计算机毕业论文_基于FPGA的等精度频率计的设计与实现

合集下载

基于FPGA的等精度数字频率计设计(修订版)

基于FPGA的等精度数字频率计设计(修订版)

基于FPGA的等精度数字频率计设计微电子学与固体电子学张嘉伟113114312目录摘要 (3)第一章课题背景 (4)第二章方案设计及原理 (4)1 多周期同步测频率测量原理 (4)2 设计实现 (6)2.1 FPGA程序设计 (6)2.2 DSP程序设计 (7)第三章主要模块的Verilog程序 (8)1 计数器 (8)2 除法器 (8)3 分频器 (11)4 BCD模块 (11)第四章仿真结果 (12)第五章设计总结 (13)参考文献 (13)摘要本文主要论述了利用FPGA进行测量频率计数,FPGA实施控制实现多功能频率计的设计过程。

该频率计利用等精度的设计方法,克服了基于传统测频原理的频率计的测量精度随被测信号频率的下降而降低的缺点。

等精度的测量方法不但具有较高的测量精度,而且在整个频率区域包成恒定的测试精度。

根据多周期同步测频率法的原则,选取了多周期同步测频法作为数字频率计的测量算法,提出了基于FPGA的数字频率计设计方案。

给出了该设计方案的实际测量效果,证明该设计方案切实可行,能达到较高的频率测量精度。

关键词:FPGA;等精度;频率计第一章课题背景随着大规模集成电路技术的发展及电子产品市场运作节奏的进一步加快,涉及诸如计算机应用、通信、智能仪表、医用设备、军事、民用电器等领域的现代电子设计技术已迈入一个全新的阶段。

专家预言,未来的电子技术时代将是EDA 的时代,PLD作为EDA技术的一项重要技术,是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。

在电子测量技术中,频率测量是最基本的测量之一。

工程中很多测量,如用振弦式测量力、时间测量、速度测量、速度控制等,都设计到频率测量,或可归结为频率测量。

而常用的直接测量方法在使用中有较大的局限性,其测量精度随着被测信号频率的下降而降低,并且对被测信号的计数要产生±1个数字误差。

采用等精度频率测量方法具有测量精度保持恒定,不随所测信号的变化而变化;结合FPGA,具有集成度高、告诉和高可靠性的特点,是频率的测频范围可达到0.1Hz-50MHz,测频全域相对误差恒为百万分之一。

FPGA频率计设计毕业设计(论文)

FPGA频率计设计毕业设计(论文)

一、课程设计原理1、测频原理及误差分析本次课程设计采用直接测频法。

直接测频法就是在确定的闸门时间内,记录被测信号的脉冲个数。

这种方法的计数值也会产生最大为±1个脉冲误差。

进一步分析测量准确度。

设待测信号脉冲周期为T1,频率为F1,当闸门时间为T=1s 时,测量准确度为&=T1/T=1/F1。

由此可知直接测频法的测量准确度与信号的频率有关。

当待测信号频率较高时,测量准确度也较高,反之测量准确度也较低。

2、占空比测量原理占空比:占空比是指高电平在一个周期之内所占的时间比率。

方波的占空比为50%,占空比为0.5,说明正电平所占时间为0.5个周期。

在1S的闸门时间之内,只要我们利用50Mhz的时钟脉冲,对待测信号的高电平时间进行计数,得到一个num值。

最后num*20ns就是所求信号的占空比了。

二、系统的设计1、分频模块分频模块我们采用50Mhz的时钟频率产生待测的信号,和三个控制信号。

此程序要求将50Mhz分出1Mhz的频率,再产生1hz作为控制信号的标准输入时钟。

该模块产生的3个控制信号,分别为EN,LOAD,CLR。

CLR信号用于在每次测量开始时,对计数器进行复位,以清除上次测量的结果,该复位信号高电平有效。

EN为计数允许信号,在EN信号的上升沿时刻计数模块开始对输入信号的频率进行测量,在此1S时间里被测信号的脉冲数进行计数,即为信号的频率。

然后将值锁存,并送到数码管显示出来。

设置锁存器的好处是使显示的数据稳定,不会由于周期性的清零信号而不断闪烁。

在每一次测量开始时,都必须重新对计数器清0。

另外,也设计出另外一个进程process,产生同样地三个控制信号给占空比测量时提供使能,锁存和清零的能力。

部分程序如下:process(clk)beginif clk'event and clk = '1' thentemp1<=temp1+1;end if;end process;freq<=temp1(16); --381Hz=50Mhz/2^172、计数模块计数模块分为2个子模块。

基于fpga的频率计设计与实现本科毕设论文

基于fpga的频率计设计与实现本科毕设论文

唐山学院毕业设计设计题目:基于FPGA的数字频率计设计与实现系别:信息工程系班级:10应用电子技术(1)班*名:******师:***2013年6月10 日基于FPGA的数字频率计设计与实现摘要在电子设计领域,随着计算机技术、大规模集成电路技术、EDA(Electronics Design Automation)技术的发展和可编程逻辑器件的广泛应用,传统的自下而上的数字电路设计方法、工具、器件已远远落后于当今技术的发展。

基于EDA技术和硬件描述语言的自上而下的设计技术正在承担起越来越多的数字系统设计任务。

本课题的数字频率计设计,采用自上向下的设计方法。

本文首先综述了EDA 技术的概况,接着介绍硬件描述语言VHDL,可编程器件FPGA及频率测量的一般原理;然后介绍数字频率计的系统设计,频率计各系统模块的VHDL语言实现,最后利用QUARTUS Ⅱ集成开发环境进行编辑、综合、波形仿真,并下载到CPLD器件中,经实际电路测试,仿真和实验结果表明,此频率计具有较高的实用性和可靠性。

关键字:EDA FPGA 数字频率计VHDL语言Design and Implementation ofDigital Frequency Meter Based on FPGAAbstractIn the field of electronic design, with the development of computer technology, LSI technology, EDA (Electronics Design Automation)technology and wide application of programmable logic devices, the traditional bottom-up digital circuit design methods, tools, devices have far behind today's technology. The top-down design techniques based on EDA technology and hardware description language are taking on more and more digital system design task.The topic digital frequency meter design uses top-down design approach. First, this paper summarizes the overview of EDA technology, then it describes the hardware description language which is called VHDL, FPGA programmable device and the general principles of frequency measurement; then it introduces the system design of digital frequency meter, and the realization of frequency meter each system module VHDL. Finally using QUARTUSⅡ integrated development environment edits, synthesizes, and simulates, and download to the CPLD devices, by using the actual circuit testing, simulation and experimental results show that this frequency meter is high availability and reliability.Keywords:EDA; FPGA;digital frequency meter;VHDL language目录1 引言 (1)2 硬件描述语言(HDL) (2)2.1VHDL语言简介 (2)2.2 利用VHDL语言开发的优缺点 (3)3 电子设计自动化(EDA)发展概述 (4)3.1 EDA的简介 (4)3.2 EDA的发展史 (4)3.3基于EDA的FPGA/CPLD开发 (5)3.3.1 FPGA/CPLD的简介 (6)3.3.2 用FPGA/CPLD进行开发的优缺点 (7)4 频率计的测量及方案选择 (9)4.1 数字频率计工作原理概述 (9)4.2 测频原理及误差分析 (10)4.2.1常用测频方案 (10)4.2.2 等精度测频原理 (10)4.2.3误差分析 (11)5 数字频率计的系统设计与功能仿真 (13)5.1 系统的总体设计 (13)5.2 频率计模块 (14)5.2.1 测频控制模块 (14)5.2.2 锁存器模块 (15)5.2.3 十进制计数器模块 (16)5.3 显示模块 (17)5.3.1显示模块设计 (17)5.3.2译码器模块 (18)5.3.3四位二进制数与十六位二进制数转换的源程序 (19)5.3.4十六位二进制数与四位二进制数转换的源程序 (19)5.3.5四位二进制数与段码转换的源程序 (21)6 整形电路设计 (22)6.1 555定时器的工作原理 (22)6.2 施密特触发器 (23)6.2.1 电路结构 (23)6.2.2 工作原理 (23)6.3波形的整形 (24)7 软件测试及硬件下载 (25)7.1 QuartusII软件简介 (25)7.2 QuartusII的设计流程 (25)7.3 QuartusII软件的使用方法 (26)7.3.1 创建底层模块 (26)7.3.2 构建顶层模块 (30)7.4 下载及硬件实现 (32)8 结论 (34)谢辞 (35)参考文献 (36)附录Ⅰ频率计顶层文件 (38)附录Ⅱ源程序 (39)1引言21世纪人类将全面进入信息化社会,对微电子信息技术和微电子VLSI基础技术将不断提出更高的发展要求,微电子技术仍将继续是21世纪若干年代中最为重要的和最有活力的高科技领域之一。

毕业设计 基于fpga的等精度数字频率计的设计

毕业设计 基于fpga的等精度数字频率计的设计

本科生毕业论文题目:基于fpga的等精度数字频率计的设计摘要在电子工程,资源勘探,仪器仪表等相关应用中,频率计是工程技术人员必不可少的测量工具。

频率测量也是电子测量技术中最基本最常见的测量之一。

不少物理量的测量,如转速、振动频率等的测量都涉及到或可以转化为频率的测量。

基于传统测频原理的频率计的测量精度会随被测信号频率的下降而降低。

本文介绍了一种基于FPGA的等精度数字频率计,它不但具有较高的测量精度,而且在整个测量区域能保持恒定的测量精度。

文章首先介绍了硬件描述语言(HDL)的发展,以VHDL为核心,说明了利用VHDL语言进行设计的步骤。

然后介绍FPGA器件的基本结构和开发流程,接着阐述等精度数字频率计的工作原理以及利用VHDL语言实现数字频率计的具体做法,重点是利用BCD码减法实现的BCD码除法器的设计,最后还利用modelsim软件对其进行了仿真,具体分析验证了此设计的正确性。

关键词:FPGA VHDL 等精度BCD码除法AbstractCymometer is a necessary measure tool for technical engineers in electronic engineering , resource exploration and apparatus using . frequency mesure is one of the most essential and the most common mesure of electronic mesure technology . many physical quantities’ mesure , such as rotate speed , vibration frequency’s mesure , is related with or can be transformed into frequency mesure.The precision of cymometer based on traditional frequency-testing theory will decrese when the measured frequency becomes lower. this article introduces a cymometer of same-precision based on FPGA. The cymometer not only has high precision, but also its precision doesn’t decrese when the measured frequency becomes lower.This article first introduces the development of HDL , focusing on VHDL , present the step of design of VHDL . then it introduces the basic structure and the develop flow of FPGA device . in the end , it introduces the theory of cymometer and the specific implement of cymometer based on VHDL , emphasizing the theory of implementing BCD division. the function simulation and logic synthesis also come out, showing the correction of the design .Keywords: FPGA VHDL same-precision BCD division目录第一章前言............................................................................................................... 错误!未定义书签。

基于FPGA中8051核等精度频率计的设计

基于FPGA中8051核等精度频率计的设计

片 上 的 技 术 。 这 样 设 计 的 好 处 是 集 成 度 高 , 不变 ,而常规 的直 测法 (在低频 时用测周期
RAM类 型 : 自动
移 植 方 便 , 还 能 集 成 各 种 功 能 , 比 如A/D转 法 ,高频时用测频 率法 ),其精度 会随着被
时 钟 类 型 : 双 时 钟 (分 开 的 输 入 输 出
如 图 3所 示 , 锁 相 环 为 软 件 自带 部 件 ,
计是在FPGA广泛应用 前一个适合 工业 生产 的 关闭 。设在一次 门控时间T 中对被测信 号计 对 其 设 置 如 下 :
方案 。单片机性价 比较高 ,但 由于其 内部资 数值为N 。对标准 频率信 号 的计数值 为N 。
1.引言
计数 器 。标 准频率信 号 (F )从COUNT1的时钟
如 图2所示 ,本设计 的IP核 于51单片机
电 子 信 号 测 量 中 最 基 本 的 测 量 之 一 就 输 入端 输入 ;被测 信 号从 COUNT2的时 钟输 基 本类似 ,端 口和功能一样 ,差别在于51单
是频率测量 ,随着 电子通 讯技术越发发 达, 入端 输入 ,设其实 际频 率为F ,测量 频率为 片机的输入输 出 口是双 向口,本 IP核 的是单
(1)RAM256
各个 模块 ,比如计数器控 制模块 ,从而 实现 同而 被测信号频率 不同的情况下 ,等精度测
输 出总 线 :8位
将 整 个 单 片 机 以 及 其 他 部 件 仿 真 在 一 片 芯 量 法 的 测 量 精 度 在 整 个 测 量 范 围 内 保 持 恒 定
存 储 容 量 :256字 长
使 用 的 设 备 :CycloneII

学位论文—基于fpga的数字频率计的设计论文

学位论文—基于fpga的数字频率计的设计论文

基于FPGA 的数字频率计的设计2004级电子信息工程专业 何亚军 指导教师 曾技摘要 随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,在电子工程、资源勘探等相关应用上,频率计是工程技术人员必不可少的测量工具。

因此,测频原理及方法的研究正受到越来越多的关注。

目前许多高精度的数字频率计都采用单片机加上外部的高速计数器来实现。

但难以提高计数器的工作频率,而且测量的精度不高。

因此采用可编程逻辑器件(FPGA)来实现数字频率计。

应用VHDL 进行自顶向下的设计,即使用VHDL 模型在所有综合级别上对硬件设计进行说明、建模和仿真测试。

通过逻辑综合后,把适配生成的配置文件,通过编程器向FPGA\CPLD 进行下载。

最后进行硬件调试与验证。

本设计的系统除了脉冲整形、显示部分的电路不在可编程电路之中,其余的电路都集成在可编程逻辑器件中。

本设计具有测频范围宽、精度高、可靠性高等优点。

符合现代EDA 设计的要求。

关键词 频率,可编程逻辑器件,电子设计自动化,硬件描述语言1 绪论在电子技术领域内,频率与电压一样,也是一个基本参数。

随着现代科技的发展,时间及频率计量的意义已日益明显。

例如,在卫星发射、导弹跟踪、飞机导航、潜艇定位、大地测量、天文观测、邮电通信、广播电视、交通运输、科学研究、生产及生活等各个方面,都需要对时间及频率的计量,也都离不开对时间及频率的计量。

因此,测频原理及方法的研究正受到越来越多的关注。

目前多用电子计数器测频,它具有测量精度高、速度快、自动化程度高、操作简便、直接显示数字等特点,尤其是与微处理器相结合,实现了程控化和智能化,构成智能化计数器。

目前,电子计数器几乎取代了模拟式测量仪器。

而电子计数器测频法又有两种实现方法:直接计数测频法和等精度测频法。

直接计数测频法只是简单地记下单位时间内周期信号的重复次数,其计数值会有1±个计数误差。

此方法的测量精度主要取决于基准时间和计数器的计数误差。

(完整版)基于FPGA的等精度频率计的设计与实现毕业论文

(完整版)基于FPGA的等精度频率计的设计与实现毕业论文

第一章课题研究概述1.1课题研究的目的和意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

目前常用的测频方案有三种:方案一:完全按定义式F=N/T进行测量。

被测信号Fx经放大整形形成时标ГX,晶振经分频形成时基TR。

用时基TR开闸门,累计时标ГX的个数,则有公式可得Fx=1/ГX=N/TR。

此方案为传统的测频方案,其测量精度将随被测信号频率的下降而降低。

方案二:对被信号的周期进行测量,再利用F=1/T(频率=1/周期)可得频率。

测周期时,晶振FR经分频形成时标ГX,被测信号经放在整形形成时基TX控制闸门。

闸门输出的计数脉冲N=ГX/TR,则TX=NГX。

但当被测信号的周期较短时,会使精度大大下降。

方案三:等精度测频,按定义式F=N/T进行测量,但闸门时间随被测信号的频率变化而变化。

如图1所示,被测信号Fx经放大整形形成时标ГX,将时标ГX经编程处理后形成时基TR。

用时基TR开闸门,累计时标ГX的个数,则有公式可得Fx=1/ГX=N/TR。

此方案闸门时间随被测信号的频率变化而变化,其测量精度将不会随着被测信号频率的下降而降。

本次实验设计中采用的是第三种测频方案。

等精度频率计是数字电路中的一个典型应用,其总体设计方案有两种:方案一:采用数字逻辑电路制作,用IC拼凑焊接实现。

其特点是直接用现成的IC组合而成,简单方便,但由于使用的器件较多,连线复杂,体积大,功耗大,焊点和线路较多将使成品稳定度与精确度大打折扣,而且会产生比较大的延时,造成测量误差、可靠性差。

方案二:采用可编程逻辑器件(CPLD)制作。

随着现场可编程门阵列FPGA的广泛应用,以EDA工具作为开发手段,运用VHDL等硬件描述语言语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。

基于FPGA的等精度频率计的设计毕业设计论文

基于FPGA的等精度频率计的设计毕业设计论文

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

基于 fpga 的数字频率计的设计与实现

基于 fpga 的数字频率计的设计与实现

基于 FPGA 的数字频率计的设计与实现随着现代科技的不断发展,我们对数字信号处理的需求也越来越高。

数字频率计作为一种用来测量信号频率的仪器,在许多领域有着广泛的应用,包括无线通信、雷达系统、声音处理等。

在这些应用中,精确、高速的频率测量常常是至关重要的。

而基于 FPGA 的数字频率计正是利用了 FPGA 高速并行处理的特点,能够实现高速、精确的频率计算,因此受到了广泛关注。

本文将从设计思路、硬件实现和软件调试三个方面,对基于 FPGA 的数字频率计的设计与实现进行详细讲解。

一、设计思路1.1 频率计原理数字频率计的基本原理是通过对信号进行数字化,然后用计数器来记录单位时间内信号的周期数,最后根据计数器的数值和单位时间来计算信号的频率。

在 FPGA 中,可以通过硬件逻辑来实现这一过程,从而实现高速的频率计算。

1.2 FPGA 的优势FPGA 作为一种可编程逻辑器件,具有并行处理能力强、时钟频率高、资源丰富等优点。

这些特点使得 FPGA 在数字频率计的实现中具有天然的优势,能够实现高速、精确的频率测量。

1.3 设计方案在设计数字频率计时,可以采用过采样的方法,即对输入信号进行过取样,得到更高精度的测量结果。

还可以结合 PLL 锁相环等技术,对输入信号进行同步、滤波处理,提高频率测量的准确性和稳定性。

二、硬件实现2.1 信号采集在 FPGA 中,通常采用外部 ADC 转换芯片来对输入信号进行模数转换。

通过合理的采样率和分辨率设置,可以保证对输入信号进行精确的数字化处理。

2.2 计数器设计频率计最关键的部分就是计数器的设计。

在 FPGA 中,可以利用计数器模块对输入信号进行计数,并将计数结果送入逻辑单元进行进一步的处理。

2.3 频率计算通过对计数结果进行适当的处理和归一化,可以得到最终的信号频率。

在这一过程中,需要注意处理溢出、误差校正等问题,以保证频率测量的准确性和稳定性。

三、软件调试3.1 FPGA 开发环境在进行基于 FPGA 的数字频率计设计时,可以选择常见的开发工具,例如 Xilinx Vivado 或 Quartus II 等。

基于FPGA的等精度数字频率计的研究与实现

基于FPGA的等精度数字频率计的研究与实现

科技广场2009.50引言常用的测频方法主要有测频法和测周期法两种。

测频法就是在确定的闸门时间T W 内,记录被测信号的变化周期数(或脉冲个数)N X ,则被测信号的频率f x =N X /T W 。

测周期法需要有标准频率信号f s ,在待测信号的一个周期内,记录标准频率的周期数N s ,则被测信号的频率为f x =f s /N s 。

这两种方法的计数值会产生个字误差,并且测量精度与计数器中记录的数值有关。

为了保证测量精度,一般对低频信号采用测周期法,对于高频信号采用测频法,因此测试时很不方便。

针对以上问题,本文提了一种基于等精度测频原理的频率计,给出了一种基于FPGA 的设计方案。

1等精度测量方法等精度测量方法是在直接测频方法的基础上发展起来的。

它的闸门时间不是固定的值,而是被测信号的整数倍,即与被测信号同步。

因些,排除了对被测信号计数所产生的个字误差,并且达到了在整个测量频段的等精度测量,其测频原理如图一所示。

在测量过程中,有两个计数器分别对标准和被测信号同时计数。

首先给出闸门开启信号(预置闸门上升沿),此时计数器并不开始计数,而是等到被测信号的上升沿到来时,计数器才真正开始计数。

然后预置闸门关闭信号(下降沿)到时,计数器并不立即停止计数,而是等到被测信号的上升沿到来时才结束计数,完成一次测量过程。

可以看出,实际闸门时间t 与预置闸门时间t 1并不严格相等,但差值不会超过被测信号的一个周期。

设在一次实际闸门时间t 中计数器对被测信号的计数值为N X ,对标准信号的计数值为N S ,标准信基于FPGA的等精度数字频率计的研究与实现Design and Realization of Equal-precisions Digital Frequency Meter Based on FPGA曾任贤Zeng Renxian(南昌工程学院电气与电子工程系,江西南昌330099)(Department of Electrical and Electronics Engineering ,Nanchang Institute of Technology,Jiangxi Nanchang 330099)摘要:本文提出了一种基于等精度测频原理的频率计,给出了一种基于FPGA 的设计方案。

基于FPGA数字等精度频率计的设计

基于FPGA数字等精度频率计的设计

设计研发2020.07基于FPGA数字等精度频率计的设计张洋(重庆幼儿师范高等专科学校,重庆,404047)摘要:等精度频率计是在数字逻辑电路中的典型应用,它也是现代微电子领域中不可缺少的测量仪器。

本设计就是根据等精度的测频基本原理,提出的整体设计方案。

以FPGA芯片为核心电路,釆用VHDL语言编写子电路程序组建出顶层原理图,通过运用Quartus II软件,进行编译仿真,最后下载到实验电路板。

依照实际中频率计的使用情况,设计了八位数码管显示的等精度频率计,能够提高频率测量的精准度,减少测量误差。

关键词:等精度;现场可编程门系列(FPGA);VHDL编程;频率计Design of digital equal precision frequency meter based on FPGAZhang Yang(Chongqing Preschool education College,Chongqing,404047)Abstract:Equal-precision frequency meter is a typical application in digital logic circuit,it is also an indispensable measuring instniment in modern microelectronics field.This design is basedon the basic principle of frequency measurement of equal precision,the overall design ing FPGA chip as the core circuit using nguage program set up a top-level sub-circuit schematics, through the use of Quartus II software,compiled Simulation,and finally downloaded to the breadboard.In accordance with the actual use of the frequency meter designed eight digital display precision frequency meter.Frequency measurement accuracy can be improved,to reduce measuremerrt errors. Keywords:precision;Field Programmable Gate series(FPGA);VHDL programming;frequency meter1概述数字等精度频率计是现代微电子领域中必不可少的测量仪器。

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现一、引言数字频率计是一种用来测量信号频率的仪器,通常用于检测和控制电子电路、通讯系统、工业自动化装置等领域。

在实际应用中,频率计对于频率的测量精度要求很高,同时还需要具备快速响应、稳定性好和抗干扰能力强等特点。

本文将介绍一种基于FPGA和单片机的高精度数字频率计的设计与实现。

二、设计原理1. 信号输入高精度数字频率计的设计首先需要对信号进行采集和处理。

通常采集的信号是来自于传感器、射频发射机、计时器等设备输出的波形信号。

这些信号可能是方波、正弦波等各种周期信号,需要进行适当的信号调理才能进行后续的数字处理。

2. FPGA实时处理FPGA(Field Programmable Gate Array,现场可编程门阵列)是一种集成了大量可编程逻辑和存储器的可重构数字电路芯片。

它的设计灵活、速度快、功耗低等特点,非常适合于数字信号处理任务。

在本设计中,FPGA用于对输入信号进行数字化、滤波、计数等处理,以提高频率计的测量精度和稳定性。

3. 单片机控制和显示单片机通常用于系统的控制和显示。

它可以对FPGA进行配置和控制,同时还可以将测量结果显示在液晶屏或者其他显示设备上,方便用户进行实时监测和操作。

三、设计流程1. 信号采集和调理首先需要对采集的信号进行滤波和数字化处理,使其能够被FPGA所识别。

这一步通常需要采用运算放大器进行信号放大、滤波等处理,使得信号的波形清晰、稳定,以便后续的数字处理。

2. FPGA处理在FPGA中,需要设计一个数字频率计的计数器,用于对输入信号的周期进行计数,从而得到它的频率。

还需要设计一个时钟模块,用于控制计数器的计数频率和精度。

五、性能测试1. 测试平台搭建搭建一个测试平台,将设计的高精度数字频率计与标准信号源相连,以验证其测量精度和稳定性。

需要设计合适的测试程序,对频率计进行全面的性能测试。

2. 测试结果分析通过对测试结果进行分析,得到设计的数字频率计的测量精度、抗干扰能力、快速响应性等性能参数。

基于FPGA的等精度频率计设计本科毕业设计论文

基于FPGA的等精度频率计设计本科毕业设计论文

摘要摘要:根据等精度测量的原则,提出了一种基于FPGA的等进度数字频率计设计方案。

介绍了等精度的多周期同步测频原理,并对其测量精度和特点同传统测量方法进行了对比分析,证明了多周期同步测频方法的优势。

基于周立功公司生产的EasyFPGA030开发板,在Libero8.5集成开发软件环境下,采用硬件编程语言VerilogHDL编写计数器模块,除法器模块,并且用Synplify进行综合,ModelSim进行仿真并且给出它们的仿真结果,Designer进行布局布线,利用FlashPro和并口线下载到开发板上。

利用AT89C51单片机与共阳极LED数码管对测量结果进行动态显示。

利用74LS244三态缓冲器和三极管对电流进行放大,使得LED数码管更亮。

利用74LS14集成施密特触发器的反相器进行信号的整形。

经过仿真下载验证,能够实现等精度测频功能,频率测量范围1Hz~1MHz,证明该设计方案切实可。

关键词:等精度;频率测量;FPGA;VerilogHDL;Libero。

AbstractAbstract: According to the principle of measurement etc precision, proposed based on FPGA digital frequency of design project progress. Introduces the principle of frequency measurement with etc precision and synchronous, and comparative analysis the measurement precision and features with the traditional measuring method. With more than proved step frequency method with etc precision and synchronous has periodic advantage.Based on the ZhouLiGong company production EasyFPGA030 development board, in Libero8.5 integrated software development environment, using hardware VerilogHDL programming language to write counter module, divide module. With Synplify synthetically, with ModelSim simulation giving simulation results, Designer layout wiring. Using FlashPro download the design to development board.Use MUC and LED digital tube to show the measurement results. Use74LS244 tristate buffers and transistor to amplify current that LED digital tube brighter. Use 74LS14 Schmitt toggle integration to plastic signal.Through simulation and download to the development board, can achieve the function of frequency measurement etc precision, Frequency measurement range from 1Hz to 1MHz. Proof of this scheme is feasible,Keywords: equal precision, frequency measurement, FPGA, Libero, HDL 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

基于FPGA的等精度频率计的设计综述

基于FPGA的等精度频率计的设计综述

基于FPGA的等精度频率计的设计学生姓名:罗雪晶指导教师:梁西银学生届别:2009届专业:电子信息工程班级:2005级(1)班学号:200572020121摘要本文提出了一种采用VHDL语言在FPGA(EP1C12Q240C8)平台上设计实现等精度频率计的方法。

该方法设计的频率测量系统在对频率变化范围较大的信号进行频率测量时能够满足高速度、高精度的测频要求。

系统的软件设计、编译、调试、仿真以及下载工作采用QuartusⅡ6.1完成。

该等精度频率计的测量频率值采用VGA显示,同时显示10秒内频率的测量情况,具有良好的人机界面。

关键词:FPGA 、VHDL、等精度、频率计、VGAABSTRACTThis paper mainly introduces a method which uses VHDL language in the FPGA (EP1C12Q240C8) platform designed to achieve the frequency accuracy. This method is designed frequency measurement system in the frequency range of the signal frequency measurements to meet the high-speed, high-precision frequency measurement requirements. System software designing, compiling, debugging, simulation, and downloading the work are all completed by the use of Quartus Ⅱ 6.1.The system uses VGA display to show the measured value of the frequency of precision, at the same time it shows the frequency of measurements in 10 seconds.This design has a good man-machine interface. And has realized broad band measurement and can meet the request of high speed and high degree of accuracy. KeywordsFPGA,VHDL, Precision survey,frequency meter,VGA目录引言............................................................ - 3 - 1.原理分析...................................................... - 4 -1.1等精度频率测量原理....................................... - 4 -1.2误差分析................................................. - 5 -2.概述.......................................................... - 6 -2.1 FPGA可编程逻辑器件...................................... - 6 -2.2 VHDL硬件描述语言........................................ - 7 -2.3 Quartus Ⅱ开发环境..................................... - 8 -2.4 E-PLAY-SOPC 系列开发板.................................. - 9 -2.5 EP1C12Q240C8 芯片....................................... - 9 -2.6 IP Core ................................................ - 10 -3.总体设计..................................................... - 10 -3.1流程图设计.............................................. - 10 -3.2系统设计框图............................................ - 11 - 4详细设计..................................................... - 13 -4.1 前端信号处理........................................... - 13 -4.2 分频器的设计........................................... - 13 -4.3 除法器的IP Core 调用................................... - 14 -4.3.1 设计中的除法器应用................................ - 14 -4.3. 2 除法器IP Core的调用方法如下:................... - 14 -4.4 译码电路的实现......................................... - 15 -4.5显示模块的设计实现...................................... - 16 -4.5.1方案选择.......................................... - 16 -4.5.2 VGA接口的原理.................................... - 17 -4.5.3 VGA接口的时序分析................................ - 18 -4.5.4 VGA接口驱动波形仿真.............................. - 19 -4.5.5 VGA接口的驱动程序的设计实现...................... - 20 -4.6系统综合及布局布线...................................... - 22 -4.7引脚分配................................................ - 22 -5.测试......................................................... - 23 -5.1 测试仪器............................................... - 23 -5.2 测试数据............................................... - 24 - 结论........................................................... - 24 - 致谢........................................................... - 25 - 参考文献....................................................... - 26 - 附录1 ......................................................... - 27 -基于FPGA的等精度频率计的设计引言频率是常用的物理量,频率测量是电子测量技术中最基本的测量之一。

基于FPGA的等精度频率计的设计

基于FPGA的等精度频率计的设计

基于FPGA的等精度频率计的设计一、引言频率计是一种广泛应用于电子领域的仪器设备,用于测量信号的频率。

常见的频率计有软件频率计和硬件频率计两种。

软件频率计主要基于计算机软件,通过采集到的信号数据来计算频率。

硬件频率计则是基于专用的硬件电路,直接对信号进行采样和处理,具有实时性强、准确度高的优点。

本文将基于FPGA设计一种等精度频率计,旨在实现高精度、高稳定性的频率测量。

二、设计原理本设计采用基于FPGA的硬件频率计方案,其主要原理是通过对输入信号的时间计数,并结合固定参考值,计算出信号的频率。

具体流程如下:1.信号输入:将待测量的信号输入至FPGA芯片,输入信号的幅度应符合输入电平范围。

2.信号计数:利用FPGA芯片内部的计数器,对输入信号进行计数,并记录计数器的数值。

计数器的值与输入信号的频率成反比,即计数器值越大,信号频率越低。

3.定时器触发:通过定时器产生一个固定的参考信号,用于触发计数器的复位操作。

定时器的频率应足够高,以保证计数器能够实时精确计数。

4.数据处理:计数器值与定时器触发的时间周期共同决定了输入信号的频率。

通过计算参考值与计数器值的比例,可以得到准确的频率值。

5.结果输出:将计算得到的频率值输出至显示屏或其他外部设备,以便用户进行查看。

三、设计方案1.FPGA选型:选择一款适合频率计设计的FPGA芯片,要求其具有较高的计数能力、较大的存储空间和丰富的外设接口。

2.输入电路设计:设计一个合适的输入电路,将待测信号进行电平调整和滤波处理,以确保输入信号的稳定性和合适的幅度范围。

3.计数器设计:利用FPGA内部的计数器模块,进行计数操作。

根据需要选择适当的计数器位宽,以满足待测频率范围的要求。

4.定时器设计:通过FPGA内部的时钟源和计时器模块,设计一个精确的定时器,用于触发计数器的复位操作。

定时器的频率要足够高,以保证计数的准确性。

5.数据处理设计:利用FPGA内部的算数逻辑单元(ALU)对计数器值进行处理,计算得到准确的频率值。

基于FPGA的等精度频率计的设计与实现

基于FPGA的等精度频率计的设计与实现

基于FPGA的等精度频率计的设计与实现
现场可编程门阵列FPGA(Field Programmable GateArray)属于ASIC 产品,通过软件编程对目标器件的结构和工作方式进行重构,能随时对设计进行调整,具有集成度高、结构灵活、开发周期短、快速可靠性高等特点,数字设计在其
中快速发展。

本文介绍了一种利用FPGA 实现DC~100 MHz 的自动切换量程数字等精度频率计的实现方法,并给出实现代码。

整个系统在研制的CPLD/FPGA 实验开
发系统上调试通过。

1 等精度测频原理
频率的测量方法主要分为2 种方法:
(1)直接测量法,即在一定的闸门时间内测量被测信号的脉冲个数。

(2)间接测量法,例如周期测频法、V-F 转换法等。

间接测频法仅适用测量
低频信号。

基于传统测频原理的频率计的测量精度将随被测信号频率的下降而降低,在
实用中有较大的局限性,而等精度频率计不但具有较高的测量精度,而且在整
个频率区域能保持恒定的测试精度。

本设计频率测量方法的主要测量控制框图如图1 所示。

图1 中预置门控信号GATE 是由单片机发出,GATE 的时间宽度对测频精度影响较少,可以在较大
的范围内选择,只要FPGA 中32 b 计数器在计100 M 信号不溢出都行,根据理论计算GATE 的时间宽度Tc 可以大于42.94 s,但是由于单片机的数据处理能力限制,实际的时间宽度较少,一般可在10~0.1 s 间选择,即在高频段时,闸门时间较短;低频时闸门时间较长。

这样闸门时间宽度Tc 依据被测频率的大
小自动调整测频,从而实现量程的自动转换,扩大了测频的量程范围;实现了全。

基于FPGA的等精度频率计设计

基于FPGA的等精度频率计设计

基于FPGA的等精度频率计设计摘要频率计是实验室和科研、生产中最常用的测量仪器之一。

本文设计了一种基于FPGA芯片设计的等精度频率计。

对传统的精度测量方法进行了改进,采用SOPC设计技术和基于NIOS II嵌入式软核处理器的系统设计方案,通过在FPGA芯片上配置NIOS II软核处理器进行数据运算处理,利用液晶显示器对测量的频率进行实时显示,可读性好。

整个系统在一片FPGA芯片上实现,系统测量精度高,实时性好,具有灵活的现场可更改性。

本频率测量仪是以Altera公司生产的CycloneII系列EP2C35F672C6器件为核心实现高精度计数功能。

整个电路采用模块化设计,调试制作方便。

经过仿真并下载验证,能够实现等精度测频功能,频率测量范围为1Hz~200MHz。

关键词:等精度,频率计,FPGA,SOPC,NiosIIDesign of Equal Precision Frequency MeterBased on FPGAABSTRACTFrequency meter is one of the most commonly used measuring instruments which can be used in laboratory, scientific research and production . An equal precision frequency meter designed based on FPGA is introduced in this article, which used Very-High-Speed Integrated Circuit Hardware Description Language to implement function module in frequency meter base on traditional frequency measurement. SOPC designing technique and system designing plan based on Nios II soft core CPU are used in the design. It also adopts Nios II soft core CPU as data processing unit, uses LCD 1602 equipment to display frequency in real-time. The whole system is in the implementation of a FPGA chip. So it has a high-precision measurement, real-time and flexible change of scene.The frequency meter is based on CycloneII EP2C35F672C6 Altera device as the core to achieve high-precision counting. Because of the modular design of this circuit, it is facilitate to debug. After the simulation, and downloads the confirmation, can realize equal-precision frequency measurement function. The range of frequency measurement is from 1Hz to 200MHz.KEY WORDS:equal precision measurement, frequency meter, FPGA, SOPC, NiosII目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题提出的背景 (1)1.2 课题选择意义 (1)2 EDA/SOPC技术简介 (3)2.1 EDA的具体开发流程 (3)2.1.1设计输入 (3)2.1.2综合 (3)2.1.3 适配 (4)2.1.4 仿真 (4)2.1.5 编程下载和硬件测试 (4)2.2 NIOS II IDE简介 (4)2.2.1工程管理器 (5)2.2.2 编辑器和编译器 (6)2.2.3调试器 (6)2.2.4闪存编程器 (7)3 系统方案选择 (8)3.1 频率测量方案选择 (8)3.1.1 直接测频法 (8)3.1.2 间接测频法 (8)3.1.3 等精度测频 (9)3.2 基于单片机的测频方案 (10)3.3 基于FPGA的测频方案 (11)4等精度频率计的单元模块设计 (13)4.1 放大整形模块设计 (13)4.2 标准信号产生模块设计 (14)4.3 FPGA芯片模块设计 (15)4.3.1 D型触发器的设计 (15)4.3.2 计数器的设计 (17)4.3.3 锁存器的设计 (20)4.3.4 NIOS II 软核CPU的配置 (22)IV4.4 LCD液晶显示模块 (25)5 系统综合与测试 (26)5.1等精度计数模块 (26)5.2 系统综合 (27)5.3 软件编写与测试 (28)5.4 系统的扩展 (32)5.4.1 分频器设计 (32)5.4.2 选择器设计 (35)5.5 系统测试 (37)6 总结 (40)致谢 (41)参考文献 (42)基于FPGA的等精度频率计设计 11 绪论1.1 课题提出的背景现代数字系统的设计离不开仪器,比如数字示波器、逻辑分析仪、频谱分析仪、信号发生器、数字频率计等。

毕业设计(论文)-基于FPGA的数字频率计的设计

毕业设计(论文)-基于FPGA的数字频率计的设计

摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。

数字频率计是数字电路中的典型应用,是电子测量与仪表技术最基础的电子仪器之一,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

与传统的频率计相比,数字频率计具有精度高、测量范围大、可靠性好等优点。

是频率测量的重要手段之一。

该论文研究基于FPGA的数字频率计的设计,在QuartusII环境中,运用VHDL语言完成数字频率计的设计,并对设计进行综合、编译、仿真。

通过仿真分析,证明该频率计测量结果的正确性。

本文的主要介绍了数字频率计的基本内容和重要性,并对数字频率计的国内外研究现状进行了总结;数字频率计设计开发环境,并对FPGA、QuartusII、VHDL进行了详细介绍对开发流程详细说明;根据实际需要对数字频率计设计方法、方案进行了可行性比较,并对其实现的功能进行了具体要求,对设计模块进行了划分,并定义了每个模块所实现的功能;用VHDL语言编程,具体实现频率计各个模块的功能, 对数字频率计仿真并验证其功能。

关键词: FPGA;QuartusII;VHDL;频率计AbstractIn electronics,frequency is one of the most basic parameters.And it have a close relationship with many measurement program of electrical parameters and measurement results, so the measurement of frequency is very important.Digital frequency meter is a typical applications in digital circuit,and one of the most basic electronic devices in electronic measurement and instrumentation technology.Digital frequency meter is an indispensable measuring instruments for scientific research and production as computers, communications equipment, audio, video. Compared with the conventional frequency counter,digital frequency meter have a high accuracy, measurement range and a good reliability. It is one of important measure for frequency measurement:The thesis research in design of digital frequency meter,FPGA-based. VHDL language is used to complete the design of digital frequency meter in QuartusII,and completed thesis with composited, compiled, simulated. Through simulation and analysis, The results show that the accuracy of measure for the frequency. This article mainly introduces the importance and basic content of digital frequency meter, and current research is summarized .the main tasks and content of this design are summarized.Design and development environment of digital frequency meter are introduced.FPGA, QuartusII and VHDL are described in detail.According to the actual needs of the digital frequency meter, design method and design program are compared to achieve the functions of their specific requirements, and defines the functions of each module to achieve the function.Keywords : FPGA,QuartusII ,VHDL,digital frequency met目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景与意义 (1)1.2 课题目的 (1)1.3 技术指标 (1)第2章FPGA开发相关知识简介 (3)2.1 FPGA的介绍 (3)2.2 FPGA开发环境 (4)软件开发环境——Quartus II的介绍 (4)软件仿真环境——Modelsim的介绍 (5)2.3 硬件描述语言——Verilog HDL (6)2.4 FPGA开发流程 (8)本章小结 (11)第3章频率计的设计方案 (12)3.1 系统的总体设计 (12)3.1.1 设计思路 (12)频率计的基本原理 (12)3.2 数字频率计原理方框图 (13)本章小结 (13)第4章频率计的实现 (14)4.1 时钟信号分频模块的设计 (14)4.2 测频控制信号发生模块的设计 (15)4.3 十进制计数模块的设计 (16)4.4 八位十进制计数模块的设计 (18)4.5 三十二位锁存器模块的设计 (20)4.6 顶层模块的设计 (20)本章小结 (23)结论 (24)致谢 (25)参考文献 (26)附录1 译文 (27)附录2 英文参考资料 (30)第1章绪论1.1 课题背景与意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,频率的测量就显得尤为重要,而频率计的研究工作更具有重大的科研意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言...............................................................1 第一章 FPGA及Verilog HDL..........................................2 1.1 FPGA简介.....................................................2 1.2 Verilog HDL 概述.............................................2 第二章数字频率计的设计原理........................................3 2.1 设计要求.....................................................3 2.2 频率测量.....................................................3 2.3.系统的硬件框架设计..............................................4 2.4系统设计与方案论证............................................5 第三章数字频率计的设计............................................8 3.1系统设计顶层电路原理图........................................8 3.2频率计的VHDL设计.............................................9 第四章软件的测试...............................................15 4.1测试的环境——MAX+plusII.....................................15 4.2调试和器件编程...............................................15 4.3频率测试.....................................................16基于FPGA的等精度频率计的设计与实现摘要:本文详细介绍了一种基于FPGA的高精度频率计。

首先论文概述了等精度测量频率的原理,该原理具有在整个测试频段内保持高精度频率测量的优点。

对于频率测量的一些主要参数、技术进行了讨论。

同时在该原理基础上,利用VHDL语言设计实现频率计内部功能模块;采用AT89S52单片机进行数据运算处理,利用液晶显示器对测量的频率、占空比等进行实时显示,可读性好;还使用C语言设计了该等精度频率计的主控程序以提高测量精度。

充分发挥FPGA的高速数据采集能力和单片机的高效计算与控制能力,使两者有机地结合起来。

在MUX+PULSⅡ EDA(电子设计自动化)开发平台上进行仿真、测试、并最终下载到FPGA芯片内部。

本设计实现了对频率变化范围较大的信号进行频率测量,能够满足高速度、高精度的测频要。

文章的最后总结了整个系统的性能和特点,提出了值得进一步研究和优化的地方,并展望了其应用前景。

利用等精度测量原理,通过FPGA 运用VHDL编程设计一个数字式频率计,精度范围在DC~100 MHz,给出实现代码和仿真波形。

设计具有较高的实用性和可靠性。

关键词:FPGA;等精度;频率计;VHDLDesign and Realization ofFrequency Meter with EqualPrecisionMeasurementon FPGAElectrical engineering and automation xu gangTutor yan shao minAbstract:This paper describes an FPGA-based high-precision frequency counter. First of all, such as paper provides an overview of the principle of frequency measurement accuracy, the principle of the test in the whole band has to maintain the advantages of high precision frequency measurement. Frequency measurement for some of the key parameters, technology is discussed. At the same time, based on the principle of the use of VHDL language design and implementation of the internal functions of the frequency module; using AT89S52 Single-chip data processing, the use of liquid crystal display of the measured frequency, duty cycle, such as real-time display, good readability; Also designed using the C language of the accuracy of frequency control procedures to enhance measurement accuracy. Give full play to the FPGA's high-speed data acquisition capabilities and high-performance single-chip computation and control, so that the two combine. In MUX + PULS Ⅱ EDA (electronic design automation) simulation platform to develop, test, and ultimately downloaded to the FPGA chip. Design and Implementation of the changes in the frequency range of signal frequency measurement, to meet the high-speed, high-precision frequency measurement should be. The lastarticle summarizes the overall system performance and characteristics of a worthy of further study and optimization of the place, and look forward to the prospect of its application.A digitalfrequency meter isdesigned by using equalprecision measurementtheory,pass FPGA and program projectonVHDL in this paper.The frequency meter′precision extension is DC~100 MHz.The paper give realization code and simulationwaveform,the system have upper practicability and dependability.Keywords:FPGA;equalprecision measurement;frequency meter;VHDL1. 前言1.1课题研究的目的和意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

数字式频率计的测量原理有两类:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法即测周期法,如周期测频法。

直接测频法适用于高频信号的频率测量,通常采用计数器、数据锁存器及控制电路实现,并通过改变计数器阀门的时间长短在达到不同的测量精度;间接测频法适用于低频信号的频率测量,本设计中使用的就是直接测频法,即用计数器在计算1S内输入信号周期的个数。

数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。

随着现场可编程门阵列FPGA的广泛应用,以EDA工具作为开发手段,运用Verilog HDL等硬件描述语言语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。

1.2基于FPGA的等精度频率计的发展现状采用FPGA现场可编程门阵列为控制核心,通过硬件描述语言Verilog HDL编程,在MAX+PLUSII仿真平台上编译、仿真、调试,并下载到FPGA芯片上,通过严格的测试后,能够较准确地测量方波、正弦波、三角波、矩齿波等各种常用的信号的频率,而且还能对其他多种物理量进行测量。

现场可编程门阵列FPGA(Field Programmable GateArray)属于ASIC产品,通过软件编程对目标器件的结构和工作方式进行重构,能随时对设计进行调整,具有集成度高、结构灵活、开发周期短、快速可靠性高等特点,数字设计在其中快速发展。

1. FPGA及Verilog HDL1.1 FPGA的简介:FPGA是英文Field Programmable Gate Array 的缩写,即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。

它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。

相关文档
最新文档