正弦函数、余弦函数的性质-课件ppt
合集下载
5.4.2正弦函数、余弦函数的性质(教学课件)正弦函数、余弦函数的周期性和奇偶性)
当 = −1时,sin − 2π = sin.
知识梳理
知识点一:
1.函数的周期性
(1)一般地,设函数f(x)的定义域为D,如果存在一个 非零常数T,使得
对每一个x∈D都有x+T∈D,且 f(x+T)=f(x) ,那么函数f(x)就叫做周
期函数. 非零常数T 叫做这个函数的周期.
(2)如果在周期函数f(x)的所有周期中存在一个 最小的正数 ,那么这个
方法二(公式法)
1
= 中 = , 所以
2
2
2
=
= 4
1
2
学以致用
反思感悟
求三角函数周期的方法
(1)定义法,即利用周期函数的定义求解.
(2)公式法,对形如 y=Asin(ωx+φ)或 y=Acos(ωx+φ)(A,ω,φ 是常
2π
数,A≠0,ω≠0)的函数,T=|ω|. (常用方法)
2 ;
1+sin x-cos2x
(3)f(x)=
.
1+sin x
π
x≠kπ+ ,k∈Z
解 (1)定义域为 x
2
|
,关于原点对称.因为
f(-x)=sin(-x)+tan(-x)=-sin x-tan x=-f(x),
所以函数 y=sin x+tan x 是奇函数.
学以致用
3x 3π
+
3x
(2)f(x)=sin 4
针每经过1小时运行一周.分针、时针的转动是否具有周期性?
它们的周期分别是多少?
具有周期性
分针的周期是1小时,时针的周期是12小时。
新知引入
那么观察正弦函数的图像,是否也具有同样的周期性的规律呢?
= sin
《正弦、余弦函数图象》PPT课件
y
y=sinx (x∈R)
π
2π
1
− 2π − π-103π4π5π
6π
x
二、正弦函数的“五点画图法” 正弦函数的“五点画图法”
(0,0)、( 、
1
●
π
2
y
, 1)、( 、
●
π
3π ,0)、( 、 2
,-1)、 (2 π ,0) 、
0
π
2
π
●
3π 2
●
2π
●
x
-1
y 1
● ●
0 -1
π
2
π
●
3π 2
解:(1)按五个关键点列表 x sinx 1+sinx
y 2 1●
●
0 0 1
π
2
π
0 1
3π 2
2π
1 2
-1 0
0 1
y=1+sinx x ∈ [0, 2π ]
●
●
o
π
2
π
3π 2
●
2π
x
(2)按五个关键点列表 x cosx -cosx
y 1
0 1 -1
π
2
π
-1 1
3π 2
2π
0 0
0 0
y 2 1
y=1+sinx x∈[0, 2π ] o
π
2
π
-1 y 1
3π 2
y=sinx x∈[0, 2π ] y=cosx x∈ [0, 2π ]
2π
x
o
-1
π
2
π
3π 2
2π
x
y=-cosx x∈ [0, 2π ]
正弦函数、余弦函数的性质17页PPT
Hale Waihona Puke xRy [1,1]
x2k 时, ymax 1
x2k时,ymin 1
x [2k,2k] 增函数
x[2k,2k] 减函数
偶函数
2 对称轴: xk,kZ
对称中心:(2 k,0) k Z
例1 求下列函数的最大值和最小值,并写 出取最大值、最小值时自变量x的集合
(1) y=cosx+1,x∈R;
(2)y=-3sin2x,x∈R.
16
17
单调性 奇偶性 周期性 对称性
y=sinx
y
1
2
0
2
-1
3
2 5 x
2
2
xR
y [1,1]
x
2
2k
时, ymax
1
x
2
2k
时,ymin
1
x[-22k,22k] 增函数
x[22k,322k] 减函数
奇函数
2
对称轴:
x
2
k,
k
Z
对称中心: (k,0) kZ
y=cosx
y
1
0
2
3
2 5 x
2
2
-1
例2:比较下列各组数的大小:
(1)sin( )与sin( )
18
10
(2)cos(23 )与cos(17 )
5
4
例3:求函数 ysi1 nx()x , 2,2
23 的单调递增区间。
求函数 ysi n (1x)x , 2,2
32
的单调递增区间。
求函数 ycos2(x)
3
的单调递减区间。
谢谢!
具体做法:
(1)选择一个恰当的区间(这个区间的长为一个周期, 且仅有一个单增区间和一个单减区间)
x2k 时, ymax 1
x2k时,ymin 1
x [2k,2k] 增函数
x[2k,2k] 减函数
偶函数
2 对称轴: xk,kZ
对称中心:(2 k,0) k Z
例1 求下列函数的最大值和最小值,并写 出取最大值、最小值时自变量x的集合
(1) y=cosx+1,x∈R;
(2)y=-3sin2x,x∈R.
16
17
单调性 奇偶性 周期性 对称性
y=sinx
y
1
2
0
2
-1
3
2 5 x
2
2
xR
y [1,1]
x
2
2k
时, ymax
1
x
2
2k
时,ymin
1
x[-22k,22k] 增函数
x[22k,322k] 减函数
奇函数
2
对称轴:
x
2
k,
k
Z
对称中心: (k,0) kZ
y=cosx
y
1
0
2
3
2 5 x
2
2
-1
例2:比较下列各组数的大小:
(1)sin( )与sin( )
18
10
(2)cos(23 )与cos(17 )
5
4
例3:求函数 ysi1 nx()x , 2,2
23 的单调递增区间。
求函数 ysi n (1x)x , 2,2
32
的单调递增区间。
求函数 ycos2(x)
3
的单调递减区间。
谢谢!
具体做法:
(1)选择一个恰当的区间(这个区间的长为一个周期, 且仅有一个单增区间和一个单减区间)
正弦函数和余弦函数的图像与性质.ppt
, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(
x) 可知余弦函数
y
cos
6
x的图像可由
y
2 sin
x
的图像向左平移
2
4
个单位得到.
1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2
3 2
2
2 8
5
-10
正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦函数、余弦函数的性质( 数学 优秀课件
解析:利用周期函数的定义,找到T,使得 思考:这些函数的周期跟解析式中哪些量有 f(x+T)=f(x) 关系?有什么关系?
课后思考
• 用几何画板y=Asin(wx+ψ)图像.gsp作 y=Asin(wx+ψ)的图像,探究该类函数的周 期。 • 试着发现:A、w、ψ分别决定了图像的什 么?
小结
正弦函数的性质:
sin(x 2k ) sin x
正弦函数的周期:2k (k z且k 0) 最小正周期: 2
性质3:单调性
在一个周期上(如[ ,
2
3
2
] )考虑:
[
, ] 2 2
在
x
2
,sinx= 值。
x
2
或x
,sinx=-1,为最小
1.4.2 正弦函数、余弦函数的性质
主讲人:黄凡
复习回顾
①正弦函数、余弦函数的图像是什么?
(物理中简谐运动的图像) (一波未平,一波又起—波涛汹涌)
②我们是如何得到正弦函数的图像的? 几何画图法—单位圆中的正弦线 五点作图法—五个关键点确定形状
引入新课
• 一次函数与图像 • 指数函数与图像 • 对数函数与图像
利用周期性,不难得到:
正弦函数在每一个闭区间[ 2 2k , 2 2k ]( k z ) 上都是增函数,其值从-1增大到1;在每一 3 [ 2 k , 2k ]( k z ) 上都是减 个闭区间 2 2 函数,其值从1减小到-1.
3 正弦函数当且仅当 2 2k (k z)
• 1、周期性(最小正周期为 2 ) • 2、奇偶性(奇函数) • 3、单调性
余弦函数的性质:
课后思考
• 用几何画板y=Asin(wx+ψ)图像.gsp作 y=Asin(wx+ψ)的图像,探究该类函数的周 期。 • 试着发现:A、w、ψ分别决定了图像的什 么?
小结
正弦函数的性质:
sin(x 2k ) sin x
正弦函数的周期:2k (k z且k 0) 最小正周期: 2
性质3:单调性
在一个周期上(如[ ,
2
3
2
] )考虑:
[
, ] 2 2
在
x
2
,sinx= 值。
x
2
或x
,sinx=-1,为最小
1.4.2 正弦函数、余弦函数的性质
主讲人:黄凡
复习回顾
①正弦函数、余弦函数的图像是什么?
(物理中简谐运动的图像) (一波未平,一波又起—波涛汹涌)
②我们是如何得到正弦函数的图像的? 几何画图法—单位圆中的正弦线 五点作图法—五个关键点确定形状
引入新课
• 一次函数与图像 • 指数函数与图像 • 对数函数与图像
利用周期性,不难得到:
正弦函数在每一个闭区间[ 2 2k , 2 2k ]( k z ) 上都是增函数,其值从-1增大到1;在每一 3 [ 2 k , 2k ]( k z ) 上都是减 个闭区间 2 2 函数,其值从1减小到-1.
3 正弦函数当且仅当 2 2k (k z)
• 1、周期性(最小正周期为 2 ) • 2、奇偶性(奇函数) • 3、单调性
余弦函数的性质:
正弦函数、余弦函数的图象和性质PPT课件.ppt
1
●
●
●
●
●
7 4 3 5 11
6
6 3 2 3 6 2
●
2 0
2
5
●
11
6 32 3 6
●
●
x
●
5
6
-1
●
●
●
3
sin(2k +x)= sinx (k Z)
y y=sinx (xR)
1
2 0
-1
2 3 4 5
6 x
二、正弦函数的“五点画图法”
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0
1+sinx 1 2
1
0
1
y
2
●
y=1+sinx x [0, 2 ]
1●
●
●
●
o
3
2
x
2
2
(2)按五个关键点列表
x
0
2
3
2
2
cosx 1 0 -1 0 1
y
y=sinx的图象
1
2 0 3 2 3
2 -1 2
2
4 5
y=cosx的图象
6 x
余弦函数的“五点画图法”
(0,1)、(
2
,0)、( ,-1)、( 3 2
,0)、(2, 1)
y
1●
●
o
●
●
3
2
正弦函数、余弦函数的性质 课件
类型二 三角函数奇偶性的判断
【典例】1.(沧州高一检测)函数f(x)= 的奇偶性为 ( )
sin2x2
A.奇函数
B.偶函数
C.既奇又偶函数 D.非奇非偶函数
2.判断函数f(x)=sin (3 x 3) 的奇偶性.
42
【审题路线图】1.奇偶性⇒定义域⇒是否关于原点对称 ⇒f(-x)与f(x)的关系. 2.奇偶性⇒定义域⇒是否关于原点对称⇒f(-x)与f(x)的 关系.
2
是偶函数,故选C.
2.选D.因为f(x)的最小正周期为T=π,
所以 f( 5 π)=f( 5 π-2π)=f(-π ),
3
3
3
又y=f(x)是偶函数,
所以f(-x)=f(x).
所以 f( 5 π)=f(-π )=f( π )=sin π= 3 .
3
33
32
【延伸探究】若本例2中的“偶函数”改为“奇函数”, 其他条件不变,结果如何?
类型三 三角函数周期性与奇偶性的综合应用
【典例】1.下列函数中周期为 ,且为偶函数的
2
是( )
A.y=sin4x
C.y=sin(4x+π ) 2
B.y=cos 1 x
4
D.y=cos( 1 x-π ) 42
2.定义在R上的函数f(x)既是偶函数,又是周期函数,若
f(x)的最小正周期为π,且当x∈ [0,] 时,f(x)=sinx,
4.若函数是以2为周期的函数,且f(3)=6,则f(5)= ________. 【解析】因为函数是以2为周期的函数,且f(3)=6,则 f(5)=f(3+2)=f(3)=6. 答案:6
5.根据函数奇偶性的定义判断函数y=lgcosx是 ________函数.(填写奇或偶)
1.4正弦函数,余弦函数的性质ppt
自变量x增加2π时函数值不断重复地出现的
x o y x o 6π 12π 4π 8π
3.T是f(x)的周期,那么kT也一定是f(x)的周期. (k为非零整数)
求下列函数的周期:
(1) y 3 cos x, x R (2) y sin 2 x, x R 1 (3) y 2 sin( x ), x R 2 6
-
o
· · · ·
2 3 4
结合图像:在定义域内任取一个 , 由诱导公式可知: sin(x 2k ) sin x
x
f ( x 2k ) f ( x) 正弦函数y sin x( x R)是周期函数,周期是 2k
即
思考3:余弦函数是不是周期函数?如 果是,周期是多少? 由诱导公式可知:
(3)已知函数 y sin(x ), 0 的周期为 3 ,则 3 6 ___
(4)函数
y cos (1 x) 的最小正周期是 2
4
练习题.
求下列函数的周期: x (2) y cos (1) y sin 3x 3 T 6 2 T
3
x (3) y 3 sin 4
解:(1) ∵对任意实数
x
有
f ( x) 3 sin x 3 sin(x 2 ) f ( x 2 )
cos x 是以2π 为周期的周期函数.
(2)
sin(2 x) sin(2 x 2 ) sin 2( x ) , y sin 2 x 是以π 为周期的周期函数.
周期函数
非零常数T叫做这个函数的周期 2.对于一个周期函数f(x),如果在它所有的周 期中存在一个最小的正数,那么这个最小 的正数就叫做f(x)的最小正周期。
三角函数的图象和性质-PPT课件
3
2
2
x
14
y
(3
2
)
1
-1
2
-2
y=2sinx, x[0, 2
]
3
2
2 x
15
10
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
11
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
y=cosx x [0, 2 ]
3
2
x
2
y=-cosx
●
3
y
●
1
●
0
2
-1
●
3
●
2
x
2
●
练习:用“五点画图法”画出正弦函数
y=sinx x∈ [0, 2 ]的图象
4
一、余弦函数y=cosx(xR)的图象
sin(
x+
2
)= cosx
y
y=sinx的图象
1
2 0 3 2 3
2 -1 2
2
4 5
y=cosx的图象
6 x
5
余弦函数的“五点画图法”
x [0, 2
]
12
小结:
正弦函数、余弦函数图象的五点法
练习:(1)画出函数y=-sinx x∈ [0,2π]
(2)画出函数y=1+cosx x∈ [0,2π] (3)画出函数y=2sinx x∈ [0,2π]
正弦余弦函数的图像性质(周期、对称、奇偶)经典课件25页PPT
新知探究 :
1、正弦函数的单调性 y
1
y
1
2
o
2
o
-1
-1
3
2
2
x x
y=sinx x[0,2]
y
y=sinx xR
-4 -3
-2
1
- o
-1
正弦曲 线
2
3
4
5 6 x
新知探究:
1、正弦函数的单调性
y
-4 -3
-2
- 2
1
o
-1
2
2
3
4
5 6 x
x
2
…
0
…
正 正弦弦函数余.余弦弦函函数的数图象对和称性质性
-
-
-
6
4
2
对称轴:无数条
xk,kZ
2
-
-
-
6
4
2
对称轴:无数条 x=kπ,k∈Z
-
y
正弦 函数 y=sinx的 图象
1-
-
-
-
o - 1-
2
4
6
x
对称中心:无数个
(kπ,0),k∈Z
y
余 弦函 数 y =co sx的 图象
1-
-
-
-
o
复习回顾
一、正弦函数、余弦函数的图像及画法
正弦曲线
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
6
4
余弦曲线
y-
1
2
o-
-1
2
4
6
探索发现
高中数学必修4(1.4.2正弦函数、余弦函数的性质)PPT课件
∴函数 y2sin1x(),x.正弦函数、余弦函数的性质
例1) 3y.求s下in列( x函数的)周期:
3 2) y cos 3x
3) y 3 sin ( 1 x ), x R 一般
35
结论:
函 数 yAsin(x)及 yAcos(x),xR (A,,为 常 数 ,A0,. 0)的 周 期 T2 8
.
15
结论:正弦函数是奇函数,余弦函数是偶 函数
.
9
正弦、余弦函数的图象和性质
-4 -3
-2
y
1
- o
-1
2
3
4
y=sinx (xR) 定义域 xR
值 域 y[ - 1, 1 ]
y=cosx (xR) 周期性 T = 2
y
1
-4 -3
-2
- o
-1
2
3
4
.
5 6 x
5 6 x
10
正弦、余弦函数的奇偶性
对于函数f(x),如果存在一个非零常数T, 使得当x取定义域内的每一个值时,都有
f(x+T)=f(x)
那么函数f(x)就叫做周期函数.非零常数T 叫做这个函数的周期.
注意:如果在周期函数f(x)的所有周期中
存在一个最小的正数,那么这个最小正数
就叫做f(x)的最小正周期.
.
6
例:求下列函数的周期 ( 1 ) y 3 cx ,o x R s( 2 ) y s2 x i ,x n R ( 3 ) y 2 s1 i x n ) 26 解:(1)∵cos(x+2π)=cosx, ∴3cos(x+2π)=3cosx ∴函数y= 3cosx,x∈R的周期为2π
正弦函数余弦函数的图像和性质PPT课件
4.8 正弦函数.余弦函数的图象和性质
1. sinα、cosα、tgα的几何意义. 想一想? 1
P
T
正弦线MP 余弦线OM
o
M
1
A
正切线AT
三角问题
几何问题
4.8 正弦函数.余弦函数的图象和性质
2.用描点法作出函数图象的主要步骤是怎样的? (1) 列表
(2) 描点
-
(3) 连线
-
4.8 正弦函数.余弦函数的图象和性质
如: 作 的正弦线 平移定点
,连线
4.8 正弦函数.余弦函数的图象和性质
函数 图象的几何作法 作法: (1) 等分 (2) 作正弦线
1-
(3) 平移 (4) 连线
-
-
-
-1 -1 -
-
4.8 正弦函数.余弦函数的图象和性质
正弦曲线
1-
-1-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……, …与y=sinx,x∈[0,2π]的图象相同 余弦曲线(平移得到) 余弦曲线(几何作法)
返回 请单击:
4.8 正弦函数.余弦函数的图象和性质
(五点作图法)
1-
图象的最高点 与x轴的交点 图象的最低点
-
-1 -1 -
简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
-
图象的最高点 与x轴的交点
1-
-
-1
图象的最低点
(1) y
x
4.8 正弦函数.余弦函数的图象和性质
余弦曲线
-
1
-
-1
由于
所以余弦函数
1. sinα、cosα、tgα的几何意义. 想一想? 1
P
T
正弦线MP 余弦线OM
o
M
1
A
正切线AT
三角问题
几何问题
4.8 正弦函数.余弦函数的图象和性质
2.用描点法作出函数图象的主要步骤是怎样的? (1) 列表
(2) 描点
-
(3) 连线
-
4.8 正弦函数.余弦函数的图象和性质
如: 作 的正弦线 平移定点
,连线
4.8 正弦函数.余弦函数的图象和性质
函数 图象的几何作法 作法: (1) 等分 (2) 作正弦线
1-
(3) 平移 (4) 连线
-
-
-
-1 -1 -
-
4.8 正弦函数.余弦函数的图象和性质
正弦曲线
1-
-1-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……, …与y=sinx,x∈[0,2π]的图象相同 余弦曲线(平移得到) 余弦曲线(几何作法)
返回 请单击:
4.8 正弦函数.余弦函数的图象和性质
(五点作图法)
1-
图象的最高点 与x轴的交点 图象的最低点
-
-1 -1 -
简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
-
图象的最高点 与x轴的交点
1-
-
-1
图象的最低点
(1) y
x
4.8 正弦函数.余弦函数的图象和性质
余弦曲线
-
1
-
-1
由于
所以余弦函数
高一数学必修第一册正弦函数、余弦函数的性质课件
上都单调递减,其值从1减小到-1.
最大值与最小值
【整理】从上述对正弦函数、余弦函数的单调性的讨论中容易得到:
+ ( ∈ ) 时取得最大值1,
当且仅当 = − + ( ∈ ) 时取得最小值-1;
①正弦函数当且仅当 =
②余弦函数当且仅当 = ( ∈ ) 时取得最大值1,
【1】周期性:观察正弦函数的图像,可以发现,在图像上,横坐标每隔2π个单位
长度,就会出现纵坐标相同的点,这就是正弦函数值具有的“周而复始”的
变化规律.实际上,这一点既可以从定义中看出,也能从诱导公式中得到反映.即自
变量 的值加上2π的整数倍时所对应的函数值,与 所对应的函数值相等.数学
上用周期性来定量地刻画这种“周而复始”的规律.
如何用自变量的系数表示上述函数的周期呢?
事实上,令 = + ,那么由 ∈ 得 ∈ ,且函数 = , ∈ 及函数
= , ∈ 的周期都是.
因为 + = + + = +
+ ,所以自变量增加 ,函数值
+ ,
+ ( ∈ ) 上都单调递减,其值从1减小到-1.
单调性
−
−
−
同样的道理结合余弦函数的周期性我们可以知道:
余弦函数在每一个闭区间
在每一个闭区间
− + , ( ∈ ) 上都单调递增,其值从-1增大到1;
, + ( ∈ )
关于y轴对称.所以正弦函数是奇函数,余弦函数是偶函数.
《正弦定理余弦定理》课件
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 cos x
作业
补充:求下列函数的最大值和最小值, 及相应的自变量x的集合;再求其对称轴 与对称中心.最后求出其单调区间.
1.y 3sin( 2x ), x R
4
2.y 3 cos( 1 x ), x R
2 26
定义域
正切函数y=tanx的定义域是:( k k 2
y
小结作业
2.正切曲线与x轴的交点及渐近线,是 确定图象形状、位置的关键要素,作图 时一般先找出这些点和线,再画正切曲 线.
3.研究正切函数问题时,一般先考察 ( , )的情形, 再拓展到整个定义域.
22
(2) y 2 sin( 2 3x)
3
例4 求函数 y sin(1 xx) ) ,
x∈[-2π,2π]的单调23递增23区间.
理论迁移
例例51 已求知下定列义函在数R的上周的期函:数f(x)满足 f(x+2)+f(x)=0,试判断f(x)是否为 周期函数?
例6 已知定义在R上的函数f(x)满 足f(x+1)=f(x-1),且当x∈[0,2] 时,f(x)=x-2,求f(10)的值.
正弦函数、余弦函数的性质
作业讲解
补充:求下列函数的最大值和最小值, 及相应的自变量x的集合;再求其对称轴 与对称中心.最后求出其单调区间.
(1)y 1 1 cos x;(2)y 2sin(1 x )
23
23
理论迁移
例3 求下列函数的单调递增区间.
(1) y sin( 1 x ) 23
3
2
2
-π
0
2
π
3
2
x
探求新知
y
y1
5
2
3
2
2
-2π
-π x1
0
y2
x
22
π
3
2
x
奇偶性
正切函数是奇函数
单调性
正切函数在开区间 ( k k
2
都是增函数
正切函数在整个定义域内是增函数吗?
对称轴 与对称中心
正切曲线关于点 (k , 0)对称. 2
正切曲线不是轴对称图形
理论迁移
例1 求函数 y tan( x ) 的定义域、 周期和单调区间. 2
例2 试比较tan(-1)和tan( 28 )
的大小.
例3 若 1 tan x 3,求x 的取值范 围.
小结作业
1.正切函数的图象是被互相平行的直线 所隔开的无数支相同形状的曲线组成,且 关于点 ( k , 0对) 称, 正切函数的性质应 结合图象去2 理解和记忆.
2
2
0
x
探求新知
y
2
2
O1 A
3 0 3
x
8 4 8 84 8
周期性
1.根据相关诱导公式,你能判断正切函 数是周期函数吗?其最小正周期为多少?
正切函数是周期函数,周期是π.
2.函数 y tan( x )( 0) 的周期是
什么?
探求新知
y
3
2
2
-π
0
2
π
3
2
x
探求新知
y
2
f(x)=sinx,求f(
5
3
)的值.
典例讲评
例8 设点P是函数f (x)=sinx的图象的
一个对称中心,若点P到图象的对称轴的
距离的最小值是
4
,
则f
(
x)的最小正周期是
(A)2
(B)
(C
)
2
(
D)
4
拓展延伸
例9 求下列函数的值域.
(1) y cos2 x 2 sin x 2; (2) y 2 cos x .
几个周期函数定义的等价式:
f (x a) f (x), f (x a) f (x a),a 0
f (x a) 1 , f (x a) 1
f (x)
f (x)
T 2a
拓展延伸
例7定义在R上的函数f(x)既是
偶函数,又是周期函数,若f(x)
的最小正周期为 ,当x [0, ]时,
作业
补充:求下列函数的最大值和最小值, 及相应的自变量x的集合;再求其对称轴 与对称中心.最后求出其单调区间.
1.y 3sin( 2x ), x R
4
2.y 3 cos( 1 x ), x R
2 26
定义域
正切函数y=tanx的定义域是:( k k 2
y
小结作业
2.正切曲线与x轴的交点及渐近线,是 确定图象形状、位置的关键要素,作图 时一般先找出这些点和线,再画正切曲 线.
3.研究正切函数问题时,一般先考察 ( , )的情形, 再拓展到整个定义域.
22
(2) y 2 sin( 2 3x)
3
例4 求函数 y sin(1 xx) ) ,
x∈[-2π,2π]的单调23递增23区间.
理论迁移
例例51 已求知下定列义函在数R的上周的期函:数f(x)满足 f(x+2)+f(x)=0,试判断f(x)是否为 周期函数?
例6 已知定义在R上的函数f(x)满 足f(x+1)=f(x-1),且当x∈[0,2] 时,f(x)=x-2,求f(10)的值.
正弦函数、余弦函数的性质
作业讲解
补充:求下列函数的最大值和最小值, 及相应的自变量x的集合;再求其对称轴 与对称中心.最后求出其单调区间.
(1)y 1 1 cos x;(2)y 2sin(1 x )
23
23
理论迁移
例3 求下列函数的单调递增区间.
(1) y sin( 1 x ) 23
3
2
2
-π
0
2
π
3
2
x
探求新知
y
y1
5
2
3
2
2
-2π
-π x1
0
y2
x
22
π
3
2
x
奇偶性
正切函数是奇函数
单调性
正切函数在开区间 ( k k
2
都是增函数
正切函数在整个定义域内是增函数吗?
对称轴 与对称中心
正切曲线关于点 (k , 0)对称. 2
正切曲线不是轴对称图形
理论迁移
例1 求函数 y tan( x ) 的定义域、 周期和单调区间. 2
例2 试比较tan(-1)和tan( 28 )
的大小.
例3 若 1 tan x 3,求x 的取值范 围.
小结作业
1.正切函数的图象是被互相平行的直线 所隔开的无数支相同形状的曲线组成,且 关于点 ( k , 0对) 称, 正切函数的性质应 结合图象去2 理解和记忆.
2
2
0
x
探求新知
y
2
2
O1 A
3 0 3
x
8 4 8 84 8
周期性
1.根据相关诱导公式,你能判断正切函 数是周期函数吗?其最小正周期为多少?
正切函数是周期函数,周期是π.
2.函数 y tan( x )( 0) 的周期是
什么?
探求新知
y
3
2
2
-π
0
2
π
3
2
x
探求新知
y
2
f(x)=sinx,求f(
5
3
)的值.
典例讲评
例8 设点P是函数f (x)=sinx的图象的
一个对称中心,若点P到图象的对称轴的
距离的最小值是
4
,
则f
(
x)的最小正周期是
(A)2
(B)
(C
)
2
(
D)
4
拓展延伸
例9 求下列函数的值域.
(1) y cos2 x 2 sin x 2; (2) y 2 cos x .
几个周期函数定义的等价式:
f (x a) f (x), f (x a) f (x a),a 0
f (x a) 1 , f (x a) 1
f (x)
f (x)
T 2a
拓展延伸
例7定义在R上的函数f(x)既是
偶函数,又是周期函数,若f(x)
的最小正周期为 ,当x [0, ]时,