bldr_tm1.wrp,点击OK。
4. 重复步骤1 和步骤2,还是使用RST 校正法,但是要相应地选择Bilinear 和Cubic Convolution 重采样法。
5. 将结果分别输出到bldr_tm2.wrp 和bldr_tm3.wrp 文件中。
6. 再一次重复步骤1 和步骤2,这一次选择一次多项式Polynomial 校正法,并使用Cubic Convolution重采样法。
然后再选择Delaunay 三角网的Triangulation 校正法,相应地使用Cubic Convolution重采样法。
7. 将结果分别输出到bldr_tm4.wrp 和bldr_tm5.wrp 文件中。
♦比较校正结果使用动态链接来比较校正结果:1. 在可用波段列表中,点击原始的TM 波段影像名bldr_tm.img,然后从菜单栏中,选择File →Close Selected File。
2. 在随后出现的ENVI 警告对话框中,点击Yes 关闭相应的影像文件。
3. 在可用波段列表中,选择BLDRTM_1.WRP 文件。
在Display #下拉式按钮中选择New Display,点击Load Band 将该文件加载到一个新的显示窗口中。
4. 在主影像窗口中,点击鼠标右键,选择Tools →Link →Link Displays。
5. 在Link Displays 对话框中,点击OK,把SPOT 影像和已添加了地理坐标的TM 影像链接起来。
6. 在主影像显示窗口中,点击鼠标左键,使用动态链接功能,对SPOT 影像和TM 影像进行比较。
7. 将bldr_tm2.wrp 和bldr_tm3.wrp 影像加载到新的显示窗口中,使用影像动态链接功能,比较采用三种不同的重采样法(临近法、双线性内插法和三次卷积法)所产生的效果。