中考数学专题复习一线三等角专题练习(含答案)
一线三等角例题加答案
一线三等角例题问题描述给定一个等边三角形ABC,已知点D、E、F分别是BC、CA和AB的中点。
连接AD、BE和CF,求证:AD、BE和CF 是等边三角形的边。
证明要证明AD、BE和CF是等边三角形的边,我们需要证明三个长度相等的线段,即AD=BE=CF。
证明AD=BE连接线段AC,并延长线段BE交线段AC于点G,如下图所示:graph TDA((A)) -- AD --> D((D))A((A)) -- AC --> C((C))A((A)) -- AB --> B((B))B((B)) -- BE --> E((E))G((G)) -- BE --> E((E))C((C)) -- CF --> F((F))G((G)) -- CG --> C((C))三角形ACG和BEG,它们共有一条边AC,并且根据各边的定义,两个三角形的另外两条边DG和GE分别平行于AC和BE。
因此,根据平行线间的性质,有:AD/BE = DG/GE而根据题意,DG=AC,GE=BE,因此:AD/BE = AC/BE = 1所以,AD=BE。
证明AD=CF连接线段AB,并延长线段CF交线段AB于点H,如下图所示:graph TDA((A)) -- AD --> D((D))H((H)) -- CF --> F((F))A((A)) -- AC --> C((C))A((A)) -- AB --> B((B))B((B)) -- BE --> E((E))H((H)) -- AH --> A((A))三角形AHC和DFC,它们共有一条边AC,并且根据各边的定义,两个三角形的另外两条边AH和DF分别平行于AB和CF。
因此,根据平行线间的性质,有:AD/CF = AH/DF而根据题意,AH=AB,DF=CF,因此:AD/CF = AB/CF = 1所以,AD=CF。
全等模型(2)一线三等角 练习题(带答案
全等模型(2)一线三等角题集1.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为.【答案】【解析】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【标注】【知识点】根据坐标描点、根据点写坐标;三垂直模型2.如图,,,点在第一象限内.若、,则点的坐标为.【答案】【解析】做轴,轴,由三垂直模型可知,≌,∴设,则,∴,∴,∴.【标注】【知识点】辅助线综合运用3.如图,,,于,于,,,则的面积等于 .【答案】【解析】∵,∴,∵于,∴,∴,又,,∴≌,∴,,∴,∴.【标注】【知识点】三垂直模型(1)4.如图,已知点是直线上的一个动点,在点运动的过程中,始终保持,并且于,于,.如图的位置时,请你判断线段、、之间的数量关系,并且证明你的结论.(2)(3)当直线绕点旋转到如图的位置时(),请你判断线段、、之间的数量关系是否有变化?并且证明你的结论.当直线绕点旋转到图的位置时(),试问:、、有怎样的数量关系?请直接写出这个数量关系.【答案】(1)(2)(3),证明见解析.有变化,,证明见解析..【解析】(1).∵,,∴,∴,∵,∴,(2)(3)∴.在和中,,∴≌(),∴,∴..同()可证明≌,∴,,∴.∴线段、、之间的数量关系有变化,..同()可证明≌,∴,,∴.【标注】【知识点】三垂直模型(1)12(2)5.如图,,,于点,于点,其中.求证:≌.若,.求的长.连接,交于点,若,求的面积.【答案】(1)12(2)证明见解析...【解析】(1)12(2)∵,,∴,∵,∴,又∵,∴,在与中,,∴≌.∵≌,∴,∴.∵,∴,∴,∴.【标注】【知识点】三垂直模型6.在中,直线经过点,且于,于,且,.(1)12(2)证明是等腰直角三角形.若,,,请你利用四边形的面积证明“”.若,、均为整数,试求出所有满足条件的值.【答案】(1)12(2)证明见解析.证明见解析.或.【解析】(1)1(2)∵于点,于点∴,∴,,与中有∴≌(),∴,,∴,∴,∴是等腰直角三角形.,,,∴2.四边形面积,∴,∴,∴,∴.∵,∴,∵,、为整数,∴,且与均为整数,∴或或或解得:或故满足条件的值为或.【标注】【知识点】三垂直模型四边形(1)(2)7.解答下列各题:如图①,已知:中,,,直线经过点,于,于,求证:.图(3)拓展:如图②,将()中的条件改为:中,,、、三点都在直线上,并且,为任意锐角或钝角,请问结论是否成立?如成立,请证明;若不成立,请说明理由.图应用:如图③,在中,是钝角,,,,直线与的延长线交于点,若,的面积是,求与的面积之和.图【答案】(1)(2)(3)证明见解析.成立,证明见解析..【解析】(1)∵,∴,∵,,∴,,∴,在和中,,∴≌,∴,,(2)(3)∴.成立,仍为,理由如下:∵,在中,,,在和中,,∴≌,∴,,∴.∵,,∴,在和中,,∴≌,∴,设的底边的高为,则的底边的高也为,∴,,∵,∴,∵,∴与的面积之和为.【标注】【能力】推理论证能力【知识点】AAS【知识点】全等三角形的对应边与角【知识点】三角形内角和的应用(1)8.解答下列问题.如图(),已知:在中,,,直线经过点,⊥直线,⊥直线,垂足分别为点、.证明:.图图(2)(3)如图(),将()中的条件改为:在中,,、、三点都在直线上,且,其中为任意锐角或钝角.请问结论是否成立?若成立,请你给出证明;若不成立,请说明理由.拓展与应用:如图(),、是直线上的两动点(、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,求证:.图【答案】(1)(2)(3)证明见解析.成立,证明见解析.证明见解析.【解析】(1)∵直线,直线,∴,又∵,11(2)(3)∴,,∴,在和中,,∴≌(),∴,,∵,∴.∵,∴,∴,在和中,,∴≌(),∴,,∴.易证≌,∴,,∵和均为等边三角形,∴,,∴,∴,在和中,,∴≌(),∴.【标注】【知识点】一线三等角模型。
中考专题练习一线三等角
一线三等角(2 )当x何值时,y有最大值,最大值是多少?理论:略范例点睛1. 正方形ABCD边长为5,点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持/ APQ=90。
•当CQ=1时,写出线段BP的长3. (2007 •南京在梯形 ABCD 中,AD //BC,AB=DC=AD=6 ,/ABC=60。
,点 E、F 分别在线段AD、DC上(点E与点A、D不重合),且/BEF=120。
,设AE=x , DF=y .(1 )求y与x的函数表达式;4. 女口图,Rt △ ABC 中,/ BAC=90 ° ,AB=AC=2 ,点D为BC边上动点(D不与B、C 重合),/ ADE= 45 ° P E 交 AC 于点 E.(1)Z BAD与/ CD的大小关系为______ .请证明你的结论;(2)设 BD=x , AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当厶A是等腰三角形时,求 AE的长;(4)是否存在x,使△DC的面积是厶ABD面积的2倍?若存在,求出x的值,若不存在,请说明理由.一.基础技能1. ( 2015?连云港)如图,在△ ABC中,ZBAC=60 ° ,Z ABC=90 °,直线I2//I3,丨1 与12之间距离是1 , 12与13之间距离是2 , 且l1 , l2 , l3分别经过点 A, B , C,则边 AC= .2. 如图,已知I1//I2//I3,相邻两条平行直线间的距离相等,若等腰直角△ ABC的三个项点分别在这三条平行直线上,则sina值是( )A. 1B. 6C._5D.J03 17 5 103. (2012 •苏州已知在平面直角坐标系中放置了 5个如图所示的正方形(用阴影表示),点B1在y轴上,点 C1、曰、E2、C2、E3、曰、C3在x轴上.若正方形 A1B1C1D1的边6.如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B '处,点C恰好落在边 B'F上•若AE=3 , BE=5 ,___________________ __________________ I 则FC=长为 1,/B1C1O=60 ° , B1C1 //B2C2//B3C3, 则点A3到x轴的距离是()4.如图,在边长为 9正三角形ABC中,BD=3,/ ADE=60。
一线三等角大题练习-答案
一线三等角大题练习学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型.(1)如图2,Rt ABC △中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌;(2)如图3,在ABC 中,D 是BC 上一点,90CAD ∠=︒,AC AD =,DBA DAB ∠=∠,23AB =,求点C 到AB 边的距离;(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若DEF B ∠=∠,10AB =,6BE =,求EFDE的值. 2.【问题背景】(1)过等腰直角△ABC 的两个锐角顶点,分别向直角顶点C 所在的一条直线作垂线,垂足分别为点D ,E .如图1,这种图形可归纳为“一线三等角”.其中已知∠ADC =∠CEB =90°,AC =CB ,又由∠ACD +∠BCE =90°,∠CBE +∠BCE =90°,得到∠ACD =∠CBE ,所以△ACD ≌△CBE ,这种判定三角形全等的依据是________(填写SSS ,SAS ,ASA ,AAS 或HL ).图1【问题解决】(2)如图2,已知平面直角坐标系中的两点A (-2,4),B (3,1),在直线AB 的上方,以AB 为边作等腰直角△ABM ,写出所有符合条件的点M 坐标:________.图23.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BCAC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC边上的一个动点,且APD B ∠=∠. ①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.4.通过对下面数学模型的研究学习,解决下列问题: (1)【模型呈现】如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型; (2)【模型应用】①如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 为平面内任一点,点B 的坐标为(4,1).若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标为 .5.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.参考答案:1.(1)见解析 (2)3(3)35 【解析】 【分析】(1)根据“AAS ”证明BEC CDA ≌即可;(2)过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E ,可根据“AAS”证≌CAE ADF 即可求解;(3)过D 作DM CD =交BC 的延长线于点M ,可得DCM M ∠=∠,由平行四边形ABCD 易证DEC BFE ∠=∠,故BFE MED ∽,由相似三角形的性质可求. (1)证明:∵90ACB ∠=︒,180BCE ACB ACD ∠+∠+∠=︒, ∴90BCE ACD ∠+∠=︒. ∵AD ED ⊥,BE ED ⊥,∴90BEC CDA ∠=∠=︒,90EBC BCE ∠+∠=︒, ∴ACD EBC ∠=∠. 又∵CB CA =,∴()BEC CDA AAS ≌. (2)解:如图,过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E .∵DBA DAB ∠=∠,∴AD BD =,∴132AF BF AB === ∵90CAD ∠=︒,∴90DAF CAE ∠+∠=︒. ∵90DAF ADF ∠∠=+︒,∴CAE ADF ∠=∠. 在CAE 和ADF 中,==90==CEA AFD CAE ADF AC AD ∠∠︒⎧⎪∠∠⎨⎪⎩, ∴()CAE ADF AAS ≌,∴3CE AF ==,即点C 到AB 边的距离为3. (3)解:如图,过D 作DM CD =交BC 的延长线于点M ,∴DCM M ∠=∠.∵四边形ABCD 是平行四边形,∴10DM CD AB ===,AB CD ∥,∴B DCM M ∠=∠=∠. ∵FEC DEF DEC B BFE ∠=∠+∠=∠+∠,B DEF ∠=∠, ∴DEC BFE ∠=∠,∴BFE MED ∽, ∴63105EF BE DE DM ===. 【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,相似三角形的判定与性质,熟练运用全等三角形的判定与性质、相似三角形的判定与性质是解题的关键. 2. AAS (1,9),(6,6),(2,5) 【解析】 【分析】(1)根据垂直的定义得到∠ADC =∠CEB =90°,根据余角的性质得到∠ACD =∠BCE ,根据全等三角形的判定定理即可得到结论;(2)当∠M 1AB =90°,△ABM 1是等腰直角三角形,当∠M 3BA =90°,△ABM 3是等腰直角三角形,当∠AM 2B =90°,△ABM 2是等腰直角三角形,根据全等三角形的性质和等腰三角形的性质即可得到结论. 【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,ADC CEBACD EBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),故答案为:AAS;(2)解:当∠M1AB=90°,△ABM1是等腰直角三角形,过A作直线l∥y轴,过B作BF⊥直线l于F,过M1作M1E⊥直线l于E,∴∠AEM1=∠AFB=90°,∵∠BAM1=90°,∴∠EAM1+∠F AB=∠F AB+∠ABF=90°,∴∠EAM1=∠ABF,∵AM1=AB,∴△AEM1≌△BF A(AAS),∴AE=BF,AF=EM1,∵点A(-2,4),B(3,1),∴AE=BF=5,AF=EM1=3,∴M1(1,9),当∠M3BA=90°,△ABM3是等腰直角三角形,过B作直线m∥x轴,分别过A,M3作AF⊥m于F,M3G⊥m于G,同理,M3(6,6);当∠AM2B=90°,△ABM2是等腰直角三角形,∴∠M2AB=∠ABM2=∠M1AM2=∠AM1M2=45°,∴M11M2=BM2,∴M2是线段BM1的中点,∴M2(2,5),综上所述,符合条件的点M坐标为:(1,9),(6,6),(2,5),故答案为:(1,9),(6,6),(2,5)【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.3.感知:(1)AEDE ;应用:(2)①见解析;②3.6;拓展:(3)2或113【解析】【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【详解】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP =∠CPD , ∵AB =AC , ∴∠B =∠C , ∴△ABP ∽△PCD ; ②BC =12,点P 为BC 中点, ∴BP =PC =6, ·∵△ABP ∽△PCD , ∴AB BPPC CD =,即1066CD=, 解得:CD =3.6;拓展:(3)当P A =PD 时,△ABP ≌△PCD , ∴PC =AB =10, ∴BP =BC -PC =12-10=2; 当AP =AD 时,∠ADP =∠APD , ∵∠APD =∠B =∠C , ∴∠ADP =∠C ,不合题意, ∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B , ∵∠C =∠C , ∴△BCA ∽△ACP , ∴BC AC AC CP =,即121010CP=, 解得:253CP =, ∴25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113. 【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键. 4.(1)DE ,AE ;(2)①见解析;②3(2,5)2或5(2,3)2【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①如图2,作DM AH ⊥于M ,EN AH ⊥于N ,根据余角的性质得到1B ∠=∠,根据全等三角形的性质得到AH DM =,同理AH EN =,由此可得EN DM =,再由此证明DMG ENG △≌△,由全等三角形的性质得到DG EG =,于是得到点G 是DE 的中点;②分两种情况讨论,如图3,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与EB 相交于C ,根据余角的性质得到BAC AOD ∠=∠,根据全等三角形的性质得到AD BC =,OD AC =,设AD x =,则BC AD x ==,于是得到结论,如图4,同理可得答案.【详解】解:(1)∵ABC DAE △≌△. ∴AC DE =,BC AE =; 故答案为:DE ,AE ;(2)①如图2,作DM AH ⊥于M ,EN AH ⊥于N ,BC AH ⊥,90BHA AMD ∴∠=∠=︒,90BAD ∠=︒,12290B ∴∠+∠=∠+∠=︒,1B ∴∠=∠,在ABH 与DAM △中, 1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABH DAM AAS ∴△≌△,AH DM ∴=, BC AH ⊥,90CHA ANE ∴∠=∠=︒,90CAE ∠=︒,90CAH EAN CAH C ∴∠+∠=∠+∠=︒,EAN C ∴∠=∠,在ACH 与EAN 中,CHA ANE C EAN AC EA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACH EAN AAS ∴△≌△,AH EN ∴=,又∵AH DM =,EN DM ∴=,DM AH ⊥,EN AH ⊥,90GMD GNE ∴∠=∠=︒,在DMG △与ENG △中,DMG ENG MGD NGE DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DMG ENG AAS ∴△≌△,DG EG ∴=,∴点G 是DE 的中点;②如图3,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与EB 相交于C ,90C ∴∠=︒,90OAB ∠=︒,90OAD BAC ∴∠+∠=︒,90OAD AOD ∠+∠=︒,BAC AOD ∴∠=∠,在AOD △与BAC 中,C ADO BAC AOD OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD BAC AAS ∴△≌△,AD BC ∴=,OD AC =,设AD x =,则BC AD x ==,1AC OD CE x ∴===+,14AD AC x x OE ∴+=++==, 32x ∴=,512x +=, ∴点A 的坐标3(2,5)2; 如图4,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与BE 相交于C ,90C ∴∠=︒,90OAB ∠=︒,90OAD BAC ∴∠+∠=︒,90OAD AOD ∠+∠=︒,BAC AOD ∴∠=∠,在AOD △与BAC 中,C ADO BAC AOD OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD BAC AAS ∴△≌△,AD BC ∴=,OD AC =,设AD x =,则BC AD x ==,1AC OD CE x ∴===-,14AD AC x x OE ∴+=+-==,52x ∴=,312x -=, 又∵此时点A 在第四象限,∴点A 的坐标5(2,3)2, 综上所述,点A 的坐标为3(2,5)2或5(2,3)2, 故答案为:3(2,5)2或5(2,3)2. 【点睛】 本题考查了全等三角形的判定和性质,正确的作出辅助线是解题的关键.5.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =,∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM ,在△OBN 与△BAM 中,M ONB OBN BAM OB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBN ≌△BAM (AAS ),∴AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B 的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.。
中考数学专题复习全等三角形之一线三等角模型
中考数学专题复习全等三角形(一线三等角模型)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边∠DPE ,连结BE ,则∠BDE 的面积为( )A .43B .2C .4D .632.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( ).A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 23.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为( )A .40cmB .48cmC .56cmD .64cm4.如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .925.如图,AC =CE ,∠ACE =90°,AB ∠BD ,ED ∠BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm评卷人 得分二、填空题 6.已知直线l 经过正方形ABCD 的顶点A ,过点B 和点D 分别作直线的垂线BM 和DN ,垂足分别为点M 、点N ,如果5BM =,3DN =,那么点M 和点N 之间的距离为_______.7.如图,直线l 1∠l 3,l 2∠l 3,垂足分别为P 、Q ,一块含有45°的直角三角板的顶点A 、B 、C 分别在直线l 1、l 2、线段PQ 上,点O 是斜边AB 的中点,若PQ 等于72,则OQ 的长等于 _____.8.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ∠DE 于点D ,BE ∠DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.9.如图,在等腰Rt ABC 中,AC BC =,D 为ABC 内一点,且BCD CAD ∠=∠,若4CD =,则BCD △的面积为________.10.如图,一个等腰直角三角形ABC物件斜靠在墙角处(∠O=90°),若OA=50cm,OB=28cm,则点C离地面的距离是____ cm.评卷人得分三、解答题11.(1)如图1,在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m,CE∠直线m,垂足分别为点D、E.求证:∠ABD∠∠CAE;(2)如图2,将(1)中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论∠ABD∠∠CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:∠DEF是等边三角形.12.已知∠ABC 中,∠ACB =90°,AC =BC .BE 、AD 分别与过点C 的直线垂直,且垂足分别为D ,E .学习完第十二章后,张老师首先让同学们完成问题1:如图1,若AD =2.5cm ,DE =1.7cm ,求BE 的长;然后,张老师又提出问题2:将图1中的直线CE 绕点C 旋转到∠ABC 的外部,BE 、AD 与直线CE 的垂直关系不变,如图2,猜想AD 、DE 、BE 三者的数量关系,并给予证明.13.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BCAC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠. ∠求证:ABP PCD △△∽;∠当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.14.在△ABC中,∠ACB =90°,AC =BC ,且AD ∠MN 于D ,BE ∠MN 于E .(1)直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).15.如图,在ABC 中,AB BC =.(1)如图∠所示,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒.求证:MN AM CN =+.(2)如图∠所示,直线MN 过点B ,AM 交MN 于点M ,CN 交MN 于点N ,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由.16.问题背景:(1)如图∠,已知ABC中,90BAC∠=︒,AB AC=,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,易证:DE=______+______.(2)拓展延伸:如图∠,将(1)中的条件改为:在ABC中,AB AC=,D,A,E 三点都在直线m上,并且有BDA AEC BAC∠=∠=∠,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图∠,在ACB△中,90ACB∠=︒,AC BC=,点C的坐标为()2,0-,点A的坐标为()6,3-,请直接写出B点的坐标.17.探究:(1)如图(1),已知:在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m,CE∠直线m,垂足分别为点D、E.请直接写出线段BD,DE,CE 之间的数量关系是.拓展:(2)如图(2),将探究中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问探究中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由.应用:(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,请直接写出∠DEF的形状是.18.在∠ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD∠MN于D,BE∠MN于E.【感知】(1)当直线MN绕点C旋转到图∠的位置时,易证∠ADC∠∠CEB(不需要证明),进而得到DE、AD、BE之间的数量关系为.【探究】(2)当直线MN绕点C旋转到图∠的位置时,求证:DE=AD-BE.(3)当直线MN绕点C旋转到图∠的位置时,直接写出DE、AD、BE之间的数量关系.19.(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD∠ED于D,过B作BE∠ED于E.求证:∠BEC∠∠CDA;(2)模型应用:∠已知直线y=34x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;∠如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P 是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若∠APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.20.(1)课本习题回放:“如图∠,90ACB∠=︒,AC BC=,AD CE⊥,BE CE⊥,垂足分别为D,E, 2.5cmAD=, 1.7cmDE=.求BE的长”,请直接写出此题答案:BE的长为________.(2)探索证明:如图∠,点B,C在MAN∠的边AM、AN上,AB AC=,点E,F 在MAN∠内部的射线AD上,且BED CFD BAC∠=∠=∠.求证:ABE CAF∆∆≌.(3)拓展应用:如图∠,在ABC∆中,AB AC=,AB BC>.点D在边BC上,2CD BD=,点E、F在线段AD上,BED CFD BAC∠=∠=∠.若ABC∆的面积为15,则ACF∆与BDE∆的面积之和为________.(直接填写结果,不需要写解答过程)21.在∠ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD∠MN于D,BE∠MN于E.(1)当直线MN绕点C旋转到图1的位置时,∠求证:∠ADC∠∠CEB;∠求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.22.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC∠AC于点C,过点D作DE∠AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到∠ABC∠∠DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC∠AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,∠AFD的面积为S1,∠DCE的面积为S2,则有S1S2(填“>、=、<”)23.如图,在∠ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,∠求证:∠EAC=∠BCF.∠猜想EF、AE、BF的数量关系并证明.(2)将直线l绕点C顺时针旋转,使l与底边AB交于点D(D不与AB点重合),请你探究直线l,EF、AE、BF之间的关系.(直接写出)24.如图,在Rt ABC△中,90ABC∠=︒,点D在BC的延长线上,且BD AB=,过点B作BE AC⊥,与BD的垂线DE交于点E,连结AD,取AD中点O,连结OC,OE.(1)求证:ABC BDE△≌△.(2)求证:OC OE=.25.如图,在∠ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDE=115°时,∠BAD=°,点D从B向C运动时,∠BAD逐渐变(填“大”或“小”);(2)当DC等于多少时,∠ABD∠∠DCE,请说明理由;(3)在点D的运动过程中,∠ADE的形状也在改变,判断当∠BAD等于多少时,∠ADE是等腰三角形.26.如图,∠B=∠C=∠FDE=80°,DF=DE,BF=1.5cm,CE=2cm,求BC的长.27.综合与探究:在平面直角坐标系中,已知A(0,a),B(b,0)且a,b满足(a ﹣3)2+|a﹣2b﹣1|=0(1)求A,B两点的坐标(2)已知∠ABC中AB=CB,∠ABC=90°,求C点的坐标(3)已知AB=10,试探究在x轴上是否存在点P,使∠ABP是以AB为腰的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.28.如图,在∠ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D 不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠EDC=°,∠DEC=°;点D从点B向点C运动时,∠BDA逐渐变.(填“大”或“小”)(2)当DC等于多少时,∠ABD∠∠DCE?请说明理由.(3)在点D的运动过程中,∠ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.29.在ABC中,90ACB∠=︒,AC BC=,直线MN经过点C,且AD MN⊥于D点,BE MN⊥于E点.(1)当直线MN绕点C旋转到图∠的位置时,求证:DE AD BE=+;(2)当直线MN绕点C旋转到图∠、图∠的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.30.如图,等腰直角∠ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中,点B坐标为(0,2),点C坐标为(6,0).(1)过点A作AD∠x轴,求OD的长及点A的坐标;(2)连接OA,若Р为坐标平面内不同于点A的点,且以O、P、C为顶点的三角形与∠OAC全等,请直接写出满足条件的点P的坐标;(3)已知OA=10,试探究在x轴上是否存在点Q,使∠OAQ是以OA为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案:1.A【解析】【分析】要求BDE∆的面积,想到过点E作EF BC⊥,垂足为F,因为题目已知60ABC∠=︒,想到把ABC∠放在直角三角形中,所以过点D作DG BA⊥,垂足为G,利用勾股定理求出DG的长,最后证明GPD FDE∆≅∆即可解答.【详解】解:过点E作EF BC⊥,垂足为F,过点D作DG BA⊥,垂足为G,在Rt BGD中,4BD=,60ABC∠=︒,30BDG∴∠=︒,122BG BD∴==,2223GD BD BG∴=-=,PDE∆是等边三角形,60PDE∴∠=︒,PD DE=,180120PDB EDF PDE∴∠+∠=︒-∠=︒,60ABC∠=︒,180120PDB BPD ABC∴∠+∠=︒-∠=︒,BPD EDF∴∠=∠,90PGD DFE∠=∠=︒,()GPD FDE AAS∴∆≅∆,23GD EF∴==,BDE∴∆的面积12BD EF=⋅,14232=⨯⨯, 43=,故选:A .【点睛】本题考查了等边三角形的性质,全等三角形、勾股定理,解题的关键是根据题目的已知条件并结合图形添加适当的辅助线.2.A【解析】【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明∠DAC ∠∠ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【详解】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∠∠ACD +∠DAC =∠ACD +∠BCE =90°,∠∠DAC =∠ECB ,又∠AC =CB ,∠∠DAC ∠∠ECB (AAS ),∠CD =BE =2x cm ,∠222AC BC AB +=,222AD DC AC +=,∠()()222232220x x +=,∠220013x =, 故选A .【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.3.C【解析】【详解】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【分析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∠∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ACD ∠∠CBE (AAS ),∠CD =BE =3a ,AD =CE =4a ,∠DE =CD +CE =3a +4a =7a ,∠a =8cm ,∠7a =56cm ,∠DE =56cm ,故选C .【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4.A【解析】【分析】根据等腰三角形的性质得到∠B =∠C ,推出∠BAD =∠CDE ,根据线段垂直平分线的性质得到AD =ED ,根据全等三角形的性质得到CD =AB =9,BD =CE ,即可得到结论.【详解】解:∠AB =AC =9,∠∠B =∠C ,∠∠ADE =∠B ,∠BAD =180°﹣∠B ﹣∠ADB ,∠CDE =180°﹣∠ADE ﹣∠ADB ,∠∠BAD =∠CDE ,∠AE 的中垂线交BC 于点D ,∠AD =ED ,在∠ABD 与∠DCE 中,BAD CDE B CAD ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ABD ∠∠DCE (AAS ),∠CD =AB =9,BD =CE ,∠CD =3BD ,∠CE =BD =3故选:A .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的性质,属于基础题.5.B【解析】【分析】 根据题意证明ABC CDE △≌△即可得出结论.【详解】解:∠AB ∠BD ,ED ∠BD ,∠90ABC CDE ∠=∠=︒,∠∠ACE =90°,∠90ACB DCE ∠+∠=︒,∠90ACB BAC ∠+∠=︒, ∠BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=, ∠()ABC CDE AAS ≌,∠6cmAB CD==,2cmBC DE==,∠268cmBD BC CD=+=+=,故选:B.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.6.8或2##2或8【解析】【分析】根据正方形的性质得出∠NAD=∠MBA,再利用全等三角形的判定得出∠ABM∠∠AND,进而求出MN的值,注意分类讨论.【详解】如图1,在正方形ABCD中,∠90NAD BAM∠+∠=︒,90ABM BAM,∠NAD MBA∠=∠,∠在ABM和DAN中,AMB ANDABM NADAB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABM DAN≌△△(AAS),∠3AM DN==,5BM AN==,∠358MN AM AN=+=+=,如图2,在正方形ABCD中,∠90DAN BAM ∠+∠=︒,90ABMBAM ,∠NAD MBA ∠=∠, ∠在ABM 和DAN 中,AMB DNA ABM NAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABM DAN ≌△△(AAS ),∠3AM DN ==,5BM AN ==,∠532MN AN AM =-=-=,综上:8MN =或2.故答案为:8或2.【点睛】 此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,将直线l 与正方形ABCD 的位置分类讨论是解题关键.7.6【解析】【分析】由“AAS ”可证∠ACP ∠∠CBQ ,可得AP =CQ ,PC =BQ ,由“AAS ”可证∠APO ∠∠BHO ,可得AP =BH ,OP =OH ,由等腰直角三角形的性质和直角三角形的性质可求解.【详解】解:如图,连接PO ,并延长交l 2于点H ,∠l 1∠l 3,l 2∠l 3, ∠l 1∠l 3,∠APC =∠BQC =∠ACB =90°, ∠∠P AC +∠ACP =90°=∠ACP +∠BCQ , ∠∠P AC =∠BCQ , 在∠ACP 和∠CBQ 中, ∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC , ∠∠ACP ∠∠CBQ (AAS ), ∠AP =CQ ,PC =BQ ,∠PC +CQ =AP +BQ =PQ =72, ∠AP ∠BQ ,∠∠OAP =∠OBH , ∠点O 是斜边AB 的中点, ∠AO =BO ,在∠APO 和∠BHO 中, ∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO , ∠∠APO ∠∠BHO (AAS ), ∠AP =BH ,OP =OH , ∠BH +BQ =AP +BQ =PQ , ∠PQ =QH =72, ∠∠PQH =90°,∠PH=2PQ=12,∠OP=OH,∠PQH=90°,PH=6.∠OQ=12故答案为:6【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键.8.13【解析】【分析】先根据AD∠DE,BE∠DE,∠ADC=∠CEB=90°,则∠DAC+∠DCA=90°,∠ABC是等腰直角三角形,∠ACB=90°,可得AC=CB,推出∠DAC=∠ECB,即可证明∠DAC∠∠ECB得到CE=AD=5,CD=BE=8,由此求解即可.【详解】解:∠AD∠DE,BE∠DE,∠∠ADC=∠CEB=90°,∠∠DAC+∠DCA=90°,∠∠ABC是等腰直角三角形,∠ACB=90°,∠∠DCA+∠BCE=90°,AC=CB∠∠DAC=∠ECB,∠∠DAC∠∠ECB(AAS),∠CE=AD=5,CD=BE=8,∠DE=CD+CE=13,故答案为:13.【点睛】本题主要考查了全等三角形的性质与判定,垂线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.9.8【解析】由线段CD 的长求BCD ∆的面积,故过B 作CD 的垂线,则由三角形面积公式可知:12BCD S CD BE ∆=⨯⨯,再由题中的BCD CAD ∠=∠和等腰直角三角形ABC ,即可求证ACD CBE ∆∆≌,最后由4CD BE ==即可求解.【详解】解:过点B 作CD 的垂线,交CD 的延长线于点E90ACB ∠=︒90BCD ACD ∴∠+∠=︒BCD CAD ∠=∠90ACD CAD ∴∠+∠=︒90ADC ∴∠=︒BE CD ⊥90E ∴∠=︒90BCD CBE ∴∠+∠=︒ACD CBE ∴∠=∠AC CB =ACD CBE ∴∆∆≌4CD BE ∴== 1144822BCD S CD BE ∆∴=⨯⨯=⨯⨯= 故答案是:8.【点睛】本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线. 10.28【分析】作CD ∠OB 于点D ,依据AAS 证明D AOB B C ∆≅∆,GMF ,再根据全等三角形的性质即可得到结论.【详解】解:过点C 作CD ∠OB 于点D ,如图,∠90CDB AOB ∠=∠=︒∠ABC ∆是等腰直角三角形∠AB =CB ,90ABC ∠=︒∠90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∠ABO BCD ∠=∠在ABO ∆和BCD ∆中, AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABO BCD AAS ∆≅∆∠28cm CD BO ==故答案为:28.【点睛】本题主要考查了等腰直角三角形的性质、三角形全等的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.11.(1)见详解;(2)成立,理由见详解;(3)见详解【解析】【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌; 解:(2)成立,理由如下:α∠=∠=BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:∠∠ABF 和∠ACF 均为等边三角形,∠,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,∠∠BDA =∠AEC =∠BAC =120°,∠180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,∠CAE ABD ∠=∠,∠()ADB CEA AAS ∆∆≌,∠AE BD =,∠,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠,∠FBD FAE ∠=∠,∠DBF EAF ∆∆≌(SAS ),∠,FD FE BFD AFE =∠=∠,∠60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒,∠∠DFE 是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.12.BE 的长为0.8cm ;DE =AD +BE .【解析】【分析】如图1,由“AAS ”可证∠ACD ∠∠CBE ,可得AD =CE =2.5cm ,BE =CD ,由线段的和差关系可求解;如图2,由“AAS ”可证∠ACD ∠∠CBE ,可得AD =CE ,BE =CD ,即可求解.【详解】解:如图1,∠∠ACB =∠BEC =∠ADC =90°,∠∠ACD +∠BCE =90°=∠ACD +∠CAD ,∠∠BCE =∠CAD , 在∠ACD 和∠CBE 中,BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ACD ∠∠CBE (AAS ),∠AD =CE =2.5cm ,BE =CD ,∠DE =1.7cm ,∠BE=CD=CE-DE=2.5-1.7=0.8cm,∠BE的长为0.8cm;如图2,DE=AD+BE,理由如下:∠∠ACB=∠BEC=∠ADC=90°,∠∠ACD+∠BCE=90°=∠ACD+∠CAD,∠∠BCE=∠CAD,在∠ACD和∠CBE中,BEC ADCBCE CADBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ACD∠∠CBE(AAS),∠AD=CE,BE=CD,∠DE=AD+BE.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,灵活运用这些性质解决问题是解题的关键.13.感知:(1)AEDE ;应用:(2)∠见解析;∠3.6;拓展:(3)2或113【解析】【分析】(1)根据相似三角形的性质,即可求解;(2)∠根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;∠根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【详解】感知:(1)∠∠ABC∠∠DAE,∠BC AC AE DE=,∠BC AE AC DE=,故答案为:AE DE; 应用:(2)∠∠∠APC =∠B +∠BAP ,∠APC =∠APD +∠CPD ,∠APD =∠B ,∠∠BAP =∠CPD ,∠AB =AC ,∠∠B =∠C ,∠∠ABP ∠∠PCD ;∠BC =12,点P 为BC 中点,∠BP =PC =6,·∠∠ABP ∠∠PCD ,∠AB BP PC CD =,即1066CD=, 解得:CD =3.6;拓展:(3)当P A =PD 时,∠ABP ∠∠PCD ,∠PC =AB =10,∠BP =BC -PC =12-10=2;当AP =AD 时,∠ADP =∠APD ,∠∠APD =∠B =∠C ,∠∠ADP =∠C ,不合题意,∠AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∠∠C =∠C ,∠∠BCA ∠∠ACP ,∠BC AC AC CP =,即121010CP =, 解得:253CP =, ∠25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113 . 【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.14.(1)证明见详解(2)DE+BE=AD.理由见详解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由见详解.【解析】【分析】(1)根据题意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS可以证明∠ADC∠∠CEB,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS推知∠ACD∠∠CBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD;(3)由题意可知DE、AD、BE具有的等量关系为:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).证明的方法与(2)相同.(1)证明:如图1,∠AD∠MN,BE∠MN,∠∠ADC=∠BEC=90°,∠∠DAC+∠ACD=90°,∠∠ACB=90°,∠∠ACD+∠BCE=90°,∠∠DAC=∠BCE,在∠ADC和∠CEB中,∠ADC BECDAC BCE AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADC∠∠CEB;∠DC=BE,AD=EC,∠DE=DC+EC,∠DE=BE+AD.(2)解:DE+BE=AD.理由如下:如图2,∠∠ACB=90°,∠∠ACD +∠BCE =90°.又∠AD ∠MN 于点D ,∠∠ACD +∠CAD =90°,∠∠CAD =∠BCE .在∠ACD 和∠CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∠∠ACD ∠∠CBE (AAS ),∠CD =BE ,AD =CE ,∠DE +BE =DE +CD =EC =AD ,即DE +BE =AD .(3)解:DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由如下:如图3,易证得∠ADC ∠∠CEB ,∠AD =CE ,DC =BE ,∠DE =CD -CE =BE -AD ,即DE =BE -AD .【点睛】 本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS 、SAS 、AAS 、ASA ;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.15.(1)见解析;(2)MN AM CN =+仍然成立,理由见解析【解析】【分析】(1)首先根据同角的余角相等得到BAM CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,然后根据全等三角形对应边相等得到AM BN =,BM CN =,然后通过线段之间的转化即可证明MN AM CN =+;(2)首先根据三角形内角和定理得到MAB CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,根据全等三角形对应边相等得到MN MB BN =+,最后通过线段之间的转化即可证明MN AM CN =+.【详解】证明:(1)∠AM MN ⊥,⊥CN MN ,∠90AMB BNC ∠=∠=︒,∠90ABM BAM ∠+∠=︒,∠90ABC ∠=︒,∠90ABM CBN , ∠BAM CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠()AMB BNC AAS ≅△△,∠AM BN =,BM CN =,∠BN MB MN +=,∠MN AM CN =+;(2)MN AM CN =+仍然成立,理由如下:∠180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒,∠AMB ABC ∠=∠, ∠MAB CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠()AMB BNC AAS ≅△△,∠AM BN =,NC MB =,∠MN MB BN =+,∠MN AM CN =+.【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,解题的关键是根据同角的余角相等或三角形内角和定理得到BAM CBN ∠=∠.16.(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【解析】【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【详解】(1)证明:∠BD m ⊥,CE m ⊥,∠90ADB CEA ∠=∠=︒,∠90BAC ∠=︒,∠90BAD CAE ∠+∠=︒,∠90BAD ABD ∠+∠=︒,∠ CAE ABD ∠=∠,在ADB 和CEA 中 ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ADB CEA ≌,∠AE BD =,AD CE =,∠DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+ ,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∠180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠, ∠ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∠ABD CAE ≌,∠AE BD =,AD CE =,∠DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F ,由(1)可知,AEC CFB ≌,∠3CF AE ==,4BF CE OE OC ==-=,∠1OF CF OC =-=,∠点B 的坐标为()1,4B .【点睛】 本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.17.探究:(1)DE =BD +CE ;拓展:(1)成立,见解析;应用:(3)∠DEF 是等边三角形【解析】【分析】(1)根据BD ∠直线m ,CE ∠直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等得∠CAE =∠ABD ,然后根据“AAS ”可判断∠ADB ∠∠CEA ,则AE =BD ,AD =CE ,于是DE =AE +AD =BD +CE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由AAS 就可以得出∠BAD ∠∠ACE ,就可以得出BD =AE ,DA =CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC =120°,就可以得出∠BAD ∠∠ACE ,就有BD =AE ,进而得出∠BDF ∠∠AEF ,得出DF =EF ,∠BFD =∠AFE ,而得出∠DFE =60°,即可推出∠DEF 为等边三角形.【详解】(1)解:如图1,∠BD∠直线m ,CE ∠直线m ,∠∠BDA =∠CEA =90°,∠∠BAC =90°,∠∠BAD +∠CAE =90°∠∠BAD +∠ABD =90°,∠∠CAE =∠ABD ,在∠ADB 和∠CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADB ∠∠CEA (AAS ),∠AE =BD ,AD =CE ,∠DE =AE +AD =BD +CE ;故答案为:DE=BD+CE(2)解:如图2,∠∠BDA =∠BAC =α,∠∠DBA +∠BAD =∠BAD +∠CAE =180°﹣α,∠∠DBA =∠CAE ,在∠ADB 和∠CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADB ∠∠CEA (AAS ),∠AE =BD ,AD =CE ,∠DE =AE +AD =BD +CE ;(3)证明:如图3,由(2)可知,∠ADB ∠∠CEA ,∠BD =AE ,∠DBA =∠CAE ,∠∠ABF 和∠ACF 均为等边三角形,∠∠ABF =∠CAF =60°,BF =AF ,∠∠DBA +∠ABF =∠CAE +∠CAF ,∠∠DBF =∠F AE ,∠在∠DBF 和∠EAF 中, BD AE DBF FAE BF AF =⎧⎪∠=∠⎨⎪=⎩,∠∠DBF ∠∠EAF (SAS ),∠DF =EF ,∠BFD =∠AFE ,∠∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60°,∠∠DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等边三角形的判定与性质的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题,属于中考常考题型.18.(1)DE =AD +BE ;(2)见解析;(3)DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等)【解析】【分析】(1)由已知推出∠ADC =∠BEC =90°,因为∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,推出∠DAC =∠BCE ,根据AAS 即可得到△ADC ∠∠CEB ,得到AD =CE ,CD =BE ,即可求出答案;(2)与(1)证法类似可证出∠ACD =∠EBC ,能推出△ADC ∠∠CEB ,得到AD =CE ,CD =BE ,代入已知即可得到答案;(3)与(1)(2)证法类似可证出∠ACD =∠EBC ,能推出△ADC ∠∠CEB ,得到AD =CE ,CD =BE ,代入已知即可得到答案;【详解】解:(1)证明:∠AD ∠DE ,BE ∠DE ,∠∠ADC =∠BEC =90°,∠∠ACB =90°,∠∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∠∠DAC =∠BCE ,在△ADC 和△CEB 中 CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADC ∠∠CEB (AAS ),∠AD =CE ,CD =BE ,∠DC +CE =DE ,∠DE =AD +BE .(2)证明:∠AD ∠MN ,BE ∠MN ,∠∠ADC =∠CEB =90°,又∠∠ACB =90°,∠∠CAD +∠ACD =90°,∠ACD +∠BCE =90°.∠∠CAD =∠BCE .∠AC =BC ,∠∠ADC ∠∠CEB .∠CE =AD , CD =BE ,∠DE =CE - CD =AD -BE ;(3)DE =BE -AD ,理由:∠BE ∠EC ,AD ∠CE ,∠∠ADC =∠BEC =90°,∠∠EBC +∠ECB =90°,∠∠ACB =90°,∠∠ECB +∠ACE =90°,∠∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADC ∠∠CEB (AAS ),∠AD =CE ,CD =BE ,∠DE =CD -CE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).【点睛】本题考查了邻补角的意义,同角的余角相等,直角三角形的性质,全等三角形的判定和性质等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.19.(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923()33, 【解析】【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m的方程,求出m的值,即可确定出D点坐标;如图4所示,当90ADP∠=︒时,AD PD=时,同理求出D的坐标.【详解】解:(1)由题意可得,90ACB ADC BEC∠=∠=∠=︒,∠90EBC BCE BCE ACD∠+∠=∠+∠=︒,∠EBC ACD∠=∠,在BEC△和CDA中EBC ACDE DBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠()BEC CDA AAS≌;(2)过点C作CD x⊥轴于点D,如图2,在334y x=+中,令0y=可求得4x=-,令0x=可求得3y=,∠3OA=,4OB=同(1)可证得CDB BOA≌,∠4CD BO==,3BD AO==,∠437OD=+=,∠()7,4C-且()0,3A,设直线AC解析式为3y kx=+,把C点坐标代入可得734k-+=,解得17k=-,∠直线AC解析式为137y x=-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP △≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∠DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△, ∠6PF AE m ==-,8DF PE ==,∠D 点坐标为()14,8m m -+,∠()82145m m +=--,得5m =,∠D点坐标(913),;如图4,当90ADP∠=︒时,AD PD=时,同理可得ADE DPF△△≌,设(,25)D n n-,则DE PF n==,25OE n=-,AE DF=则256211DF AE n n==--=-,∠8DE DF EF OC+===∠2118n n+-=,解得193n=,23253n-=∠D点坐标1923()33,,综上可知满足条件的点D的坐标分别为(3,1)或(913),或1923()33,.【点睛】本题为一次函数的综合应用,涉及全等三角形的判定与性质、等腰直角三角形的性质、旋转的性质、分类讨论及数形结合的思想,解题的关键是熟练掌握并灵活运用相关性质进行求解.20.(1)0.8cm;(2)见解析(3)5【解析】【分析】(1)利用AAS定理证明∠CEB∠∠ADC,根据全等三角形的性质解答即可;(2)由条件可得∠BEA=∠AFC,∠4=∠ABE,根据AAS可证明∠ABE∠∠CAF;(3)先证明∠ABE∠∠CAF,得到ACF∆与BDE∆的面积之和为∠ABD的面积,再根据2CD BD=故可求解.【详解】解:(1)∠BE∠CE,AD∠CE,∠∠E=∠ADC=90°,∠∠EBC+∠BCE=90°.∠∠BCE+∠ACD=90°,∠∠EBC=∠DCA.在∠CEB和∠ADC中,E ADCEBC DCA BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠CEB∠∠ADC(AAS),∠BE=DC,CE=AD=2.5cm.∠DC=CE−DE,DE=1.7cm,∠DC=2.5−1.7=0.8cm,∠BE=0.8cm故答案为:0.8cm;(2)证明:∠∠1=∠2,∠∠BEA=∠AFC.∠∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∠∠BAC=∠ABE+∠3,∠∠4=∠ABE.∠∠AEB=∠AFC,∠ABE=∠4,AB=AC,∠∠ABE∠∠CAF(AAS).(3)∠BED CFD BAC∠=∠=∠∠∠ABE+∠BAE=∠F AC+∠BAE=∠F AC+∠ACF∠∠ABE=∠CAF,∠BAE=∠ACF又AB AC=∠∠ABE∠∠CAF,∠ABE CAFS S=∠ACF∆与BDE∆的面积之和等于ABE∆与BDE∆的面积之和,即为∠ABD的面积,∠2CD BD=,∠ABD与∠ACD的高相同则13ABD ABCS S=△△=5故ACF∆与BDE∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.21.(1)∠见解析;∠见解析;(2)见解析;(3)DE BE AD=-,证明见解析【解析】【分析】(1)∠根据角之间的关系可得,DCA EBC∠=∠,即可求证;∠根据全等得到线段之间的关系,即可求解;(2)根据等角的余角相等得到ACD CBE∠=∠,易得ADC CEB△≌△,得到AD CE=,DC BE=,所以DE CE CD AD BE=-=-;(3)DE AD BE、、具有的等量关系为:DE BE AD=-.证明的方法与(2)相同.【详解】解:(1)∠∠90ACB∠=︒,。
人教版八年级数学上册《一线三等角模型》专项练习-附含答案
人教版八年级数学上册《一线三等角模型》专项练习-附含答案【模型说明】 C D E BA应用:通过证明全等实现边角关系的转化 便于解决对应的几何问题;【例题精讲】例1.(基本“K ”型)如图 一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°) 若OA =50cm OB =28cm 则点C 离地面的距离是____ cm .【答案】28【详解】解:过点C 作CD ∠OB 于点D 如图∠90CDB AOB ∠=∠=︒∠ABC ∆是等腰直角三角形∠AB =CB 90ABC ∠=︒∠90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∠ABO BCD ∠=∠在ABO ∆和BCD ∆中AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABO BCD AAS ∆≅∆∠28cm CD BO ==故答案为:28.例2.(特殊“K ”型)在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC =,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和. 【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立 理由见解析(3)△FBD 与△ACE 的面积之和为4【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90° ∴∠BAD +∠EAC =∠BAD +∠DBA =90° ∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE ∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE ∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC ∴∠CAE =∠ABD在△ABD 和△CAE 中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ) ∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.例3.(“K ”型培优)已知:ABC 中 90ACB ∠=︒ AC CB = D 为直线BC 上一动点 连接AD 在直线AC 右侧作AE AD ⊥ 且AE AD =.(1)如图1 当点D 在线段BC 上时 过点E 作EH AC ⊥于H 连接DE .求证:EH AC =; (2)如图2 当点D 在线段BC 的延长线上时 连接BE 交CA 的延长线于点M .求证:BM EM =;(3)当点D 在直线CB 上时 连接BE 交直线AC 于M 若25AC CM = 请求出ADB AEMS S △△的值. 【答案】(1)见解析;(2)见解析;(3)43或47【详解】证明(1)∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAH CAD 90∠=︒-∠ADC CAD EAH ADC ∴∠=∠在AHE 与DCA △中 90AHE ACB EAH ADCAE AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AHE DCA AAS ∴△≌△ EH AC ∴=; (2)如图2 过点E 作EN AC ⊥ 交CA 延长线于N∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS 则BM EM =; (3)如图 当点D 在线段BC 上时∠25AC CM = ∠可设5AC a = 2CM a =由(1)得:AHE DCA △≌△ 则AH CD = 5===EH AC BC a由∠90EHM BCM ∠=∠=︒ BMC EMH ∠=∠ ∠MHE MCB △≌△(AAS ) ∠CM HM = 即2HM CM a == ∠522AH AC CM HM a a a a =--=--= ∠3AM AH HM a CD AH a ==5EH AC a == 4BD BC CD a =-= 11454221133522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EH a a ; 如图 点D 在CB 延长线上时 过点E 作EN AC ⊥ 交AC 延长线于N∠25AC CM = ∠可设5AC a = 2CM a =∠EN AC ⊥ AE AD ⊥ ∠90ANE EAD ACB ∠=∠=∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= AN CD = 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS ∠2==CM NM a 5NE BC AC a === ∠9AN AC CM MN a =++=7AM AC CM a =+= 9AN CD a == ∠4BD a = 11454221177522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EN a a 点D 在BC 延长线上 由图2得:AC CM < ∠25AC CM =不可能 故舍去综上:ADB AEM S S △△的值为43或47 【变式训练1】如图 90,ABC FA AB ∠=⊥于点A 点D 在直线AB 上,AD BC AF BD ==.(1)如图1 若点D 在线段AB 上 判断DF 与DC 的数量关系和位置关系 并说明理由;(2)如图2 若点D 在线段AB 的延长线上 其他条件不变 试判断(1)中结论是否成立 并说明理由.【答案】(1)DF =DC DF ∠DC ;理由见解析;(2)成立 理由见解析【解析】(1)解:∠90,ABC FA AB ∠=⊥∠90ABC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .(2)∠90,ABC FA AB ∠=⊥∠90DBC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .【变式训练2】在ABC 中 90ACB ∠=︒ AC BC = 直线MN 经过点C 且AD MN ⊥于D BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时.∠请说明ADC CEB △≌△的理由;∠请说明DE AD BE =+的理由;(2)当直线MN 绕点C 旋转到图2的位置时 DE 、AD 、BE 具有怎样的等量关系?请写出等量关系 并予以证明.(3)当直线MN 绕点C 旋转到图3的位置时 DE 、AD 、BE 具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)∠理由见解析;∠理由见解析(2)DE AD BE =- 证明见解析(3)DE BE AD =-【解析】(1)解:∠∠AD MN ⊥于D BE MN ⊥于E∠90ADC BEC ∠=∠=︒∠90ACB ∠=︒ ∠90ACD BCE ∠+∠=︒90ACD DAC ∠+∠=︒ ∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠∠ADC CEB △≌△ ∠AD EC = CD BE =∠DC CE DE += ∠AD EB DE +=(2)结论:DE AD BE =-∠BE EC ⊥ AD CE ⊥∠90ADC BEC ∠=∠=︒∠90EBC BCE ∠+∠=︒∠90ACB ∠=︒∠90ACE BCE ∠+∠=︒∠ACD EBC ∠=∠∠ADC CEB △≌△∠AD EC = CD BE =∠DE EC CD AD EB =-=-(3)结论:DE BE AD =-∠90ACB ∠=︒∠90ACD BCE ∠+∠=︒∠BE MN ⊥ AD MN ⊥∠90ADC DEC ∠=∠=︒∠90ACD DAC ∠+∠=︒∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠AD EC = CD BE =∠DE CD EC EB AD =-=-.【变式训练3】(1)如图1 在∠ABC 中 ∠BAC =90° AB =AC 直线m 经过点A BD ∠直线m CE ∠直线m 垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2 将(1)中的条件改为:在∠ABC 中 AB =AC D 、A 、E 三点都在直线m 上 并且有∠BDA =∠AEC =∠BAC =α 其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立 请给出证明;若不成立 请说明理由.(3)拓展应用:如图3 D E 是D A E 三点所在直线m 上的两动点(D A E 三点互不重合) 点F 为∠BAC 平分线上的一点 且∠ABF 和∠ACF 均为等边三角形 连接BD CE 若∠BDA =∠AEC =∠BAC 求证:∠DEF 是等边三角形.【答案】(1)见详解;(2)成立 理由见详解;(3)见详解【详解】(1)证明:BD ⊥直线m CE ⊥直线m 90BDA CEA ∴∠=∠=︒90BAC ∠=︒ 90BAD CAE ∴∠+∠=︒90BAD ABD ∠+∠=︒ CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;解:(2)成立 理由如下:α∠=∠=BDA BAC180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;(3)证明:∠∠ABF 和∠ACF 均为等边三角形∠,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒ ∠∠BDA =∠AEC =∠BAC =120°∠180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒ ∠CAE ABD ∠=∠∠()ADB CEA AAS ∆∆≌ ∠AE BD =∠,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠ ∠FBD FAE ∠=∠∠DBF EAF ∆∆≌(SAS ) ∠,FD FE BFD AFE =∠=∠∠60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒ ∠∠DFE 是等边三角形.【课后作业】1.如图是高空秋千的示意图 小明从起始位置点A 处绕着点O 经过最低点B 最终荡到最高点C 处 若90AOC ∠=︒ 点A 与点B 的高度差AD =1米 水平距离BD =4米 则点C 与点B 的高度差CE 为( )A.4米B.4.5米C.5米D.5.5米【答案】B【详解】解:作AF∠BO于F CG∠BO于G∠∠AOC=∠AOF+∠COG=90° ∠AOF+∠OAF=90° ∠∠COG=∠OAF在∠AOF与∠OCG中AFO OGCOAF COGAO OC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠AOF∠∠OCG(AAS) ∠OG=AF=BD=4米设AO=x米在Rt∠AFO中 AF2+OF2=AO2即42+(x-1)2=x2解得x=8.5.则CE=GB=OB-OG=8.5-4=4.5(米).故选:B.2.如图 ∠ABC=∠ACD=90° BC=2 AC=CD则△BCD的面积为_________.【答案】2【详解】解:如图作DE垂直于BC的延长线垂足为E∠90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒ ∠BAC DCE ∠=∠在ABC 和CED 中 ∠90BAC DCE ABC CED AC CD ∠=∠⎧⎪∠==︒⎨⎪=⎩∠()ABC CED AAS ≌ ∠2BC DE == ∠122BCD S BC DE =⨯⨯= 故答案为:2.3.如图 ABC 为等边三角形 D 是BC 边上一点 在AC 上取一点F 使=CF BD 在AB 边上取一点E 使BE DC = 则EDF ∠的度数为( )A .30B .45C .60D .70【答案】C 【详解】∠ABC 是等边三角形 ∠∠B=∠C=60°在∠EDB 和∠DFC 中 60BD CF B C BE CD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠EDB ∠∠DFC ∠∠BED=∠CDF ∠∠B=60° ∠∠BED+∠BDE= 120° ∠∠CDF+∠BDE= 120°∠∠EDF=180°-(∠CDF+∠BDE )=180°-120°=60°.故选C.4.已知∠ABC 中 ∠ACB =90° AC =BC .BE 、AD 分别与过点C 的直线垂直 且垂足分别为D E .学习完第十二章后 张老师首先让同学们完成问题1:如图1 若AD =2.5cm DE =1.7cm 求BE 的长;然后 张老师又提出问题2:将图1中的直线CE 绕点C 旋转到∠ABC 的外部 BE 、AD 与直线CE 的垂直关系不变 如图2 猜想AD 、DE 、BE 三者的数量关系 并给予证明.【答案】BE 的长为0.8cm ;DE =AD +BE .【详解】解:如图1 ∠∠ACB =∠BEC =∠ADC =90°∠∠ACD +∠BCE =90°=∠ACD +∠CAD ∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE =2.5cm BE =CD∠DE =1.7cm ∠BE =CD =CE -DE =2.5-1.7=0.8cm ∠BE 的长为0.8cm ;如图2 DE =AD +BE 理由如下:∠∠ACB =∠BEC =∠ADC =90° ∠∠ACD +∠BCE =90°=∠ACD +∠CAD∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE BE =CD ∠DE =AD +BE .5.如图 在ABC 中 AB BC =.(1)如图∠所示 直线NM 过点B AM MN ⊥于点M ⊥CN MN 于点N 且90ABC ∠=︒.求证:MN AM CN =+.(2)如图∠所示 直线MN 过点B AM 交MN 于点M CN 交MN 于点N 且AMB ABC BNC ∠=∠=∠ 则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立 理由见解析【详解】证明:(1)∠AM MN ⊥ ⊥CN MN∠90AMB BNC ∠=∠=︒ ∠90ABM BAM ∠+∠=︒∠90ABC ∠=︒ ∠90ABM CBN ∠+∠=︒ ∠BAM CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = BM CN = ∠BN MB MN += ∠MN AM CN =+;(2)MN AM CN =+仍然成立 理由如下:∠180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒∠AMB ABC ∠=∠ ∠MAB CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = NC MB =∠MN MB BN =+ ∠MN AM CN =+.6.如图 在∠ABC 中 ∠ACB =90° AC =BC 直线l 经过顶点C 过A 、B 两点分别作l 的垂线AE 、BF E 、F 为垂足.(1)当直线l 不与底边AB 相交时∠求证:∠EAC =∠BCF .∠猜想EF 、AE 、BF 的数量关系并证明.(2)将直线l 绕点C 顺时针旋转 使l 与底边AB 交于点D (D 不与AB 点重合) 请你探究直线l EF 、AE 、BF 之间的关系.(直接写出)【答案】(1)∠证明见解析 ∠EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【详解】(1)证明:∠∵AE ⊥EF BF ⊥EF ∠ACB =90°∴∠AEC =∠BFC =∠ACB =90°∴∠EAC +∠ECA =90° ∠ECA +∠FCB =90° ∴∠EAC =∠FCB∠EF =AE +BF ;证明:在△EAC 和△FCB 中 AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△FCB (AAS )∴CE =BF AE =CF∴EF =CE +CF =AE +BF即EF =AE +BF ;(2)∠当AD >BD 时 如图①∵∠ACB =90° AE ⊥l 直线同理可证∠BCF =∠CAE (同为∠ACD 的余角)又∵AC =BC BF ⊥l 直线即∠BFC =∠AEC =90°∴△ACE ≌△CBF (AAS )∴CF =AE CE =BF∵CF =CE +EF =BF +EF∴AE =BF +EF ;∠当AD <BD 时 如图②∵∠ACB =90° BF ⊥l 直线同理可证∠CBF =∠ACE (同为∠BCD 的余角)又∵AC =BC BE ⊥l 直线 即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS )∴CF =AE BF =CE∵CE =CF +EF =AE +EF ∴BF =AE +EF .7.(1)某学习小组在探究三角形全等时 发现了下面这种典型的基本图形.如图1 已知:在ABC 中 90BAC ∠=︒ AB AC = 直线l 经过点A BD ⊥直线l CE ⊥直线l 垂足分别为点D E .求证:DE BD CE =+.(2)组员小明想 如果三个角不是直角 那结论是否会成立呢?如图2 将(1)中的条件改为:在ABC 中 AB AC = D A E 三点都在直线l 上 并且有BDA AEC BAC α∠=∠=∠= 其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立 请你给出证明;若不成立 请说明理由.(3)数学老师赞赏了他们的探索精神 并鼓励他们运用这个知识来解决问题:如图3 过ABC 的边AB AC 向外作正方形ABDE 和正方形ACFG AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△ 则AEI S =△______. 【答案】(1)见解析;(2)结论成立 理由见解析;(3)3.5【详解】解:(1)证明:如图1中 ∠BD ∠直线l CE ∠直线l∠∠BDA =∠CEA =90°∠∠BAC =90°∠∠BAD +∠CAE =90°∠∠BAD +∠ABD =90°∠∠CAE =∠ABD在∠ADB 和∠CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中∠∠BDA =∠BAC =α∠∠DBA +∠BAD =∠BAD +∠CAE =180°-α∠∠DBA =∠CAE在∠ADB 和∠CEA 中BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(3)如图3 过E 作EM ∠HI 于M GN ∠HI 的延长线于N .∠∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∠EM =GN在∠EMI 和∠GNI 中GIN EIM EM GNGNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠EMI ∠∠GNI (AAS )∠EI =GI∠I 是EG 的中点.∠S △AEI =12S △AEG =3.5.故答案为:3.5.8.如图 在∠ABC 中 AB =AC =2 ∠B =∠C =40° 点D 在线段BC 上运动(点D 不与点B 、C 重合) 连接AD 作∠ADE =40° DE 交线段AC 于点E .(1)当∠BDA =105°时 ∠EDC = ° ∠DEC = °;点D 从点B 向点C 运动时 ∠BDA 逐渐变 .(填“大”或“小”)(2)当DC 等于多少时 ∠ABD ∠∠DCE ?请说明理由.(3)在点D 的运动过程中 ∠ADE 的形状可以是等腰三角形吗?若可以 请直接写出∠BDA 的度数;若不可以 请说明理由.【答案】(1)35105︒︒, 小;(2)2 理由见解析;(3)110︒或80°【详解】(1)40B C ∠=∠=︒ 40ADE ∠=︒1801804040100BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒180140ADB EDC ADE ∠+∠=︒-∠=︒180140ADB BAD B ∠+∠=︒-∠=︒180140DEC EDC C ∠+∠=︒-∠=︒BAD EDC ∴∠=∠ ADB DEC ∠=∠∴当∠BDA =105°时∴∠EDC =1801801054035BAD ADB B ∠=︒-∠-∠=︒-︒-︒=︒∠DEC =ADB ∠105=︒;当点D 从点B 向点C 运动时 BAD ∠逐渐变大 180140BDA B BAD BAD ∠=︒-∠-∠=︒-∠ 则∠BDA 逐渐变小故答案为:35105︒︒,小; (2)BAD EDC ∠=∠ ADB DEC ∠=∠当DC AB =2=时 ABD DCE ∴≌(AAS ) 2DC ∴=(3)∠ADE 的形状可以是等腰三角形 BDA ∠=110︒或80︒40B C ∠=∠=︒ 1804040100BAC ∴∠=︒-︒-︒=︒∠当DA DE =时 ()118040702DAE DEA ∠=∠=︒-︒=︒ 1007030BAD BAC DAC ∴∠=∠-∠=︒-︒=︒1801804030110BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒;∠当EA ED =时 ADE ∠=40,1804040100DAE DEA ∠=︒∠=︒-︒-︒=︒1004060BAD BAC DAE ∴∠=∠-∠=︒-︒=︒180180406080BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒∠当AE AD =时 ADE ∠=40,1804040100DEA DAE ∠=︒∠=︒-︒-︒=︒100BAC ∠=︒∴此时D 点与B 点重合由题意可知点D 不与点B 、C 重合∴此种情况不存在综上所述当∠ADE是等腰三角形时BDA∠=110︒或80︒.9.如图线段AB=6 射线BG∠AB P为射线BG上一点以AP为边做正方形APCD且点C、D与点B在AP两侧在线段DP上取一点E使得∠EAP=∠BAP直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:△AEP∠∠CEP;(2)判断CF与AB的位置关系并说明理由;(3)△AEF的周长是否为定值若是请求出这个定值若不是请说明理由.【答案】(1)证明见解析;(2)CF∠AB理由见解析;(3)是为16.【详解】解:(1)证明:∠四边形APCD 正方形 ∠DP平分∠APC PC=P A ∠APC=90°∠∠APE=∠CPE=45°在∠AEP与∠CEP中AP CPAPE CPEPE PE=⎧⎪∠=∠⎨⎪=⎩∠∠AEP∠∠CEP(SAS);(2)CF∠AB理由如下:∠∠AEP∠∠CEP ∠∠EAP=∠ECP∠∠EAP=∠BAP ∠∠BAP=∠FCP ∠∠APC=90° ∠∠FCP+∠CMP=90° ∠∠AMF=∠CMP ∠∠AMF+∠P AB=90° ∠∠AFM=90° ∠CF∠AB;(3)过点C作CN∠PB.∠CF∠AB BG∠AB ∠∠PNC=∠B=90° FC∠BN∠∠CPN=∠PCF=∠EAP=∠P AB又AP=CP ∠∠PCN∠∠APB(AAS) ∠CN=PB=BF PN=AB∠∠AEP∠∠CEP ∠AE=CE∠∠AEF的周长=AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=16.故∠AEF的周长是否为定值为16.。
(完整版)一线三等角专题训练
一线三等角问题一、问题引入如图,ABC ∆中,90B ∠=︒,CD AC ⊥,过D 作DE AB ⊥交BC 延长线与E 。
求证:△ABC ∽△CEDB EADC其他常见的一线三等角图形(等腰三角形中底边上一线三等角) (等腰梯形中底边上一线三等角)AB DCEF(直角坐标系中一线三等角) (矩形,正方形中一线三等角) (1)等腰三角形中一线三等角例1、 如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.FD CD (备用图)(1、 本题中,第一问的结论是这类题共同的特性,只要等腰三角形底边上有三等角,必有三角形相似;(2、 第二问中根据相似求线段的长,也很常见;有时候会反过来问,线段的长是多少时,三角线相似。
变式练习1就是这类题型;(3、 第三问,中间的三角形与左右两个形似时,有两种情况,一种是DF 与底边平行,一种是E 为中点;(4、 在等腰梯形中,将腰延长会交于一点,也构成等腰三角形,故而以上三点,在等腰梯形中也适用。
变式练习1 (浦东新区22题)如图,已知等边△ABC 的边长为8,点D 、F 、E 分别在边AB 、BC 、AC 上,3BD =,E 为AC 中点,当△BPD 与△PCE 相似时,求BP 的值.变式练习2(宝山22题)如图6,已知ΔABC 中,AB AC =,点E 、F 在边BC 上,满足∠EAF =∠C .求证:2BF CE AB ⋅=;FE CBA(图6)(2)等腰梯形中一线三等角例2.(长宁区18题)如图,等腰梯形ABCD 中,AD ∥BC ,2AD =,42BC =,∠45B =˚,直角三角板含45度角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若△ABE 为等腰三角形,则CF 的长等于 .\第18题EFDCBA例3(徐汇区25).如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.例4、(杨浦区基础考)四边形ABCD 中,AD ∥BC ,()090ABC αα∠=<<,3AB DC ==,5BC =.点P 为射线BC 上动点(不与点B 、C 重合),点E 在直线DC 上,且APE α∠=.记1PAB ∠=∠,2EPC ∠=∠,BP x =,CE y =.(1)当点P 在线段BC 上时,写出并证明1∠与2∠的数量关系; (2)随着点P 的运动,(1)中得到的关于1∠与2∠的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的x 的取值范围; (3)若cos α=13,试用x 的代数式表示y .(3)坐标系中一线三等角例5.(金山区24)如图,住平面直角系中,直线AB :()440y x a a=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC ⊥时(1)求证:ABO ∆∽BCD ∆;(2)求线段CD 的长(用a 的代数式表示); (3)若直线AE 的方程是1316y x b =-+,求tan BAC ∠的值.变式练习3、在平面直角坐标系XOY 中,AOB ∆的位置如图所示,已知0060,90=∠=∠A AOB ,点A 的坐标为()1,3-(1) 求点B 的坐标;(2) 若抛物线c bx ax y ++=2经过A 、O 、B 三点,求函数解析式。
部编数学九年级下册专题13一线三等角模型证相似(解析版)含答案
专题13 一线三等角模型证相似1.如图,在边长为9cm的等边ABCD中,D为BC上一点,且3BD cm=,E在AC上,60ADEÐ=°,则AE的长为( )cm.A.B.C.7D.6【解答】解:ABCDQ是等边三角形,9AB BC AC cm\===,60B CÐ=Ð=°,180120BAD ADB B\Ð+Ð=°-Ð=°,60ADEÐ=°Q,180120ADB EDC ADE\Ð+Ð=°-Ð=°,BAD EDC\Ð=Ð,ABD DCE\D D∽,\AB BD DC CE=,\9393CE=-,2CE\=,7()AE AC CE cm\===,故选:C.2.如图,边长为8cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若2BF cm=,则小正方形的面积等于2 .【解答】解:Q正方形ABCD的边长为8cm,2BF cm=,6CF cm\=Q 四边形ABCD 和EFGH 均为正方形90B C EFG \Ð=Ð=Ð=°90BEF BFE \Ð+Ð=°,90CFD BFE Ð+Ð=°BEF CFD\Ð=ÐBEF CFD\D D ∽\BE CF BF CD =\628BE =32BE \=\小正方形的面积等于:222EF BE BF =+944=+225()4cm =故答案为:2254cm .三.解答题(共15小题)3.已知等边ABC D ,E ,F 分别在边AB 、AC 上,将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.(1)求证:BED CDF D D ∽;(2)若2CD BD =时,求ED DF.【解答】解:(1)证明:Q 等边ABCD 60A B C \Ð=Ð=Ð=°Q 将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.60EDF A \Ð=Ð=°180********BED BDE B Ð+Ð=°-Ð=°-°=°Q 180********BDE CDF EDF Ð+Ð=°-Ð=°-°=°BED CDF\Ð=Ð又B CÐ=ÐQ BED CDF \D D ∽;(2)2CD BD=Q \设1BD =,则2CD =,Q 翻折,\设ED AE x ==,DF AF y==3AB BC AC \===,3BE x =-,3CF y=-BED CDFD D Q ∽\ED BD BE DF CF DC ==\1332x x y y -==-由13x y y=-得:31x y x =+①由32x x y -=得:23x y x=-②由①②解得:75x =,74y =\45x y =\45ED DF =.4.如图有一块三角尺,Rt ABC D ,90C Ð=°,30A Ð=°,6BC =,用一张面积最小的正方形纸片将这个三角尺完全覆盖.求出这个正方形的面积.【解答】解:90C Ð=°Q ,30A Ð=°,6BC =,212AB BC \==,AC \=,Q 四边形AFED 是正方形,90F E \Ð=Ð=°,AF FE =,90FAC FCA \Ð+Ð=°,90C Ð=°Q ,90FCA BCE \Ð+Ð=°,FAC BCE \Ð=Ð,AFC CEB \D D ∽,\AFACCE CB =,\AFCE =,设AF x =,则CE x =,FC \=,222AF AC Q ,222)x x \+=,2268237x \=+,答:这个正方形的面积为:226837.5.已知:如图,ABC D 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE Ð=°.(1)求证:ABD DCE D D ∽;(2)如果3AB =,23EC =,求DC 的长.【解答】(1)证明:ABC D Q 是等边三角形,60B C \Ð=Ð=°,AB AC =,B BAD ADE CDE Ð+Ð=Ð+ÐQ ,60B ADE Ð=Ð=°,BAD CDE \Ð=ÐABD DCE \D D ∽;(2)解:由(1)证得ABD DCE D D ∽,\BD CE AB DC=,设CD x =,则3BD x =-,\2333x x-=,1x \=或2x =,1DC \=或2DC =.6.如图,在矩形ABCD 中,3AB =,5AD =,P 是边BC 上的任意一点(P 与B 、C 不重合),作PE AP ^,交CD 于点E .(1)判断ABP D 与PCE D 是否相似,并说明理由.(2)连接BD ,若//PE BD ,试求出此时BP 的长.【解答】解:(1)ABP D 与PCE D 相似,理由如下:Q 四边形ABCD 是矩形,90B C \Ð=Ð=°,90BAP BPA \Ð+Ð=°,PE AP ^Q ,90CPE BPA \Ð+Ð=°,BAP CPE \Ð=Ð,ABP PCE \D D ∽;(2)连接BD,如图所示:由(1)知ABP PCE D D ∽,\AB BP PC CE =,\AB PC BP CE=,//PE BD Q ,\CP CE CB CD =,\PC CB CE CD =,\AB CB BP CD=,Q 在矩形ABCD 中,3AB =,5AD =,3CD AB \==,5CB AD ==,95AB CD BP CB ×\==.7.如图1,在ABC D 中,AB AC ==,cos B =,点D 在BC 边上从C 向B 运动.以D 为顶点作ADE B Ð=Ð,射线DE 交AB 边于点E ,过点A 作AF AD ^交射线DE 于点F ,连接CF .(1)求证:ACD DBE D D ∽.(2)当AD CD =时(如图2),求AD 和EF 的长.(3)设点D 在BC 边上从C 向B 运动的过程中,直接写出点F 运动的路径长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,又ADE B Ð=ÐQ ,ADE B C \Ð=Ð=Ð,180B BDE BED Ð+Ð+Ð=°Q ,180ADC ADE BDE Ð+Ð+Ð=°,BED ADC \Ð=Ð,ACD DBE \D D ∽;(2)解:如图,过点D 作DH AC ^交AC 于点H ,AD CD =Q,AB AC ==,12CH AH AC \===,cos B =Q ,B C Ð=Ð,cos CH B CD\=,6cos CH CD B \===,6AD =,AF AD ^Q ,90FAD \Ð=°,ADE B Ð=ÐQ,6cos ADE DF \Ð==,DF \=,由(1)得ACD DBE D D ∽,\DE BD AD AC =,\6DE DE \=,过点A 作AM BC ^于点M ,cos BM B AB\=,\4BM \=,28BC BM \==,862BD BC CD \=-=-=,DE \==,EF DF DE \=-==,6AD \=,EF =(3)解:F Q 点随着D 点的运动而运动,D 在线段BC 上,F \点的轨迹也是一条线段,如图,当D 与C 点重合时,F 点在1F 的位置,190CAF Ð=°,当D 点与B 点重合时,F 点在2F 的位置,290BAF Ð=°,12F F 为F 点的运动路径,12F AF CAB \Ð=Ð,AC =Q,cos B =,ABC C Ð=Ð,1cos AC C CF \===,112CF \=,在1Rt ACF D中,1AF ==,ADF B Ð=ÐQ,2cos cos ABF B \Ð==22cos ABABF BF Ð==,=,212BF \=,2AF ==,21AF AF \=,△12AF F 是等腰三角形,12F AF CAB Ð=ÐQ ,△12AF F 与CAB D 都是等腰三角形,\△12AF F ACB D ∽,\121F F AF BC AC =,由(2)得8BC =,\128F F,12F F \=\点F运动的路径长为.8.在ABC D 中,点E 、F 在边BC 上,点D 在边AC 上,连接ED 、DF ,AB m AC =,120A EDF Ð=Ð=°(1)如图1,点E 、B 重合,1m =时①若BD 平分ABC Ð,求证:2CD CF CB =×;②若213CFBF =,则ADCD =(2)如图2,点E 、B 不重合.若BE CF =,ABDFm AC DE ==,37BEEF =,求m 的值.【解答】解:(1)①Q 1ABm AC ==,AB AC \=,BD Q 平分ABC Ð,ABD DBF \Ð=Ð,BDC A ABD BDF CDF Ð=Ð+Ð=Ð+ÐQ ,且120A BDF Ð=Ð=°,ABD CDF DBF \Ð=Ð=Ð,且C C Ð=Ð,CDF CBD \D D ∽,\CD CF BC CD=,2CD BC CF \=×;②如图1,过A 作AG BC ^于G ,过F 作FH BC ^,交AC 于H ,30C Ð=°Q ,2CH FH \=,设2FH a =,4CH a =,则CF =,Q 213CF BF =,BC \=,CG =Q ,152AG a \=,15AC a =,11AH a \=,120BAD BDF DHF Ð=Ð=Ð=°Q ,18012060ADB FDH ADB ABD \Ð+Ð=Ð+Ð=°-°=°,ABD FDH \Ð=Ð,ABD HDF \D D ∽,\AB AD HD FH =,即152a AD DH a=,设AD x =,则11DH a x =-,230(11)a x a x \=-,2211300x ax a -+=,(5)(6)0x a x a --=,5x a =或6a ,\51102AD a CD a ==或6293AD a CD a ==,故答案为:12或23;(2)如图2,过E 作//EH AB ,交AC 于H ,过D 作DM EH ^于M ,过F 作//FG ED ,交AC 于G ,BE CF =Q ,37BE EF =,\37CF EF =,//FG ED Q ,\37CF CG EF DG ==,\设3CG a =,7DG a =,Q AB DF m AC DE==,120A EDF Ð=Ð=°,ABC DFE \D D ∽,DEC C \Ð=Ð,10DE DC a \==,//FG DE Q ,GFC DEF C \Ð=Ð=Ð,3FG CG a \==,同理由(1)得:EHD DFG D D ∽,\ED DH DG FG =,即1073a DH a a=,307a DH =,Rt DHM D 中,60DHM Ð=°,30HDM \Ð=°,11527a HM DH \==,DM =,657EM a \===,651550777EH a a a \=-=,5017302107a AB EH m AC CH a a \====+.9.已知:在EFG D 中,90EFG Ð=°,EF FG =,且点E ,F 分别在矩形ABCD 的边AB ,AD 上.(1)如图1,填空:当点G 在CD 上,且1DG =,2AE =,则EG =(2)如图2,若F 是AD 的中点,FG 与CD 相交于点N ,连接EN ,求证:AEF FEN Ð=Ð;(3)如图3,若AE AD =,EG ,FG 分别交CD 于点M ,N ,求证:2MG MN MD =×.【解答】(1)解:90EFG Ð=°Q ,90AFE DFG \Ð+Ð=°,90AEF AFE Ð+Ð=°Q ,AEF DFG \Ð=Ð,又90A D Ð=Ð=°Q ,EF FG =,()AEF DFG AAS \D @D ,2AE FD \==,FG \==EG \==,;(2)证明:延长EA、NF 交于点M ,Q点F为AD的中点,\=,AF DFQ,AM CD//Ð=Ð,\Ð=Ð,MAD DM DNF\D@D,MAF NDF AAS()\=,MF FN^Q,EF MG\=,ME GE\Ð=Ð;MEF FEN(3)证明:如图,过点G作GP AD^交AD的延长线于P,\Ð=°,P90D@D,AEF PFG AAS同(1)同理得,()=,\=,PF AEAF PGQ,=AE AD\=,PF AD\=,AF PD\=,PG PDQ,Ð=°P9045PDG \Ð=°,45MDG \Ð=°,在Rt EFG D 中,EF FG =,45FGE \Ð=°,FGE GDM \Ð=Ð,GMN DMG Ð=ÐQ ,MGN MDG \D D ∽,\MG MN DM MG=,2MG MN MD \=×.10.在ABC D 中,BA BC =,(0180)ABC a a Ð=°<<°,点P 为直线BC 上一动点(不与点B 、C 重合),连接AP ,将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,直线PM 与直线CN 相交于点Q .(1)当点P 在线段BC 上,当60a =°时,如图1,直接判断BP CQ 的大小;(2)当点P 在线段BC 上,当BC k AC=时,如图2,试判断线段BP CQ 的大小,并说明理由;(3)当点P 在直线BC 上,当90a =°,AC =17AP =时,请利用备用图探究PCQ D 面积的大小(直接写出结果即可).【解答】解:(1)如图1,连接AQ ,BA BC =Q ,60ABC a Ð==°,ABC \D 是等边三角形,60BAC ACB ABC \Ð=Ð=Ð=°,Q 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,60APQ ACQ \Ð=Ð=°,\点A ,点P ,点C ,点Q 四点共圆,60AQP ACB \Ð=Ð=°,APQ \D 是等边三角形,AP AQ \=,60PAQ Ð=°,BAC PAQ \Ð=Ð,BAP CAQ \Ð=Ð,()BAP CAQ SAS \D @D ,BP CQ \=,\1BP CQ=;(2)BP k CQ =,理由如下:如图2,连接AQ ,BA BC =Q ,ABC a Ð=,1802ACB BAC a °-\Ð=Ð=,QQ 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,APQ ACQ a \Ð=Ð=,\点A ,点P ,点C ,点Q 四点共圆,1802AQP ACB a °-\Ð=Ð=,1802PAQ BAC a °-\Ð==Ð,BAP CAQ \Ð=Ð,又ABC ACQ a Ð=Ð=Q ,ABP ACQ \D D ∽,\AB BC BP k AC AC CQ===;(3)17AC AP =<=Q ,\点P 不在线段BC 上,当点P 在点C 的右侧时,如图3,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,7CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,11105715222CPQ S CP QH D \=´´=´´=;当点P 在点B 的左侧时,如图4,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,23CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,113452315222CPQ S CP QH D \=´´=´´=;综上所述:PCQ D 面积为1052或3452.11.如图,在ABC D 中,已知5AB AC ==,6BC =,且ABC DEF D @D ,将DEF D 与ABC D 重合在一起,ABC D 不动,DEF D 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点.(1)求证:ABE ECM D D ∽;(2)当DE BC ^时,①求CM 的长;②直接写出重叠部分的面积;(3)在DEF D 运动过程中,当重叠部分构成等腰三角形时,求BE 的长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,ABC DEF D @D Q ,AEF B \Ð=Ð,AEF CEM AEC B BAE Ð+Ð=Ð=Ð+ÐQ ,CEM BAE \Ð=Ð,ABE ECM \D D ∽;(2)①当DE BC ^时,AB AC =Q ,BAE EAM \Ð=Ð,ABC DEF D @D Q ,B DEF \Ð=Ð,ABE AEM \D D ∽,\AB AE AE AM=,90AME AEB Ð=Ð=°,5AB AC ==Q ,DE BC ^,6BC =,132BE EC BC \===,在Rt ABE D 中,4AE ===,\544AM=,165AM \=,169555CM AC AM \=-=-=;②在Rt AEM D 中,125EM ===,11161296225525AEM S AM EM D \=×=´´=,\重叠部分的面积为9625;(3)①当AE EM =时,ABE ECM D @D ,5CE AB ==Q ,651BE BC EC \=-=-=,②当AM EM =时,则MAE MEA Ð=Ð,MAE BAE MEC MEA \Ð+Ð=Ð+Ð,即CAB CEA Ð=Ð,C C Ð=ÐQ ,CAE CBA \D D ∽,\CE AC AC CB=,\2256AC CE CB ==,\2511666BE BC EC =-=-=;③当AE AM =时,点E 与点B 重合,即0BE =,此时重叠部分图形不能构成三角形;1BE \=或116.12.如图,直线y =+0)y x =>的交点为A ,与x 轴的交点为B .(1)求ABO Ð的度数;(2)求AB 的长;(3)已知点C 为双曲线0)y x =>上的一点,当60AOC Ð=°时,求点C 的坐标.【解答】解:(1)设直线y =+y 轴交于点D ,如图所示:当0x =时,y =.即点D .当0y =时,1x =-,即点(1,0)B -.\1OD BO ==.\tan DO ABO BOÐ==.60ABO \Ð=°.(2)过点A 作AE x ^轴,垂足为E ,如图所示.设点A 坐标为:(m .且0m >.OE m \=,AE =//DO AE Q .BDO BAE \D D ∽.\BO DOBE AE=.即:11m =+1m \=或2m =-(舍).\A .\4AB ==.即:4AB =.(3)过C 作60CFO Ð=°,点F 在x 轴上,再过点C 作CH OF ^于H 点,如图所示.设(C a,0a >.\OH \4CF a ==.\2HF a =.\2OF a a=+.AOF AOC COF Ð=Ð+ÐQ ,且AOF Ð是ABO D 一内角的外角.BAO COF \Ð=Ð.ABO OFC \D D ∽.\AB BOOF CF =即:4124a a a=+.\a=.Q.a>\a\C.^交BC 13.【感知】如图①,在正方形ABCD中,E为AB边上一点,连结DE,过点E作EF DE∽.(不需要证明)于点F.易证:AED BFED D^交BC于点【探究】如图②,在矩形ABCD中,E为AB边上一点,连结DE,过点E作EF DEF.D D∽.(1)求证:AED BFE(2)若10AD=,E为AB的中点,求BF的长.AB=,6AB=.E为AB边上一点(点E不与【应用】如图③,在ABCACB=,4D中,90Ð=°,AC BC点A、B重合),连结CE,过点E作45D为等腰三角形时,BECEFÐ=°交BC于点F.当CEF的长为 【解答】【探究】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,90A B\Ð+Ð=°,ADE AED90^Q,DE EF\Ð=°,DEF90\Ð+Ð=°,BEF AED90\Ð=Ð,ADE BEFQ,又A BÐ=Ð\D D∽;AED BFEQ为AB的中点,(2)解:E\==,AE BE5∽,由(1)知AED BFED D\AD AEBE BF =,即655BF=,256BF \=;【应用】解:如果CE CF =,则45CEF CFE Ð=Ð=°,90ECF Ð=°,则点E 与点A 重合,点F 与点B 重合,不符合题意,②如果CE EF =,则1804567.52ECF EFC °-°Ð=Ð==°,EFC ÐQ 为BEF D 的外角,EFC B BEF \Ð=Ð+Ð,90ACB Ð=°Q ,AC BC =,45A B \Ð=Ð=°,67.54522.5BEF EFC B \Ð=Ð-Ð=°-°=°,909067.522.5ACE ECF Ð=°-Ð=°-°=°,ACF BEF \Ð=Ð,又A B Ð=ÐQ ,CE EF =,()AEC BFE AAS \D @D ,BE AC \=,90ACB Ð=°Q ,AC BC =,4AB =,AC \==,BE \=;如果CF EF =,则45CEF ECF Ð=Ð=°,90CFE \Ð=°,在BEC D 中,45B BCE Ð=Ð=°,90BEC \Ð=°,CE AB \^,又AC BC =Q ,\点E 为AB 的中点,122BE AB \==,综上,BE 的长为2,故答案为:2.14.如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接FC ,观察并猜测tan FCN Ð的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB m =,(BC n m =,n 为常数),E 是射线BC 上一动点(不含端点)B ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan FCN Ð的值.【解答】解:(1)tan 1FCN Ð=,理由是:如图1,作FH MN ^于H ,90AEF ABE Ð=Ð=°Q ,90BAE AEB \Ð+Ð=°,90FEH AEB Ð+Ð=°,FEH BAE \Ð=Ð,在EHF D 和ABE D 中EHF ABE FEH BAE EF AE Ð=ÐìïÐ=Ðíï=î,()EHF ABE AAS \D @D ,FH BE \=,EH AB BC ==,CH BE FH \==,90FHC Ð=°Q ,tan 1FHFCH CH\Ð==;(2)如图(2)作FH MN ^于H .由已知可得90EAG BAD AEF Ð=Ð=Ð=°,结合(1)易得FEH BAE DAG Ð=Ð=Ð,又G Q 在射线CD 上,90GDA EHF EBA Ð=Ð=Ð=°,在EFH D 和AGD D 中FHE GDA FEH DAG EF AG Ð=ÐìïÐ=Ðíï=î,()EFH AGD AAS \D @D ,BAE FEH Ð=ÐQ ,ABE FHE Ð=Ð,EFH AEB \D D ∽,EH AD BC n \===,CH BE \=,\EH FH FHAB BE CH==,\在Rt FEH D 中,tan FH EH nFCN CH AB mÐ===,\当点E 沿射线CN 运动时,tan n FCN mÐ=.15.如图1,在矩形ABCD 中,8AB =,10BC =,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,N 是CD 边上一动点,在运动过程中,始终保持AM MN ^,设BM x =,CN y =.(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围 010x …… ;(2)先完善表格,然后在平面直角坐标系中(如图2)利用描点法画出此抛物线,直接写出m = ;x¼2345678¼y¼22183m32182¼(3)结合图象,指出M 、N 在运动过程中,当CN 达到最大值时,BM 的值是 ;并写出在整个运动过程中,点N 运动的总路程 .【解答】解:(1)Q 四边形ABCD 是矩形,908B C AB CD \Ð=Ð=°==,90BAM AMB \Ð+Ð=°,AM MN ^Q ,90AMN \Ð=°,90AMB CMN \Ð+Ð=°,BAM CMN \Ð=Ð,ABM MCN \D D ∽,\AB MCBM CN=,\810x x y-=,21584y x x \=-+,10BC =Q ,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,010x \……,故答案为:010x ……;(2)当5x =时,代入21584y x x =-+中得:2152555848y =-´+´=,故答案为:258,画出的抛物线如图所示:(3)21584y x x =-+Q ,2215125(5)8488y x x x \=-+=--+,108a =-<Q ,\当5x =时,y 最大258=,\当CN 达到最大值时,BM 的值是5;Q2525284´=,\在整个运动过程中,点N 运动的总路程为254,故答案为:5,254.16.【基础巩固】(1)如图1,在ABC D 中,90ACB Ð=°,直线l 过点C ,分别过A 、B 两点作AE l ^,BD l ^,垂足分别为E 、D .求证:BDC CEA D D ∽.【尝试应用】(2)如图2,在ABC D 中,90ACB Ð=°,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若BE DE =,4tan 5BAD Ð=,20AC =,求BD 的长.【拓展提高】(3)如图3,在平行四边形ABCD 中,在BC 上取点E ,使得90AED Ð=°,若AE AB =,43BE EC =,CD =ABCD 的面积.【解答】(1)证明:90ACB Ð=°Q ,90BCD ACE \Ð+Ð=°,AE CE ^Q ,90AEC \Ð=°,90ACE CAE \+Ð=°.BCD CAE \Ð=Ð.BD DE ^Q ,90BDC \Ð=°,BDC AEC \Ð=Ð.BDC CEA \D D ∽.(2)解:过点E 作EF BC ^于点F .由(1)得EDF DACD D∽.\DE DF DA AC=.AD DE^Q,4tan5BADÐ=,20AC=,\4520DF =,16 DF\=.BE DE=Q,BF DF\=.232BD DF\==.(3)解:过点A作AM BC^于点M,过点D作DN BC^的延长线于点N.90AMB DNC\Ð=Ð=°.Q四边形ABCD是平行四边形,//AB CD\,AB CD=.B DCN\Ð=Ð.()ABM DCN AAS\D@D.BM CN\=,AM DN=.AB AE=Q,AM BC^,BM ME\=,Q43 BEEC=,设AM b=,4BE a=,3EC a=.2BM ME CN a\===,5EN a=.90AEDÐ=°Q,由(1)得AEM EDN D D ∽.\AM ENME DN =,\25b aa b=,\b =,Q CD =22(2)14a b \+=,1a \=,b =.\平行四边形ABCD 的面积172BC DN a b =´´=´=.17.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED Ð=Ð=Ð=°,由12180BAD Ð+Ð+Ð=°,2180D AED Ð+Ð+Ð=°,可得1D Ð=Ð;又因为90ACB AED Ð=Ð=°,可得ABC DAE D D ∽,进而得到BC AC =我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,如图,在ABC D 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B Ð=Ð.①求证:ABP PCD D D ∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下,如图2,当APD D 为等腰三角形时,请直接写出BP 的长.【解答】(1)解:ABC DAE D D Q ∽,\BC ACAE DE =,\BC AEAC DE=,故答案为:AEDE;(2)①证明:AB AC=Q,B C\Ð=Ð,APC B BAPÐ=Ð+ÐQ,APC APD CPDÐ=Ð+Ð,APD BÐ=Ð,BAP CPD\Ð=Ð,B CÐ=ÐQ,ABP PCD\D D∽;②解:12BC=Q,点P为BC中点,6BP PC\==,ABP PCDD DQ∽,\AB BPPC CD=,即1066CD=,解得: 3.6CD=;(3)解:当PA PD=时,ABP PCDD@D,10PC AB\==,12102BP BC PC\=-=-=;当AP AD=时,ADP APDÐ=Ð,ADP B CÐ=Ð=ÐQ,ADP C\Ð=Ð,不合题意,AP AD\¹;当DA DP=时,DAP APD BÐ=Ð=Ð,C CÐ=ÐQ,BCA ACP\D D∽,\BC ACAC CP=,即121010CP=,解得:253CP=,25111233BP BC CP\=-=-=,综上所述:当APDD为等腰三角形时,BP的长为2或113.。
中考数学几何专项练习:相似模型-一线三等角及“K”模型(解析版)
中考数学几何专项练习:相似模型--一线三等角及“K”模型A.1.8B.【答案】C△△【分析】证明ADC∽为等边三角形,【详解】解:∵ABC∴60,B CA.1B.3【答案】D【分析】结合矩形的性质,证明A.2B.73【答案】D 【分析】证明CAD CBA ∽△△,得出【详解】解:∵EA ED ,∴1EAD ,∵1B ,∴EAD B ,∵C C ,∴CAD CBA ∽△△,∴CA CD CB CA =,∴686CD ,∴9CD =,A.3【答案】A 【分析】依据矩形的性质以及折叠,即可得到成比例即可得CF 的长.【详解】解:∵矩形ABCD 6CD ,又E ∵是CD 的中点,3DE CE ,Rt ADE △中,6AD 由题可得,D C 90AED CEF AED EFC ,ADE EFC ∽,CF CE DE DA ,即3CF 解得3CF ,故选:A.【点睛】本题主要考查了折叠问题、矩形的性质、相似三角形的判定与性质以及勾股定理的运用,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.如图,在等边ABCA.1B.4 3【答案】D【分析】利用等边三角形的性质和相似三角形的判定与性质解答即可得出结论.【详解】解:ABC∵ 为等边三角形,60B C∴.【答案】2132/2【分析】根据菱形的性质,折叠的性质,以及角和和平角的意义,得出BEG DGF例式列出方程,再根据AE AB,解出【答案】1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出【详解】设BP=x,则PC=3-x,【答案】2.4【分析】根据折叠的性质可得∠CDF=∠BDE+∠BED=120°,从而得到∠到23CF BDDF DE,即6CF【答案】31:【分析】(1)由等边三角形的性质得到再由FD BC 推出BED (2),用k 表示DC 和似比,即可求出BE ,然后用【详解】解:(1)∵三角形∴60A B ,由折叠的性质可得AE ∵FD BC ,∴90FDB ,∴30EDB ,∴90BED ,∴3AE DE BE ,∴:31AE EB :,设,2CD k BD k ,∴3AB AC k ,∵ABC 为等边三角形,∴60A B ,由折叠的性质可得EDF ∴BED C BE DE BD △∴EDB FDC BED ∴BED FDC∵60B C ,∴BED CDF ∽,BED CDFC BE DC C ,∴54BE k k k,∴5,34BE k AE k∴:7:5AE BE ;【答案】32145【分析】根据DE同时平分BDE FDE△△,由三角形全等性质据BDE FDE△△和ABC是等边三角形,证明【答案】15 8【分析】过C作CF C D∥交B C 于CF和C D 的长,再由CFE DC E∽【详解】解:如图,过C作CF C D∥AB C D 是菱形,则AB C D ∥,∴CF AB ∥,∴B FC AB F B CF AB B ,∵AB C B ⅱÐ=Ð,∴B FC B ,【答案】8【分析】根据等边三角形的性质得相似,再根据相似三角形的性质即可得.PCD∵【详解】解:ABC,AB BC AC【答案】215【分析】证明BPE ADP ∽,由相似三角形的性质得出23CD x ,得出22633PB x x x 【详解】解:ABC ∵是等边三角形,【答案】30114【分析】延长BC 至M 使CD CM ,连接MD 【详解】∵EF DE ,60EFD∵在ABCD Y 中,3460AB BC B ,,,∴3460AB CD CM BC B DCM ,,∴DCM △是等边三角形∴3DM ,60B M EFD ,【答案】5:7【分析】如图,作EJ 等边三角形的性质得到相应的线段,再根据相似三角形的性质即可求解.【详解】解:连接BE 交设AE a ,3EC a ,【点睛】此题主要考查了翻折变换、等边三角形的性质、勾股定理、含似三角形的判定与性质,通过三角形相似求出相关线段是关键.16.如图,矩形ABCD中,角线AC与EF交于点G,则7【点睛】本题主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,解题的关键是掌握相似三角形的判定方法,以及相似三角形对应边成比例.17.如图,在△ABC中,AB交AC于点E,且cos∠α=∵AB=AC=10,∠ADE=∠B=α,cosα=∴BG=ABcosB,【答案】21 2【分析】设AF x,由等边三角形的性质得出由折叠的性质得:AE证明BDE CFD△∽△识;熟练掌握折叠变换和等边三角形的性质,证明三角形相似是解题的关键.(1)如图1,在四边形ABCD 中,点P 为AB 上一点,90DPC A B ,求证:AD 【思考探究】(2)如图2,在四边形ABCD 中,点P 为AB 上一点,当DPC A B 时,上述结论是否依然成立?说明理由.【拓展延伸】△∽△(1)求证:ABF FCEAD,求(2)若23AB ,4(3)当点F是线段BC的中点时,求证:【答案】(1)证明见解析(1)求证:ABP PCM ∽△△;(2)设BP x ,CM y ,求y (3)当APM △为等腰三角形时,求∵PM PC PA AB,∴5PC AB ,∵APM B C ,∴PAM BAC 即点P 与点∵P 不与点B 、C 重合,舍去.∴MAP MPA ,∴MAP ABC △∽,∴5MP AC .(1)证明:BDA CED ∽;(2)若45B ,6BC ,当点D 在BC 上运动时(点D 不与B 、C BD 的长.【答案】(1)详见解析∴ADE∽ACD∴DA DE AC DC∴AC DC;(1)求证:AB CM BP PC△为直角三角形时,求线段PB (2)当PCM【答案】(1)见解析∵,AB AC,B C∵,APM B180180BAP B APB△△,BAP CPM∽由(1)知,90APB PMCAB AC ∵,点P 为BC 中点,8cm BC Q ,14cm BP CP BC ,由(1)知,90BAP CPM ∠∠作AD BC 于点D ,则14cm 2BD CD BC ,BDA 90BAP BDA(1)当ADEV是等腰三角形时,求(2)当22BD 时,求DE【答案】(1)422或2或35(2)解:取BC 的中点M ,连接AM ,ABC ∵ 是等腰直角三角形,122AM BM BC ,90AMB ,22BD ∵,【点睛】本题考查了等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,利用分类讨论的思想,熟练掌握全等三角形和相似三角形的判定和性质是解题关键.27.已知等边三角形ABC的边长为(1)如图,在边BC上有一个动点(2)如图,若点P在射线(3)在(2)的条件下,将点D【答案】(1)见详解(2)7(3)532∴90AEP ,∵ABC 是等边三角形,边长为∴4AC ,60ACB ,∴60PCE ACB ,在Rt CPE △中,2PC ,CPE ∴11CE PC ,根据勾股定理得,由(2)知,7AD ,∵4AC ,∴743CD AD AC ,由旋转知,120DCD ,CD ∵60DCP ,∴D CP DCD DCP(1)若55AP 时,求BE 的值.(2)求y 关于x 的函数解析式,并写出它的定义域.(3)当DEC 与APD △相似时,求AP 的长度.【答案】(1)94(2)215(025)2y x x x (3)259或22535195210BH PH PB ,90BHE C ∵,B B BEH BAC ∽,BE BH AB BC, 9510425BE ,9BE ;11522BH PB x ∵,cos BH BC B BE AB,5524x BE ,35424x CE BE ,当DEC 与APD △相似时,有A CDE ,90ACB DCE Q ,ABC DEC ∽,CD AC CE BC, 52123524x x,AE (1)当点D为BC的中点时,EB∵点D 为BC 的中点,ABC 为等边三角形,∴AD BC ,DAB DAC ∵将等边ABC 折叠,使点A 与点∴30ADE DAB ,∴903060EDB B ,。
2020中考数学一线三等角 专题练习(word版,有答案)
2020中考数学一线三等角一.一线三等角型相似三角形1.如图,等边△ABC中,边长为6,D是BC上动点,∠ED F =60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BE2.已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.(1)如图8,P为AD上的一点,满足∠BPC=∠A.①求证;△ABP∽△DPC ②求AP的长.(2)如果点P 在AD 边上移动(点P 与点A、D 不重合),且满足∠BPE=∠A,PE 交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;②当CE=1时,写出AP的长.3. 如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y.求y与x的函数解析式.(3)当△APM为等腰三角形时,求PB的长.4.已知在等腰三角形A BC中,A B BC 4, A C 6,D是AC的中点,E 是BC上的动点(不与B、C重合),连结DE,过点D作射线DF ,使EDFA,射线DF 交射线EB于点F ,交射线A B于点H .(1)求证:CED∽A DH;(2)设EC x, BF y.①用含x的代数式表示BH ;②求y关于x的函数解析式,并写出x的定义域.5.如图,在梯形A BCD中,A D∥BC,A B CD BC 6,A D 3.点M 为边BC的中点,以M 为顶点作EMF B,射线ME交腰A B于点E,射线MF 交腰CD于点F ,联结EF .(1)求证:△MEF ∽△BEM;(2)若△BEM 是以BM为腰的等腰三角形,求EF 的长;(3)若EF CD,求BE的长.6.已知:如图,在△ABC 中,A B A C 5,BC 6,点D 在边AB 上,DE A B,点E在边BC上.又点F在边AC 上,且DEF B.(1)求证:△FCE∽△EBD;(2)当点D在线段AB上运动时,是否有可能使S FCE4S EB D.如果有可能,那么求出BD的长.如果不可能请说明理由.∠ = ∠二.一线三垂角型相似三角形7.已知矩形 ABCD 中,CD=2,AD=3,点 P 是 AD 上的一个动点,且和点 A,D 不重合,过点 P 作PE CP,交边 AB 于点 E,设PD x, A E y,求 y 关于x 的函数关系式,并写出x的取值范围。
2024中考数学专题5.12线三等角下的相似三角形专题 (全国通用)
考向5.12 一线三等角下的相似三角形专题一、单选题1.(2020·河南郑州·二模)如图,已知矩形ABCD的顶点B A、分别落在x轴y轴上,4OB OA==,AB=2BC则点C的坐标是()A.()9,3B.(9,C.(4+D.(2,+2.(2020·浙江台州·一模)如图,矩形纸片ABCD中,AB=6,BC=8,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若DE=4,则AF 的长为()A.163B.4 C.3 D.23.(2020·江苏常州·一模)如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=3x(x>0)上运动,此时顶点B也在反比例函数y=mx上运动,则m的值为()A.-9B.-12C.-15D.-18二、填空题4.(2022·江苏扬州·九年级期末)如图,在边长为6的等边△ABC 中,D 是边BC 上一点,将△ABC 沿EF 折叠使点A 与点D 重合,若BD : DE =2 : 3,则CF=____.5.(2021·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD 中,∠A =∠D =120°,AB =6、AD =4,点E 、F 分别在线段AD 、DC 上(点E 与点A 、D 不重合),若∠BEF =120°,AE =x 、DF =y ,则y 关于x 的函数关系式为________6.(2021·全国·九年级专题练习)如图,菱形ABCD 的四个顶点分别在双曲线y =2x和y =k x 上,且对角线相交于原点O ,BD =2AC .平行于x 轴的直线与两双曲线分别交于点E ,F ,则 OEF 的面积为_____.7.(2019·浙江·九年级期末)已知ABC 是等边三角形,6AB =,点D ,E ,F 点分别在边,,AB BC AC 上,:2:3BD BE =,DE 同时平分BEF ∠和BDF ∠,则BD 的长为_____.8.(2021·山西·九年级专题练习)如图,在矩形ABCD 中,点E 是边DC 上一点,连结BE ,将BCE 沿BE 对折,点C 落在边AD 上点F 处,BE 与对角线AC 交于点M ,连结FM .若//FM CD ,4BC =.则AF =______.9.(2021·江苏苏州·九年级阶段练习)一块含有30 角的直角三角板ABC按如图所示的方式放置,若顶点A的坐标为(0,1),直角顶点C的坐标为()y,则点B的坐标为______.一、单选题1.(2012·江苏徐州·中考真题)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=14BC.图中相似三角形共有【】A.1对B.2对C.3对D.4对2.(2018·四川攀枝花·中考真题)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB 为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A .B .C .D .3.(2018·山东聊城·中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,)4.(2021·广东广州·中考真题)在平面直角坐标系xOy 中,矩形OABC 的点A 在函数()10y x x =>的图象上,点C 在函数()40y x x=-<的图象上,若点B 的横坐标为72-,则点A 的坐标为( )A .1,22⎛⎫ ⎪⎝⎭B.C .12,2⎛⎫ ⎪⎝⎭D.5.(2020·湖南郴州·中考真题)在平面直角坐标系中,点A 是双曲线11(0)k y x x=>上任意一点,连接AO ,过点O 作AO 的垂线与双曲线22(0)k y x x =<交于点B ,连接AB .已知2AO BO =,则12k k =()A .4B .4-C .2D .2-6.(2020·湖北·中考真题)如图,菱形ABCD 的顶点分别在反比例函数1k y x=和2k y x =的图象上,若120BAD ∠=︒,则12k k =( )A .13B .3CD7.(2019·内蒙古巴彦淖尔·中考真题)如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .08.(2019·四川达州·中考真题)矩形OABC在平面直角坐标系中的位置如图所示,已知2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC⊥,交x 轴于点D .下列结论:①OA BC ==②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为⎫⎪⎪⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个9.(2021·内蒙古通辽·中考真题)如图,已知//AD BC ,AB BC ⊥,3AB =,点E 为射线BC 上一个动点,连接AE ,将ABE △沿AE 折叠,点B 落在点B '处,过点B '作AD 的垂线,分别交AD ,BC 于M ,N 两点,当B '为线段MN 的三等分点时,BE 的长为( )A .32B C .32D 二、填空题10.(2021·山东日照·中考真题)如图,在平面直角坐标系xOy 中,正方形OABC 的边OC 、OA 分别在x 轴和y 轴上,10OA =,点D 是边AB 上靠近点A 的三等分点,将OAD △沿直线OD 折叠后得到'OA D △,若反比例函数()0k y k x=≠的图象经过'A 点,则k 的值为_______.11.(2020·湖北鄂州·中考真题)如图,点A 是双曲线1(0)y x x=<上一动点,连接OA ,作OB OA ⊥,且使3OB OA =,当点A 在双曲线1y x =上运动时,点B 在双曲线k y x=上移动,则k 的值为___________.12.(2020·黑龙江鹤岗·中考真题)在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE a =,连接AE ,将ABE ∆沿AE 折叠.若点B 的对应点B '落在矩形ABCD 的边上,则折痕的长为______.13.(2020·江苏无锡·中考真题)二次函数233y ax ax =-+的图像过点()6,0A ,且与y 轴交于点B ,点M 在该抛物线的对称轴上,若ABM ∆是以AB 为直角边的直角三角形,则点M 的坐标为__________.14.(2019·辽宁锦州·中考真题)如图,将一个含30°角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数y =﹣4x和y =k x 的图象上,则k 的值为___.15.(2019·山东济南·中考真题)如图,在矩形ABCD 中,AB =4,BC E 为CD 边上一点,将△BCE 沿BE 折叠,使得C 落到矩形内点F 的位置,连接AF ,若tan ∠BAF =12,则CE =_____.16.(2019·内蒙古巴彦淖尔·中考真题)如图,在平面直角坐标系中,已知()()1,0,0,2A B -,将ABO ∆沿直线AB 翻折后得到ABC ∆,若反比例函数()0k y x x=<的图象经过点C ,则k =_____.17.(2019·四川凉山·中考真题)如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.18.(2019·浙江台州·中考真题)如图,直线123l l l ,A ,B ,C 分别为直线1l ,2l ,3l 上的动点,连接AB ,BC ,AC ,线段AC 交直线2l 于点D .设直线1l ,2l 之间的距离为m ,直线2l ,3l 之间的距离为n ,若90ABC ∠=︒,4BD =,且23m n =,则m n +的最大值为_____.19.(2019·四川南充·中考真题)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB=24,BC=5,给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为,其中正确的结论是_________(填写序号).20.(2013·江苏常州·中考真题)在平面直角坐标系xOy 中,已知第一象限内的点A 在反比例函数1y x =的图象上,第二象限内的点B 在反比例函数k y x =的图象上,连接OA 、OB ,若OA ⊥OB ,,则k=_____.21.(2021·山东济南·中考真题)如图,一个由8个正方形组成的“C ”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M ,N ,O ,P ,Q 都在矩形ABCD 的边上,若8个小正方形的面积均为1,则边AB 的长为__________.22.(2021·四川乐山·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.23.(2020·黑龙江牡丹江·中考真题)如图,在Rt ABC 中,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .则下列结论中:①BF CE =;②AEM DEM ∠=∠;③AE CE -=;④2222DE DF DM +=;⑤若AE 平分BAC ∠,则:EF BF =;⑥CF DM BM DE = ,正确的有___________.(只填序号)24.(2019·湖南岳阳·中考真题)如图,AB 为⊙O 的直径,点P 为AB 延长线上的一点,过点P 作⊙O 的切线PE ,切点为M ,过A 、B 两点分别作PE 的垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的是___________.(写出所有正确结论的序号)①AM 平分∠CAB ;②AM 2=AC •AB ;③若AB =4,∠APE =30°,则 BM 的长为3π;④若AC =3,BD =1,则有CM =DM25.(2019·河南·中考真题)如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且3a 5BE =.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.三、解答题26.(2021·广西桂林·中考真题)如图,四边形ABCD 中,∠B =∠C =90°,点E 为BC 中点,AE ⊥DE 于点E .点O 是线段AE 上的点,以点O 为圆心,OE 为半径的⊙O 与AB 相切于点G ,交BC 于点F ,连接OG .(1)求证:△ECD ∽△ABE ;(2)求证:⊙O 与AD 相切;(3)若BC =6,AB =⊙O 的半径和阴影部分的面积.27.(2021·湖南常德·中考真题)如图,在Rt AOB 中,AO BO ⊥,AB y ⊥轴,O 为坐标原点,A 的坐标为(n ,反比例函数11k y x=的图象的一支过A 点,反比例函数22k y x =的图象的一支过B 点,过A 作AH x ⊥轴于H ,若AOH △(1)求n 的值;(2)求反比例函数2y 的解析式.1.D【解析】【分析】过C 作CE ⊥x 轴于E ,根据矩形的性质得到CD=AB ,∠ABC=90°,,根据余角的性质得到∠BCE=∠ABO ,进而得出△BCE ∽△ABO ,根据相似三角形的性质得到结论.【详解】解:过C 作CE ⊥x 轴于E ,∵四边形ABCD 是矩形,∴CD=AB ,∠ABC=90°,∴∠ABO+∠CBE=∠CBE+∠BCE=90°,∴∠BCE=∠ABO ,∵90AOB BEC ∠=∠=︒,∴△BCE ∽△ABO ,∴CECB BEBO AB AO ==,∵ 4,OB OA ==∴8==,∵AB=2BC ,∴BC=12AB=4,∵12CE CB BE BO AB AO ===,∴BE=2∴∴C(,故选:D .【点拨】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线是解题的关键.2.C【解析】【分析】由矩形的性质可得AB=CD=6,AD=BC=8,∠BAD=∠D=90°,通过证明△ABF∽△DAE,可得AF DEAB AD=,即可求解.【详解】解:∵矩形ABCD,∴∠BAD=∠D=90°,BC=AD=8∴∠BAG+∠DAE=90°∵折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,∴BF垂直平分AG∴∠ABF+∠BAG=90°∴∠DAE=∠ABF,∴△ABF∽△DAE∴AF ABDE AD=即648AF=解之:AF=3.故答案为:C.【点评】本题考查了翻折变换,矩形的性质,相似三角形的判定与性质,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.3.A【解析】【分析】根据∠AOB=90°,∠ABO=30°,可求出OA与OB的比,设出点B的坐标,再根据相似三角形的性质,求出点A的坐标,可得ab的值,进而求出m的值.【详解】解:过A、B分别作AM⊥x轴,BN⊥x轴,垂足为M、N,∵∠AOB=90°,∠ABO=30°,∴tan30°=AO BO =∵∠BON+∠AOM=90°,∠BON+∠OBN=90°,∴∠OBN=∠AOM ,∵∠BNO=∠AMO=90°,∴△BNO ∽△OMA ,∴BN BO NO OM AO AM===∴设ON=a ,BN=b ,则,,∴B (-a ,b ),A ),∵点A 在反比例函数y =3x上,=3,∴ab=9,∵点B 在反比例函数y =m x上,∴-a×b=m=-9,故选A.【点拨】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出反比例函数图象上点的坐标是解答前提的关键.4.2.4【解析】【分析】根据折叠的性质可得∠EDF =∠A ,DF =AF ,再由等边三角形的性质可得∠EDF =60°,∠BDE +∠CDF =∠BDE +∠BED =120°,从而得到∠CDF =∠BED ,进而得到△BDE ∽△CFD ,再由BD : DE =2 :3,可得到23CF BD DF DE ==,即263CF CF =-,即可求解.【详解】解:根据题意得:∠EDF =∠A ,DF =AF ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∴∠EDF =60°,∴∠BDE +∠CDF =180°-∠EDF =120°,∵∠B =60°,∴∠BDE +∠BED =180°-∠B =120°,∴∠BDE +∠CDF =∠BDE +∠BED ,∴∠CDF =∠BED ,∴△BDE ∽△CFD ,∴BD DE CF DF = ,即23CF BD DF DE ==,∵等边△ABC 的边长为6 ,∴263CF CF =- ,解得: 2.4CF = .故答案为:2.4【点拨】本题主要考查了等边三角形的性质,图形的折叠,相似三角形的判定和性质,熟练掌握等边三角形的性质,图形的折叠的性质,相似三角形的判定和性质是解题的关键.5.21263y x x =-+【解析】【分析】根据题意证明ABE DEF △△∽,列出比例式即可求得y 关于x 的函数关系式【详解】解: ∠A =∠D =120°,∠BEF =120°,60AEB DEF DEF DFE ∴∠+∠=∠+∠=︒AEB DFE∴∠=∠∴ABE DEF△△∽AE DF AB DE∴=AB =6、AD =4,AE =x 、DF =y ,64x y x∴=-∴1(4)6y x x =-即21263y x x =-+(04)x <<故答案为:21263y x x =-+【点拨】本题考查了相似三角形的性质与判定,函数解析式,掌握相似三角形的性质与判定是解题的关键.6.5【解析】【分析】作AM x ⊥轴于M ,DN x ⊥轴于N ,易证得AOM ODN △∽△,根据系数三角形的性质即可求得k 的值,然后根据反比例函数系数k 的几何意义即可求得OEF 的面积.【详解】解:作AM x ⊥轴于M ,DN x ⊥轴于N ,四边形ABCD 是菱形.AC BD ∴⊥,12OD BD =,12OA AC =,90AOM DON ODN DON ∴∠+∠=∠+=︒,2OD OA =,AOM ODN ∴∠=∠,90AMO OND ∠=∠=︒ ,AOM ODN ∴∆∆∽,∴2()AOM ODN S OA S OD∆∆=,A 点在双曲线2y x =,2BD AC =,1212AOM S ∆∴=⨯=,12OA OD =,∴211(2ODN S ∆=,4ODN S ∆∴=,D 点在双曲线(0)k y k x=<上,∴1||42k =,8k ∴=-,平行于x 轴的直线与两双曲线分别交于点E ,F ,1128522OEF OEG OFG S S S ∆∆∆∴=+=⨯+⨯=,故答案为5.【点拨】本题考查了反比例函数系数k 的几何意义、相似三角形的判定和性质、菱形的性质,作出辅助线构建相似三角形求出反比例函数的解析式是解题的关键.7.145【解析】【分析】根据角平分线的定义得到∠BDE=∠FDE ,∠BED=∠FED ,根据全等三角形的性质得到∠DBE=∠DFE ,BD=DF ,BE=EF ,由等边三角形的性质得到∠A=∠ABC=∠C=60°,求得∠DFE=60°,根据相似三角形的性质即可得到结论.【详解】解:如图,DE 同时平分BEF ∠和BDF ∠,BDE FDE ∴∠=∠,BED FED ∠=∠,在BDE ∆与FDE ∆中,BDE FDE DE DE BED FED ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BDE FDE ASA ∴∆≅∆,DBE DFE ∴∠=∠,BD DF =,BE EF =,ABC ∆ 是等边三角形,60A ABC C ∴∠=∠=∠=︒,60DFE ∴∠=︒,120ADF AFD AFD CFE ∴∠+∠=∠+∠=︒,ADF CFE ∴∠=∠,ADF CFE ∴∆∆∽,∴AD DF AF CF EF CE==,:2:3BD BE = ,∴设2BD DF x ==,3BE EF x ==,62AD x ∴=-,63CE x =-,∴622363x x AF CF x x-==-,93CF x ∴=-,42AF x =-,6AF CF += ,93426x x ∴-+-=,75x ∴=,1425BD x ∴==.故答案为:145.【点拨】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,等边三角形的性质,正确的画出图形是解题的关键.8.2【解析】【分析】由折叠的性质可得∠BCM=∠BFM ,BC=BF ,再由FM ∥CD ,可得∠BFM=∠ABF ,从而得△ABF ∽△BCA ,由相似三角形的性质求得AB ,进而由勾股定理可求解.【详解】解: 四边形ABCD 是矩形,∴∠ABC=∠BAD=90°,AB ∥CD ,//FM CD ,∴FM ∥AB ,∴∠BFM=∠ABF ,由折叠的性质可得:∠BCM=∠BFM ,BC=BF=4,∴∠ABF=∠ACB ,∴△ABF ∽△BCA ,∴AB BF BC CA=,∴4AB =,即22216164AB AB =+,∴28AB =-,∴2AF ====;故答案为2.【点拨】本题主要考查矩形的性质、相似三角形的性质与判定、勾股定理及折叠的性质,关键是证明三角形的相似,进而根据相似三角形的性质进行求解.9.()-【解析】【分析】过点B 作BD ⊥OD 于点D ,根据△ABC 为直角三角形可证明△BCD ∽△CAO ,设点B 坐标为(x ,y ),根据相似三角形的性质即可求解.【详解】过点B 作BD ⊥OD 于点D ,∵△ABC 为直角三角形,∴90BCD ACO ∠+∠=︒,∴△BCD ∽△CAO ,∴BD CO CD AO=,设点B 坐标为(x ,y ),=,∴y x =,∴BC =AC =2,∵有图知,30B ∠=︒,∴AC BC ==解得:x =-则y =3.即点B 的坐标为()-.故答案为()-【点拨】本题考查了坐标与图形性质、相似三角形的判定及性质、特殊角的三角函数值,解题的关键是要求出BC 和AC 的值和30度角的三角函数联系起来,作辅助线构造直角三角形为三角函数作铺垫.参考答案:1.C【解析】【详解】根据正方形的性质,求出各边长,应用相似三角形的判定定理进行判定:同已知,设CF=a ,则CE=DE=2a ,AB=BC=CD=DA=4a ,BF=3a .根据勾股定理,得,AE=,AF=5a .∴CF CE EF 1DE DA AD 2===,CF CE EF EF EA AF ===DE DA AE EF EA AF ===.∴△CEF ∽△DAE ,△CEF ∽△EAF ,△DEA ∽△EFA .共有3对相似三角形.故选C .2.C【解析】【详解】分析:利用相似三角形的性质与判定得出y 与x 之间的函数关系式进而得出答案.详解:如图所示:过点C 作CD ⊥y 轴于点D ,∵∠BAC=90°,∴∠DAC+∠OAB=90°,∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB ,又∵∠CDA=∠AOB=90°,∴△CDA ∽△AOB ,∴OB OA AB DA DC AC===tan30°,则1x y =-故(x >0),则选项C 符合题意.故选C .点睛:此题主要考查了动点问题的函数图象,正确利用相似得出函数关系式是解题关键.3.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(-95,125).故选A.【点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.4.A【解析】【分析】构造K字形相似,由面积比得出相似比为2,从而得出A点坐标与C点坐标关系,而P是矩形对角线交点,故P是AC、BO的中点,由坐标中点公式列方程即可求解.【详解】解:过C点作CE⊥x轴,过A点作AF⊥x轴,∵点A 在函数()10y x x =>的图象上,点C 在函数()40y x x=-<的图象上,∴2OCE S =△,12OAF S =△,∵CE ⊥x 轴,∴90CEO ∠=︒,90OCE COE ∠+∠=︒,∵在矩形OABC 中,90AOC ∠=︒,∴90AOF COE ∠+∠=︒,∴OCE AOF ∠=∠,∴OCE AOF △△,∴2CE OE OF AF ===,∴2CE OF =,2OE AF =,设点A 坐标为1(,)x x,则点B 坐标为2(,2,)x x -,连接AC 、BO 交于点P ,则P 为AC 、BO 的中点,∴27(2x x +-=-,解得:112x =,24x =-(不合题意,舍去),∴点A 坐标为1(,2)2,故选A .【点拨】本题考查了反比例函数与几何图形的综合,关键是构造相似三角形,根据反比例函数的系数k 的几何意义,由面积比得到相似三角形的相似比,从而确定点A 与点C 的坐标关系.5.B【分析】分别作AE ⊥x 轴,BF ⊥x 轴,垂足分别为E ,F ,证明△AOE ∽△OBF 得到2(4AOE BOF S AO S BO∆∆==,结合反比例函数的系数的几何意义即可得到答案.【详解】解:过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,垂足分别为E ,F ,如图,则∠AEO=∠BFO=90°,∴∠AOE+∠OAE=90°,∵∠AOB=90°,∴∠BOF+∠AOE=90°,∴∠OAE=∠BOF ,∴△AOE ∽△OBF ,∴2()4AOEBOF S AO S BO ∆∆==,即121||2=41||2k k ,∴12||=4||k k ∵10k >,20k <,∴124k k =-.故选:B .【点拨】本题主要考查反比例函数系数的几何意义及相似三角形的判定与性质、三角形的面积,利用相似三角形的判定与性质表示出4AOE BOFS S ∆∆=是解题的关键.6.B【解析】据对称性可知,反比例函数1k y x=,2k y x =的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD 的对角线AC 与BD 的交点即为原点O .如图:作CM ⊥x 轴于M ,DN ⊥x 轴于N .连接OD ,OC .证明COM ODN ∽,利用相似三角形的性质可得答案.【详解】解:根据对称性可知,反比例函数1k y x=,2k y x =的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD 的对角线AC 与BD 的交点即为原点O ,,OD OC ⊥如图:作CM ⊥x 轴于M ,DN ⊥x 轴于N .连接OD ,OC .∵DO ⊥OC ,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN ,∵∠CMO=∠DNO=90°,∴COM ODN ∽, 2221112,12COMODN k k S CO S OD k k ⎛⎫∴=== ⎪⎝⎭ 菱形ABCD 的对角线AC 与BD 的交点即为原点O,120BAD ∠=︒,60,OCD ∴∠=︒ 90,COD ∠=︒tan 60DO CO∴︒=CO DO ∴=22211,3k CO OD k ⎛⎫∴=== ⎪⎝⎭123.k k ∴=故选B .【点拨】本题考查反比例函数的图象与性质、菱形的性质、相似三角形的判定与性质,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.7.A【解析】【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【详解】解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥ ,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=,设,BN y AM x ==.则3,2MB x ON y =-=-,23x x y∴=-,即:21322y x x =+∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b 当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=,此时, 70,8N ⎛⎫- ⎪⎝⎭b 的最大值为78-.故选A .【点拨】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.8.D【解析】【分析】①根据矩形的性质即可得到OA BC ==①正确;②由点D 为OA的中点,得到12OD OA ==,根据勾股定理即可得到2222272PC PD CDOC OD +==+=+= ,故②正确;③如图,过点P 作PF OA ⊥于F ,FP 的延长线交BC 于E ,PE a =,则2PF EF PE a =-=-,根据三角函数的定义得到BE ==,求得)CE BC BE a =-==-,根据相似三角形的性质得到FD =,根据三角函数的定义得到60PDC ︒∠=,故③正确;④当ODP ∆为等腰三角形时,Ⅰ、OD PD =,解直角三角形得到OD ==Ⅱ、OP =OD ,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;Ⅲ、OP PD =,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;于是得到当ODP ∆为等腰三角形时,点D的坐标为⎫⎪⎪⎭.故④正确.【详解】解:①∵四边形OABC是矩形,2)B,OA BC∴==;故①正确;②∵点D为OA的中点,12OD OA∴==222222227PC PD CD OC OD∴+++====,故②正确;③如图,过点P作PF OA⊥A于F,FP的延长线交BC于E,PE BC∴⊥,四边形OFEC是矩形,2EF OC∴==,设PE a=,则2PF EF PE a=﹣=﹣,在Rt BEP∆中,PE OCBE BCtan CBO∠===BE∴==,)CE BC BE a∴=-==-,PD PC⊥,90CPE FPD︒∴∠∠=,90CPE PCE︒∠+∠=,,FPD ECP∴∠=∠,90CEP PFD︒∠=∠=,CEP PFD∴∆∆∽,PE CPFD PD∴=,aFD∴=FD∴=tanPCPDCPD∴∠===,60PDC︒∴∠=,故③正确;④2)B,四边形OABC是矩形,2OA AB ∴==,tan AB AOB OA ∠== 30AOB ︒∴∠=,当ODP ∆为等腰三角形时,Ⅰ、OD PD =,30DOP DPO ∴∠∠ ==,60ODP ∴∠ =,60ODC ∴∠ =,OD ∴==Ⅱ、OP OD =75ODP OPD ∴∠∠ ==,90COD CPD ∠∠ ==,10590OCP ∴∠ =>,故不合题意舍去;Ⅲ、OP PD =,30POD PDO ∴∠∠ ==,15090OCP ∴∠ =>故不合题意舍去,∴当ODP ∆为等腰三角形时,点D 的坐标为⎫⎪⎪⎭.故④正确,故选D .【点拨】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP 和PD 是解本题的关键.9.D【解析】【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:①1'3B M MN =;② 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∽'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:①如图1,当1'3B M MN =时,∵AD ∥BC ,AB BC ⊥, MN BC ⊥,∴四边形ABNM 为矩形,∴11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∴''EB N MAB ∠=∠,∴'B NE ∽'AMB ,∴''EN B N B M AM =,即 1EN =,解得 EN =,∴BE BN EN =-==②如图2,当2'3B M MN =时,∵AD ∥BC ,AB BC ⊥, MN BC ⊥,∴四边形ABNM 为矩形,∴22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M中,AM ==∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∴''EB N MAB ∠=∠,∴'B NE ∽'AMB ,∴''EN B N B M AM =,即2EN =EN =∴BE BN EN =-==.综上所述,BE.故选:D .【点拨】本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.10.48【解析】【分析】过A '作EF OC ⊥于F ,交AB 于E ,设(,)A m n ',OF m =,A F n '=,通过证得△A OF '∽△DA E ',得到310103m n n m ==--,解方程组求得m 、n 的值,即可得到A '的坐标,代入(0)k y k x =≠即可求得k 的值.【详解】解:过A '作EF OC ⊥于F ,交AB 于E ,90OA D ∠'=︒,90OA F DA E ∴∠'+∠'=︒,90OA F A OF ∠'+∠'=︒ ,DA E A OF ∴∠'=∠',A FO DEA ∠'=∠' ,∴△A OF '∽△DA E ',∴OF A F OA A E DE A D''=='',设(,)A m n ',OF m ∴=,A F n '=,正方形OABC 的边OC 、OA 分别在x 轴和y 轴上,10OA =,点D 是边AB 上靠近点A 的三等分点,103DE m ∴=-,10A E n '=-,∴310103m n n m ==--,解得6m =,8n =,(6,8)A ∴',反比例函数(0)k y k x=≠的图象经过A '点,6848k ∴=⨯=,故答案为48.【点拨】本题考查了正方形的性质,反比例函数图象上点的坐标特征,三角形相似的判定和性质,求得A '的坐标是解题的关键.11.﹣9【解析】【分析】首先根据反比例函数的比例系数k 的几何意义求得△AOC 的面积,然后证明△OAC ∽△BOD ,根据相似三角形的面积的性质求得△BOD 的面积,依据反比例函数的比例系数k 的几何意义即可求解.【详解】解:如图作AC ⊥x 轴于点C ,作BD ⊥x 轴于点D .∵3OB OA=∴OA OB =13∵点A 是双曲线1(0)y x x=<上∴S △OAC =12∵∠AOB=90°,∴∠AOC+∠BOD=90°,又∵直角△AOC 中,∠AOC+∠CAO=90°,∴∠BOD=∠OAC ,又∵∠ACO=∠BDO=90°,∴△OAC ∽△BOD ,∴22s 1==3AOC OBD OA S OB ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭△△=19∴19×9=22BOD S =△ ∴k =9∵函数图像位于第四象限∴k=﹣9故答案为:﹣9【点拨】本题考查了反比例函数k 的几何意义,相似三角形的判定与性质,正确作出辅助线,证明△OAC ∽△BOD 是解题关键.12【解析】【分析】分两种情况:点B '落在AD 上和CD 上,首先求出a 的值,再根据勾股定理求出抓痕的长即可.【详解】分两种情况:(1)当点B '落在AD 上时,如图1,∵四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,∵将ABE △沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '∴∠=∠=∠=︒,AB BE ∴=,315a ∴=,∴3=15BE a =在Rt △ABE 中,AB=1,BE=1,∴(2)当点B '落在CD 上,如图2,∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==,∵将ABE △沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '∴∠=∠=︒,1AB AB '==,35EB EB a '==,DB '∴==,3255EC BC BE a a a =-=-=,在ADB ' 和B CE ' 中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩~ADB B CE ''∴ ,DB AB CE B E '''∴=135a =,解得,a =(负值舍去)∴35BE a =在Rt △ABE 中,AB=1,∴=【点拨】本题考查翻折变换,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.13.3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭【解析】【分析】先求出点B 的坐标和抛物线的对称轴,然后分两种情况讨论:当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,易证△BFM ∽△AOB ,然后根据相似三角形的性质可求得BF 的长,进而可得点M 坐标;当∠BAM =90°时,辅助线的作法如图2,同样根据△BAE ∽△AMH 求出AH 的长,继而可得点M 坐标.【详解】解:对233y ax ax =-+,当x =0时,y =3,∴点B 坐标为(0,3),抛物线233y ax ax =-+的对称轴是直线:3322a x a -=-=,当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,则32MF =,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,又∠MFB =∠BOA =90°,∴△BFM ∽△AOB,∴MF BF OB OA =,即3236BF =,解得:BF =3,∴OF =6,∴点M 的坐标是(32,6);当∠BAM =90°时,如图2,过点A 作EH ⊥x 轴,过点M 作MH ⊥EH 于点H ,过点B 作BE ⊥EH 于点E ,则39622MH =-=,同上面的方法可得△BAE ∽△AMH ,∴AE BE MH AH =,即3692AH =,解得:AH =9,∴点M 的坐标是(32,﹣9);综上,点M 的坐标是3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭.故答案为:3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭.【点拨】本题考查了抛物线与y轴的交点和对称轴、直角三角形的性质以及相似三角形的判定和性质等知识,属于常考题型,正确分类、熟练掌握相似三角形的判定和性质是解题的关键.14.12.【解析】【分析】过A 作AE ⊥y 轴于E 过B 作BF ⊥y 轴于F ,通过△AOE ∽△BOF ,得到AE OE OA OF BF OB ==,设4(,)A m m -,于是得到AE=-m ,4OE m =-,从而得到)B ,,于是求得结果.【详解】解:过A 作AE y ⊥轴于E 过B 作BF y ⊥轴于F ,90AOB ∠=︒ ,30ABC ∠=︒,tan 30OA OB ∴︒==90OAE AOE AOE BOF ∠+∠=∠+∠=︒ ,OAE BOF ∴∠=∠,AOE BOF ∴∆∆∽,∴AE OE OA OF BFOB ==,设4(,)A m m -,AE m ∴=-,4OE m=-,OF ∴==,BF =)B ∴,12k ∴=.故答案为12.【点拨】此题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题关键在于作辅助线和利用三角函数进行解答.15【解析】【分析】已知tan ∠BAF=12,可作辅助线构造直角三角形,设未知数,利用勾股定理可求出FM 、BM ,进而求出FN ,再利用三角形相似和折叠的性质求出EC .【详解】过点F 作MN ∥AD ,交AB 、CD 分别于点M 、N ,则MN ⊥AB ,MN ⊥CD ,由折叠得:EC =EF ,BC =BF ∠C =∠BFE =90°,∵tan ∠BAF =12=FM AM,设FM =x ,则AM =2x ,BM =4﹣2x ,在Rt △BFM 中,由勾股定理得:x 2+(4﹣2x )22,解得:x 1=1,x 2=115>2舍去,∴FM =1,AM =BM =2,∴FN 1,易证△BMF ∽△FNE ,∴BF BM EF FN ==解得:EF EC .【点拨】考查矩形的性质、直角三角形的边角关系、轴对称的性质以及相似三角形的性质等知识,作合适的辅助线,恰当的利用题目中的已知条件,是解决问题的关键.16.3225-【解析】【分析】由A (-1,0),B (0,2),可知OA ,OB ,由折叠得OA=AC=1,OB=BC=2,要求k 的值只要求出点C 的坐标即可,因此过点C 作垂线,构造相似三角形,得出线段之间的关系,设合适的未知数,在直角三角形中由勾股定理,解出未知数,进而确定点C 的坐标,最终求出k 的值.【详解】解:过点C 作CD x ⊥轴,过点B 作BE y ⊥轴,与DC 的延长线相交于点E ,由折叠得:1,2OA AC OB BC ====,易证,~ACD BCE ∆∆,12CD AC BE BC ∴==设CD m =,则2,2,21BE m CE m AD m ==-=-在Rt ACD ∆中,由勾股定理得:222AD CD AC +=,即:()222211m m +-=,解得:14,m 05m ==舍去);48,55CD BE OD ∴===,84,55C ⎛⎫∴- ⎪⎝⎭代入k y x =得,84325525k =-⨯=-,故答案为 3225-【点拨】本题考查了折叠得性质、相似三角形的性质、勾股定理、反比例函数图象上点的坐标特征等知识,由于综合利用的知识较多,本题有一定的难度.17.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒ =,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴=设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--,整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点拨】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.18.253【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =,则4DM y =-,4DN x =-,由ABE BFC ∆∆ ,得AE BE BF CF=,即x m n y =,由CMD AND ∆∆ ,得AN DN CM DM =,即4243m x n y -==-,故3102y x =-+,整理得223331010222mn xy x x x x m ⎛⎫==-+=-+= ⎪⎝⎭,根据二次函数最值即可求解.【详解】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =,∵4BD =,∴4DM y =-,4DN x =-,∵90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,∴90EAB ABE ABE CBF ∠+∠=∠+∠=︒,∴EAB CBF ∠=∠,∴ABE BFC ∆∆ ,∴AE BE BF CF=,即x m n y =,∴xy mn =,∵ADN CDM ∠=∠,∴CMD AND ∆∆ ,∴AN DN CM DM=,即4243m x n y -==-,∴3102y x =-+,∵23m n =,∴32n m =,∴()52m n m +=最大,∴当m 最大时,()52m n m +=最大,∵223331010222mn xy x x x x m ⎛⎫==-+=-+= ⎪⎝⎭,∴当10103322x =-=⎛⎫⨯- ⎪⎝⎭时,250332mn m ==最大,∴103m =最大,∴m n +的最大值为51025233⨯=.故答案为253.【点拨】此题主要考查相似三角形的判定与性质,解题的关键是根据已知条件作出辅助线构造相似三角形进行求解.19.②③【解析】【分析】①由条件可知AB=24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB=24,所以△OAB 为等腰直角三角形,即OA=OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD=25,证明△DFA ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出.【详解】解:∵点E 为AB 的中点,AB=24,1122OE AB ∴==∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧,∵∠AOB=90°,∴点E 经过的路径长为90126180ππ⨯⨯=,故①错误;当△OAB 的面积最大时,因为AB=24,所以△OAB 为等腰直角三角形,即OA=OB ,∵E 为AB 的中点,1,122OE AB OE AB ∴⊥==124121442AOB S ∴=⨯⨯= ,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,15,122AD BC AE AB ====13DE ∴===∴OD=DE+OE=13+12=25,设DF=x ,OF ∴==∵四边形ABCD 是矩形,。
2020中考数学一线三等角 专题练习
CADBEFCA2020中考数学一线三等角一. 一线三等角型相似三角形1.如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD(2)当BD =1,FC =3时,求BE2.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.3. 如图,在△ABC 中,AB =AC =5cm ,BC =8,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM =∠B ; (1)求证:△ABP ∽△PCM ;(2)设BP =x ,CM =y .求 y 与x 的函数解析式. (3)当△APM 为等腰三角形时, 求PB 的长.4.已知在等腰三角形ABC 中,4,6AB BC AC ===,D 是AC 的中点, E 是BC 上的动点(不与B 、C 重合),连结DE ,过点D 作射线DF ,使EDF A ∠=∠,射线DF 交射线EB 于点F ,交射线AB 于点H .(1)求证:CED ∆∽ADH ∆;(2)设,EC x BF y ==.①用含x 的代数式表示BH ;②求y 关于x 的函数解析式,并写出x 的定义域.HABCDEFABCD EF5.如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.6.已知:如图,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,AB DE ⊥,点E 在边BC 上.又点F 在边AC 上,且B DEF ∠=∠. (1) 求证:△FCE ∽△EBD ;(2) 当点D 在线段AB 上运动时,是否有可能使EBD FCE S S ∆∆=4. 如果有可能,那么求出BD 的长.如果不可能请说明理由.二. 一线三垂角型相似三角形1.已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。
中考数学复习 一线三等角模型(含解析)
中考数学复习一线三等角模型(含解析)1.如图,点B,C,E在同一条直线上,∠B=∠E=∠ACF=60°,AB=CE,则与线段BC相等的线段是()A.ACB.AFC.CFD.EF第1题图2.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC 的边长为()A.3B.4C.5D.6第2题图3.如图,A、B、C是直线l上的三个点,∠DAB=∠DBE=∠ECB=α,且DB=BE.若α=120°,点F在直线l的上方,连接AF、BF、CF,△BEF为等边三角形,则可判断△ACF的形状为()A.等腰三角形B.等边三角形C.等腰或等边三角形D.无法确定第3题图4.如图,在△ABC中,点D是BC上一点,连接AD,点E是AD上一点,连接BE,若∠BAC=∠BED,∠BAC+∠ADC=180°,AE=1,BE=CD=2,则DE的长是________.第4题图5.如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=________.第5题图6.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D是∠ACB内部一点,连接CD,作AD⊥CD,BE⊥CD,垂足分别为点D,E.若BE=DE=2,则△ACD的周长是________.第6题图7.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°.(1)当∠BDA=115°时,∠AED=________°;(2)当CD=________时,△ABD≌△DCE.第7题图8.已知,在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图①,当点G在CD上时,求证:△AEF≌△DFG;(2)如图②,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图③,若AE=AD,EG,FG分别交CD于点M,N,MN=2,MD=3,求MG的长.第8题图微专题一线三等角模型1.D 【解析】∵∠ACE =∠B +∠CAB =∠ACF +∠ECF ,∠B =∠E =∠ACF =60°,∴∠ECF =∠CAB ,∵AB =CE ,∴△ABC ≌△CEF (ASA),∴BC =EF .2.B 【解析】∵△ABC 是等边三角形,∴AB =BC =AC ,∠B =∠C =60°,∴∠BAP +∠APB =180°-60°=120°,∵∠APD =60°,∴∠APB +∠DPC =180°-60°=120°,∴∠BAP =∠DPC ,∴△ABP ∽△PCD ,∴AB PC =BP CD ,即AB AB -2=21,∴AB =4,即△ABC 的边长为4.3.B 【解析】∵△BEF 为等边三角形,∴BF =EF ,∠BFE =∠FBE =∠FEB =60°.∵∠DBE =120°,∴∠DBF =60°.∵∠DAB =∠DBE =α,∴∠ADB +∠ABD =∠CBE +∠ABD =180°-α.∴∠ADB =∠CBE .在△ADB 和△CBE DAB =∠BCEADB =∠CBE =BE,∴△ADB ≌△CBE (AAS),∴∠ABD =∠CEB ,∴∠ABD +∠DBF=∠CEB +∠FEB ,∴∠ABF =∠CEF .又∵AB =CE ,∴△AFB ≌△CFE (SAS),∴AF =CF ,∠AFB =∠CFE ,∴∠AFC =∠AFB +∠BFC =∠CFE +∠BFC =60°,∴△ACF 为等边三角形.4.3【解析】如解图,延长AD 至点F ,∵∠BAC =∠BED ,∠BAC +∠ADC =180°,∴∠BAC =∠BED =∠FDC ,∵∠FDC =∠ACD +∠DAC ,∠BAC =∠BAE +∠DAC ,∴∠ACD =∠BAE ,∵∠BED =∠ABE +∠BAE ,∴∠DAC =∠EBA ,∴△ACD ∽△BAE ,∴CD AE =AD BE,∵AE =1,BE =CD =2,∴AD =4,∴DE =AD -AE =3.第4题解图5.54【解析】如解图,设AF 与EG 交于点H ,∵四边形ABCD 是正方形,∴∠BAD =∠B =90°,∠FAB+∠GAH =90°.∵AF ⊥EG ,∴∠AGE +∠GAH =90°.∴∠AGE =∠FAB .∴△ABF ∽△GAE ,∴AB GA =BF AE,∵AB =5,AE =GD =1,∴AG =AD -GD =5-1=4,∴54=BF 1,解得BF =54.第5题解图6.6+25【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠EBC=∠ACD.在△BCE和△CAD E=∠ADC,EBC=∠DCA,=CA,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD=2,∴AD=BE+DE=4,由勾股定理得AC=CD2+AD2=25,∴△ACD的周长为25+2+4=6+25.7.(1)65【解析】∵AB=AC,∴∠C=∠B=40°,∵∠ADE=40°,∠BDA=115°,∴∠EDC=180°-∠BDA -∠ADE=25°,∴∠AED=∠EDC+∠C=25°+40°=65°;(2)2【解析】∵∠C=∠B=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,当DC=AB时,在△ABD和△DCE ADB=∠DECB=∠C=DC,∴△ABD≌△DCE(AAS),∴当DC=AB=2时,△ABD≌△DCE.8.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°.∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)证明:如解图①,延长NF,EA,交点记为点H,∴∠AFH=∠DFN,∠HAF=90°.∵F是AD的中点,∴AF=DF,∴△AHF≌△DNF,∴AH=DN,FH=FN.∵∠EFN=90°,∴△HEN为等腰三角形,∴EH=EN.∵EH =AE +AH =AE +DN ,∴EN =AE +DN ;第8题解图①(3)解:如解图②,过点G 作GP ⊥AD ,交AD 的延长线于点P ,连接DG ,∴∠P =90°,同(1)的方法得,△AEF ≌△PFG ,∴AF =PG ,AE =PF ,∵AE =AD ,∴PF =AD ,∴PF -FD =AD -FD ,∴PD =AF ,∴PG =PD .∴∠PDG =∠MDG =45°,在Rt △EFG 中,EF =FG ,∴∠FGE =45°,∴∠FGE =∠GDM .∵∠GMN =∠DMG ,∴△MGN ∽△MDG ,∴MG MD =MN MG,∴MG =MD ·MN =3×2= 6.第8题解图②。
初中数学相似三角形专项练习题:一线三等角相似1(附答案)
16.如图,经过原点的抛物线 与直线 交于 , 两点,其对称轴是直线 ,抛物线与 轴的另一个交点为 ,线段 与 轴交于点 .
(1)求抛物线的解析式,并写出点 的坐标;
(2)若点 为线段 上一点,且 ,点 为线段 上不与端点重合的动点,连接 ,过点 作直线 的垂线交 轴于点 ,连接 ,探究在 点运动过程中,线段 , 有何数量关系?并证明所探究的结论;
(1)求AE的长;
(2)如图2,将∠CDE绕着点D逆时针旋转一定的角度,使角的一边DE刚好经过点B,另一边与y轴交于点F,求点F的坐标;
(3)在(2)的条件下,在平面内是否存在一点P,使以点C、D、F、P为顶点的四边形是平行四边形.若存在,直接写出点P的坐标;若不存在,请通过计算说明理由.
19.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为 上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.
3.在直角坐标系中,已知圆 的圆心坐标为 ,半径为5,点 和点 是圆 上两个不同的点,其中 与均不为0.过点 分别作圆 的切线 与 轴和 分别相交于 两点,则 _________.
4.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cos∠α= ,下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或 ;④0<CE≤6.4.其中正确的结论是_________.(把你认为正确结论的序号都填上)
初中数学相似三角形专项练习题:一线三等角相似1(附答案)
1.如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是( )
一线三等角模型(解析版)--初中数学专题训练
一线三等角模型基本模型:例题精讲1(直角K 字型)如图,在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.【答案】(1)①见解析,②见解析;(2)见解析;(3)DE =BE -AD【详解】(1)①如图1,∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠ACB =∠CEB =90°,∴∠DAC +∠DCA =90°,∠ECB +∠DCA =90°,∴∠DAC =∠ECB ,∴∠ADC =∠CEB∠DAC =∠ECB AC =CB,∴△ADC ≌△CEB .②∵△ADC ≌△CEB ,∴AD =CE ,DC =BE ,∵DE =DC +CE ,∴DE =AD +BE .(2)如图2,∵AD ⊥MN ,BE ⊥MN ,∴∠ADC=∠ACB=∠CEB=90°,∴∠DAC+∠DCA=90°,∠ECB+∠DCA=90°,∴∠DAC=∠ECB,∴∠ADC=∠CEB ∠DAC=∠ECB AC=CB,∴△ADC≌△CEB,∴AD=CE,DC=BE,∵DE=CE-DC,∴DE=AD-BE.(3)线段DE、AD、BE的熟练关系为:DE=BE-AD或AD=BE-DE或BE=AD+DE.理由如下:如图3,∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=∠CEB=90°,∴∠DAC+∠DCA=90°,∠ECB+∠DCA=90°,∴∠DAC=∠ECB,∴∠ADC=∠CEB ∠DAC=∠ECB AC=CB,∴△ADC≌△CEB,∴AD=CE,DC=BE,∵DE=DC-CE,∴DE=BE-AD或AD=BE-DE或BE=AD+DE.2(非直角K字型)【探究】如图①,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.若AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.【应用】如图②,在等腰三角形ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为9,则△ABE与△CDF的面积之和为.【答案】探究:见解析;应用:6【详解】探究证明:∵∠A =∠BAE +∠ABE ,∠BAC =∠CAF +∠BAE ,又∵∠BAC =∠1,∴∠ABE =∠CAF ,∵∠1=∠2,∴∠AEB =∠CFA ,在△ABE 和△CAF 中,∠AEB =∠CFA∠ABE =∠CAF AB =AC,∴△ABE ≌△CAF AAS ;应用:解:∵△ABE ≌△CAF ,∴S △ABE =S △CAF ,∴S △CDF +S △CAF =S △ACD ,∵CD =2BD ,△ABC 的面积为9,∴S △ACD =23S △ABC=6,∴△ABE 与△CDF 的面积之和为6,故答案为:6.【变式训练】1(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E .求证:DE =BD +CE .证明:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE ,BD ,CE 三条线段的数量关系,并说明理由.【答案】(1)证明见解析;(2)DE =BD +CE ,证明见解析【详解】(1)DE =BD +CE .理由如下:如图1,∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠AEC =90°又∵∠BAC =90°,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,∠ABD =∠CAE∠ADB =∠CEA =90°AB =AC,∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE ,∵DE =AD +AE ,∴DE =CE +BD ;(2)DE =BD +CE ,理由如下:如图2,∵∠BDA =∠AEC =∠BAC ,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;2(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB.(2)理解应用:如图2,过△ABC 边AB 、AC 分别向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I .利用(1)中的结论证明:I 是EG的中点.(3)类比探究:①将图1中△AEC 绕着点C 旋转180°得到图3,则线段ED 、EA 和BD 的关系;②如图4,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰DC 绕D 点逆时针旋转90°至DE ,△AED 的面积为.【答案】(1)见解析;(2)见解析;(3)①ED =EA -BD ;②1【详解】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,∠AEC =∠CDB∠A =∠BCDAC =BC∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N ,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,∠EIM =∠GIN∠EMI =∠GNI =90°EM =GN∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为12AD ⋅EN =12×2×1=1.故答案为:13已知:△ABC 中,∠ACB =90°,AC =CB ,D 为直线BC上一动点,连接AD ,在直线AC 右侧作AE ⊥AD ,且AE =AD .(1)如图1,当点D 在线段BC 上时,过点E 作EH ⊥AC 于H ,连接DE ,求证:EH =AC ;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M .求证:BM =EM ;(3)当点D 在射线CB 上时,连接BE 交直线AC 于M ,若2AC =5CM ,则S △ADB S △AEM 的值为.【答案】(1)见解析;(2)见解析;(3)47或43【详解】(1)∵AE ⊥AD ,EH ⊥AC ,∠ACB =90°,∴∠AHE =∠C =∠DAE =90°,∵∠AEH +∠EAH =90°,∠DAC +∠EAH =90°,∴∠AEH =∠DAC ,在△AEH 和△DAC 中,∠AHE =∠C∠AEH =∠DAC AE =DA,∴△AEH ≌△DAC (AAS ),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°-∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,∠F =∠ACD∠FAE =∠CDA AE =DA,∴△FAE ≌△CDA (AAS ),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC和△EMF中,∠MCB=∠F∠BMC=∠EMF BC=EF,∴△BMC≌△EMF(AAS),∵BM=EM.(3)当点D在CB的延长线上时,作EG⊥AM交AM的延长线于点G,则∠G=∠ACD=90°,∵∠DAE=90°,∵∠D+∠DAC=90°,∠DAC+∠GAE=90°,∴∠GAE=∠D,在△AGE和△DCA中,∠G=∠ACD ∠GAE=∠D AE=DA,∴△AGE≌△DCA(AAS),∴AG=DC,EG=AC,∵AC=CB,∴EG=AC=BC∴AG-AC=DC-BC,∴CG=DB,∵∠BCM=180°-∠ACB=90°,∴∠G=∠BCM,在△EGM和△BCM中,∠G=∠BCM∠EMG=∠BMC EG=BC,∴△EGM≌△BCM(AAS),∴GM=CM,设GM=CM=m,则DB=CG=2m,∵2AC=5CM,∴AC=52CM=52m,∴AM=52CM+CM=72CM=72m,∴SΔADB=12DB⋅AC=12×2m⋅AC=m⋅AC,SΔAEM=12AM⋅EG=12×72m⋅AC=74m⋅AC,∴⋅SΔADBSΔAEM=m⋅ACm4m⋅AC=47,∴⋅SΔADBSΔAEM的值为47;当点D在线段BC上时,作EG⊥AM于点G,同理可证:EG=AC=BC,GM=CM,设CM=GM=n,则BD=CG=2n,∵2AC=5CM,∴AC=52CM,∴AM=52CM-CM=32CM=32n,∴SΔADB=12DB⋅AC=12×2n⋅AC=n⋅AC,SΔAEM=12AM⋅EG=12×32n⋅AC=34n⋅AC,∴SΔADBSΔAEM=n⋅AC34n⋅AC=43,综上所述,S ΔADB S ΔAEM的值为47或43,故答案为:47或43.4【问题背景】(1)如图1,在Rt△ABC 中,AC =BC ,∠ACB =90°,∠ADC =90°,BE ⊥CD ,垂足为E .求证:CD =BE ;【变式运用】(2)如图2,在Rt △ABC 中,AC =BC ,∠ACB =∠CDA =90°,CD =2.求S △BDC ;【拓展迁移】(3)如图3,在Rt △ABC 中,AC =BC ,∠ACB =∠ADC =90°,CD 与AB 交于点E ,AD =1,BE =4AE ,直接写出S △BDC 的值.【答案】(1)详见解析;(2)2;(3)8.【详解】解:(1)∵∠ACB =∠ADC =90°,BE ⊥CD ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°,∠CBE +∠BCE =90°,∴∠ACD =∠CBE ,在△ACD 与△CBE 中,∠ACD =∠CBE∠ADC =∠CEBAC =BC∴△ACD ≌△CBE (AAS ),∴CD =BE ;(2)过点B 作BE ⊥CD ,垂足为E ,∵AC =BC ,∠ACB =∠ADC =90°,由(1)知,BE =CD =2,∴S △BDC =12CD ⋅BE =2;(3)过点B 作BF ⊥CD ,垂足为F ,∵AC =BC ,∠ACB =∠ADC =90°,由(1)知BF =CD ,AE BE =S △ACE S △BCE =AD BF ,∵BE =4AE ,∴BF =4,AD =4,CD =BF =4,∴S △BDC =12CD ⋅BF =8.课后训练5如图,△ABC 为等边三角形,D是BC 边上一点,在AC 上取一点F ,使CF =BD ,在AB 边上取一点E ,使BE =DC ,则∠EDF 的度数为()A.30°B.45°C.60°D.70°【答案】C【详解】∵△ABC 是等边三角形,∴∠B =∠C =60°,在△EDB 和△DFC 中,BD =CF∠B =∠C =60°BE =CD,∴△EDB ≌△DFC ,∴∠BED =∠CDF ,∵∠B =60°,∴∠BED +∠BDE =120°,∴∠CDF +∠BDE =120°,∴∠EDF =180°-(∠CDF +∠BDE )=180°-120°=60°.故选C .6如图,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CFA =α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上.①如图1,若∠BCA =90°,α=90°,则BE CF .②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3.若线CD 经过∠BCA 的外部,α=∠BCA ,请提出关于EF ,BE ,AF 三条线段数量关系的合理猜想,并简述理由【答案】(1)①BE =CF ;②α+∠BCA =180°,理由见解析(2)EF =BE +AF ,理由见解析【详解】(1)①∵∠BEC =∠CFA =α=90°,∴∠BCE +∠CBE =180°-∠BEC =90°.又∵∠BCA =∠BCE +∠ACF =90°,∴∠CBE =∠ACF .在△BCE 和△CAF 中,∠BEC =∠CFA∠CBE =∠ACFBC =AC∴△BCE ≌△CAF (AAS ).∴BE =CF .②α+∠BCA=180°,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°-∠BEC=180°-α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°-α.又∵α+∠BCA=180°,∴∠BCA=180°-α.∴∠BCA=∠BCE+∠ACF=180°-α.∴∠EBC=∠FCA.在△BCE和△CAF中,∠CBE=∠ACF ∠BEC=∠CFA BC=CA∴△BCE≌△CAF(AAS).∴BE=CF.故答案为:①BE=CF;②α+∠BCA=180°(2)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°-∠BCA=180°-α.又∵∠BEC=α,∴∠EBC+∠BCE=180°-∠BEC=180°-α.∴∠EBC=∠FCA.在△BEC和△CFA中,∠EBC=∠FCA ∠BEC=∠FCA BC=CA∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=EC+CF=FA+BE,即EF=BE+AF .7如图所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB.点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE.连接EA,且EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,则∠ABC=°;(2)过D点作DG⊥AE,垂足为G.①填空:△DEG≌△;②求证:AE=AF+BC;(3)如图2,若点F是线段BA延长线上一点,其他条件不变,请写出线段AE,AF,BC之间的数量关系,并简要说明理由.【答案】(1)60°;(2)①EFA;②见解析;(3)AE=AF+BC,理由见解析【详解】(1)解:如图1:在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF-∠1=70°,∵∠EDA+∠2+∠3=180°,∠ADE=50°∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠4=180°,∴∠4=30°,∵∠C=90°,∴∠ABC=∠C-∠4=60°.(2)解:①如图1,过D作DG⊥AE于G,在△DEG中,∠2+∠5=90°,∵∠2+∠1=90°,∴∠1=∠5,∵DE=FE,在△DEG与△EFA中,∠DGE=∠EAF ∠5=∠1DE=EF,∴△DEG≌△EFA,故答案是:EFA;②∵△DEG≌△EFA,∴AF=EG,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAG与△ABC中,∠3=∠B∠DGA=∠C AD=AB,∴△DAG≌△ABC,∴BC=AG,∴AE=EG+AG=AF+BC.(3)解:AE+AF=BC,理由如下:如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM 与△BAC 中,∠M =∠C∠2=∠B AD =AB,∴△ADM ≌△BAC ,∴BC =AM ,∵EF =DE ,∠DEF =90°,∵∠3+∠DEF +∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED 与△AFE 中,∠M =∠EAF∠5=∠4DE =EF,∴△MED ≌△AFE ,∴ME =AF ,∴AE +AF =AE +ME =AM =BC ,即AE +AF =BC .8已知:等腰Rt ΔABC 和等腰Rt ΔADE 中,AB =AC ,AE =AD ,∠BAC =∠EAD =90°.(1)如图1,延长DE 交BC 于点F ,若∠BAE =62°,则∠DAC 的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若∠AEC =90°,点M 为BD 中点,求证:EC =2AM ;(3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,AG =8,AH =2,则ΔAEC 的面积为.【答案】(1)62°;(2)见解析;(3)16【解析】(1)解:∵∠BAC =∠EAD =90°,∴∠BAC -∠EAC =∠EAD -∠EAC ,即∠BAE =∠DAC ,∵∠BAE =62°,∴∠DAC =62°,故答案为:62°;(2)证明:如图2,延长AM 至点N ,使MN =AM ,连接BN ,在ΔAMD 和ΔNMB 中,DM =MB∠AMD =∠NMB AM =MN,∴ΔAMD ≅ΔNMB SAS ,∴AD =BN ,∠N =∠DAM =90°,∴BN =AE ,在Rt ΔANB 和Rt ΔCEA 中,BN =AE AB =AC ,∴Rt ΔANB ≅Rt ΔCEA HL ,∴EC =AN =2AM ;(3)解:如图3,延长AG 至K ,使GK =AG ,连接CK 、CD 、BE ,设AE 交BC 于点P ,∵∠BAC =∠EAD =90°,∴∠BAE +∠EAC =∠EAC +∠CAD ,∴∠BAE =∠CAD ,∵ΔABC 是等腰直角三角形,ΔADE 是等腰直角三角形,∴AB =AC ,AE =AD ,在ΔABE 与ΔACD 中,AB =AC∠BAE =∠CAD AE =AD,∴ΔABE ≅ΔACD SAS ,∴S ΔABE =S ΔACD ,BE =CD ,∵G 点是EC 的中点,∴EG =GC ,∵∠AGE =∠KGC ,AG =GK ,∴ΔAGE ≅ΔKGC SAS ,∴AE =CK ,∠AEG =∠KCG ,∴AE =KC =AD ,∠ACK =∠ACB +∠BCE +∠KCG =45°+∠AEC +∠BCE =45°+∠ABC +∠BAP =90°+∠BAE =∠BAD ,∴ΔAKC ≅ΔABD SAS ,∴BD =AK =16,∠CAK =∠ABD ,∵∠BAG +∠CAG =90°,∴∠ABD +∠BAG =90°,即∠AHB =90°,∵AH =2,∴S ΔABD =12×BD ×AH =12×16×2=16,∵S ΔAEC =S ΔAEG +S ΔAGC =S ΔGCK +S ΔAGC =S ΔACK =S ΔABD =16,∴S ΔAEC =16,故答案为:16.9如图△ABD 与△AEC 均为等腰直角三角形,AD =AB ,AC =AE ,∠BAD =∠CAE =90°.(1)如图1,若反向延长△ABC 的高AM 交DE 于点N ,过D 作DH ⊥MN .求证:DH =AM ,DN =EN ;(2)如图2,若AM 为△ABC 的中线,反向延长AM 交DE 于点N ,试探究AM 与DE 的数量关系,并说明理由;(3)由(1)(2)的探究我们发现S △ABC S △ADE .(填“<”“>”或“=”号,无需证明)【答案】(1)见解析;(2)DE=2AM,见解析;(3)=【详解】(1)证明:如图,过点E作EP⊥MN交MN的延长线于点P,∵DH⊥MN,AM⊥BC,∴∠DHA=∠AMB=90°,∴∠BAM+∠ABM=90°,∵∠BAD=90°,∴∠BAM+∠DAH=90°,∴∠DAH=∠ABM,在△DAH与△ABM中,∠DHA=∠AMB ∠DAH=∠ABM AD=AB∴△DAH≌△ABM(AAS),∴DH=AM,同理可得:△APE≌△CMA(AAS),∴EP=AM,∴EP=DH,∵DH⊥MN,EP⊥MN,∴∠DHN=∠EPN=90°,在△DHN与△EPN中,∠DHN=∠EPN ∠DNH=∠ENP DH=EP∴△DHN≌△EPN(AAS),∴DN=EN;(2)解:DE=2AM,理由如下:如图,延长AM至点G,使AM=MG,连接GC,∵AM为△ABC的中线,∴BM=CM,在△ABM与△GCM中,BM=CM∠AMB=∠GMC AM=MG∴△ABM≌△GCM(SAS),∴AB=GC,∠ABM=∠GCM,∴AB⎳GC,∴∠BAC+∠ACG=180°,∵∠BAD=∠CAE=90°,∴∠DAE+∠BAC=360°-∠BAD-∠CAE=180°,∴∠DAE=∠ACG,∵AB=GC,AB=AD,∴AD=GC,在△ADE与△CGA中,AE=AC∠DAE=∠ACG AD=CG∴△ADE≌△CGA(SAS),∴DE=AG,∵AM=MG,∴AG=2AM,∴DE=2AM;(3)解:∵△ABM≌△GCM,∴S△ABM=S△GCM,∴S△ABM+S△AMC=S△GCM+S△AMC,∴S△ABC=S△AGC,∵△ADE≌△CGA,∴S△AGC=S△DAE,∴S△ABC=S△DAE,故答案为:=.10如图1所示,已知AB为直线a上两点,点C为直线a上方一动点,连接AC、BC,分别以AC、BC 为边向△ABC外作△ACD和△BCE,且∠DAC=∠CBE=90°,AD=AC,BC=BE,过点D作DD1⊥a于点D1,过点E作EE1⊥a于点E1.(1)【问题探究】小华同学想探究图1中线段DD1、EE1、AB之间的数量关系.他的方法是:作直线CH⊥AB于点H,可以先证明△ADD1≌△CAH和△BEE1≌,于是可得:和,所以得到线段DD1、EE1、AB之间的数量关系是;(2)【方法应用】在图2中,当D、E两点分别在直线a的上方和下方时,试探究三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)【拓展延伸】在图2中,当D、E两点分别在直线a的上方和下方时,小华同学测得线段D1E1=m,AB =n,请用含有m、n的代数式表示△ABC的面积为.【答案】(1)△CBH;DD1=AH;EE1=BH;AB=DD1+EE1;(2)AB=DD1-EE1,理由见解析;(3) 14n(m-n).【详解】解:(1)∵DD 1⊥a ,CH ⊥AB ,∴∠DD 1A =∠CHA =∠DAC =90°,∴∠D 1DA +∠D 1AD =90°,∠D 1AD +∠CAH =90°,∴∠D 1DA =∠CAH ,∵AD =AC ,∴△D 1DA ≌△HAC ,同理△BEE 1≌△CBH ,∴DD 1=AH ,EE 1=BH ,∴AB =DD 1+EE 1故答案为:△CBH ,DD 1=AH ,EE 1=BH ,AB =DD 1+EE 1;(2)AB =DD 1-EE 1.理由:如图,过点C 作CG ⊥a 于点G ,∵DD 1⊥a ,CG ⊥a ,EE 1⊥a ,∴∠DD 1A =∠AGC ,∠CGB =∠BE 1E ,∴∠DAD 1+∠ADD 1=90°,∠CBG +∠BCG =90°,∵∠DAC =∠CBE =90°,∴∠DAD 1+∠CAG =90°,∠CBG +∠E 1BE =90°,∴∠ADD 1=∠CAG ,∠BCG =∠EBE 1,在△ADD 1和△CAG 中,∠ADD 1=∠CAG ,∠DD 1A =∠AGC ,AD =CA ,∴△ADD 1≌△CAG ,∴DD 1=AG ,同理可得:△BCG ≅△EBE 1,∴BG =EE 1,由图可得:AB =AG -BG ,∴AB =DD 1-EE 1;(3)∵CG =BE 1,CG =D 1A ,∴BE 1=D 1A =12(D 1E 1-AB )=12(m -n ),∴△ABC 的面积=12AB ⋅CG =12×12n (m -n )=14n (m -n ),故答案为:14n (m -n ).11(1)如图1,已知:在ΔABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥l ,CE ⊥l 垂足分别为点D、E .证明:①∠CAE =∠ABD ;②DE =BD +CE .(2)如图2,将(1)中的条件改为:在ΔABC 中,AB =AC ,D 、A 、E 三点都在l 上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,过ΔABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA 交EG于点I,求证:I是EG的中点.【答案】(1)①见解析;②见解析;(2)成立:DE=BD+CE;证明见解析;(3)见解析【详解】(1)①∵BD⊥直线l,CE⊥直线l∴∠BDA=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD②在△ADB和△CEA中∠ABD=∠CAE ∠BDA=∠CEA AB=AC∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE;(2)成立:DE=BD+CE证明如下:∵∠BDA=∠BAC=α∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α∴∠DBA=∠CAE在△ADB和△CEA中∠ABD=∠CAE ∠BDA=∠CEA AB=AC∴△ADB≌△CEA(AAS)∴AE=BD、AD=CE∴DE=AE+AD=BD+CE;(3)如图过E作EM⊥HI于M,GN⊥HI的延长线于N∴∠EMI =GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中∠GIH =∠EIMEM =GN∠GHI =∠EMI∴△EMI ≌△GNI (AAS )∴EI =GI∴I 是EG 的中点.12已知点C 是AB 上的一个动点.(1)问题发现如图1,当点C 在线段AB 上运动时,过点C 作DC ⊥AB ,垂足为点C ,过点A 作EA ⊥AB ,垂足为点A ,且DC =AB ,AE =BC .①△ABE 与△CDB 全等吗?请说明理由;②连接DE ,试猜想△BDE 的形状,并说明理由;③DC =AE +AC 是否成立?(填“成立”或“不成立”).(2)类比探究如图2,当点C 在线段AB的延长线上时,过点C 作DC ⊥AB ,垂足为点C ,过点A 作EA ⊥AB ,垂足点A ,且DC =AB ,AE =BC .试直接写出△BDE 的形状为;此时线段DC 、AE 和AC 之间的数量关系为(直接写出结论,不用说明理由).【答案】(1)①全等,理由详见解析;②△BDE 是等腰直角三角形,理由详见解析;③成立;(2)等腰直角三角形,AC =AE +DC【详解】解:(1)①全等.理由如下:∵DC ⊥AB ,EA ⊥AB ,∴∠BCD =90°=∠EAB ,又∵DC =AB ,AE =BC ,∴△ABE ≅△CDB .②△BDE 是等腰直角三角形,理由如下:∵△ABE ≅△CDB ,∴BD =BE ,∠ABE =∠CDB ,在△BCD 中.∠CDB +∠DBC =90°,∴∠ABE +∠DBC =90°,即∠DBE =90°,∴△BDE是等腰直角三角形.③∵△ABE≌△CDB,∴AE=BC,AB=CD,∴CD=AB=AC+BC=AC+AE,故答案为:成立;(2)∵DC⊥AB,EA⊥AB,∴∠BCD=90°=∠EAB,又∵DC=AB,AE=BC,∴△ABE≅△CDB.∴BD=BE,∠ABE=∠CDB,在△BCD中.∠CDB+∠DBC=90°,∴∠ABE+∠DBC=90°,即∠DBE=90°,∴△BDE是等腰直角三角形.∵AB=CD,AE=BC,∴AC=AB+BC=AE+CD,故答案为:等腰直角三角形,AC=AE+DC.13已知:△ABC中,过B点作BE⊥AD,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD 与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC= 3MC,请直接写出DBBC的值.【答案】(1)见详解,(2)BD=2CF,证明见详解,(3)2 3.【详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=AC,∴ΔBCF≅ΔACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠ADC=∠EAH,∵AD=AE,∴ΔACD≅ΔEHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴ΔEHF≅ΔBCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠ADC=∠EAH,∵AD=AE,∴ΔACD≅ΔEHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHM=∠BCM=90°,∠EMH=∠BMC,EH=BC,∴ΔEHM≅ΔBCM,∴MH=MC,∴BD=CH=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB BC =2a3a=23.14(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E,当直线MN旋转到图1的位置时,求证:DE=AD+BE;(2)在(1)的条件下,当直线MN旋转到图2的位置时,猜想线段AD,DE,BE的数量关系,并证明你的猜想;(3)如图3,在△ABC中,AD⊥BC于D,AD=BC,BF⊥BC于B,BF=CD,CE⊥BC于C,CE= BD,求证:∠EAF+∠BAC=90°.【答案】(1)证明见解析;(2)DE=AD-BE,证明见解析;(3)证明见解析.【详解】解:(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)DE=AD-BE,∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;(3)如图3,连接CF、BE,AD⊥BC于D,BF⊥BC于B,∴∠ADC=∠CBF=90°,在△ADC和△CBF中,AD=BC∠ADC=∠CBF=90°CD=BF,∵△ADC≌△CBF(SAS),∴∠CAD=∠FCB,AC=CF;∴∠ACF=∠FCB+∠ACD=∠CAD+∠ACD=∠ADC=90°∴△ACF为等腰直角三角形.∴∠CAF=45°,同理可证:△ABE为等腰直角三角形.∴∠EAB=45°,∴∠EAF+∠BAC=∠CAF+∠EAB=90°.。
2024成都中考数学第一轮专题复习之一线三等角模型解决全等、相似问题 知识精练(含答案)
2024成都中考数学第一轮专题复习之第四章微专题一线三等角模型解决全等、相似问题知识精练1.如图,△ABC 为等边三角形,D 是BC 上一点,连接AD ,点P ,Q 在AD 上,连接BP ,CQ ,且∠BPD =∠CQD =60°,若BP =3,CQ =5,则PQ 的长为________.第1题图2.如图,在四边形ABCD 中,AD =4,AB =10,点E 是AB 的中点,连接DE ,CE ,若∠A =∠B =∠DEC ,则BE BC的值为________.第2题图3.(2023重庆A 卷)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 上一点,连接A D.过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 交AD 的延长线于点F .若BE =4,CF =1,则EF 的长度为________.第3题图4.如图,在等腰Rt △ABC 中,AB =AC ,点D 是CB 延长线上一点,且AB =DB ,连接AD ,若AD =6,则△ACD 的面积为________.第4题图5.(2023荆州)如图①,点P 是线段AB 上与点A ,点B 不重合的任意一点,在AB 的同侧分别以A ,P ,B 为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB 和射线BA ,∠2的两边不在直线AB 上,我们规定这三个角互为等联角,点P 为等联点,线段AB 为等联线.(1)如图②,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点........的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图③,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD,将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM 交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP∶PB=1∶2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).图①图②图③第5题图参考答案与解析1.2【解析】∵∠BPD =∠CQD =60°,∴∠APB =∠CQA .∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°.∵∠BPD =∠BAP +∠ABP =60°,∠BAC =∠BAP +∠CAQ =60°,∴∠ABP =∠CAQ .在△ABP 和△CAQ ABP =∠CAQ ,APB =∠CQA ,=CA ,∴△ABP ≌△CAQ (AAS),∴BP =AQ =3,AP =CQ =5.∵AP =AQ +PQ =BP +PQ ,∴PQ =AP -BP =5-3=2.2.45【解析】∵∠A =∠B =∠DEC ,∴△DAE ∽△EBC [钝角一线三等角(同侧)],∴AD BE =AE BC .∵AD =4,AB =10,点E 是AB 的中点,∴AE =BE =5,∴BE BC =AD AE =45.3.3【解析】∵BE ⊥AD ,CF ⊥AD ,∴∠AEB =∠CFA =90°,∴∠ABE +∠BAE =90°.∵∠BAC =90°,∴∠CAF +∠BAE =90°,∴∠ABE =∠CAF .又∵AB =AC ,∴△ABE ≌△CAF ,∴AE =CF =1,AF =BE =4,∴EF =AF -AE =4-1=3.4.9【解析】如解图,过点B 作BG ⊥AD 于点G ,过点C 作CH ⊥AD 交DA 的延长线于点H ,CH 即为点C 到直线AD 的距离.∵BG ⊥AD ,AB =DB ,∴∠AGB =90°,AG =DG =12AD =3.∵△ABC 为等腰直角三角形,AB =AC ,∴∠ABC =∠ACB =45°,∴∠BAC =90°,∴∠GAB +∠HAC =90°.又∵CH ⊥AD ,∴∠AGB =∠CHA =90°,∴∠HCA +∠HAC =90°,∴∠GAB =∠HCA .在△ABG 和△CAH AGB =∠CHA ,GAB =∠HCA ,=CA ,∴△ABG ≌△CAH (AAS),∴AG =CH =3,∴S △ACD =12AD ·CH =12×6×3=9.第4题解图5.解:(1)作图如解图①;(注:只需作出其中三种)方法2方法3方法4方法5方法6方法7方法8第5题解图①(2)①△PCF是等腰直角三角形.理由如下:如解图②,过点C作CN⊥BE交BE的延长线于点N.由折叠的性质得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵∠A,∠CPD,∠PBD互为等联角,∴∠A=∠CPD=∠PBD=90°.∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM.又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.第5题解图②②如解图②,过点F作FQ⊥BE于点Q,作FR⊥PB交PB的延长线于点R,则∠R=∠A =90°.∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6.由△PCF是等腰直角三角形,得PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR.∵AC=AB,∴AP=BR=FR.∵在Rt △BRF 中,BR 2+FR 2=BF 2,BF =2k ,∴AP =BR =FR =k .∵AP ∶PB =1∶2,∴PB =2AP =2k ,∴AB =AP +PB =BN =3k .由BR =FR ,∠QBR =∠R =∠FQB =90°,得四边形BRFQ 为正方形,∴BQ =QF =k ,由FQ ⊥BN ,CN ⊥BN ,得FQ ∥CN ,∴QE NE =QF NC,而QE =BN -NE -BQ =3k -NE -k =2k -NE ,即2k -NE NE=k 3k =13,解得NE =32k ,由①知PM =AP =k ,ME =NE =32k ,∴PE =PM +ME =k +32k =52k .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—线三等角型相似三角形强化训练:1. 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.2. 已知:如图,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,AB DE ⊥,点E 在边BC 上.又点F在边AC 上,且B DEF ∠=∠. (1) 求证:△FCE ∽△EBD ;(2) 当点D 在线段AB 上运动时,是否有可能使EBD FCE S S ∆∆=4. 如果有可能,那么求出BD 的长.如果不可能请说明理由.3. 如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E 。
(1)求证△BPD ∽△CEP(2)是否存在这样的位置,△PDE 为直角三角形? 若存在,求出BD 的长;若不存在,说明理由。
CPEA BDABCDEAB C D EF4. 如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上的一个动点(与B 、C 不重合),PE ⊥AB 与E ,PF ⊥BC 交AC 与F ,设PC =x ,记PE =1y ,PF =2y (1)分别求1y 、2y 关于x 的函数关系式(2)△PEF 能为直角三角形吗?若能,求出CP 的长,若不能,请说明理由。
5. 如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上的一个动点(与B 、C 不重合),PE ⊥AB 与E ,PF ⊥BC 交AC 与F ,设PC =x ,△PEF 的面积为y(1)写出图中的相似三角形不必证明;(2)求y 与x 的函数关系式,并写出x 的取值范围; (3)若△PEF 为等腰三角形,求PC 的长。
6. 已知在等腰三角形ABC 中,4,6AB BC AC ===,D 是AC 的中点, E 是BC 上的动点(不与B 、C 重合),连结DE ,过点D 作射线DF ,使EDF A ∠=∠,射线DF 交射线EB 于点F ,交射线AB 于点H .(1)求证:CED ∆∽ADH ∆; (2)设,EC x BF y ==. ①用含x 的代数式表示BH ;②求y 关于x 的函数解析式,并写出x 的定义域.C PEA B F PE AF H ABCDEF7. 已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程).8. 已知:如图,直角梯形ABCD 中,AD ∥BC ,︒=∠90B ,8=AB ,12=AD ,34tan =C ,AM ∥DC ,E 、F 分别是线段AD 、AM 上的动点(点E 与A 、D 不重合)且AMB FEM ∠=∠,设x DE =,y MF =.(1)求证:DM AM =;(2)求y 与x 的函数关系式并写出定义域;(3)若点E 在边AD 上移动时, EFM ∆为等腰三角形,求x 的值;CA EFDBMC9. 已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.10. 如图,在梯形ABCD 中,AD //BC ,AB =CD =BC =4,AD =2.点M 为边BC 的中点,以M 为顶点作∠EMF =∠B ,射线ME交边AB 于点E ,射线MF 交边CD 于点F ,连结EF .(1)指出图中所有与△BEM 相似的三角形,并加以证明;(2)设BE =x ,CF =y ,求y 关于x 的函数解析式,并写出定义域; EDCBA P(第25题图) EDCBA (备用图)CM答案:1. 解:(1)∵AB =AC ∴∠B =∠C∵∠ADC =∠ADE +∠CDE =∠B +∠BAD ∴∠BAD =∠CDE ∴△ABD ∽△DCE (2)∵△ABD ∽△DCE ∴ABCDBD CE =∵x BD =,y AE =,x DC -=10∴y x x -=-8108∴845812+-=x x y )100(<<x(3)∵AC AB =,D 是BC 的中点∴AD ⊥BC ∴∠DAE+∠ADE=90°∵DE AE ≠∴△ADE 是直角三角形2. 解:(1)∵AB =AC ∴∠B =∠C∵∠BED +∠DEF =∠C +∠EFC =90°又∵B DEF ∠=∠∴∠BED =∠EFC ∴△FCE ∽△EBD(2)∵BD =x ,BE =x 35,x EC 356-= ∵△FCE ∽△EBD ∴2)(BDEC S S BED FEC =∆∆若EBD FCES S ∆∆=4∴4)356(2=-xx∴1118=x ∴31136356>=-x ∴BD 不存在 3. 解:(1)∵AB =AC ∴∠B =∠C∵∠DPC =∠DPE +∠EPC =∠B +∠BDP ∴∠EPC =∠BDP ∴△ABD ∽△DCE(2)∵∠DPE =∠B ≠90°若∠PDE=90°,在Rt △ABH 和Rt △PDE 中 ∴cos ∠ABH =cos ∠DPE =53==PE PD AB BH ∴53==PC BD PE PD ∵PC =4 ∴512=BD 若∠PED=90°在Rt △ABH 和Rt △PDE 中∴cos ∠ABH =cos ∠PED =53==PD PE AB BH ∴35==PC BD PE PD ∵PC =4 ∴5320>=BD (舍去) 综上所述,BD 的长为512 4. 解:(1)244)6(4+-=-=x x y 、x y 4= P EABDHCP EABDHA若∠PFE =90°,在Rt △ABH 和Rt △PFE 中∴cos ∠ABH =cos ∠FPE =53==PE PF AB BH ∴5312=y y ∴535245434=+-x x ∴1727=x 若∠PEF =90°,在Rt △ABH 和Rt △PFE 中∴cos ∠ABH =cos ∠FPE =53==PE PF AB BH∴3512=y y ∴355245434=+-x x ∴3=x 5. 解:(1)△PEB ∽△EPC(2)∵PC =x ∴x PF 34=,)6(54x PE -=,)6(251654x EP EH -== ∴)6(7532)6(2516342121x x x x EH PF y -=-⋅⋅=⋅⋅=即x x y 256475322+-=)30(≤<x (3)当PE =PF 时,△EPC ≌△PEB ,PC =BE =x ,536=-x x ∴49=x当PE =EF 时,x PF PH 3221==,cos ∠EPH =cos B ,53)6(5432=-x x∴43108=x当FE =PF 时,)6(5221x EP PM -==, cos ∠FPM =cos B ,5334)6(52=-x x ∴2=x 综上所述,PC 的长分别为49=x 、43108、26. 解:(1)∵AB BC =,∴A C ∠=∠∵CDE EDF A H ∠+∠=∠+∠又EDF A ∠=∠,∴CDE H ∠=∠CED ∴∆∽ADH ∆(2)①∵CED ∆∽ADH ∆,∴CE CDAD AH=∵D 是AC 的中点,6AC =,∴3AD CD ==,又 ∵,4CE x AB ==∴当H 点在线段AB 的延长线上时,334x BH =+,∴94BH x=- 当H 点在线段AB 上时,334x BH =-,∴94BH x=-②过点D 作DG ∥AB ,交BC 于点G∴12DG CG CD AB BC AC ===,∴2,2DG BG == CPE A BFH CP E A B FG H M∴当H 点在线段AB 的延长线上时,∴BH BF GD GF=,∴9422y x y -=-∴18890924x y x x -⎛⎫=<< ⎪-⎝⎭ 当H 点在线段AB 上时,∴BH BFGD GF=,∴9422y x y -=+ ∴81894924x y x x -⎛⎫=≤< ⎪-⎝⎭7. 解:(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC . ②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252xx -= 解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴DQAPPD AB = 即y x x +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.8. 证明:(1)过点M 作AD MG ⊥交AD 于G∵AM//DC ∴C AMB ∠=∠∵8AB ,90B =︒=∠ ∴BM AB C AMB ==∠tan tan ∴BM834=∴6B M = ∵AD//BC ,AB//MG ∴AG=BM=6∵AD=12 ∴AG=GD ∴AGM ∆≌DGM ∆∴AM=DM(2) ∵A MB FEM ∠=∠ A FE A MB ∠=∠∴EFM ∽∆∆AEM ∴FMEMEM AM =∵22226)-(8EM 1086AM x +==+=∴y x x 2222)6(8)6(810-+=-+∴1056101y 2+-=x x 定义域为:120<<x (3) ∵FEM AEF MAE EFM ∠>∠+∠=∠∴EM ≠FM ∴若EFM ∆为等腰三角形,则EF =EM 或EF =FM ① 当EF =EM 时,12-x =10∴x =2②当EF =FM 时∵MA E F F ∠=∠=∠EM ME ∴AE =EM ∴226)-(x 8x -12+=∴311x = 9. 证明:(1)∵在梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠CBPEB C DAB PQE(2)①FPC EPF BEP B EPF ∠+∠=∠+∠=∠ 又∠EPF =∠C=∠B ,∴FPC BEP ∠=∠ ∴△BEP ∽△CPF ,∴CF BPCP EB =∴462+=-y x x ∴43212-+-=x x y (42<<x ) ②当点F 在线段CD 的延长线上时∠FDM =∠C=∠B , FMD FPC BEP ∠=∠=∠,∴△BEP ∽△DMF BEP DMF S S ∆∆=49,∴xy BP DF ==23 又43212-+-=x x y ,∴0832=+-x x ,Δ<0,∴此方程无实数根, 故当点F 在线段CD 的延长线上时,不存在点P 使BEP DMF S S ∆∆=49当点F 在线段CD 上时,同理△BEP ∽△DMFBEP DMF S S ∆∆=49,∴x y BP DF ==23,又∴△BEP ∽△CPF ∴CFBPCP EB =,∴y x x -=-462 ∴43212+-=x x y ,∴0892=+-x x ,解得 11=x ,82=x 由于82=x 不合题意舍去,∴1=x ,即BP =1 所以当BEP DMF S S ∆∆=49时,BP 的长为1. 10. 解:(1)△CMF ∽△BEM ,△MEF ∽△BEM .证明如下:在梯形ABCD 中,∵AD ∥BC ,AB =CD ,∴∠B =∠C . 又∵∠EMF +∠FMC =∠B +∠BEM ,∠EMF =∠B ,∴∠FMC =∠BEM .∴△CMF ∽△BEM . ∴CM BEFM EM =. 又∵CM =BM ,∴BMBEFM EM =.∵∠EMF =∠B ,∴△MEF ∽△BEM . (2)∵△CMF ∽△BEM ,∴CFCMBM BE =. ∵BM =CM =2,∴y x 22=.∴所求函数的解析式为xy 4=,(41≤≤x )。