北师大版求解一元一次方程

合集下载

北师大版七年级上册5.求解一元一次方程(课件)(1)

北师大版七年级上册5.求解一元一次方程(课件)(1)
当利用去括号法则,先去括号,再用上节课所学的就能解该方程了.
去括号法则:
去掉“+( 去掉“–(
)”,括号内各项的符号不变. )”,括号内各项的符号改变.
探索&交流
用三个字母a、b、c表示去括号前后的变化规律: a+(b+c) = a+b+c a–(b+c) = a–b–c
例题欣赏 ☞
例2.解方程:4(x+0.5)+x = 7. 解:去括号,得4x+2+x= 7. 移项,得4x+x=7-2. 合并同类项,得5x=5. 方程两边同除以5,得x=1.
第五章 一元一次方程
2.2 求解一元一次方程
北师大版七年级数学上册
1.正确理解和使用去括号法则.(难点) 2.会解含有括号的一元一次方程.(重点)
学习&目标
情境&导入
去括号法则: 1.如果括号外的因数是正数,去括号后原括号内各项的符号与本 来的符号相同; 2.如果括号外的因数是负数,去括号后原括号内各项的符号与本 来的符号相反.
例题&解析
例题欣赏 ☞
例题&解析
例3.若方程3(2x-1)=2-3x的解与关于x的方程6-2k=2(x+3)的解
相同,则k的值为( B )
A. 5 B.- 5
9
9
C. 5 B.- 5
3
3
总结:移项法是解简易方程的最基本的方法,其目的是便于合并同类 项,要把移项与在方程一边交换项的位置区分开来;解题的关键是要 记住“移项要变号”这一要诀;其步骤为“一移二并三化”.
1.方程1-(2x+3)=6,去括号的结果是( )
A.1+2x-3=6
B.1-2x-3=6
C.1-2x+3=6

北师大版七年级上册数学《求解一元一次方程》一元一次方程说课教学复习课件

北师大版七年级上册数学《求解一元一次方程》一元一次方程说课教学复习课件
(来自《点拨》)
知2-练
1 已知关于x的方程3a-x= x +3的解为2,则式子a2 2
-2a+1的值是_____1___.
2 方程3x-4=3-2x的解答过程的正确顺序是( C )
①合并同类项,得5x=7;②移项,得3x+2x=3+4;
③系数化为1,得x= 7 . 5
A.①②③
B.③②①
C.②①③
总结
知1-讲
移项与交换律的根本区别是移项时移动的 项要跨越等号,并且一定要记住移项要变号.
(来自《点拨》)
知1-练
1 把方程3y-6=y+8变形为3y-y=8+6,这种变形 叫做___移__项___,依据是__等__式__的__性__质__1__.
2 解方程时,移项法则的依据是( C )
A.加法交换律
数的系数.
解:(1)系数化为1,得x=-3.
(2)系数化为1,得x=-2.
(3)系数化为1,得x=-6.
(来自《点拨》)
总结
知1-讲
将系数化为1是解一元一次方程的最后一步, 解答时注意两点:一是未知数的系数是1而不是 “-1”;二是未知数的系数是分数时,可以将方 程两边同时乘以未知数系数的倒数.
(来自《点拨》)
C)
A.x=20
B.x=40
C.x=60
D.x=80
知3-练
(来自《典中点》)
2 下面解方程的结果正确的是( D )
A.方程4=3x-4x的解为x=4
B.方程 3 x= 1 的解为x=2 23
CD..方方程程312-=48=x的1解x的为x解=为x14=-9 3
知3-练
(来自《典中点》)
知3-讲
第五章 一元一次方程
5.2 求解一元一次方程

北师大版七年级数学上册第五章 一元一次方程 求解一元一次方程(第3课时)

北师大版七年级数学上册第五章 一元一次方程 求解一元一次方程(第3课时)
去分母,得2x-1+9-6x=12, 移项、合并同类项,得-4x=4, 解得x=-1, 故答案为-1.
课堂检测
基础巩固题
1. 方程3-5x2+7=-x+417去分母正确的是 ( C )
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
4x - 7x = 140– 56 -3x = 84 x = -28
巩固练习
解方程:
(1) 3−2 x=x+34;
(2)
1 3
(x+1)=
1 7
(2x-3);
(3)x+52=x4;
(4) 14(x+1)= 13(x-1).
巩固练习
(1)3−2 x=x+34; 解: (1)去分母(方程两边同乘6),得
拓广探索题
方程(3m-4)x2+3mx-4m=5x-2m是关于x的一元
一次方程,求m和x的值.
解: 因为原方程是关于x的一元一次方程, (3m-4)x2+3mx-4m-5x+2m=0 (3m-4)x2+(3m-5)x2m所=以0 3m-4=0,3m-5≠0,解得 m将=m43=43代入原方程,得 4x-136=5x-83 解得 x=-83.
D. 12-10x+14 = -(x+17)
2. 若代数式x−2 1与65的值互为倒数,则x=
8 3
.
课堂检测
基础巩固题
3.解方程:(1) x−4 1-2x3+5=-3
解:去分母(方程两边同乘12),得 3(x-1)-4(2x+5) =-3×12. 去括号,得3x-3-8x-20=-36. 移项,得3x-8x=-36+3+20. 合并同类项,得-5x=-13. 系数化为1,得x=153 .

《求解一元一次方程》word教案 (公开课)2022年北师大版 (5)

《求解一元一次方程》word教案 (公开课)2022年北师大版 (5)

求解一元一次方程第1课时合并同类项与移项(1)【教学目标】知识与技能理解合并同类项的法那么,会用合并同类项法那么解一元一次方程,并在此根底上探索一元一次方程的一般解法.过程与方法通过探索合并同类项法那么的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验.情感、态度与价值观通过探索合并同类项法那么并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣.【教学重难点】重点:合并同类项法那么的探索及应用.难点:合并同类项法那么的理解和灵活运用.【教学过程】一、温故知新师:你们知道等式的根本性质是什么吗?学生答复,教师点评.师:利用等式的根本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3x.学生解答,然后集体订正.问题展示:问题1:某校三年共购置计算机140台,去年购置数量是前年的2倍,今年购置数量又是去年的2倍,前年这个学校购置了多少台计算机?师:设前年购置计算机x台,那么去年购置计算机多少台?生:2x台.师:今年购置计算机多少台?生:4x台.师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=140合并同类项7x=140系数化为1x=20二、例题讲解【例】解以下方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.解:(1)合并同类项,得-x=-2,系数化为1,得x=4.(2)合并同类项,得6x=-78,系数化为1,得x=-13.三、稳固练习解以下方程:1.3x+4x-2x=18-7.2.y-y+y=×6-1.【答案】1.x= 2.y=四、课堂小结师:这节课你学习了哪些知识?获得了哪些经验?学生发言,教师予以补充.第2课时合并同类项与移项(2)【教学目标】知识与技能使学生掌握移项的概念,并用移项解方程.过程与方法根据具体问题的数量关系,形成方程模型,使学生形成利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,在活动中学会与他人合作,并能与他人交流思维的过程.情感、态度与价值观通过由具体实例的抽象概括的独立思考与合作学习的过程培养学生实事求是的态度以及善于质疑和独立思考的良好学习习惯.【教学重难点】重点:移项法那么的探索及其应用.难点:对移项法那么的理解和灵活应用.【教学过程】一、新课引入师:新课开始之前,我们先来看这样一个问题.问题展示:【例1】把一些图书分给某班学生阅读,如果每人分3本,那么剩余20本;如果每人分4本,那么还缺25本,这个班有多少学生?问题分析:师:设这个班有x名学生,如果每人分3本,这批书共多少本?生:(3x+20)本.师:每人分4本,这批书共多少本?生:(4x-25)本.师:这批书的总数有几种表示法?它们之间有什么关系?此题哪个相等关系可作为列方程的依据呢?学生分组讨论,合作探究,教师总结.师:我们可以列出方程3x+20=4x-25我们可以利用等式的性质解这个方程,得3x-4x=-25-20.师:请同学们仔细观察上面的变形,你发现了什么?学生分组合作、讨论,教师总结.师:上面的变形,相当于把原方程左边的20移到右边变成-20,把4x从右边移到左边变成-4x.及时引出移项的概念:把等式一边的某项变号后移到另一边,叫做移项.教师及时总结并强调移项要变号.【例2】解以下方程:(1)2x+6=1;(2)3x+3=2x+7.解:(1)移项,得2x=1-6,化简,得2x=-5.方程两边同除以2,得x=-.(2)移项,得3x-2x=7-3.合并同类项,得x=4.【例3】有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?师:同学们,这列数的变化规律是什么?生:前面一个数乘以-3得到后面的数.师:如果设第一个数是x,那么第二、三个数怎么表示呢?生:-3x,9x.师:请同学们思考并列出方程.生:x-3x+9x=-1701.解得x=243,所以这三个数分别是243,-729,2187.【例4】某制药厂制造一批药品,如用旧工艺,那么废水排量要比环保限制的最大量还多200 t;如用新工艺,那么废水排量比环保限制的最大量少100 t.新、旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?分析:因为新旧工艺的废水排量之比为2∶5,所以可设它们分别为2x t和5x t,再根据它们与环保限制的最大量之间的关系列方程.解:设新、旧工艺的废水排量分别为2x t和5x t.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:新、旧工艺产生的废水排量分别为200 t和500 t.二、稳固练习解以下方程:1.4x-20-x=6x-5-x.2.32y+1=21y-3y-13.3.2|x|-3=3-|x|.【答案】1.x=- 2.y=-1 3.x=-或三、课堂小结师:学习了移项法那么后,你认为用逆运算的方法和用移项的方法解方程哪个更简便?对于解一元一次方程,你有了哪些新的领悟?学生发言,教师予以点评.第3课时去括号与去分母(1)【教学目标】知识与技能理解并掌握解含有括号的一元一次方程的方法,能用多种方法灵活地解一元一次方程.过程与方法经历对一元一次方程解法的探究过程,深入理解等式的根本性质在解方程中的作用,学会多角度寻求解决问题的方法.情感、态度与价值观通过探索含有括号的一元一次方程的解法体验整体探索思想的意义,培养学生善于观察、总结的良好思维习惯.【教学重难点】重点:含括号的一元一次方程的解法.难点:结合方程的特点选择不同的方法解方程,并解释解法的合理性.【教学过程】一、问题展示,合作探究师:请同学们解方程:6x+6(x-2000)=150000.如果去括号,就能简化方程的形式,那么我们一起来解这个方程.6x+6(x-2000)=150000去括号6x+6x-12000=150000移项6x+6x=150000+12000合并同类项12x=162000系数化为1x=13500二、例题讲解教师出例如题.【例1】解方程:4(x+0.5)+x=7.解:去括号,得4x+2+x=7.移项,得4x+x=7-2.合并同类项,得5x=5.方程两边同除以5,得x=1.【例2】解方程:-2(x-1)=4.解法一:去括号,得-2x+2=4.移项,得-2x=4-2.化简,得-2x=2.方程两边同除以-2,得x=-1.解法二:方程两边同除以-2,得x-1=-2.移项,得x=-2+1,即x=-1.【例3】一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.水流的速度是3千米/时,求船在静水中的速度.师:如果设船在静水中的平均速度为x千米/时,请同学们答复以下问题.船顺流速度为多少?生甲:(x+3)千米/时.师:逆流速度为多少?生乙:(x-3)千米/时师:那么这个方程的等量关系是什么?生丙:往返的路程相等.师生共同探讨,列出方程:2(x+3)=2.5(x-3)师:下面请一位同学在黑板上写出这道题的解题过程.学生完成,然后集体订正.三、稳固练习解以下方程:1.2y+3=8(1-y)-5(y-2).2.3(2y+1)=2(1+y)+3(y+3).【答案】1.y=1 2.y=8四、课堂小结师:本节课主要学习了什么?同学们有哪些收获?学生发言,教师予以点评.第4课时去括号与去分母(2)【教学目标】知识与技能会解含分母的一元一次方程,掌握解一元一次方程的根本步骤和方法,能根据方程的特点灵活地选择解法.过程与方法经历一元一次方程一般解法的探究过程,理解等式根本性质在解方程中的作用,学会通过观察结合方程的特点选择合理的思考方向进行新知识探索.情感、态度与价值观通过尝试不同角度寻求解决问题的方法体会解决问题策略的多样性;在解一元一次方程的过程中,体验“化归〞的思想.【教学重难点】重点:解一元一次方程的根本步骤和方法.难点:含有分母的一元一次方程的解题方法.【教学过程】一、新课引入师:同学们,我们先来看这样一道题.教师出示问题:一个数,它的三分之二、它的一半、它的七分之一、它的全部加起来总共是33,求这个数.师:设这个数为x,那么它的三分之二、二分之一、七分之一、它的全部加起来怎么表示呢?生:x+x+x+x=33解这个方程关键是去分母,那么怎样才能去掉分母?根据是什么?学生合作探究,尝试去分母,并与同伴交流自己的解法是否正确.问题解答:根据等式的根本性质2,在方程两边同乘以各分母的最小公倍数42,即可将方程化为熟悉的类型.28x+21x+6x+42x=1386合并同类项得97x=1386系数化为1,x=答:所求的数是师生共同探讨解含有分数系数的一元一次方程的步骤.-2=-去分母(方程两边也同乘以各分母的最小公倍数)5(3x+1)-10×2=(3x-2)-2(2x+3)去括号15x+5-20=3x-2-4x-6移项15x-3x+4x=-2-6-5+20合并同类项16x=7系数化为1x=师:同学们能不能总结解一元一次方程的一般步骤?学生分组讨论,合作交流.二、例题讲解【例1】解方程:(x+14)=(x+20).解法一:去括号,得x+2=x+5.移项、合并同类项,得-x=3.两边同除以-(或同乘-),得x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140移项、合并同类项,得-3x=84.方程两边同除以-3,得x=-28.【例2】解方程:(x+15)=-(x-7).解:去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项、合并同类项,得16x=-5.方程两边同除以16,得x=-.三、稳固练习解以下方程:1.-=1.2.-3=.【答案】1.x=-5 2.x=-四、课堂小结师:下面我们一起来回忆一下解一元一次方程的一般步骤:1.去分母.2.去括号.3.移项.4.合并同类项.5.系数化为1.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。

北师大版七年级数学上册《求解一元一次方程》评课稿

北师大版七年级数学上册《求解一元一次方程》评课稿

北师大版七年级数学上册《求解一元一次方程》评课稿一、课程背景和目标1.1 课程背景《求解一元一次方程》是北师大版七年级数学上册的一节重要课程,涉及到一元一次方程的基本概念、解法和应用。

通过学习本课程,学生将能够掌握一元一次方程的解法,培养逻辑思维和问题解决能力。

1.2 课程目标本节课的主要目标是:•理解一元一次方程的定义和基本概念;•掌握一元一次方程的解法,包括等式的加减法和乘除法消元法;•能够运用所学知识解决实际问题。

二、课程内容和流程2.1 课程内容本节课的主要内容包括:•一元一次方程的定义和基本概念;•等式的加减法消元法;•等式的乘除法消元法;•运用解一元一次方程解决实际问题。

2.2 课程流程本节课的教学流程如下:第一步:引入•引入一元一次方程的概念和定义,与学生共同探讨一元一次方程的特点和解法的重要性。

第二步:讲解•讲解等式的加减法消元法,引导学生理解这一解法的原理并进行相关练习;•讲解等式的乘除法消元法,通过示例演示该解法的应用,并带领学生练习。

第三步:实践•设计一些实际问题,要求学生运用所学知识解决;•学生个别或小组合作,通过讨论和解答问题,巩固所学知识。

第四步:总结•小结一元一次方程的解法,重点强调加减法消元法和乘除法消元法;•鼓励学生互相分享解题思路和心得体会。

第五步:作业布置•布置相关习题作业,要求学生独立完成;•鼓励学生提出问题,并承诺在下节课共同解答。

2.3 教学方法和手段•提问法:通过提问学生,激发学生的思考和参与,引导学生主动探索解题方法;•讲解演示法:通过讲解和示范解题过程,帮助学生理解一元一次方程的解法;•合作学习法:鼓励学生个别或小组合作,通过合作讨论和解答问题,促进学生的互相学习和交流。

三、教学评价和反思3.1 教学评价通过对本节课的评价,可以对学生的学习效果和掌握程度进行评估。

主要评价指标包括:•学生对一元一次方程的理解程度;•学生对等式加减法消元法和乘除法消元法的掌握能力;•学生能否熟练运用所学知识解决实际问题。

北师大版七年级数学上册《求解一元一次方程(第1课时)》教学教案

北师大版七年级数学上册《求解一元一次方程(第1课时)》教学教案

《求解一元一次方程(第1课时)》教学教案教师引导学生思考:(1)与原方程相比,哪些项的位置发生了改变?哪些没变?(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是否发生了变化?与原方程相比常数项-2的位置发生了改变,一次项5x 和常数项8没变常数项-2的位置由等号的左边移动到了右边,符号由“-”变成了“+”,一次项5x 和常数项8的位置没变,符号也没变.师生总结出移项:移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。

做一做:例1下列计算,其中属于移项变形的是(C)A.由5+3x-2,得3x-2+5B.由-10x-5=-2x,得-10x-2x=5C.由5x+3=-4x+1,得5x+4x=1-3D.由5x=15,得x=3易错提醒:1.移项时必须是从等号的一边到另一边,并且不要忘记对移动的项变号,如从3+6x=7得到6x=7+3是不对的.鼓励学生积极思考,主动解决问题,小组交流,总结发言,教师及时纠正.培养了学生用符号语言表示等式的两个基本性质.加深学生对方程概念的理解,同时还可以锻炼学生思维的主动性.2.没移项时不要误认为移项,如从-2=x得到x=2,犯这样的错误,其原因在于对等式的基本性质(对称性)与移项的区别没有分清.3、出示课件做一做:教师引导学生利用移项求解一元一次方程例1解下列方程:(1)2x+6=1;(2)3x+3=2x+7;解:(1)移项,得2x=1-6.合并同类项,得2x=-5.方程两边同除以2,得x=-5 2 .(2)移项,得3x-2x=7-3.合并同类项,得x=4.例2解方程:14x=-12x+3.解:移项,得14x+12x=3.合并同类项,得34x=3.方程两边同除以34(或同乘以43),得x=4.师生共同总结:利用移项解方程的步骤:(1)移项;(2)合并同类项;(3)系数化为1.做一做:1.用移项法解方程:7-2x=3-4x;解:(1)移项,得4x-2x=3-7.合并同类项,得2x=-4.方程两边同除以2,得x=-2.2.x为何值时,代数式4x+3与15-2x的值相等?解:4x+3=15-2x 鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点,教师及时鼓励和纠错。

北师大版七年级上册数学教案:5.2求解一元一次方程优秀教学案例

北师大版七年级上册数学教案:5.2求解一元一次方程优秀教学案例
本节课的教学目标是通过求解一元一次方程,使学生掌握一元一次方程的解法,培养学生的逻辑思维能力和解决问题的能力。同时,通过解决实际问题,激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。
为了实现上述目标,我设计了以下教学过程:首先,通过引入生活实例,激发学生的学习兴趣,引导学生发现实际问题中的一元一次方程;其次,通过自主学习、合作探究的方式,引导学生掌握一元一次方程的解法;最后,通过巩固练习和拓展延伸,检验学生的学习效果,提高学生运用数学知识解决实际问题的能力。
(二)问题导向
1.自主学习:引导学生自主探究一元一次方程的解法,培养学生独立思考和解决问题的能力。
2.合作探究:组织学生进行小组讨论,共同解决问题,培养学生的团队合作意识和交流能力。
3.教师引导:在学生探究过程中,教师进行有效引导,启发学生思考,帮助学生论,分享各自的学习心得和解题方法,培养学生之间的交流与合作能力。
在整个教学过程中,我注重关注每一个学生,充分调动学生的积极性,鼓励学生积极参与课堂讨论,培养学生的主体意识。同时,我运用多种教学方法,如讲解、示范、引导、激励等,使学生在轻松愉快的氛围中掌握知识,提高能力。
二、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.学会运用一元一次方程解决实际问题,提高运用数学知识解决实际问题的能力。
3.教师评价:教师对学生的学习过程和结果进行全面、客观的评价,给予肯定和鼓励,激发学生的学习积极性。
在整个教学过程中,我注重关注每一个学生,充分调动学生的积极性,鼓励学生积极参与课堂讨论,培养学生的主体意识。同时,我运用多种教学方法,如讲解、示范、引导、激励等,使学生在轻松愉快的氛围中掌握知识,提高能力。
北师大版七年级上册数学教案:5.2求解一元一次方程优秀教学案例

北师大版数学七年级上册5、2求解一元一次方程(一)

北师大版数学七年级上册5、2求解一元一次方程(一)

七上5-2求解一元一次方程(一)【课标与教材分析】课标要求能解一元一次方程, 本节课要求学生会用移项法解一元一次方程。

本节课在学生熟悉用等式基本性质解一元一次方程的基础上,通过分析、观察、归纳出移项法则能简化方程、解方程的步骤.纵观本节课的安排,在内容的呈现顺序上让我们感觉到数学知识学习的阶梯性:新内容的学习解答过程,总是借助一些已知的知识与方法,将其转化,让旧知识服务于新内容.本节课为一元一次方程求解的第一课时,主要是用移项的方法求解简单的方程,教材的意图是将解方程作为利用方程解决实际问题整个过程的一个基本环节,因此在方程的应用中还会有机会进一步进行解方程的训练,在移项时,学生常犯一些错误,如移项忘记变号等,这时,教师不要急于求成,而要引导学生反思自己的解题过程,必要时,请学生用等式的基本性和移项法则两种方法,体会解一元一次方程中的转化思想,培养学生综合运用所学数学知识解决实际问题的能力. 结合解方程的过程,让学生思考有关的步骤(如“合并同类项”“移项”等)的作用,是为了让学生反复体会化归的思想,教学中可以引导学生联系解方程的目的体会解法。

【学情分析】学生已经知道的:学生在小学曾学过利用逆运算求解简单的一元一次方程,具备了一定的经验基础。

上一节学生尝试着用等式的基本性质解一元一次方程,再通过观察、归纳,就不难发现用等式的基本性质解一元一次方程的移项法则。

注意让学生体会移项的优越性。

学困生分析:移动的项变号,不移动的项不变号,大部分同学对“移项”的实质理解也比较到位。

但方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.出现移项的没变号,没移项的变号的错误。

学生想知道的: 尽管学生已经在前面已经运用等式的基本性质学习了一些简单的一元一次方程的求解方法,但是对于稍微复杂的一元一次方程(如未知数的系数不为1)需进一步探索求解一元一次方程的一般方法,通过合作探究让学生体验知识的形成和运用的过程,体会问题解决的策略性,提高学生学习的主动性,帮助学生的数学学习。

北师大版数学七年级上册5.2.1求解一元一次方程教学设计

北师大版数学七年级上册5.2.1求解一元一次方程教学设计
四、教学内容与过程
(一)导入新课
1.教学活动设计
在课堂开始时,教师通过一个与学生生活息息相关的问题情境引入新课:“小明的年龄比小红大3岁,三年后,小明的年龄将是小红的两倍。请问现在小明和小红各是多少岁?”这个问题能够激发学生的好奇心,引导学生用数学知识解决实际问题。
2.教学过程
(1)让学生独立思考,尝试解决这个问题。
4.设计不同难度的练习题,使学生在巩固基础知识的同时,逐步提高解题能力。
(三)情感态度与价值观
1.培养学生对待数学学科的积极态度,激发学生学习数学的兴趣和自信心。
2.通过一元一次方程的学习,让学生认识到数学在解决实际问题中的重要作用,增强学生的数学应用意识。
3.培养学生勇于挑战、克服困难的精神,使学生在面对问题时,能够主动寻找解决方案。
(2)运用探究式教学法,引导学生自主探究一元一次方程的解法,培养学生的自主学习能力和思维能力。
(3)利用数形结合法,借助图形帮助学生理解一元一次方程的解法,提高学生的几何直观。
(4)设计小组合作活动,让学生在合作交流中互相学习、互相启发,共同克服学习难点。
2.教学策略:
(1)注重分层教学,针对学生的认知水平和学习风格,设计不同难度的教学任务,使每位学生都能在课堂上获得成就感。
4.预习作业:
(6)预习下一节内容,提前了解一元一次不等式的概念和解法,为接下来的学习打下基础。
作业布置注意事项:
1.作业量适中,确保学生能够在课后合理安排时间,既巩固了所学知识,又不会过度负担。
2.鼓励学生独立完成作业,培养他们的自主学习能力和解决问题的能力。
3.教师应及时批改作业,给予学生反馈,帮助学生发现和纠正错误,提高学习效果。
(2)引导学生通过讨论,发现解决这个问题需要列出一个方程。

北师大版七年级上册5.求解一元一次方程(课件)

北师大版七年级上册5.求解一元一次方程(课件)
用移项法解一元一次方程的一般步骤: 移项→合并同类项→系数化为1. 移项的原则: 未知项左边来报到,常数项右边凑热闹. 移项的方法: 把方程中的某些项改变符号后,从方程的一边移到另一边,即移项 要变号.
1.将方程5x+1=2x-3移项后,可得( ) A.5x-2x=-3+1 B.5x-2x=-3-1 C.5x+2x=-3-1 D.5x+2x=1-3
练习&巩固
2.下列各方程合并同类项不正确的是( ) A.由4x-2x=4,得2x=4 B.由2x-3x=3,得-x=3 C.由5x-2x+3x=12,得x=12 D.由-7x+2x=5,得-5x=5
总结:移项与交换律的根本区分是移项时移动的项要跨过等 号,并且一定要记住移项要变号.
探索&交流
知识点三 用移项法解一元一次方程
下面的框图表示了解这个方程的流程.
3x+20=4x-25 移项
3x-4x=-25-20 合并同类项
-x=-45 系数化为1
x=45
移项解一元一次方程一般步骤: ①移项 ②合并同类项 ③系数化为1
知识点二 移 项 解方程:5x-2 = 8.
探索&交流
方程两边同时加2,得
5x-2+2 = 8+2,
也就是
5x = 8+2.
利用等式的基本性质,我们对方程进行了如下变换,视察并回答: 5x --22 = 8
5x = 8 + 2 (1)与原方程相比,哪些项的位置产生了改变?哪些没变?
探索&交流
(2)改变位置的项的符号是否产生了变化?没改变位置的项的符号是 否产生了变化?
知识点一 用合并同类项法解一元一次方程
例1.解下列方程:
1 2x 5 x 6 8;

北师大版初一数学上册求解一元一次方程-教案

北师大版初一数学上册求解一元一次方程-教案
情感态度与价值观:
在用移项法则解一元一次方程中,引导学生反思,从而自觉改正错误.
教学重点:
用移项法则解一元一次方程
教学难点:
利用等式的基本性质推导出用移项法解一元一次方程
教学过程
备注/批注
一、复习导入
1.谈话引入一元一次方程
2.出示学习目标,学生齐读。
3.根据习题,简述做题过程和依据,回忆等式的基本性质。
学生回答问题,判断对错,并改正。教师讲解注意事项
注:(1)移项,变号。
(2)移项时,一般把含未知数的项移到方程的左边, 常数项移到方程的右边.
三、新知探究
1.解下列方程:
(1)2x + 6 = 1
(2)3x + 3 = 2x + 7
学生先独立完成,然后学生小组内相互讲解过程,学生上台完成练习,两位学生上台讲解做题过程,并讲解容易出错的地方。
《5.2求解一元一次方程 》教案
备课人
张维东
签审
签审时间
课次:《5.2求解一元一次方程 》第1课时
教学目标:
知识与技能:
1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.
2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.
过程与方法:
体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
2.练习:
(1)10x–3=17
(2) 5x + 4=24
(3) 5x–2=8+7x
(4) 4x–2=3–x
学生独立完成,部分学生上台做题,学生讲解过程,其他同学找问题
3. 解下列方程:
.

北师大版数学七年级上册课件第五章——求解一元一次方程去分母

北师大版数学七年级上册课件第五章——求解一元一次方程去分母

❖ 通过本节课的学习,你有什么收获?
从前面的例题中我们看到,去分母、去括号、移项、 合并同类项等都是方程变形的常用方法,但必须注 意,移项和去分母的依据是等式的性质,而去括号 和合并同类项的依据是代数式的运算法则。
一般地,解一元一次方程的基本程序是:
去分母
去括号 移项
合并 同类项
两边同除以未 知数的系数
把含有未知数的项移到一边,常数项移到另一边.“过桥 变号”,依据是等式性质一。移项要变号,防止漏项;
合并同类项 将未知数的系数相加,常数项项加。依据是乘法分配 律,系数为1或-1时,记得省略1;
系 数 化 为1 在方程的两边除以未知数的系数.依据是等式性质二。 分子、分母不要写倒了;
作业:
《金典训练》 P101-102
2 x 1 x 1 x x 33 327
思考:方程两边同乘 42的依据是什么?
各分母的最小公倍数时42,方程两边同乘42,则得到
42 2 x 42 1 x 42 1 x 42x 4233
3
2
7
28x 21x 6x 42x 1386
合并同类项, 97x 1386
系数化为1,
x 1386 97
2
3
解:去分母(方程两边同乘6),得
18x+3(x-1)=18-2(2x-1).
No 去括号,得
18x+3x-3=18-4x+2
Image 移项,得
18x+3x+4x=18+2+3.
合并同类项,得 25x=23
系数化为1,得 x 23 25


在方程的两边除以未知数的系数.
2(2x+1)=1-5(x-2)

5.2一元一次方程的解法(去括号解一元一次方程))2024-2025学年北师大版七年级数学上

5.2一元一次方程的解法(去括号解一元一次方程))2024-2025学年北师大版七年级数学上
解:去括号,得x+4x+2=17
移项,得
4x+x=17-2
合并同类项,得 5x=15
方程两边同除以5,得 x=3
问题六:你能总结出解含有括号的一元一次方程的一般步骤吗?
说一说你的看法.
5.2 一元一次方程的解法
知识.归纳
去括号解方程的步骤:
①去括号;乘法对加法的分配律
去括号法则
②移项;移项要变号
等式的基本性质1
那么可列出方程:y-0.5+4y=20-3
5.2 一元一次方程的解法
尝试.思考
问题四:x+4(x+0.5)=20-3这个方程和之前解的方程有什么不同?
方程出现了括号
问题五:怎样解所列的方程?说一说你的看法.
方程有括号先去括号,利用乘法对加法的分配律
5.2 一元一次方程的解法
尝试.思考
解方程:x+4(x+0.5)=20-3
③合并同类项;
合并同类项法则
④系数化为1:方程两边同时除以未知数的系数. 等式的基本性质2
问题七:步骤中每一步的依据是什么?
5.2 一元一次方程的解法
知识.巩固
解方程:1+6x=2(3-x).
解:去括号,得
移项,得
1+6x=6-2x.
6x+2x-=6-1.
合并同类项,得 8x=5.
方程两边都除以8,得 x=
去括号解方程
的步骤
去括号解一
元一次方程
去括号注意
去括号→移项→合并同类项→系数化为1
括号外的因数是负数,那么去括号后原括号内
各项的符号都要改变;
当乘数与一个多项式相乘时,乘数应乘多项式

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计一. 教材分析《求解一元一次方程》是北师大版数学七年级上册第五章第二节的内容。

本节内容是在学生已经掌握了代数式的运算和方程的定义的基础上进行学习的。

通过本节课的学习,使学生掌握一元一次方程的解法,会解实际问题中的一元一次方程。

二. 学情分析学生在小学阶段已经接触过方程,对方程有了一定的认识。

但初中阶段的一元一次方程与小学阶段的方程在解法和应用上有所不同。

此外,学生对于解方程的方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。

三. 教学目标1.知识与技能:理解一元一次方程的概念,掌握一元一次方程的解法,能解实际问题中的一元一次方程。

2.过程与方法:通过自主探究、合作交流,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力。

四. 教学重难点1.重点:一元一次方程的解法。

2.难点:将实际问题转化为方程,并运用方程解决问题。

五. 教学方法采用自主探究、合作交流、讲解演示的教学方法。

通过引导学生动手操作,培养学生的动手能力和解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的解法。

2.教学素材:准备一些实际问题,用于引导学生运用一元一次方程解决问题。

七. 教学过程1.导入(5分钟)利用复习导入的方法,回顾已知的一元一次方程的定义和特点。

引导学生思考:如何求解一元一次方程?2.呈现(10分钟)呈现一些实际问题,让学生尝试用一元一次方程来解决。

通过讲解演示,引导学生理解一元一次方程的解法。

3.操练(10分钟)学生分组进行讨论,每组选择一个实际问题,尝试用一元一次方程来解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成一些一元一次方程的练习题。

教师选取部分题目进行讲解,总结解题规律。

5.拓展(10分钟)引导学生思考:一元一次方程在实际生活中有哪些应用?让学生举例说明,进一步巩固所学知识。

初中数学北师大版七年级上册求解一元一次方程课件

初中数学北师大版七年级上册求解一元一次方程课件

感悟新知
知2-讲
3. 解方程中去括号的顺序 先去小括号,再去中括号,最后 去大括号,一般是由内向外去括号,也可以由外向内去 括号.
感悟新知
知2-讲
特别解读 ◆去括号的目的是能利用移项解方程,其实质是乘
法分配律. ◆解方程中的去括号法则与整式运算中的去括号法
则相同.
感悟新知
例2 解方程:4x+2(4x-3)=2-3(x+1). 解题秘方:按“去括号→移项→合并 同类项→系数化为1”的步骤解方程.
知2-练
感悟新知
解:4x+2(4x-3)=2-3(x+1).
去括号,得4x+8x-6=2-3x-3.
移项,得4x+8x+3x=2-3+6.
合并同类项,得15x=5.
系数化为1,得 x=
1 3
.
知2-练
感悟新知
知2-练
2-1. 若2(a+3) 的值与4 互为相反数,则a的值为( C ) A.-1 B. -7
解:(1)x-5 1=x3 3(x-1)= 5x 3x-3= 5x -2x= 3 x= -32
知3-练
感悟新知
(2)x3+1=2x+3 1 x+3= 2x+1 x-2x= 1-3 -x= -2 x= 2
知3-练
感悟新知
(3)x+3 2-2x-5 3=-2 5(x+2)-3(2x-3)= -30 5x+10-6x+9= -30 -x= -30-10-9 x= 49
移项,得2x-3x+5x=9+2-10-24.
合并同类项,得4x=-23. 系数化为1,得x=- 23 .
4
知3-练
感悟新知
3-1. 解下列方程:

北师大版数学七年级上册求解一元一次方程课件

北师大版数学七年级上册求解一元一次方程课件
x 1 2x 3
( 2)

3
7
3
2
3 x 1 x 1
4
3
x 1
1
4
x 2 1
2
3
(1)解一元一次方程,一般要通过
去分母、去括号、移项、合并同类项、
未知系数化为1等步骤,
(2)把这个一元一次方程“转化”成
x=a的情势。
5x 7x 8 ;2
3x 20 4x 25移项,得
3
5
1 x 3x
2
2
移项,得
3x 4x ;25 20
3
5
- x 3x 1
2
;2
例:解方程
2x 3 3x 2
解:移项,得 2x 3x 2 3
x 1
合并同类项,得
第五章 一元一次方程
5.2.1 求解一元一次方程
温故知新
1.等式的基本性质:
(1)等式的两边同时加上(或减去)同一个代数
式,所得结果仍是等式;
(2)等式两边同时乘以(或除以同一个不为0)的
数,所得结果仍是等式.
2.利用等式的性质解下列方程:
5x-2=8
学习目标
1.理解移项法则,准确进行移项
(重点)
2x+5x-3x=5-6-3.
合并同类项,得
4x=-4.
方程两边同时除以4,得x=-1
思考:利用去括号解方程要注意什么?
去括号必须注意的事项
(1)如果括号外的因数是负数时,去括号
后,原括号内各项的符号要改变;
(2)乘数与括号内多项式相乘时,乘数应乘
括号内的每一项,不要漏乘.
练一练:

北师大版七年级数学上册《求解一元一次方程》典型例题(含答案)

北师大版七年级数学上册《求解一元一次方程》典型例题(含答案)

《求解一元一次方程》典型例题例1 解方程:89210+-=+-x x例2 解方程:)2(3)3(2+=-x x例3 解方程:7722121-=--x x例4 解方程:6233)5(54--+=--+x x x x例5 解方程:5303.02.05.05.01.24.0=--+x x例6 下面解题过程正确吗?如果正确,请指出每一步的依据;如果不正确,请指出错在哪里,并给出正确的解答.(1)解方程413x x += 两边都乘以12,得 134=-x x ∴1=x(2)解方程83243212x x --+= 去分母,得 x x 326220--+=移项,得 202623--=-x x合并同类项,得 16-=x例7 如果一个正整数的2倍加上18等于这个正整数与3之和的n 倍,试求正整数n 的值.例8 解方程234=-+-x x例9 解方程.132=-+-x x参考答案例1 分析 这个方程可以先移项,再合并同类项.解 移项,得.28910-=+-x x合并同类项,得6=-x把系数化为1,得6-=x说明:初学解方程者应该进行检验,就是把求得的方程的解代入原方程中,看方程的左右两边是否相等,如果相等则是方程的解,否则就不是方程的解.则说明我们的解题过程有误.当熟练之后可以不进行检验,以后我们会知道一元二次方程不会产生增根.例2 分析 这个方程含有括号,我们应先去掉括号,然后再进行合并同类项等.解 去括号,得.6362+=-x x移项,得6632+=-x x合并同类项,得12=-x把系数化为1,得.12-=x说明:在去括号时要注意符号的变化,同时还应该注意要用括号前的数去乘括号内的每一项,避免出现漏乘的现象.例3 分析 该方程中含有分母,一般我们是要先去掉分母,然后再按其他步骤进行.解 去分母,得217)2(3)2(21⨯-⨯=--x x去括号,得1476221-=+-x x移项,得2211476---=--x x合并同类项,得1707-=-x把系数化为1,得.7224=x 说明:初学者在去括号时,如果分子是两项的,应该用括号把分子括上以避免出现符号的错误.例4 分析 在这个方程中既有括号又有分母,先做哪一步这应因题而定.解 去分母,得)2(5)3(10)5(30)4(6--+=--+x x x x去括号,得105301015030246+-+=+-+x x x x移项,得150241*********--+=+--x x x x合并同类项,得13429-=-x把系数化为1,得.29184=x 说明:要灵活应用解方程的步骤,在熟练之后这些解方程的步骤可以省略不写.例5 分析 在这个方程中既有小数又有分数,一般是先把分子分母中的小数都化成整数再进行计算.解 原方程可化为:53320505214=--+x x 去分母,得9)2050(5)214(3=--+x x去括号,得91002506312=+-+x x移项并合并同类项,得196112=x把系数化为1,得431=x 说明:在解方程时解方程的步骤可以灵活使用,如在去括号后发现项比较多时,并有同类项可以合并,也可以先合并一次同类项然后再移项.例6 分析 第(1)小题方程中有两项有分母,另一项没有分母,在去分母时应注意不要漏乘没有分母的项.第(2)小题的各项,尤其是右边两项比较复杂,去分母时必须小心谨慎,防止出错.解 (1)错,错在去分母时漏乘了方程中间的“1”,正确解答如下: 去分母,得 x x 3124+=移项 12 1234==-x x x(2)错,错在将方程的两边乘以8后,832x --这一项应化为)32(x --而不是x 32--,正确解答如下:去分母,得 )32()3(220x x --+=去括号,得 x x 326220+-+=移项,得 516 165=-=-x x 说明 对于比较复杂的方程,求出解后要检验一下看是不是原方程的解,这样有利于减少解方程的错误.在解方程的过程中,认真、细致是解题的关键.例7 解 设已知的正整数为a ,依题意得)3(182+=+a n a ,即n a n 318)2(-=-, ∴.2)6(3--=n n a 因为a 和n 都是正整数,所以.62<<n当3=n 时,9=a ,36)39(31892=+⨯=+⨯;当4=n 时,3=a ,24)33(41832=+⨯=+⨯;当5=n 时,1=a ,.20)31(51812=+⨯=+⨯答:3=n ,或4=n ,或.5=n说明: 本例的解法用到了分类讨论.例8 分析 对于4-x 来说,当4>x 时,44-=-x x ,当4<x 时,x x -=-44,这二者之间的区别显然是很大的,不能混为一谈.同样,3-x 这个式子在3>x 时与在3<x 时也有很大区别.注意到以上情况,是因为我们感到只有把题目中的绝对值符号去掉,才能解出方程.因此,对本题,可以分为434≤≤>x x 、和3<x 三种情况去掉绝对值符号来解.解 当4>x 时,原方程可化为2)3()4(=-+-x x , 解得.29=x 当43≤≤x 时,原方程可化为2)3()4(=-+-x x ,这个方程无解.当3<x 时,原方程可化为2)3()4(=-+-x x 解得.25=x 所以,原方程的解是29=x ,或.25=x 说明:①从上面解题过程可以看出,带绝对值符号的方程,可以转化为不带绝对值符号的方程来解,而分类思想是实现这样的转化的法宝.②上面解题过程有读者不易察觉的一步,这就是检验.本题检验的具体做法是:在以4>x 为前提,求得29=x 之后,要看一看29是否与4>x 相符.在以3<x 为前提,解出25=x 之后,再看一看25与3<x 是否相符. ③解带有绝对值符号的方程,检验一步不要求书写,但不能以为这一步可有可无.例9 分析 对这类方程的常规解法,用分类讨论去绝对值. 从绝对值的几何意义出发,2-x 和3-x 分别表示数轴上表示x 的点到表示2的点与表示3的点之间的距离.如图所示,设数轴上表示2的点为A ,表示3的点为B ,那么示x 的点不会在点A 的左边或点B 的右边.解 方程132=-+-x x 的几何意义是数轴上表示x 的点到表示2的点的距离与表示3的点的距离之和为1.设数轴上表示2的点为A,表示3的点为B,则线段AB上的点都符合要求,线段AB之外的点均不符合要求.所以,这个方程的解是3≤x.2≤说明:从解方程来说,上面解法并不很重要,但从体会数学中的数形结合思想来说,则值得同学们拍案叫绝.这也是解不定方程的实例.。

北师大版七年级上册数学教案:5.2求解一元一次方程1

北师大版七年级上册数学教案:5.2求解一元一次方程1
北师大版七年级上册数学教案:5.2求解一元一次方程1
一、教学内容
北师大版七年级上册数学教案:5.2求解一元一次方程1
本节课我们将围绕以下内容展开教学:
1.理解一元一次方程的概念,掌握其一般形式:ax+b=0(a≠0)。
2.学习运用等式性质解一元一次方程,包括:
-同加同减法
-同乘同除法(注意除数不为0)
-难点五:解法的灵活运用。不同的一元一次方程可能需要不同的解法步骤,学生需要学会根据方程的特点选择最合适的解法。
在教学中,针对以上难点和重体实例来说明一元一次方程的概念和性质,通过可视化手段帮助学生形象化理解。
-通过反复练习和讲解,强化学生对等式性质的理解和运用。
3.掌握解一元一次方程的基本步骤,并通过实例进行操作练习。
4.解决一些简单的实际问题,运用一元一次方程进行求解。
二、核心素养目标
1.培养学生的逻辑思维能力,使其能够理解一元一次方程的本质,形成对数学概念准确把握的能力。
2.提高学生的运算能力,通过等式性质的运用,掌握一元一次方程的解法,并能熟练进行运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-掌握解一元一次方程的基本方法,包括同加同减法和同乘同除法。例如,解方程3x-5=7时,学生需要学会如何通过加5和除以3来求解x。
-能够将实际问题抽象为一元一次方程,并进行求解。例如,从实际问题中提取信息,构建方程模型,解决诸如年龄、速度、费用等问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度快的行程-速度慢的行程=两者
布置作业
作业:p151. 习题5.9 数学理解1,问题解决 2、3题
解:设联络员第一次追上前队时用了x小时, 根据题意列方程,得
12x = 4x + 4 解方程得:x =0.5
答:联络员第一次追上前队时用了0.5小时。
问题4:当后队追上前队时,他们已经行进
了多少路程?
解:设当后队追上前队时,他们已经行进
了x千米,根据题意列方程,得
x 1 x
6
4
解这个方程,得 x = 12
解析:如图,设经x分钟后爸爸追上小明;
小明

爸爸
5分钟 x分钟
x分钟
学校
(5+x)分钟 80米/分钟 80 (5 +x)米
X分钟 180米/分钟
180x米
等量关系:小明走的路程=爸爸走的路程
解:(1)设经 x 分钟后爸爸追上小明,根据题 意,得
180x = 80×5 + 80x 解方程,得 x = 4 (2)1000-180×4=280(米) 答:爸爸追上小明用了4分钟,此时离学校还 有280米。
行程问题
①追及问题:男跑路程AC-女跑路程BC=相距路程AB
②相遇问题:男跑路程AC+女跑路程BC=相距路程AB
想一想,试一试:
小明和小芳每天早晨坚持跑步,小芳每秒跑4 米,小明每秒跑6米。
(1)如果他们站在百米跑道的两端同时相向 起跑,那么几秒后两人相遇?
相等关系是:小芳跑的路程+小明跑的路程 = 100米
答:当后队追上前队时,他们已经行进12千 米.
问题5:联络员在前队出发多少时间后第一 次追上前队? 方法1:
解:设联络员在前队出发x小时后第一次追 上前队,根据题意列方程,得
4x = 12(x - 1) 解方程得: x = 1.5 答:联络员在前队出发后1.5 小时后第一 次追上前队.
问题5:联络员在前队出发多少时间后第一 次追上前队? 方法2:
解:设X秒后两人相距260米,依题意列 方程,得
4X + 6X +100= 260 解得: X=16 答:经过16秒后两人相距260米。
❖ 解决路程问题的关键是什么? 找出等量关系,列出方程。
❖找出等量关系的重要方法是:
画线段图。
议一议:
育红学校七年级学生步行到郊外旅行.(1)班 的学生组成前队,步行速度为4千米/时,(2)班 的学生组成后队,速度为6千米/时。前队出发1小 时后,后队才出发,同时后队派一名联络员骑自行 车在两队之间不间断地来回进行联络,他骑车的速 度为12千米/时。
追及过程动画展示:请点击绿色按钮
小明从家到校时间:1000÷80=12.5(分钟)
爸爸从家到校时间:1000÷180=50 (分钟) 9
爸爸从家到校时间+5 < 小明从家到校时间
所以,爸爸能在途中追上小明
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
思 • 爸爸追上小明用了多少时间? 考 (2) 追上小明时距离学校还有多远?
解:设后队追上前队用了x小时,根据题 意列方程,得
6x = 4x + 4 解方程得:x =2 答:后队追上前队时用了2小时。
问题2:后队追上前队时联络员行了多少路 程?
解:由问题1得后队追上前队用了2小时,因 此联络员共行进了
12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米。
问题3:联络员第一次追上前队时用了多长 时间?
过程演示
根据上面的事实提出问题并尝试去解答. 问题1:后队追上前队用了多长时间 ? 问题2:后队追上前队时联络员行了多少路程?
问题3:联络员第一次追上前队时用了多长时 间?
问题4:当后队追上前队时,前、后队行走了 多少路程?
问题5:联络员在前队出发多少时间后第一次 追上前队?
问题1:后队追上前队用了多长时间 ?
解:由问题3,联络员经过0.5小时第一次追 上前队,联络员第一次追上前队时,前队已出 发1+0.5=1.5小时。
答:联络员在前队出发后1.5 小时后第一次 追上前队.
1.甲乙两人相距40千米,甲在后乙在前,两人 同向而行,甲先出发1.5小时后乙再出发,甲的速 度为每小时8千米,乙的速度为每小时6千米,甲出 发几小时后追上乙?
解:设X秒后两人能相遇,依题意列方 程,得
4X + 6X = 100 解得: X=10 答:经过10秒后两人能相遇。
小明和小芳每天早晨坚持跑步,小芳每秒跑4 米,小明每秒跑6米。
(2)如果他们站在百米跑道的两端同时背向 起跑,那么几秒后两人相距260米?
100米
相等关系是: 小芳跑的路程+小明跑的路程+100 = 260米
应用一元一次方程
——追赶小明
01 学习目标 02 情境引入 03 新知探究 04 随堂练习 05 课堂小结
1.借助“线段图”分析追及问题中的相等 关系,建立方程解应用题;
2.利用“线段图”分析复杂行程问题中 的数量关系;
3.训练分析问题,解决问题的能力,进 一步体会方程模型的作用。
小明每天早上要在7:50分之前赶到距家 1000米的学校上学。一天,小明以80米/分 的速度出发,5分后,小明的爸爸发现他忘 了带语文书。于是,爸爸立即以180米/分的速 度去追小明。小明的爸爸能追上小明吗?
2.一条船在两个码头之间航行,顺水时 需要4.5小时,逆水返回需要5小时,水流速 度是1千米/时。这两个码头相距多少千米?
一、行程问题中的基本等量关系为: 路程=速度×时间
二、一般可从下面两个方面寻找追及问题中的 等量关系: (1)从时间考虑:
速度慢的用时-速度快的用时=多用的时间 (2)从路程考虑:
相关文档
最新文档