121轴对称的性质简案

合集下载

轴对称知识点整理总结

轴对称知识点整理总结

§13.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.下列各图,你能找出它们的对称轴吗?(1) (2) (3) (4)(5)§13.1 轴对称(二)一、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线.二、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.三、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.[探究1]线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…证明.证法一:利用判定两个三角形全等.如下图,在△APC和△BPC中,△APC≌△BPCPA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,•因此它们也是相等的.[探究2]1.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?探究过程:1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.§12.2作轴对称图形一.如何由一个平面图形得到它的轴对称图形.【探究】四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.(归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;)【引申】分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?若△PQR中P(x,y)关于x=1(记为m)轴对称的点的坐标P(x,y) ,则,y= y.若△PQR中P(x,y)关于y=-1(记为n)轴对称的点的坐标P(x,y) ,则x= x,=n.13.3. 1等腰三角形等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.13.3.2等边三角形等边三角形定义:在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

轴对称的定义和性质

轴对称的定义和性质

轴对称的定义和性质一、轴对称的定义和性质1、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点。

2、轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

这时,我们也说这个图形关于这条直线(成轴)对称。

3、轴对称与轴对称图形的区别和联系区别轴对称为两个图形之间的对称关系,并且只有一条对称轴。

轴对称图形为一个图形,且不一定只有一条对称轴。

联系轴对称:(1)沿对称轴折叠,两个图形重合;(2)如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。

轴对称图形:(1)沿对称轴折叠,图形的两部分重合;(2)如果把轴对称图形的两部分看作两个图形,那么这两个图形成轴对称。

4、图形轴对称的性质(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(3)两个图形关于某条直线对称,如果它们的对应线段或对应线段的延长线相交,那么交点在对称轴上。

5、画图形的对称轴如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。

因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴。

同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴。

6、画轴对称图形(1)由一个平面图形可以得到与它关于一条直线$l$对称的图形,这个图形与原图形的形状、大小完全相同。

新图形上的每一点都是原图形上的某一点关于直线$l$的对称点。

连接任意一对对应点的线段被对称轴垂直平分。

(2)画一个图形的轴对称图形的方法找——在原图形上找特殊点(如线段的端点)。

作——作各个特殊点关于对称轴的对称点。

连——依次连接各对称点。

图形的轴对称轴对称的基本性质

图形的轴对称轴对称的基本性质

性质2023-10-30CATALOGUE 目录•轴对称图形概述•轴对称图形的性质•常见轴对称图形举例•非轴对称图形举例及特性•轴对称图形的应用01轴对称图形概述定义如果一个图形关于某条直线(称轴)对称,那么这个图形叫做轴对称图形。

性质轴对称图形的对称轴也是图形的中垂线,即线段的中点与轴对称图形上相对应点的连线被对称轴垂直平分。

轴对称图形的定义轴对称图形具有对称性,即图形的左右两侧或上下两侧关于某条直线对称。

对称性唯一性美观性每一个轴对称图形都只有一个对称轴,对称轴将图形分成两个完全相同的部分。

轴对称图形具有美观性,常被应用于建筑设计、艺术和日常生活中。

03轴对称图形的特点0201轴对称图形在数学、艺术、建筑等领域有着悠久的历史。

早在古希腊和罗马时期,人们就利用轴对称来设计建筑、雕塑和图案。

历史随着数学、计算机科学和工程技术的进步,轴对称图形在各个领域的应用越来越广泛,如建筑设计、工业设计、计算机图形学等。

同时,对于轴对称图形的理论研究也在不断发展与完善。

发展轴对称图形的历史与发展02轴对称图形的性质总结词轴对称图形在空间或平面上关于某条直线(称为对称轴)具有对称性。

详细描述这意味着图形的一部分相对于对称轴的镜像翻转后,与另一部分完全重合。

例如,一个圆相对于其直径是对称的,一个正方形相对于其对角线是对称的。

这种对称性在自然界中也很常见,如人的身体、树叶等。

总结词轴对称图形的对称轴总是一条直线,且具有平行性。

详细描述这意味着如果一个图形的一部分相对于对称轴进行镜像翻转后,与另一部分完全重合,那么这两部分必然是平行的。

例如,一个矩形相对于其对边中点的连线是对称的,这个连线就是其对称轴。

轴对称图形的性质三总结词轴对称图形的对称轴具有镜像反射性。

详细描述这意味着图形的一部分相对于对称轴的镜像反射后,与另一部分完全重合。

这种性质可以用来解释许多自然现象和社会现象,如物体在水中的倒影、物体在镜子中的影像等。

轴对称及其性质

轴对称及其性质

轴对称及其性质轴对称是一种几何特征,指的是图形经过某条线对称后,两侧完全重合。

在数学和几何学中,轴对称性质被广泛应用于解决问题和分析形状的对称性。

本文将介绍轴对称的定义、性质以及它在现实生活和数学领域的应用。

一、定义及例子轴对称是指一个形状可以通过某条直线旋转180度并完全重合。

这条直线被称为轴线,轴线两侧的图形是镜像关系。

例如,一个正方形具有4条轴对称线,分别是水平线、垂直线和两条对角线。

而心形、圆形、椭圆形等也都具有轴对称。

二、轴对称的性质1. 自反性:轴对称图形中的每个点都和关于轴线对称的另一个点相关联。

反过来,如果一个点和另一个点关于轴对称线对称,那么这个图形就是轴对称的。

2. 保角性:轴对称不改变图形的角度。

如果一个图形是轴对称的,那么对于轴上的任意一对相应点,它们构成的角度相等。

3. 保长度性:轴对称不改变图形的边长。

如果一个图形是轴对称的,那么轴上的每对相应点之间的距离相等。

4. 结构性:轴对称图形的结构和形状在镜像轴两侧是完全对称的。

这意味着一个轴对称图形的一半可以通过镜像来获得另一半。

三、轴对称的应用1. 图案设计:轴对称被广泛应用于图案设计中。

通过利用轴对称性质,设计师可以创造出美观、对称的图案来增强视觉效果。

2. 建筑设计:轴对称的概念在建筑设计中起着重要的作用。

许多建筑物的设计中都使用了轴对称性,使得建筑物的外观显得平衡和谐。

3. 数学推理:轴对称性质被广泛应用于数学推理和证明中。

通过分析轴对称,我们可以推导出关于图形的特定性质和关系,从而解决各种数学问题。

4. 自然界:自然界中很多物体都具有轴对称性,如植物、昆虫身体结构等。

通过研究这些轴对称物体,我们可以更好地理解自然界的形态和结构。

总结:轴对称是一种形状经过某条轴线旋转180度并完全重合的几何特征。

它具有自反性、保角性、保长度性和结构性等性质。

轴对称不仅在图案设计和建筑设计中起着重要作用,也在数学推理和自然界中具有广泛的应用。

初中数学轴对称基础知识点详解

初中数学轴对称基础知识点详解

初中数学轴对称基础知识点详解轴对称是初中数学中的基础知识点之一,是在平面几何中经常出现的重要概念。

轴对称是指图形相对于条轴线对称,即图形中的每一点与轴线上与该点距离相等、且在轴线上的点关于轴线对称。

下面将详细介绍轴对称的基本概念、性质和相关例题。

轴对称的基本概念:轴对称是指图形相对于条轴线对称。

轴线可以是任意直线,可以是水平线、垂直线、倾斜线或曲线。

在轴对称中,轴线的选择对图形的对称性质有一定影响,但图形始终是关于轴线对称的。

轴对称的性质:1.图形的每一点关于轴线对称,意味着轴线上的点与轴线之间的距离相等。

2.如果图形的一部分与轴线对称,则图形的其他部分与轴线对称。

3.如果图形中的两个点A、B关于轴线对称,则点A关于点B对称,点B关于点A对称。

轴对称与平移的关系:平移是指将图形沿着一些方向按照一定规律进行移动。

在平移中,图形的每一点都按照相同的方向和相同的距离进行移动,而保持形状不变。

轴对称图形可以通过平移得到相对的轴对称图形,平移的方向和距离与轴线的位置有关。

轴对称与旋转的关系:旋转是指将图形以一些点为中心按照一定角度进行旋转。

在旋转中,图形的每一点都按照相同的角度和相同的方向进行旋转,而保持形状不变。

轴对称图形可以通过旋转得到相对的轴对称图形,旋转的角度和中心与轴线的位置有关。

轴对称的判断:判断一个图形是否具有轴对称性可以通过以下方法进行验证:1.观察图形是否在一个直角坐标系中,并找出其中心轴(满足轴对称性的直线)。

2.随机选择图形中的一点,并绘制一个与中心轴相互垂直的线段。

3.测量选定点到中心轴和该点对称点到中心轴的距离是否相等,若相等则该图形具有轴对称性。

轴对称的性质与应用:1.轴对称性是一种重要的对称性质,它在几何构造中常常用于求解问题。

2.轴对称性可以用于判断一些图形的性质,如判断一个图形是否是正多边形。

3.轴对称性也可以应用于计算几何中的一些问题,如确定一个平面图形的对称中心。

轴对称的例题:1.给定一个图形ABCD,其中AB=BC=4,AD=6,AC=8,请问该图形是否具有轴对称性?如果具有,请给出轴对称线的方程。

五年级上册数学教案 -2.1轴对称再认识(一)北师大版

五年级上册数学教案 -2.1轴对称再认识(一)北师大版

五年级上册数学教案 -2.1轴对称再认识(一)北师大版一、教学目标1. 让学生进一步理解轴对称图形的定义,能找出常见的轴对称图形。

2. 培养学生观察、分析、判断和动手操作的能力。

3. 激发学生对数学美的感受,培养学生的审美情趣。

二、教学重点、难点1. 教学重点:找出轴对称图形的对称轴,理解对称轴的位置和特点。

2. 教学难点:判断轴对称图形的对称轴,以及运用轴对称性质解决实际问题。

三、教学过程1. 导入新课(1)引导学生回顾已学的轴对称图形的概念,让学生举例说明生活中常见的轴对称图形。

(2)展示一些轴对称图形,让学生观察并找出它们的对称轴。

2. 探究新知(1)教师引导学生通过观察、分析,发现轴对称图形的特点:对称轴将图形分为两部分,两部分完全重合。

(2)让学生动手操作,尝试画出一些轴对称图形的对称轴,并判断对称轴的位置和特点。

(3)教师举例讲解,如何利用轴对称性质解决实际问题,如:如何将一个不规则图形剪成两部分,使它们完全重合。

3. 巩固练习(1)让学生独立完成教材P28页的练习题,巩固轴对称图形的识别和对称轴的判断。

(2)教师选取一些典型的练习题,让学生上台展示解题过程,并给予点评和指导。

4. 课堂小结教师引导学生总结本节课所学内容,强调轴对称图形的定义、对称轴的位置和特点,以及如何运用轴对称性质解决实际问题。

5. 课后作业(教材P29页)(1)让学生完成课后作业,巩固所学知识。

(2)鼓励学生观察生活中的轴对称现象,拍照分享,培养数学观察力和审美情趣。

四、教学反思本节课通过引导学生观察、分析、动手操作,使学生进一步理解轴对称图形的定义和性质,培养学生的空间观念和动手能力。

在教学过程中,要注意关注学生的学习反馈,及时调整教学策略,确保教学效果。

同时,要注重激发学生对数学美的感受,培养学生的审美情趣。

(注:本教案为简案,实际教学过程中可根据学生实际情况和教学需求进行调整。

)重点关注的细节:轴对称图形的对称轴的判断和运用轴对称性质解决实际问题。

苏科版数学八上《轴对称的性质》word教案2课时

苏科版数学八上《轴对称的性质》word教案2课时

1.2轴对称的性质(一)教学目标(一)知识与技能目标1.理解线段的垂直平分线的概念,掌握轴对称的性质;2.能利用轴对称的性质在轴对称图形中找出对称点,会根据已知的对称点画出对称轴.(二)过程与方法目标1.利用折纸操作经历轴对称图形性质的探究过程,形成对轴对称性质的深刻认识,提高分析问题、解决问题的能力;2.提高学生的动手能力.(三)情感态度与价值观目标1.积累数学活动经验,进一步发展空间观念;2.体会图形中的对称美.教学重点、难点重点:探索并理解轴对称的性质.难点:轴对称性质的简单应用.课前准备1.教师准备:数学课件2.学生自备:长方形纸、剪刀.教学过程设计(一)创设情境1.创设氛围,激发求知的欲望师:上一节课我们看到了好多好多生活中美丽的轴对称图案,给我们的视觉带来了美的享受.我们已经研究了轴对称和轴对称图形的基本特征.请问:成轴对称的两个图形具有哪些性质呢?这一节课我们就一起来探究轴对称的性质.2.展开活动,点燃探究新知的热情活动一操作“画点、折纸、扎孔”.师:请同学们拿出老师课前要求准备的长方形纸,用笔在纸上任意画一个点,标上字母A,然后把纸对折,用笔尖在点A处扎孔,再把纸展开,并连接两孔A、'A.同学们观察手中的长方形纸思考讨论以下问题:AA与折痕l之间有什么关系?连接两孔A、'A的线段'学生观察思考讨论片刻后,请学生回答.生1:折痕l 平分两孔组成的线段'AA .生2:折痕l 垂直两孔组成的线段'AA .老师肯定学生的回答,并引出线段的垂直平分线概念:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线(也称线段的中垂线);活动二 继续进行“画点、折纸、扎孔”的操作活动,自主探索成轴对称的线段、三角形的性质.师:我们继续在长方形纸上任画一点B (不同于点A ),同样地,折纸、扎孔、展开,并连接AB 、''A B 、'BB .请同学们思考以下问题:(1)线段'BB 与折痕l 有什么关系?(2)线段AB 与''A B 有什么关系?学生观察思考片刻后,请学生回答.生1:折痕l 垂直平分线段'BB .师:回答得很准确,已经掌握了我们活动一要探究的问题.第二个问题呢?生2:线段AB 与''A B 关于折痕l 对称.(老师表扬给予鼓励,给学生继续探索的信心) 师:请同学们再在纸上任画一点C ,并仿照上面进行操作,思考以下问题:(1)ABC ∆与'''A B C ∆有什么关系?(2)ABC ∆、'''A B C ∆与折痕l 又有什么关系?师生共同讨论,发现ABC ∆≌'''A B C ∆,ABC ∆、'''A B C ∆关于折痕l 对称,进而得出结论:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.(二)例题选讲例1 画出图中成轴对称的两个图形的对称轴以及两对对称点.说明:学习了性质之后,再把性质运用到具体问题中去,这是一个从一般到特殊的过程,在解题时要引导学生通过学过的知识来寻找解题途径.例 2 画出轴对称图形的对称轴,并把在对称轴上的点用字母标注出来,写出图中全等的三角形.说明:通过学生熟悉的图形来运用轴对称的性质解决问题,让学生提高对学习的兴趣,加深对轴对称性质的理解.(三)学生练习练习一:课本P11练习1,2,3;说明:课本上的习题与例题很相近,能够及时训练加深巩固对轴对称性质的理解.练习二:画出下列图形关于直线l的对称图形. l说明:这道题需要灵活运用所学的知识,对提高学生的思维能力有所帮助.(四)课堂小结通过这节课的学习你有什么感受(1)知道了线段的垂直平分线概念:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线;(2)通过探索得到了轴对称的性质:①成轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.(五)布置作业1.(必做题)2.(选做题)下列图像都是由镜中看到的,请分别写出它们所对应的实际图形,并说明图像与镜面的位置关系.课题:1.2 轴对称的性质(2)教学目标:1、会画已知点关于已知直线的对称点,会画已知线段关于已知直线的对称线段,会画已知三角形关于已知直线的对称三角形2、经历运用轴对称性质的活动过程,发展空间观念和有条理的思考和表达能力。

轴对称的简介

轴对称的简介

轴对称的简介轴对称是一种基本的几何概念,它是指在一个平面内固定一个线段,平面内的所有点关于这个线段对称,即成为轴对称点或轴对称图形。

在数学和物理学中,轴对称具有广泛的应用,在几何学、力学、光学等领域被广泛运用。

本文将就轴对称的基本概念、性质、应用等方面进行简要介绍。

一、轴对称的基本概念轴对称是一种平面上的对称关系,它基于平面中固定的一个线段,称为轴线。

平面内的所有点关于该轴线对称,即每个点的对称点都在以轴线为中心的线上。

这种对称关系可以使平面内的各个图形发生镜像,从而得到轴对称图形。

轴对称的基本符号是“S”,表示对称变换。

轴对称具有以下基本性质:1. 轴对称的基本单位是线段,称为轴线。

2. 轴对称的每个点都有一个对称点,对称点在轴线上。

3. 轴对称保持长度、夹角、面积等基本几何量不变。

二、轴对称的应用轴对称在各个领域中都有广泛的应用,其中最常见的应用领域是几何学和物理学。

在几何学中,轴对称可以用于研究图形的对称性质,例如判断一个图形是否具有轴对称性。

在物理学中,轴对称可以用于研究固体物体的结构,例如金属材料的晶体结构就具有轴对称性。

除此之外,轴对称还被应用于以下方面:1. 生物学:轴对称是生物学中一个重要的概念,很多生物体都具有轴对称性质,例如动物的左右对称、植物的轴对称性等。

2. 化学:轴对称在化学中也有重要的应用,例如分子的对称性对其光学、光谱、电荷分布等性质具有很大影响。

3. 脑科学:轴对称在脑科学中也被广泛应用,例如研究人类神经系统的结构和功能,轴对称可以帮助研究者更好地理解和分析神经元的连接模式。

三、轴对称的发展历史轴对称的概念最早可以追溯至古希腊时期,数学家欧多克索斯和阿波罗尼乌斯就研究了轴对称的几何性质。

在现代数学中,轴对称的概念得到了更深入的探讨和发展,不仅涉及到平面几何,还涉及到高维空间几何、拓扑学、李群等领域。

总之,轴对称是一种基本的几何概念,具有广泛的应用价值。

在学习和研究数学、物理、生物学等领域时,轴对称都发挥着重要的作用。

轴对称知识点总结讲解

轴对称知识点总结讲解

轴对称知识点总结讲解一、基本概念1. 定义轴对称是指平面上的一图形能在某一条直线上旋转180°后仍然与原图形完全重合,这条直线称为轴线,而旋转180°的变换称为轴对称变换。

2. 轴对称图形根据轴对称的定义,我们可以知道,任意轴对称图形关于轴线对称后,都能与原图形重合。

常见的轴对称图形有:正方形、长方形、圆形、各种多边形等。

3. 轴对称线轴对称图形关于轴对称线的对称性可以从两个方面来考虑:一是图形上对称点的位置关系,二是图形上对称点间的距离关系。

二、性质1. 和轴对称相关的性质有哪些?轴对称图形的性质主要表现在对称性质上,轴对称图形的性质可以总结为以下几点:(1)轴对称图形的对称中心即为轴对称线;(2)轴对称图形上对称点的位置关系相互对称;(3)轴对称图形上对称点间的距离互相一致。

2. 轴对称图形的判定方法在进行几何问题的推导和解决中,常常需要判定一个图形是否为轴对称图形。

在平面几何中,我们可以用以下方法来判定一个图形是否为轴对称图形:(1)根据定义判定;(2)通过图形的性质和特点来判定;(3)通过观察对称性质来判定。

三、特殊图形1. 正方形正方形是最简单的轴对称图形之一,它具有多个轴对称线,其中包括对角线、中垂线和两条对边的中线。

2. 长方形长方形也是轴对称图形,在长方形中,对角线也是一条轴对称线,并且长方形具有更多的对称性质。

3. 圆形圆形是最具有轴对称性质的图形之一,圆形的轴对称线无数,且每一条直径都是圆形的轴对称线。

圆形的轴对称性质对于构图和解题有很多重要的应用,比如圆形的轴对称性质在圆锥曲线中有重要的应用。

四、应用1. 几何中的应用轴对称在几何中有广泛的应用,可以用来判断图形的性质、构造图形、解决几何问题等。

轴对称的性质和特点对于构造几何图形有很大的帮助,同时在解题过程中,也常常利用图形的轴对称性质来简化问题。

2. 艺术中的应用轴对称的概念也在艺术中有着重要的应用。

在美术创作中,轴对称的性质常常能够帮助艺术家构图,使画面更加和谐、对称。

轴对称的基本性质

轴对称的基本性质

轴对称的基本性质【要点梳理】要点一、轴对称的基本性质★成轴对称的两个图形中,对应点的连线被对称轴垂直评分★轴对称及轴对称的判定(1)如果两个图形的对应点所连线段被同一条直线垂直平分,那么这两个图形关于这条直线成轴对称.(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等,并且这两个图形成轴对称.要点诠释:(1)对应点的连线是一条线段,而对称轴是一条直线.(2)两条成轴对称的线段要么平行,要么所在直线相交且交点一定在对称轴上.【例1】如图,△ABC和△A′B′C′关于直线l对称,若△A=50°,△C′=30°,则△B的度数为()A.30°B.50°C.90°D.100°【变式1.1】如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA 于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【变式1.2】如图,△MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若△MON=35°,则△GOH=()A.60°B.70°C.80°D.90°【变式1.3】如图,在Rt△ABC中,△BAC=90°,△B=50°,AD△BC,垂足为D,△ADB 与△ADB'关于直线AD对称,点B的对称点是点B',则△CAB'的度数为()A.10°B.20°C.30°D.40°(1)若某点在对称轴上,则它的对称点也一定在对称轴上,并且和这个点重合.(2)如果一个点在对称轴的左侧,那么这个点的对称点一定在对称轴的右侧;反之,一个点在对称轴的右侧,则这个点的对称点一定在对称轴的左侧.要点三、平面直角坐标系中的轴对称★关于坐标轴对称的点的坐标的关系★在平面直角坐标系中作成轴对称的图形【例2】作一个图形关于x轴(或y轴)成轴对称的图形的步骤:(1)找:在原图形上找特殊点(如线段的端点);(2)作:作各个特殊点关于对称轴的对称点;(3)连:按原图的顺序连接所作的各对称点.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【变式2.1】在下图中,画出△ABC关于直线MN的对称图形.【变式2.1】若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【变式2.2】已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2)C.(4,﹣2)D.(4,2)【变式2.3】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)典型例题题型一:轴对称的性质【练习1.1】如图,△ABC与△A′B′C′关于直线l对称,且△A=105°,△C′=30°,则△B=()A.25°B.45°C.30°D.20°【练习1.2】如图,在△ABC中,AB=AC,△C=70°,△AB′C′与△ABC关于直线EF对称,△CAF=10°,连接BB′,则△ABB′的度数是()A.30°B.35°C.40°D.45°【练习1.3】如图,△ABC与△A′B′C′关于直线l对称,则△B的度数为()A.30°B.50°C.90°D.100°【练习1.4】如图,Rt△ABC中,△ACB=90°,△A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则△A′DB为.【练习1.5】如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD =3,则图中阴影部分的面积是.【练习1.6】如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.【练习1.7】如图,点P是△ACB外的一点,点D,E分别是△ACB两边上的点,点P关于CA的对称点P1恰好落在线段ED上,P点关于CB的对称点P2落在ED的延长线上,若PE=2.5,PD=3,ED=4,则线段P1P2的长为.【练习1.8】如图,△BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则△P AQ的度数是.【练习1.9】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.【练习1.10】如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个【练习1.11】如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【练习1.12】如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个【练习1.13】如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A .5个B .4个C .3个D .2个【练习1.14】如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B '恰好落在CD 上,若∠BAD =α,则∠ACB 的度数为( )A .45°B .α﹣45°C .12αD .90°−12α 【练习1.15】如图,点P 关于OA 、OB 的对称点是H 、G ,直线HG 交OA 、OB 于点C 、D ,若∠HOG =80°,则∠CPD = °.【练习1.16】在等边△ABC 外作射线AD ,使得AD 和AC 在直线AB 的两侧,∠BAD =α(0°<α<180°),点B 关于直线AD 的对称点为P ,连接PB ,PC .(1)依题意补全图1;(2)在图1中,求∠BPC 的度数;(3)直接写出使得△PBC 是等腰三角形的α的值.【练习1.17】如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为14,求△P AB的周长.【练习1.18】如图,等边三角形ABC中,D为边BC上的一点,点D关于直线AB的对称点为点E,连接AD,DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)探究CG与DE之间的等量关系,并证明.【练习1.19】如图,△ABC的点C与C′关于AB对称,点B与B′关于AC对称,连结BB′、CC′,交于点O.(1)如图(1),若∠BAC=30°,①求∠B'AC'的度数;②观察并描述:△ABC'可以由△AB'C通过什么变换得来?求出∠BOC'的角度;(2)如图(2),若∠BAC=α,点D、E分别在AB、AC上,且C′D∥BC∥B′E,BE、CD交于点F,设∠BFD=β,试探索α与β之间的数量关系,并说明理由.【练习1.20】如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【练习1.21】国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【练习1.22】如图所示,梯形ABCD关于y轴对称,点A的坐标为(﹣3,3),点B的坐标为(﹣2,0).(1)写出点C和点D的坐标;(2)求出梯形ABCD的面积.题型二:关于x、y轴对称的点的坐标【练习2.1】在平面直角坐标中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,5)B.(a,﹣5)C.(﹣a+2,5)D.(﹣a+4,5)【练习2.2】点M(1,4﹣m)关于直线y=﹣3对称的点的坐标为(1,7),则m=()A.16B.27C.17D.15【练习2.3】如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A.10B.8C.6D.4【练习2.4】如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1)B.(0,﹣3)C.(3,0)D.(2,1)【练习2.5】在坐标平面上有一个轴对称图形,其中A(3,−52)和B(3,−112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,−32)C.(−32,﹣9)D.(﹣2,﹣1)【练习2.6】甲、乙两名同学下棋,甲执圆子,乙执方子,如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示,甲将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,甲放的位置是()A.(﹣2,1)B.(﹣1,1)C.(﹣1,0)D.(﹣1,2)【练习2.7】点P(2,5)关于直线x=1的对称点的坐标是()A.(﹣2,5)B.(﹣3,5)C.(4,5)D.(0,5)【练习2.8】嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置可能是()A.(﹣1,2)B.(﹣1,﹣1)C.(0,2)D.(1,3)【练习2.9】在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(√3,√2),则经过第2019次变换后所得的点A的坐标是()A.(−√3,√2)B.(−√3,−√2)C.(√3,−√2)D.(√3,√2)【练习2.10】在平面直角坐标系中,已知点P(a2+2,5),则点P关于直线m(直线m上各点的横坐标都为﹣2)对称点的坐标是()A.(﹣a2+6,5)B.(﹣a2﹣6,5)C.(a2﹣6,5)D.(﹣a2+4,5)【练习2.11】点(6,3)关于直线x=2的对称点为()A.(﹣6,3)B.(6,﹣3)C.(﹣2,3)D.(﹣3,﹣3)【练习2.12】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边△ABC的顶点C的坐标为()A.(−2016,√3+1)B.(−2016,√3−1)C.(−2017,√3+1)D.(−2017,−√3−1)【练习2.13】平面内点A(﹣1,2)和点B(﹣1,a)关于直线y=4对称,a=.【练习2.14】如图,在平面直角坐标系xOy中,△DEF可以看作是由△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:.【练习2.15】已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为.【练习2.16】如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.题型三:轴对称—最短路线问题【练习3.1】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【练习3.2】如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()A .50°B .60°C .70°D .80°【练习3.3】如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .10D .12【练习3.4】如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC【练习3.5】如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .125B .4C .245D .5【练习3.6】如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A.√29B.√34C.5√2D.√41【练习3.7】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为()A.90°B.80°C.70°D.60°【练习3.8】如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2B.4C.6D.8【练习3.9】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2√3B.2√6C.3D.√6【练习3.10】如图,在△ABC中,AB=AC,BC=4,△ABC的面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A .6B .8C .10D .12【练习3.11】如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,√3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则P A +PC 的最小值为( )A .√132B .√312C .3+√192D .2√7【练习3.12】如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( )A .6B .8C .12D .10【练习3.13】如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【练习3.14】如图,在锐角△ABC 中,AB =4√2,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .【练习3.15】如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【练习3.16】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.【练习3.17】如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6√2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【练习3.18】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.【练习3.19】如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是.【练习3.20】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.【练习3.21】如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.【练习3.22】如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.【练习3.23】在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是.【练习3.24】已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.【练习3.25】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=1 3S矩形ABCD,则点P到A、B两点的距离之和P A+PB的最小值为.【练习3.26】如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.【练习3.27】(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.【练习3.28】已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.【练习3.29】如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=132,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB的最小值.【练习3.30】如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.31】如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.32】如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.【练习3.33】如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD 上的动点,则|P A﹣PB|的最大值为.【练习3.34】如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)【练习3.35】请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P 即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4﹣AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求√(m−3)2+1+√(9−m)2+4的最小值.【练习3.36】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.题型四:翻折变换(折叠问题)【练习4.1】如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB =6,BC =4√6,则FD 的长为( )A .2B .4C .√6D .2√3【练习4.2】如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13【练习4.3】如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 【练习4.4】如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A.2B.√3C.√2D.1【练习4.5】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【练习4.6】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【练习4.7】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A .①②B .②③C .①③D .①④【练习4.8】如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5【练习4.9】如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12【练习4.10】如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 .【练习4.11】如图矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 .【练习4.12】如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P到边AB距离的最小值是.【练习4.13】折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.【练习4.14】如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【练习4.15】如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.【练习4.16】如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.【练习4.17】阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C 重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B >∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【练习4.18】如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【练习4.19】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM 的长.题型五:图形的剪拼【练习5.1】如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【练习5.2】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24B.25C.26D.27【练习5.3】如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a【练习5.4】如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°【练习5.5】如图,方格纸中每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A.√7B.2√2C.3D.√10【练习5.6】如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,3.则EB的长是()A.0.5B.1C.1.5D.2【练习 5.7】用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.则一定可以拼成的图形是()A.①④⑤B.②⑤⑥C.①②③D.①②⑤【练习5.8】用两个全等的直角三角形拼下面的图形:(1)平行四边形;(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形;(6)等边三角形.可以拼成的图形是()A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5)【练习5.9】如图1,将矩形ABCD和正方形EFGH的分别沿对角线AC和EG剪开,拼成图2所示的平行四边形PQMN,中间空白部分的四边形KRST是正方形.如果正方形EFGH 与正方形KRST的面积分别是16和1,则矩形ABCD的面积为()A.15B.16C.17D.25【练习5.10】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的四边形ALMN,若中间空白部分四边形恰好是正方形OPQR,且四边形ALMN的面积为72,则正方形的面积是()A.34B.35C.36D.37【练习5.11】如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.【练习5.12】如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR,且平行四边形KLMN的面积为50,则正方形EFGH的面积为.【练习5.13】有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.【练习5.14】如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A.B 两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比为.【练习5.15】如图1,在大正方形中剪去一个小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个长方形的长为24,宽为16,则图2中S2部分的面积是.【练习5.16】如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是.【练习5.17】有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有六个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【练习5.18】如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照下图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为厘米.【练习5.19】列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.【练习5.20】在△ABC中,沿着中位线DE剪切后,用得到的△ADE和四边形DBCE可以拼成平行四边形DBCF,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置.【练习 5.21】著名台湾魔术师刘谦发明了一个道具,他把下图①中的正方形,分割成两个全等的直角三角形和直角梯形.然后拼成图②中的长方形.通过计算这两个图形的面积,证明了64=65.请你用学过的数学知识,找到刘谦的破绽.。

《轴对称》教案范文

《轴对称》教案范文

本文将围绕着《轴对称》这一数学知识点的教学展开讨论,结合教案的编写和实施,探究如何推动学生对于数学知识的发掘和应用。

一、教学目标1、了解轴对称的概念和性质,能够正确识别轴对称的图形。

2、能够在平面直角坐标系中确定图形的轴对称中心,进行轴对称图形的绘制。

3、掌握轴对称的基本变换思想和方法,能够利用轴对称将图形转化为重合的形式。

二、教学内容1、轴对称的概念及性质轴对称是指以某一条直线为轴线,将图形对称复制另一侧的运算。

即在一侧能找到一条直线,若经过这条直线将物体上下或左右对称,物体是轴对称的。

轴对称的性质包括:对称轴上的点对图形的对称点在轴上,轴对称保持图形的面积和形状不变。

2、轴对称的基本变换思想和方法轴对称是一种基本的几何变换,在许多数学问题中具有重要意义。

通过轴对称对图形进行变换,可以充分利用轴对称的性质,将图形转化为重合的形式,进而解决许多实际问题。

3、轴对称的绘制和应用在平面直角坐标系中,可以通过作出轴对称图形的对称轴,确定轴对称中心,并将图形沿着轴对称中心移动到另一侧,得到轴对称的图形。

对于一些实际的问题,可以通过轴对称将问题进行转化和简化。

三、教学策略1、引导学生发现和掌握轴对称的基本性质,以及轴对称变换的基本特点和思想。

2、引导学生根据不同的图形和问题,利用轴对称的方法将问题进转化和简化,实现优化求解。

3、引导学生在实际问题中,能够准确地找出轴对称中心,并将图形进行移动,得出轴对称的图形。

四、教学过程1、引入环节通过组织学生的先验知识,激活学生对于几何变换和数学图形的兴趣和思考,为的学习做好准备。

2、讲解环节通过教师的讲解和示范,引领学生逐步认识轴对称的概念和性质,以及轴对称变换的基本特点和方法。

3、演练环节通过不同难度的轴对称练习题目,检验学生掌握轴对称的技能和运用能力。

4、交流环节引导学生进行分组讨论和互动交流,学生能够相互学习和提高,在多方位交流中达到提高的效果。

5、练习环节通过集体讨论和个人实践操作,巩固轴对称的知识体系,为以后的学习打好良好的基础。

小学数学教案:轴对称的特征和性质

小学数学教案:轴对称的特征和性质

小学数学教案:轴对称的特征和性质一、教学目标1、认识轴对称的概念,了解轴对称的特征和性质;2、学会判别图形是否具有轴对称性,并能找出图形的轴对称轴;3、通过学习轴对称的应用,培养学生审美、观察能力,为后续学习打下基础。

二、教学重点和难点重点:轴对称的概念和性质以及轴对称的应用;难点:轴对称性的判别和寻找轴对称轴的方法。

三、教学内容及方法1、课前预习:学生通过查阅相关资料,掌握轴对称的概念、特点以及轴对称性的判别方法;2、课堂讲解:教师通过实例,引导学生认识轴对称的基本概念和性质,并讲解轴对称性的判别和寻找轴对称轴的方法;3、课堂实践:分组进行练习,让学生体验轴对称的应用;4、课后习题:巩固学生对轴对称的认识和理解。

四、教学过程1、引入学生通过听老师读题目,找到两条轴对称轴,从而了解轴对称的基本概念。

2、概念讲解教师介绍轴对称的概念,以及轴对称的特征和性质,通过图示让学生理解轴对称的含义和判别方法。

3、学生练习给出一些图形让学生尝试判断是否具有轴对称性,并找出它的轴对称轴。

教师可以通过让学生在黑板上画出轴对称轴的方式,让学生更好地理解轴对称性的判别方法。

4、轴对称的应用教师通过一些有趣的实例,让学生感受轴对称在生活中的应用,如轴对称的纹样、轴对称的图案等。

通过这些实例的介绍,激发学生的观察能力和审美能力。

5、课后习题布置轴对称的练习题,巩固学生对轴对称概念和方法的掌握。

在学生熟练掌握轴对称的判别和寻找方法后,可以开展一些更加复杂的练习,让学生挑战自我,提高学生的学习兴趣和学习效果。

五、教学评价通过课后布置的练习题,对学生的学习效果进行评估,通过检查学生的答题情况,对学生的疑点进行解答,并及时纠正学生的错误,提高学生对轴对称的理解和掌握程度。

六、教学总结本次教学主要介绍了轴对称的基本概念和性质,以及轴对称性的判别和寻找方法。

通过实例的介绍,让学生了解了轴对称在生活中的应用。

通过教学实践,提高了学生的审美、观察能力,为学生后续的学习打下了基础。

轴对称的基本性质

轴对称的基本性质

7.如图,EFGH是矩形的台球桌面,有两球分别位于A,B 两点的位置,试问怎样撞击A球,才能使A球先碰撞台边EF反 弹后再击中B球?
解:1.作点A关于EF的对称点A′;
2.连结A′B交EF于点C则沿AC撞击球A,必沿CB反弹击中 球 B. H G B E C A′ A
F
这节课你有哪些收获?
1.轴对称的性质: ⑴对应点的连线被对称轴垂直且平分; ⑵对应边相等,对应角相等. 2.“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反; (2) 关于y轴对称的点的坐标:横反纵同.
C
N
C′
归纳:轴对称的性质: 1.成轴对称的两个图形全等
A C
m
A1 C1 B1
(对应角相等,对应边相等).
B
2.如果两个图形成轴对称,那么对称轴是对称点所连的线段 的垂直平分线.
3.成轴对称的两个图形,对称点所连的线段平行(或在同 一条直线上).
y
A 1.如图,平面直角坐标系 (–3, 5) 中有矩形ABCD: (1)若点A与点B关于x轴 对称,B点的坐标是什么? 点C与点D关于x轴 对称,D点坐标是什么呢? (2)关于x轴对称的点的 坐标有什么特征? 关于x轴对称的点 横坐标相同,纵坐标 互为相反数. D (3, 5)
5、已知点P(2a+b,-3a)与点P’(8,b+2). 若点p与点p’关于x轴对称,则a=_____ b=_______. 若点p与点p’关于y轴对称,则a=_____ b=_______.
{ {b=4 a=6 2a+b=-8 {-3a=b+2 {b=-20
2a+b=8 3a=b+2 a=2
p1

小学数学轴对称教案精选2024

小学数学轴对称教案精选2024


家长参与孩子学习过程指导
鼓励孩子多观察
家长可以引导孩子多观察生活中的轴对称图形,如蝴蝶、窗花等,让孩子感受轴对称图形 的美丽和普遍性。
与孩子一起制作轴对称图形
家长可以和孩子一起动手制作轴对称图形,如剪纸、拼图等,让孩子在实践中加深对轴对 称图形的理解和认识。
辅导孩子完成相关练习
家长可以辅导孩子完成轴对称图形的相关练习,如绘制轴对称图形、判断轴对称图形等, 帮助孩子巩固所学知识并提高应用能力。
选择材料
提供各种材料,如彩纸、剪刀、胶水等。
制作手工艺品
按照设计的图案,使用提供的材料制作轴对称手 工艺品。
展示与交流
各小组完成后,展示作品并互相交流制作经验。
创新挑战活动:设计个性化轴对称图案
活动目标
激发学生的创新思维 ,挑战他们设计个性 化的轴对称图案。
启发思考
展示一些具有创意的 轴对称图案,激发学 生的设计灵感。
关注学生在轴对称学习过程中的态度、兴趣和学习动力,及时给予鼓励和支持。
小组报告展示成果评价
小组报告的内容是否充实、准确 ,是否能够清晰地表达轴对称的
概念和性质。
小组报告的呈现方式是否生动、 有趣,是否能够吸引听众的注意
力。
小组报告中的团队合作和分工是 否合理,是否能够体现每个成员
的贡献。
教师总结点评及建议反馈
个人设计
学生独立思考并设计 一个具有个性化的轴 对称图案。
分享与交流
学生将自己的设计分 享给全班同学,并解 释设计思路和创意点 。
评选优秀作品
全班同学共同评选出 最具创意和美观的轴 对称图案作品。
05
评价方式与标准制定
观察记录学生表现及参与度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化教学模式 构建高效课堂
教师寄语:你说我讲,快乐课堂;你争我辩,放飞梦想!
1
数学 学科有效教学简案
授课 年级
八年级
学 科
数学
课题
12.1轴对称的性质
教 学 目 标
一、知识与技能
1.理解线段的垂直平分线的概念,
掌握轴对称的性质; 2.能利用轴对称的性质在轴对称图形中找出对称点,会根据已知的对称点画出对称轴.
二、过程与方

1.利用折纸操作经历轴对称图形性质的探究过程,形
成对轴对称性质的深刻认识,提高分析问题、解决问
题的能力
2.提高学生的动手能力.
三、情感、态度 与价值观
1.积累数学活动经验,进一步发展空间观念;
2.体会图形中的对称美. 重点 探索并理解轴对称的性质.
难点 轴对称性质的简单应用. 教学 准备
一案三单 教学
流程
导读单 时间大概为5分钟之内,学科长检查,学生订正答案,老师指出错误。

生成单 时间大概为10分钟 ,学生讨论产生问题,小组讨论,老师
巡回指导。

答疑解惑。

展示交流 时间大概为15分钟,学生上黑板书写过程,并且讲解自
己的过程其他组的同学提出不同见解,老师给出最后的答案。

总结 时间大概为 10分钟归纳出本节课的知识重点 ,做题的方法。

自己的的收获 。

训练提升
教学反思
优化教学模式
构建高效课堂
教师寄语:你说我讲,快乐课堂;你争我辩,放飞梦想!
2
教 学 过 程 设 计
教学环节

间 教学内

教师行为 期望的学生行为
自主合作初步探知
5分钟
创设情境,呈现目标
检查导读单的完成情况,教师随机抽查
小组长检查导读单完成情况,、各个小组讨论导读单上的问题。

问题训练小组评价
15分钟
自主学习合作讨论
老师在教室的每个小组中巡视,讲解同学会出现的问题
学科长组织进行交流,讨论,
规范指导提升能力
10分钟
创设自主、合作学习情境
教师适时引导,恰当点评,并规范书写
每小组各派一名代
表在小黑板上展示自己小组讨论的问题,并讲解自己小组的解题思路,方法与过程。

知识归纳 3分钟 创设 思维 情境 对重点问题进行系统归纳,对共性问题进行规范指导。

归纳出本节课的知识点。

问题训练拓展能力
7分钟
创设 反思 情境
发放问题训练单,教师指导,尤其是学习稍差的学生。

完成问题训练单 板书
设计
一. 创设情境,导入新课 四、巩固练习
二. 探究新知 五、小结 三. 应用新知 六、布置作业。

相关文档
最新文档