八年级数学上册 2.1.1 认识无理数导学案(新版)北师大版
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。
2.1.1 认识无理数 教学设计 2023—2024学年北师大版数学八年级上册
2.1.1 认识无理数一、板书课题 师:同学们,今天我们来学习数怎么不够用了二、出示目标 师:为了学好本节课,请看本节课的学习目标学习目标会区别一个数是不是有理数三、自学指导 师:来看我们本节课的自学指导自学指导认真看课本21P 内容,要求:(1)怎样把两个小正方形剪开拼成一个大正方形,(2)完成做一做,思考这个数为什么不能用有理数表示五分钟后,比谁能快速的完成自学指导中的问题四、学自学(学生看书, 教师巡视,,督促每位学生认真看书)五、测与导1、问题一:怎样小正方形剪拼成一个大正方形,并求出它的边长,边长的平方等于A 引例1: 下面请同学们拿出准备好的两个边长为1的小正方形,把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形。
引例2: a 可能是整数吗?说说你的理由. 引导学生从多个方面进行拼接,理解22=a ,a 不是整数,由于⋅⋅⋅==42,1122,越来越大,则a 不是整数.引例3: a 可能是分数吗?说说你的理由.因为943232 412121=⨯=⨯,结果都是分数,所以a 不可能是分数. 生总结:a 既不是整数,也不是分数,所以a 不是有理数.归纳总结:有理数包括:整数和分数.如果一个数既不是整数也不是分数,那么这个数不是有理数.2、做一做:(1) 如图,以直角三角形的斜边为边的正方形的面积是多少?a 2=2a 12 b解:两条直角边分别为1和2,根据勾股定理,得12+22=5,所以正方形的面积是5.(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?解:b2=5.①因为22=4,32=9,4<5<9,所以b不可能是整数.②没有两个相同的分数相乘得5,故b不可能是分数.因为没有一个整数或分数的平方为5,所以b不是有理数.3、检测:随堂练习(引导学生回答正三角形的性质,强调书写格式)预设问题(1)正三角形的性质不会(2)格式书写不规范4、小结:本节课我们学习了不能用有理数表示的数六、练P 1必做:22选做:P 222七、教学反思:。
XX年八年级数学上2-1认识无理数导学案(北师大版)
XX年八年级数学上2-1认识无理数导学案(北师大版)本资料为woRD文档,请点击下载地址下载全文下载地址科目数学课题认识无理数主备人审核人学案类型新授学案编号学习目标知识与能力:通过丰富的现实情景,使学生感受确定物体位置的方法,进而归纳出确定位置的条件和方法,并会用生动形象的语言概括总结的确定位置的方法.过程与方法:通过学习与探究,灵活地选择和运用不同的方式确定物体的位置情感态度和价值观:运用语言归纳概括确定物体的位置的方法,提高学生的语言表达能力,开拓学生的思路,发展学生的思维能力.重点:会坐标法,方向角加距离法确定位置,知道经纬定位法、区域定位法确定位置.难点:用方向角确定位置的方法,对确定位置方法多种多样的理解。
学法指导及使用说明:自主、合作探究、体验式教学法知识链接:温故知新:(1)谁知道在数轴上,确定一个点的位置需要几个数据?举例说明?新知:在平面内,又是如何确定一个点的位置呢?生活中我们常常需要确定物体的位置。
请同学们根据生活中的实例进行探究。
一、课前自学认真自学课本P54—P55页内容,将有疑问的部分标注。
二、课堂探究:、电影院中确定座位,引出有序数对在电影院内如何找到电影票上所指的位置?(2)在电影票上,“5排3号”和“3排5号”中的“5”的含义是什么?(3)如果将“3排5号”简记作(3,5),那么“5排3号”如何表示?(4,5)表示什么含义?议一议:1)在只有一层的电影院内确定一个座位一般需要几个数据?为什么?2)在生活中,确定物体的位置还有其他方法吗?与同伴进行交流。
2、利用教室内的座位等形式探索有序数对确定位置的方法问题:你能用两个数据表示你现在所坐的位置吗?3、经纬度定位法据新华社报道,1976年7月28日凌晨3时40分,我国河北省唐山市发生里氏7.8级的大地震,震中位于唐山市吉祥路一带,即北纬39˚38’,东经118˚11’。
在这次地震中,有24万人丧生,是有史以来地震给人类造成的特大灾难之一。
八年级数学上册 2.1.1 认识无理数导学案(无答案)(新版)北师大版
2.1.1认识无理数课题 2.1.1认识无理数活动安排 达标练习:为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a 米,则由勾股定理得a 2=12+22,即a 2=5,a 的值大约是多少?这个值可能是分数吗?新知拓展:如图,正三角形ABC 的边长为2,高为h ,h 可能是整数吗?可能是分数吗?[达标反馈]: 1._________小数或____________小数是有理数。
2.x 2=3,则x______分数,______整数,______有理数.(填“是”或“不是”)3.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定4.边长为1的正方形的对角线长是( ) A. 整数 B. 分数 C. 有理数 D. 不是有理数 5.设面积为5π的圆的半径为a ,a 是有理数吗?说说你的理由.6. 如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC=6,AD=5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?[总结升华]:上述题中a ,b 确实存在,但都不是有理数,那么它们是什么数呢? 总结反思:学习目标 1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.探究任务二: 1、独学3分钟 组学2分钟抽展(展台展示)2分2.达标练习:2分钟新知拓展: 5分钟达标反馈:10分钟总结升华2分钟活动安排 【情境引入】我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题. 【学习探究】探究任务一:若a 2=2中,a 是什么数呢? 请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?假设拼成大正方形的边长为a ,则a 应满足什么条件呢?因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.小组讨论a 是整数吗?是分数吗?是有理数吗?达标小测:x 2=8,则x______分数,______整数,______有理数.(填“是”或“不是”) 探究任务二:b 是有理数吗?(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗?(课件出示) 复习旧知:什么是有理数及其分(2分钟) 探究任务一1:学生动手得到面积为2的正方形,教师课件演示,学生小组讨论a 是整数吗?是分数吗?是有理数吗? (10分钟) 2:达标小测:(2分钟)。
八年级数学上册2.1认识无理数说课稿(新版北师大版)
八年级数学上册2.1认识无理数说课稿(新版北师大版)一. 教材分析八年级数学上册2.1认识无理数是北师大版初中数学的一个重要内容。
这一节主要让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握无理数的估算方法。
教材通过丰富的例子,引导学生探索无理数的特点,培养学生的抽象思维能力。
二. 学情分析八年级的学生已经学习了有理数的概念,对数的运算有一定的了解。
但是,他们对无理数的概念可能感到陌生,理解起来有一定的困难。
因此,在教学过程中,我需要关注学生的认知水平,通过生动的例子和实际操作,帮助学生理解和掌握无理数的概念。
三. 说教学目标1.知识与技能:让学生了解无理数的概念,理解无理数与有理数的关系,掌握无理数的估算方法。
2.过程与方法:通过观察、操作、探索等活动,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.重点:无理数的概念和性质。
2.难点:无理数与有理数的关系,无理数的估算方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。
2.教学手段:多媒体课件、实物模型、几何画板等。
六. 说教学过程1.导入:通过一个故事引入无理数的概念,激发学生的兴趣。
2.新课导入:讲解无理数的概念,通过例子让学生理解无理数的特点。
3.案例分析:分析一些实际问题,让学生了解无理数在生活中的应用。
4.小组讨论:让学生分组讨论无理数与有理数的关系,分享各自的观点。
5.课堂练习:让学生做一些相关的练习题,巩固所学知识。
6.总结:对本节课的内容进行总结,强调无理数的概念和性质。
7.拓展:介绍一些无理数的应用领域,激发学生的学习兴趣。
七. 说板书设计板书设计要清晰、简洁,能够突出无理数的概念和性质。
主要包括以下几个部分:1.无理数的概念2.无理数的特点3.无理数与有理数的关系4.无理数的估算方法八. 说教学评价通过课堂表现、练习题和小组讨论等方式对学生的学习情况进行评价。
北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。
八年级数学上册 2.1.1 认识无理数教 精品导学案 北师大版
认识无理数学 科数学课题2.1认识无理数 (一)授课教师教学 目标通过拼图活动,让学生感受无理数产生的背景和学习它的必要性。
重点对无理数的认识。
德育 目标丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数的产生感性认识。
难点 无理数产生的实际背景和学习它的必要性。
1.什么叫有理数?举例说明。
2.勾股定理的内容是什么?若Rt ⊿ABC 的两直角边是5、12,那么它的斜边是多少教学过程课堂笔记二、互动导学随着人类的认识不断发展,人们发现,现实社会生活中确实存在不同于有理数的数,本章我们将学习无理数、实数、平方根、立方根的概念。
学习利用估算或借助计数器求一个无理数的近似值,并解决有关的实际问题拼图活动(课本32页) 把准备好的两块边长为1的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。
(1)设大正方形的边长为a ,a 满足条件是什么? (2)a 可能是整数吗?(3)a 可以是以2为分母的分数吗?a 可以是以3为分母的分数吗?说说你的理由。
(4)a 可能是分数吗?说说你的理由,与同伴交流。
,93,42,11222===越来越大,所以a 不可能是整数 ,41)21(2= 94)32(2=结果都是分数,所以a 不可能是分数” 事实上,在等式22=a 中,a 既不是整数也不是分数,所以a 不是有理数。
说明社会生活中存在着不是有理数的数。
做一做1.课本P32页“做一做”内容(1)以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件?(3)b 是有理数吗? 生活中的确存在一些不是有理数的数。
三:当堂练习 一、填空题1.在⊿ABC 中,∠C = 90°,若4,3==b a ,则c =_______;2.用长cm 4,宽cm 3的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于________cm ;3.平方等于16的数是 ;4.如果492=a ,则=a 。
北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)
第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。
北师版八年级上册第二章2.1.2认识无理数(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如π在实际中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用纸片折出√2的近似值,演示无理数的近似求解方法。
实践活动环节,学生分组讨论和实验操作进行得如火如荼,大家积极性很高。但在成果展示环节,我发现部分小组对无理数在实际生活中的应用理解不够深入。这说明在今后的教学中,我需要加强引导学生关注数学知识在现实生活中的运用,提高他们的应用能力。
学生小组讨论环节,我尽量以引导者的身份参与其中,让学生充分发表自己的观点。但在讨论过程中,我也发现部分学生较为内向,不敢表达自己的想法。针对这个问题,我计划在今后的教学中多给予这些学生鼓励和支持,提高他们的自信心。
五、教学反思
在今天的教学中,我发现学生在理解无理数概念上存在一定难度,这是我在今后教学中需要重点关注和改进的地方。在讲解无理数定义时,我尝试通过生活实例和数学历史故事来引导学生理解,但感觉效果并不理想。可能是因为这个概念本身较为抽象,需要更多具体、直观的例子来帮助学生理解。
在讲授无理数的表示和运算时,我注意到学生们的兴趣有所提高,尤其是案例分析部分。这说明结合实际情境进行教学更能激发学生的学习兴趣。但在讲解难点部分,如无理数的乘除运算,我发现学生们仍然感到困惑。因此,我需要寻找更有效的教学方法,如通过具体例子、图形演示等方式,帮助学生突破这个难点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是无限不循环小数,与有理数(整数和分数)不同。无理数在数学中具有重要地位,如在几何图形中描述长度和面积。
八年级数学上册第二章实数:认识无理数第2课时认识无理数教案新版北师大版
八年级数学上册教案新版北师大版:2.1认识无理数第2课时教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建1.数的小数表示面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)【思考】 a ,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢? (提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·; 无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能. [设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数.4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n. (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x ,则x ( )A .1<x <2B .2<x <3C .3<x <4D .4<x <52.一个正三角形的边长是4,高为h ,则h 是 ( )A .整数B .分数C .有限小数D .无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是 ,则斜边长是 数.【拓展探究】4.设半径为a 的圆的面积为20 π.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5. (3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.。
新北师大版八年级上册数学导学案:2.1认识无理数.doc
新北师大版八年级上册数学导学案:2.1认识无理数【学习目标】1、通过拼图活动,感受无理数产生的实际背景和引入的必要性。
2、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想。
3、会判断一个数是有理数还是无理数。
【学习重难点】重点:无理数概念的探索过程,了解无理数与有理数的区别,并能正确地进行判断。
【学习过程】模块一 预习反馈一、学习准备1、 有理数的概念:__________和___________统称为有理数。
2、 有理数总可以用 或 表示, 反过来 或 也都是有理数。
二、自主学习3、 理解无理数的概念例1 (1)把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形,设大正方形的边长为a,计算_____2=a ,小组讨论:a 可能是整数吗?a 可能是分数吗?讨论结果: 。
(2)_______2=b ,b 是有理数吗?归纳:无限不循环小数称为无理数。
例如:圆周率⋯⋯=14159265.3π是一个无限不循环小数,因此它是一个_____。
再如:0.121221222122221……(相邻两个1之间2的个数逐次加1)也是______。
实践练习:下列各数中,哪些是有理数?哪些是无理数?0.4583,•7.3,-π,-71,18.______________________________________________________________________________注意:无理数是一种与有理数不同的数,要区分“无限不循环小数”与“无限循环小数”的差别,_______不能化为分数,______可以化为分数。
事实上,有理数总可以用_______或_____________表示。
反过来,任何有限小数或无限循环小数也都是_________。
特殊的常数π是无限不循环小数,因此也是___________。
4、 估计数值的大小例2(1)判断如图3个正方形的边长之间有怎样的大小关系?说说你的理由.(2)能不能判断一下面积为2的正方形的边长a 的大致范围呢?(3)首先确定十分位,十分位究竟是几呢?借助计算器进行探索,完成表格 解:(1)(2)(3)模块二 合作探究1、利用方程的知识把••69.4化为分数的形式。
八年级数学上册2.1认识无理数教案 新版北师大版
八年级数学上册2.1认识无理数教案新版北师大版一. 教材分析本节课的主题是“认识无理数”,是无理数概念的学习。
无理数是实数的重要组成部分,与有理数相对应。
学生在学习有理数的基础上,进一步认识无理数,理解无理数的性质和无理数在实际生活中的应用。
教材通过引入π、√2等具体例子,让学生感受无理数的存在,并通过观察、实验、推理等方法,引导学生认识无理数的概念。
二. 学情分析八年级的学生已经学习了有理数,对实数的概念有了一定的了解。
但无理数作为实数的一个分支,与有理数有很大的不同,学生可能难以理解。
因此,在教学过程中,需要结合学生的认知水平,采用生动形象的例子和直观的演示,引导学生理解和接受无理数的概念。
三. 教学目标1.让学生理解无理数的概念,认识无理数的存在。
2.让学生掌握无理数的性质,了解无理数在实际生活中的应用。
3.培养学生的观察能力、实验能力和推理能力。
四. 教学重难点1.教学重点:无理数的概念和性质。
2.教学难点:无理数的理解和应用。
五. 教学方法采用问题驱动法、情境教学法、观察实验法、小组合作法等教学方法。
通过生动形象的例子和直观的演示,引导学生观察、实验、推理,从而理解和掌握无理数的概念。
六. 教学准备1.准备相关例题和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备相关教学素材,如π、√2等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念,进而引出无理数的概念。
提问:“同学们,我们已经学习了有理数,那么你们知道有理数有哪些特点吗?今天我们将要学习一种新的数——无理数,你们猜猜无理数有哪些特点呢?”2.呈现(10分钟)利用多媒体展示无理数的定义和性质,让学生直观地感受无理数的存在。
呈现无理数的定义:“无理数是不能表示为两个整数比的数。
”呈现无理数的性质:“无理数是实数的一部分,与有理数相对应。
无理数不能精确表示,它们的小数部分是无限不循环的。
”3.操练(15分钟)让学生通过观察、实验、推理等方法,加深对无理数概念的理解。
034.北师大版八年级数学上册2.1 第2课时 认识无理数(教案)
2.1认识无理数第2课时教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)【思考】 a ,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n . (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x ,则x ( )A .1<x <2B .2<x <3C .3<x <4D .4<x <52.一个正三角形的边长是4,高为h ,则h 是 ( )A .整数B .分数C .有限小数D .无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是 ,则斜边长是 数.【拓展探究】4.设半径为a 的圆的面积为20 π.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米.(2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。
北师大版八年级数学上册:2.1《认识无理数》教案
北师大版八年级数学上册:2.1《认识无理数》教案一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小方法。
教材通过引入π和√2等实际例子,帮助学生建立起无理数的直观印象,进而引导学生通过观察、思考、探究,发现无理数的特点和性质。
二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对数的概念有一定的了解。
但是,学生对无理数的概念和性质可能感到陌生,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动具体的例子和实际操作,帮助学生理解和掌握无理数的概念。
三. 教学目标1.了解无理数的概念,理解无理数与有理数的关系。
2.能够运用逼近法估算无理数的大小。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.重点:无理数的概念和性质。
2.难点:理解无理数与有理数的关系,以及运用逼近法估算无理数的大小。
五. 教学方法1.采用情境教学法,通过引入实际例子,激发学生的学习兴趣。
2.采用探究教学法,引导学生通过观察、思考、动手操作,自主发现无理数的特点和性质。
3.采用讲解法,教师详细讲解无理数的概念和性质,引导学生理解和掌握。
4.采用小组合作学习法,鼓励学生互相讨论、交流,共同解决问题。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算器、纸张等学习工具。
七. 教学过程1.导入(5分钟)利用课件展示π和√2的实际应用场景,如圆的周长和物体尺寸的测量等,引发学生对无理数的兴趣。
同时,提出问题:“你们认为π和√2是什么类型的数?”让学生思考并发表观点。
2.呈现(15分钟)教师讲解无理数的概念,通过PPT展示无理数的定义和性质,让学生了解无理数的特点。
同时,举例说明无理数与有理数的关系,如π和√2都是无理数,而2和3是有理数。
3.操练(10分钟)教师提出问题:“如何估算无理数的大小?”引导学生运用逼近法估算无理数的大小。
北师大版八年级数学上册2.1.1:认识无理数教案
举例解释:
-为了帮助学生理解无理数的抽象概念,可以使用数轴或图形来辅助说明,让学生通过直观的方式感受无理数的存在。
-在估算无理数大小时,可以通过比较无理数与有理数的大小关系,以及使用逼近法(如计算π的近似值)来降低难度。
-在讨论无理数的运算时,通过具体例题演示运算规则,如根号2与根号3的乘法运算,强调结果的不可简化性。
2.教学难点
-无理数的抽象理解:学生往往难以从具体数值中抽象出无理数的概念,对无限不循环小数的理解可能存在困难。
-无理数的估算:学生在估算无理数的大小时,可能会因为无理数的无限性而感到困惑。
-无理数的运算:尤其是乘除运算,学生可能会对结果的表示和运算规则感到不适应。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“无理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了无理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对无理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节课后,我对教学过程进行了深入的思考。首先,我发现同学们对无理数的概念和表示方法掌握得还不错,但在我讲解无理数运算规则时,部分同学显得有些困惑。这让我意识到,在今后的教学中,我需要更加关注学生对难点知识的理解。
北师大版数学八年级上册2.1.1认识无理数教学设计
一、教学目标
(一)知识与技能
1.理解无理数的概念,掌握无理数与有理数的区别和联系,能够识别常见的无理数,例如π和√2等。
2.学会使用数轴比较无理数的大小,能够进行无理数的近似计算,提高学生的数学运算能力。
3.掌握无理数的基本性质,如无理数的不可约性、无理数与有理数的运算规律等,为后续学习打下基础。
1.分组讨论:将学生分成小组,针对以下问题进行讨论:
-无理数在实际生活中的应用例子;
-无理数与有理数的运算规律;
-无理数证明的方法。
2.小组分享:各小组派代表分享讨论成果,其他小组进行补充和评价。教师在此过程中,引导学生相互学习,相互借鉴,提高课堂氛围。
(四)课堂练习
1.设计具有针对性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实践中巩固所学知识。
2.无理数的运算:通过具体例题,讲解无理数与有理数的加减乘除运算规律,以及无理数的大小比较方法。同时,强调在计算过程中,如何进行近似计算,提高学生的运算能力。
3.无理数的证明:引导学生通过合情推理和严谨证明来理解无理数的存在。以根号2为例,使用反证法进行证明,让学生感受数学的严谨性。
(三)学生小组讨论
(二)过程与方法
在教学过程中,采用以下方法使学生达到以上目标:
1.采用情境引入法,通过实际例子或故事激发学生对无理数的兴趣,引导学生主动探究无理数的奥秘。
2.利用数轴、图片等直观教具,帮助学生形象地理解无理数的概念,培养学生的直观想象能力。
3.设计小组讨论、合作探究等活动,让学生在交流互动中掌握无理数的性质和运算规律,提高学生的合作能力和解决问题的能力。
2.学生在数学运算方面,对无理数的处理可能存在困难。教师应关注学生的运算过程,及时纠正错误,指导学生掌握无理数的运算规律。
八年级数学上册 2.1.2 认识无理数导学案(新版)北师大版
八年级数学上册 2.1.2 认识无理数导学案(新版)北师大版2、1、2认识无理数活动安排达标练习:下列各数中,哪些是有理数?哪些是无理数?0、351,-,3、14159,圆周率π,-5、…,1112…(由相继的正整数组成)、新知拓展:判断题:(1)有理数与无理数的差都是有理数()(2)无限小数都是无理数()(3)无理数都是无限小数()(4)两个无理数的和不一定是无理数()【达标反馈】1、在实数3、14,-201 , 0、110…,π,中,有()个无理数?A、2个B、3个C、4个D、5个2、下列说法中,正确的是()A、带根号的数是无理数B、无理数都是开不尽方的数C、无限小数都是无理数D、无限不循环小数是无理数3、下列命题中,正确的个数是()①两个有理数的和是有理数;②两个无理数的和是无理数;③两个无理数的积是无理数;④无理数乘以有理数是无理数;⑤无理数除以有理数是无理数;⑥有理数除以无理数是无理数。
A 、0个B、2个C、4D、6个4、判断(正确的打"√",错误的打"")①带根号的数是无理数;()② 一定没有意义;()③绝对值最小的实数是0;()④平方等于3的数为无理数;()⑤有理数、无理数统称为实数;()5、下列各数中,哪些是有理数?哪些是无理数?0、4583,,-π,-,18、3【总结升华】1、会进行无理数的估算2、无理数的定义3、会判断一个数是无理数或有理数、总结反思:学习目标1、让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力、2、会判断一个数是有理数还是无理数、探究任务二:1、独学3分钟组学2分钟抽展(展台展示)2分2、达标练习:2分钟新知拓展:5分钟达标反馈:10分钟总结升华2分钟活动安排【情境引入】同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目、【学习探究】探究任务一:a是有限小数吗?1、导入:请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由、大家能不能判断一下面积为2的正方形的边长a的大致范围呢?观察下列探索过程、边长a面积S1<a<21<S<41、4<a<1、51、96<S<2、251、41<a<1、421、9881<S<2、01641、414<a<1、4151、<S<2、1、4142<a<1、41431、<S<2、a是有限小数吗?a是一个什么样的小数呢?完成教材23页做一做:探究任务二:无理数的定义请大家把下列各数表示成小数、3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数、上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示、反过来,任何有限小数或无限循环小数都是有理数、像上面研究过的a2=2,b2=5中的a,b是无限不循环小数、无限不循环小数叫无理数(irrational number)、(课件出示)复习旧知:有理数的分类(2分钟)探究任务一1:小组讨论面积为2的正方形的边长a的取值范围,教师课件演示。
八年级数学上册 2.1 认识无理数导学案(新版)北师大版
八年级数学上册 2.1 认识无理数导学案(新版)北师大版2、1、1 认识无理数班级:姓名:【学习目标】1、通过拼图活动,感受无理数产生的实际背景和引入的必要性。
2、感知生活中确实存在着不同于有理数的数、3、会判断一个数是否为有理数、学习重点:会判断一个数是否为有理数学习难点:感受无理数产生的实际背景和引入的必要性、【课前导学】1、和统称为有理数。
2、想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?【课堂研讨】1、自主探究(1)如图把边长为1的两个小正方形通过剪、拼,拼成了一个大正方形,得大正方形的面积,请问:①可能是整数吗?②可能是分数吗?为什么?(2)事实上,在等式中,a 既整数,分数,所以a 有理数。
(填写“是”或“不是”)2、合作探究(1)图1—1中,以直角三角形的斜边为边长的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?3、归纳小结:在上面的两个问题中,数a,b确实存在,但它们都有理数。
【课堂练习】1、如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?2、长、宽分别是3,2的长方形,它的对角线的长可能整数吗?可能是分数吗?3、下图是由6个边长为1的小正方形拼成的,作出以下线段,请说出这些线段中长度是有理数的有几条?长度不是有理数的有几条?4、(选做题)下图中阴影部分是正方形,求出此正方形的面积。
此正方形的边长是有理数吗?为什么?【课堂小结】1、通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2、客观世界中,的确存在不是有理数的数,你能列举几个吗?3、除了本课所认识的非有理数的数以外,你还能找到吗?【课后作业】课本第22页问题解决第2题八年级数学第一学期导学案2、1、2 数怎么不够用了班级:姓名:【学习目标】1、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想。
2、会判断一个数是有理数还是无理数。
北师大版八年级上册导学案2.1.2认识无理数
第一章实数课题: 认识无理数(第二课时)★ 学习目标 ★1. 研究无理数的定义,以及无理数与有理数的差别2. 能鉴别出一个数是无理数仍是有理数.★ 学习过程 ★【铺垫练习】图中暗影部分是正方形,求出此正方形的面积。
此正方形的边长是有理数吗?为何?【导入新课】我们在上节课认识到有理数不够用了,我们发现了一些数,比如: a 2 2, b 2 8, c 2 161...中的 a,b,c... 既不是整数,也不是分数,那么它们终究是什么数呢?【研究新知】1. 察看以下各图判断: 3 个正方形的边长之间有如何的大小关系?谈谈你的原因 .(3 个正方形的面积分别为 1 ,2 ,4 ,而面积又等于边长的平方, 因此它们的面积的大小关系是 __________.)你能判断一下边积为 2 的正方形的边长 a 的大概范围吗 ?小明把自己的研究过程整理后,用表格的形式反应出来 .边长 a面积 S 1 < a < 2 1 < < 4S1 / 41.4 < a<1.5 1.96 < S<2.251.41 < a<1.42 1.9881 < S<2.01641.414 < a<1.415 1.999396 < S<2.0022251.4142 < a<1.4143 1.99996164 <S<2.00024449还能够持续下去吗?并判断 a 是有限小数吗?★概括总结★a 1.41421356...,还能够再持续进行,且 a 是一个无穷不循环小数【合作沟通】( 1 )设面积为20 的正方形的边长为x, x 是有理数吗?谈谈你的原因.(2 )预计 x 的值(结果精准到十分位),并用计算器考证你的预计。
(3 )假如结果精准到百分位呢?(4)x 是无穷不循环小数吗?【典例精讲】:★例 1 ★把以下各数表示成小数.4 , 5, 8 ,2.3 ,59 453它们是有限小数仍是无穷小数,是循环小数仍是不循环小数?.【新知概括】( 1 )上边这些数都是有理数,有理数总能够用有限小数或无穷循环小数表示.反过来,任何有限小数或无穷循环小数都是有理数.( 2 )无理数的定义:像上边研究过的中的a22,b28, c2161... 中的a,b,c是无穷不循环小数.无限不循环小数叫无理数★例 2 ★下边 1 、在实数 3.14 ,201,⋯,π,中,有()个无理数?A. 2 个 B .3 个 C.4 个 D . 5 个★追踪练习★2 / 41 各正方形的边长不是有理数的是()9A. 面积为 25 的正方形B. 面积为 16 的正方形C. 面积为 27 的正方形D. 面积为 1.44 的正方形22 3.14,2 ,0.315315315 ..., ,0.3030030003 ...2.以下数 :7 中,无理数有个. 3. 以下说法正确的选项是()A. 有理数不过有限小数B. 无理数是无穷不循环小数C. 无穷小数都是无理数D. 3是分数【达标检测】(或课后作业)1. 以下各数中,哪些是有理数?哪些是无理数?2? ?,4. 96 , 0.351 , 3 , 3.14159 ,- 5.2323332 ⋯, 0 , ⋯(小数部分由接踵的正整数构成)在以下每一个圈里填入适合的数.2.以下各数中,哪些是有理数?哪些是无理数?? 10.4583 ,3.7 ,- π,- 7, 18.33. 判断题(1) 有理数与无理数的差都是有理数. (2) 无穷小数都是无理数 .(3) 无理数都是无穷小数 .(4) 两个无理数的和不必定是无理数.4. 正三角形的边长为 6cm, 高为 h, 则h 2 =_________, 若精准到个位,那么 h 约 ________cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2:达标小测:(2分钟)
2.1.1认识无理数
课题
2.1.1认识无理数
活动安排
达标练习:
为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?
新知拓展:
如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?
[达标反馈]:
1._________小数或____________小数是有理数。
2.x2=3,则x______分数,______整数,______有理数.(填“是”或“不是”)
3.面积为6的长方形,长是宽的2倍,则宽为()
A.小数B.分数C.无理数D.不能确定
4.边长为1的正方形的对角线长是()
A.整数B.分数C.有理数D.不是有理数
5.设面积为5π的圆的半径为a,a是有理数吗?说说你的理由.
6.如图,在△ABC中,CD⊥AB,垂足为D,AC=6,AD=5,问:CD可能是整数吗?可能是分数吗?可能是有理数吗?
[总结升华]:上述题中a,b确实存在,但都不是有理数,那么它们是什么数呢?
总结反思:
学习目标
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
达标小测:
x2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)
探究任务二:b是有理数吗?
(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?
(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?
(课件出示)
复习旧知:什么是有理数及其分(2分钟)
2.能判断给出的数是否为有理数;并能说出理由.
探究任务二:
1、独学3分钟
组学2分钟
抽展(展台展示)2分
2.达标练习:2分钟
新知拓展:
5分钟
达标反馈:
10分钟
总结升华
2分钟
活动安排
【情境引入】我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
【学习探究】
探究任务一:若a2=2中,a是什么数呢?
请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
假设拼成大正方形的边长为a,则a应满足什么条件呢?因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.小组讨论a是整数吗?是分数吗?是有理数吗?