整数规划及分支定界法
整数规划
整数规划
1.整数规划的基本概念 . 2.分枝定界法解整数规划 . 3.0-1规划 . 4. 指派问题的解法
第一节
概
述
人们探讨某些线性规划问题, 人们探讨某些线性规划问题 , 有时必须把 全部或部分决策变量限制为整数。 全部或部分决策变量限制为整数。这样的线性 整数规划。 规划问题,通常称为整数规划 规划问题,通常称为整数规划。作为线性规划 的特殊情况, 的特殊情况,整数规划也有最小化和最大化之 此外,整数规划还可以分成纯整数规划 纯整数规划和 别。此外,整数规划还可以分成纯整数规划和 混整数规划。二者的区别在于: 混整数规划。二者的区别在于:前者的决策变 量必定全部取整数 而后者的决策变量只是部 全部取整数。 量必定全部取整数。而后者的决策变量只是部 分取整数。 分取整数。
销售店 B1 B2 B3
表 2-1 - 需求量( 周 需求量(箱/周) 50 60 30
表 2-2 -
产量 制药厂 (箱/周) 箱周 A1 A2 A3 A4 50 70 20 20
运资(元 箱 运资 元/箱) B1 3 10 1 4 B2 2 5 3 5模型
设 : 制 药厂 i 每周运到销售店 j 的药品为 ij 药厂A 每周运到销售店B 的药品为x 箱(i = 1 , 2 ,3 ,4 ; j = 1 ,2 ,3 );
其中: 称为整数条件。 其中:“ xk´为整数 ” ,称为整数条件。
整数规划问题及其数学模型一律简称为整数 规划;整数规划删去整数条件之前和之后, 规划;整数规划删去整数条件之前和之后,分别 称为原整数规划 相应线性规划。 原整数规划和 称为原整数规划和相应线性规划。 按照四舍五入的规则, 按照四舍五入的规则,使相应线性规划的最 优解整数化,在通常情况下, 优解整数化,在通常情况下,不能作为原整数规 划的最优解。这可以从两个方面来说明: 划的最优解。这可以从两个方面来说明: 其一、相应线性规划的最优解化整后,已经 其一、相应线性规划的最优解化整后, 不是原整数规划的可行解, 不是原整数规划的可行解,当然也就不可能是它 的最优解。 的最优解。 其二、相应线性规划的最优解化整后,虽然 其二、相应线性规划的最优解化整后, 是原整数规划的可行解, 是原整数规划的可行解,但是有可能不是它的最 优解。 优解。
第4章 整数规划
第4章 整数规划判断:用分枝定界法求解一个极大化的整数规划问题,任何一个可行解的目标函数值是该问题目标函数值的下界;指派问题数学模型的形式同运输问题十分相似,故也可以用表上作用法求解;效率矩阵的任一行(或列)减去(或加上)任一常数,指派问题最优解不会受到影响; 匈牙利法只能用于平衡分配问题;对于极大化问题,匈牙利法不能直接求解。
整数规划问题解的目标函数值优于其相应的线性规划问题的解的目标函数。
用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解。
用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,在进行比较剪枝。
分配问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
分配问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
分配问题域运输问题的数学模型结构形式十分相似,故也可以用表上作业法求解。
隐枚举法也可以用来求解分配问题简答试述分枝定界法求解问题的主要思想。
试述隐枚举法的步骤。
试讲述割平面方法的基本原理. 试例举三种应该剪枝的情况。
计算题分枝定界法用分枝定界法求解下列整数规划问题12max Z x x =+1212129511414123,x x x x x x +≤-+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 32Z x x =+121212231429,x x x x x x +≤+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 2010Z x x =+1232312312324434323,,x x x x x x x x x x x ++≤≤+≤≥---0且为整数用分枝定界法求解下列整数规划问题12max 79Z x x =+121212136735,x x x x x x x +≤+≤≥-0,且为整数用分枝定界法求解下列整数规划问题123max 33Z x x x =++123231231231324432323,,,x x x x x x x x x x x x x ++≤≤+≤≥---0,且为整数用分枝定界法解下列整数规划问题:1212121212232478188..3219,0MaxZ x x x x x x s t x x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题1212121212250..6221,0MaxZ x x x x x x s t x x x x =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题12312121225231050..7228,0,MaxZ x x x x x s t x x x x x =-+-+≤⎧⎪-≤⎨⎪≥⎩为整数用分枝定界法解下列整数规划问题12312341234345272222..0,1,2,3,4,5,j MaxZ x x x x x x x x x x x s t x j x x =-+-⎧-+-+=⎪⎪⎪-++=⎨⎪≥=⎪⎪⎩为整数用分枝定界法求解下列整数规划模型12max 23z x x =+121257354936x x x x +≤+≤12,0x x ≥且为整数有如下整数规划问题12max z x x =+12129511414123x x x x +≤-+≤12,0x x ≥且为整数试用分枝定界法求其最优解。
整数规划
比如下面的例子:
例1.某厂拟用集装箱托运甲乙两种货物,每箱 的体积、重量、可获利润以及托运所受限制如 下表:
货物 体积(每 箱M3) 5 甲 4 乙 托运限制 24 重量(每箱 50kg) 2 5 13 利润(每 箱百元) 20 10
问两种货物各托运多少箱,可使利润最大?
为了满足整数解得要求,初看,似乎只要把已得到的分 数或小数, “舍入化整”就可以了。但是,这常常是不行的, 因为化整后,不一定是可行解,或者虽是可行解,但不一定 是最优解。
整数规划
§1 整数规划及其解法 §2 0-1型整数规划 §3 指派问题
整数规划
1、理解整数规划、0-1规划和指派问题的数学 模型 2、理解整数规划模型的类型 3、理解整数规划的求解方法:分支定界法和割 平面法、0-1规划的隐枚举法和指派问题的 匈牙利法的思想和步骤
求解方法
1、分支定界法 2、割平面法
a x
i 1 ij
n
j
bi yi M (i 1,, m)
y1 + y2 + „ + ym = m –1, yi = 0 或 1 (i=1,„,m)
3、关于固定费用问题
• 在讨论线性规划时,有些问题是要求使 成本最少的方案,那时总设固定成本为 常数,并在线性规划的模型中不必明显 列出。但有些固定成本的问题不能用一 般线性规划来描述,但可改为混合整数 规划来解决。
aj
值最大?
解:设 x j 为决策变量,且 x j 满足如下限制
xj {
1,携带第j件物品 0,不携带第j件物品
,j 1,2, n
则问题的数学模型为
x c j x j max
j 1
n
整数规划 割平面法 分枝定界法
用图解法求得可行域D及最优解点A,见下图:
x2
A(3/4,7/4) 由标准化的约束方程组可得
-x1+x2=1
1
D B(1,1)
x3 =1+x1-x2 x4=4 -3x1-x2 代入切割方程 得
-1 0
3x1+x2=4
3(1+x1-x2)+(4-3x1-x2)≥3
下面以实例来说明算法的步骤。
例2 求解下面整数规划
x2
maxZ=40x1+90x2
⑴8
9x1+ 7x2≤56 7x1+20x2≤70 xx11,,xx22≥0整数
⑵
⑶ ⑷
4
⑸
解:先不考虑条件⑸,求解相 0
应的线性规划问题L,得最优解
x1=4.81,x2=1.82,Z0=356(见图) 该解不是整数解。选择其中一个
整个分枝定界过程如下图所示:
问题L
Z0=356 x1=4.81x2=1.82
Z 0,Z 356
x1≤4
问题L1 Z1=349 x1=4.00,x2=2.10
x2≤2 问题L3 Z3=340 x1=4.00 x2=2.00
Z※=340
x2≥3
问题L4 Z4=327 x1=1.42 x2=3.00
×
x1≥5
运筹学
整数线性规划
§1 整数规划问题
在前面的线性规划问题中,它的解都假设为可以取连续数值。 但是在许多实际问题中,决策变量仅仅取整数值时才有意义,比如 变量表示的是工人的人数、机器的台数、货物的箱数、装货的车皮 数等等。为了满足整数解的要求,比较自然的简便方法似乎就是把 用线性规划方法所求得的非整数解进行“四舍五入”取整或“舍尾 取整”处理。当然,这样做有时确实也是有效的,可以取得与整数 最优解相近的可行整数解,因此它是实际工作中经常采用的方法。 但是实际问题中并不都是如此,有时这样处理得到的解可能不是原 问题的可行解,有的虽是原问题的可行解,但却不是整数最优解。 (详见后面例1)。因而有必要专门研究只取整数解的线性规划的 解法问题。
基于分支定界法的整数规划问题研究与应用
基于分支定界法的整数规划问题研究与应用1. 引言1.1 整数规划概述整数规划是运筹学中的一种重要问题求解方法,它主要关注于在一组约束条件下,寻找使某个目标函数取得最优值的整数决策变量。
与线性规划相比,整数规划问题更为复杂和困难,因为整数规划要求决策变量取值必须为整数。
这使得整数规划问题在实际应用中更具挑战性。
整数规划可以广泛应用于资源分配、生产调度、网络设计等领域,例如在生产调度中,整数规划可以帮助厂商合理安排生产计划,最大限度地提高生产效率;在网络设计中,整数规划可以帮助网络规划者确定最优的网络拓扑结构,以实现网络资源最大化利用。
整数规划在实际问题中具有重要的应用价值。
为了解决整数规划问题,研究人员提出了各种求解方法,其中一种常用的方法就是分支定界法。
下面将介绍分支定界法的原理和步骤,以及其在整数规划中的应用实例和优缺点。
【2000字】1.2 分支定界法简介分支定界法是一种解决整数规划问题的有效方法,它可以帮助我们在有限的时间内找到最优解。
这种方法通过将问题分解为子问题并逐步缩小搜索范围来提高求解效率。
分支定界法的基本思想是通过逐步分支和缩小搜索范围来逼近最优解。
在每一步中,我们选择一个变量,并将其分支为两个子问题,一个子问题包含该变量的上界,另一个子问题包含该变量的下界。
然后,我们对这两个子问题进行求解,直到找到最优解或确定该子问题无解。
分支定界法的优点是可以确保找到最优解,因为它逐步缩小搜索范围直到找到最优解为止。
该方法在实际应用中具有较高的效率,可以解决许多复杂的整数规划问题。
分支定界法也存在一些缺点,例如在处理大规模问题时可能会遇到指数级的计算复杂性。
为了提高效率,我们需要不断优化算法,并结合其他启发式方法来提高求解速度。
分支定界法是一种强大的方法,可以应用于各种整数规划问题中。
通过不断改进和优化算法,我们可以进一步提高求解效率,实现更多实际应用场景中的最优解。
2. 正文2.1 分支定界法的原理分支定界法的原理是一种用于解决整数规划问题的有效方法。
最优化 分支定界
最优化分支定界最优化问题是指在一组约束条件下,寻找某个或某组变量的值,使得目标函数达到最优(最大或最小)的问题。
这类问题在科学研究、工程技术和经济管理等领域中都有广泛的应用。
分支定界法(Branch and Bound)是一种求解最优化问题的经典算法,尤其适用于整数规划、混合整数规划以及组合优化问题。
以下是该方法的详细说明:1.基本思路(1)分支:将问题的可行解空间不断划分为更小的子集,这个过程称为“分支”。
每个子集代表原问题的一个子问题。
(2)定界:对每个子集(或子问题)计算一个目标函数的界(上界或下界),这称为“定界”。
对于最小化问题,通常会计算每个子集的下界;对于最大化问题,则会计算上界。
(3)剪枝:在每次分支后,通过比较子集的目标函数界和当前已知的最优解,可以判断某些子集不可能包含更优的解,因此这些子集可以被“剪枝”,即不再进一步考虑。
(4)迭代:通过不断重复分支、定界和剪枝的过程,直到找到最优解或确定最优解的范围。
2.优点(1)适用性广:分支定界法可以应用于各种类型的最优化问题,包括整数规划、混合整数规划和组合优化问题。
(2)求解效率高:通过有效的剪枝策略,可以大大减少需要探索的解空间,从而提高求解效率。
(3)可以找到全局最优解:与某些只能找到局部最优解的启发式算法不同,分支定界法可以保证找到全局最优解(在给定时间内)。
3.缺点(1)内存消耗大:由于需要存储大量的子问题和它们的界,分支定界法可能会消耗大量的内存空间。
(2)实现复杂:分支定界法的实现通常比较复杂,需要仔细设计分支策略、定界方法和剪枝策略。
(3)可能受问题特性影响:对于某些特定类型的问题,分支定界法可能不是最有效的求解方法。
例如,当问题的解空间非常复杂或难以有效划分时,分支定界法的效率可能会受到严重影响。
4.应用领域分支定界法被广泛应用于各种实际问题的求解中,如生产调度、物流配送、资源分配、网络设计等。
在这些领域中,通过合理地定义变量、约束条件和目标函数,可以将实际问题抽象为最优化问题,并利用分支定界法进行求解。
整数规划知识点总结
整数规划知识点总结一、整数规划基本概念整数规划是指决策变量的取值受到整数限制的线性规划问题。
数学形式可以表示为:\[\min c^Tx\]\[ s.t. Ax \leq b\]\[x\geq0 \]\[x_i \in \{0, 1, 2, ...\}\]其中,c为目标函数系数,x是决策变量,A是约束系数矩阵,b是约束条件的右端向量,决策变量x是整数。
当所有的决策变量都是整数时,称为纯粹整数规划(Pure Integer Programming)。
当部分决策变量为整数,部分为连续变量时,称为混合整数规划(Mixed Integer Programming, MIP)。
二、整数规划解法整数规划问题的求解可以采用分支定界法、割平面法、隐枚举法等不同方法。
下面将对常用的整数规划解法进行简要介绍。
1.分支定界法分支定界法是一种求整数规划解的有效方法,它通过对决策变量进行分支,将整数规划问题不断分解为子问题,然后采用线性规划方法求解子问题。
具体步骤如下:1)求解线性规划松弛问题,得到一个整数解。
2)若解为整数,则成为可行解,否则确定需要分支的决策变量,分为两个子问题。
3)对子问题继续重复上述过程,直到无法再分或求解出整数解为止。
2.割平面法割平面法是在分支定界法的基础上进行改进,它在每一次迭代求解线性规划松弛问题后,引入一些额外的不等式(割平面)来改进松弛问题的界。
这些割平面是通过分析整数规划问题的特性产生的,可以有效提高整数规划问题求解的效率。
3.隐枚举法隐枚举法是一种通过隐藏对决策变量的枚举,将整数规划问题转化为线性规划问题进行求解的方法。
该方法可以高效地求解整数规划问题,是一种常用的整数规划求解算法。
以上是整数规划常用的三种求解方法,通过不同的算法可以解决不同种类的整数规划问题。
三、整数规划应用领域整数规划在实际决策问题中有着广泛的应用,如生产计划、运输调度、项目投资、资源配置等诸多领域。
下面将对整数规划在不同应用领域的具体案例进行介绍。
整数规划
i=1 j=1
整数规划的特点及应用
例1 现有资金总额为B。可供选择的投资项目有n个,项目 j所需投资额和预期收益分别为aj和cj(j=1,2,..,n),此 外由于种种原因,有三个附加条件: 若选择项目1,就必须同时选择项目2。反之不一定
7
项目3和4中至少选择一个;
项目5,6,7中恰好选择2个。 应该怎样选择投资项目,才能使总预期收益最大。
14
x2
3
⑴
⑵
(3/2,10/3)
标函数值最大,即为Z=4。
3
x1
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法
15
割平面法
匈牙利法(指派问题)
分支定界法
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下一步; 2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。 新的松弛问题具有特征:当原问题是求最大值时,目标值是分枝问题的上界;当 原问题是求最小值时,目标值是分枝问题的下界。 3) 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数值大于 (max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若还存在非整数 解并且目标值大于(max)整数解的目标值,需要继续分枝,再检查,直到得到最优 解。
整数规划的特点及应用
min z =
6
邋
4
4
c ij x ij + [1200y 1 + 1500y 2 ]
ì x 11 + x 21 + x 31 + x 41 = 350 ï ï ï ï x 12 + x 22 + x 32 + x 42 = 400 ï ï ï ï x 13 + x 23 + x 33 + x 43 = 300 ï ï ï x 14 + x 24 + x 34 + x 44 = 150 ï ï ï ï ï x 11 + x 12 + x 13 + x 14 = 400 s .t . í ï x 21 + x 22 + x 23 + x 24 = 600 ï ï ï x 31 + x 32 + x 33 + x 34 = 200y 1 ï ï ï ï x 41 + x 42 + x 43 + x 44 = 200y 2 ï ï ï x ij ? 0 (i , j 1, 2, 3, 4) ï ï ï ï y = 0,1 (i = 1, 2) ï ï î i
运筹学中关于规划问题的常用解决方法
运筹学中关于规划问题的常用解决方法运筹学是一门研究如何在有限资源下做出最优决策的学科。
在运筹学中,规划问题是一类常见的问题,它涉及到如何合理分配资源以达到特定的目标。
本文将介绍运筹学中关于规划问题的常用解决方法。
首先,线性规划是解决规划问题最常用的方法之一。
线性规划的目标是在一组线性约束条件下,找到使目标函数最大或最小的变量值。
线性规划的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z是要优化的目标函数,c₁, c₂, ..., cₙ是目标函数的系数,a₁₁,a₁₂, ..., aₙₙ是约束条件的系数,b₁, b₂, ..., bₙ是约束条件的常数,x₁, x₂, ..., xₙ是决策变量。
其次,整数规划是线性规划的一种扩展形式,它要求决策变量必须取整数值。
整数规划在实际问题中具有广泛的应用,例如生产调度、物流配送等。
整数规划的求解方法包括分支定界法、割平面法等。
分支定界法通过将整数规划问题划分成一系列子问题,并逐步求解,最终得到最优解。
割平面法则通过添加额外的线性约束条件来逐步逼近最优解。
除了线性规划和整数规划,规划问题还可以通过动态规划方法求解。
动态规划是一种将问题分解成子问题并逐步求解的方法。
它适用于具有重叠子问题和最优子结构性质的问题。
动态规划的核心思想是通过存储中间结果来避免重复计算,从而提高计算效率。
动态规划在求解最短路径、背包问题等方面具有广泛的应用。
此外,启发式算法是一类基于经验和直觉的求解方法,它通过不断搜索和优化来寻找问题的近似最优解。
启发式算法常用于求解复杂的规划问题,如旅行商问题、车辆路径问题等。
运筹学-第三章-整数规划
于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56
和
s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)
甲
5
2
20
乙
4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。
第六章 整数规划
原来的上界 .
在分枝定界法的整个求解过程中,上界的值在不断减小.
问题 B5
max f 20 x1 10 x2
问题 B6
max f 20 x1 10 x2
5 x1 8 x2 60 x1 8 x2 4 s.t x1 6 x2 3 x ,x 0 1 2
第六章 整数规划
整数规划模型
分支定界法
割平面法 0-1整数规划问题
指派问题
整数规划模型
在许多线性规划问题中,要求最优解必须取整数.例如 所求的解是机器的台数、人数、车辆船只数等.如果所得的 解中决策变量为分数或小数则不符合实际问题的要求. 对于一个规划问题,如果要求全部决策变量都取整数, 称为纯(或全)整数规划;如果仅要求部分决策变量取整数, 称为混合整数规划问题.有的问题要求决策变量仅取0或l两
解 设计划甲种宿舍建 x1 幢,乙种宿舍建 x2 幢,则本题数学 模型为 :
max Z 20 x1 10 x2
0.25 x1 0.4 x2 3 x1 8 s.t x2 4 x1 , x2 0, 取整数
这是一个纯整数规划问题,称为问题 A0 。
(1)
作出问题 A1 , A2 的伴随规划 B1 , B2 , 则问题 B1 , B2 , 的可行 域为 K1 , K 2 , 见图2(b). 以下我们将由同一问题分解出的两 个分枝问题称为"一对分枝".
x2
4
3
x2
2 1
O
2
4
6
8
x1
O
1
2
4
6
8
x1
(a)
(b)
分支定界法
LP21
LP22
S22 x2 3 S212 x1 3, x 2 1
z0 4
无可行解
x1 2
z4 z4
S211
x1 2 , x 2 2 z0 4
LP211
LP212
返回
⑵ 定界 就没有分支的线性规划问题而言,以最优目 标函数值中的最大者为上界,以符合整数条件 0
⑶ 比较与剪枝
若上界等于下界,则停止;否则,剪去小于下 界的分支,对于大于下界的分支继续重复步骤2 (优先分支函数值较大者)。
其松弛问题的最优解为:A(3/2,10/3)
因X1=3/2, 所以IP问题的最优解中x1的取值范围一定满 足x1≤1(区域1)或x1≥2(区域2),如下图所示。
A(3 2 ,10 3)
区域1
区域2
1
2
3
x1
⑴ 分支 假设松弛问题中 xi b i 不是整数,则构造两 b i 及 xi b i 1 个约束条件 xi 分别加入松弛问题中得到子问题LP1与LP2,即 两个后继问题,并求解之。
zC z2 41/ 9
zD z21 61/ 14
zE z211 4
C (2, 23 9) D(33 14,2)
zF z212 4
B(1, 7 3)
E (2,2)
s2 s21
F (3,1)
s212
0
1 s211 2
3
x1
S x1
x1 1
x 1 1, x 2 7 / 3 S1 z 0 10 / 3
第三节 分支定界法
一、分支定界法步骤 二、示例
一、分支定界法步骤
使用范围:纯整数、混合整数规划。 基本思想:求松弛问题最优解,逐步缩小可域。
分支定界法
以下内容基本为转载内容:1. 模型整数规划的模型与线性规划基本相同,只是额外的添加了部分变量为整数的约束。
2. 求解步骤整数规划求解的基本框架是分支定界法(Branch and bound,BnB)。
首先去除整数约束得到“松弛模型”,使用线性规划的方法求解。
若有某个变量不是整数,在松弛模型上分别添加约束:x<=floor(A)和x>=ceil(A)然后再分别求解,这个过程叫做分支。
当节点求解结果中所有变量都是整数时,停止分支。
这样不断迭代,形成了一棵树。
定界,指的是叶子节点产生后,相当于给问题定了一个下界。
之后在求解过程中一旦某个节点的目标函数值小于这个下界,那就直接pass,不用再进行分支了;每次新产生叶子节点,则更新下界。
3. python算法实现import mathfrom scipy.optimize import linprogimport sysdef integerPro(c,A,b,Aeq,beq,t=1.0E-12):res=linprog(c,A_ub=A,b_ub=b,A_eq=Aeq,b_eq=beq)if(type(res.x)is float):#produces error codebestX=[sys.maxsize]*len(c)else:bestX=res.xbestVal=sum([x*y for x,y in zip(c,bestX)])if all(((x-math.floor(x))<t or(math.ceil(x)-x)<t)for x in bestX): return(bestVal,bestX)else:ind=[i for i,x in enumerate(bestX)if(x-math.floor(x))>t and (math.ceil(x)-x)>t][0]newCon1=[0]*len(A[0])newCon2=[0]*len(A[0])newCon1[ind]=-1newCon2[ind]=1newA1=A.copy()newA2=A.copy()newA1.append(newCon1)newA2.append(newCon2)newB1=b.copy()newB2=b.copy()newB1.append(-math.ceil(bestX[ind]))newB2.append(math.floor(bestX[ind]))r1=integerPro(c,newA1,newB1,Aeq,beq)r2=integerPro(c,newA2,newB2,Aeq,beq)if r1[0]<r2[0]:return r1else:return r2例子:输入c=[3,4,1]A=[[-1,-6,-2],[-2,0,0]]b=[-5,-3]Aeq=[[0,0,0]]beq= [0]print(integerPro(c,A,b,Aeq,beq))输出(8.0,array([2.,0., 2.]))其中8是目标函数值,2,0,2是3个整数变量的值。
运筹学课程06-整数规划(胡运权 清华大学)
NEUQ
全整数规划:除了所有决策变量要求取非负整数外,系数 和常数也要求取整数(这时引进的松弛变量和剩余变量也必须 是整数)。
混合整数规划:只有一部分的决策变量要求取非负整数, 另一部分可以取非负实数。 0-1整数规划:所有决策变量只能取 0 或 1 两个整数。
14
NEUQ
3、IP与LP关系:
设整数规划问题如下
c1n c2n cin b c nn
min Z Z b
min Z Z b
,则X 0也是 min Z的最优解 若X 0是 min Z的最优解
24
NEUQ
指派问题的最优解: 若 C中有n 个位于不同行不同列的零元素,则令这
些零元素对应的变量取1,其余变量取零,即得指派问 题的最优解 匈牙利算法:
B1 B2 L Bn A1 c11 c12 L c1n a1 f1 A2 c21 c22 L c2 n a2 f 2 M M M M M M Am cm1 cm 2 L cmn am f m b1 b2 L bn
6
NEUQ
设: xij 表示从工厂运往销地的运量(i=1.2…m; j=1.2…n), 1 在Ai建厂 又设 yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
NEUQ
整数规划 Integer Linear Programming
整数规划的难度远大于一般线性规划
1
NEUQ
本章主要内容
整数规划的模型 0-1 整数规划
指派问题
分支定界法 割平面法
2
NEUQ
一、整数规划的模型
1、案例: 某财团有 B万元的资金,经初期考察选中 n个 投资项目,每个项目只能投资一个。其中第 j 个项目需投资金额为 b j ( j 1, 2,L , n) 万元, 预计5年后获利 c j 万元,问应如何选择项目使 得5年后总收益最大?
整数规划问题(割平面-分枝定界算例)
x1 3.25;
x2 2.5
分枝定界法思路
第二步:分枝与定界 在x1=3.25;x2=2.5 中,任选一变量的解X2=2.5 , 可将其分为 x2≤2;x2≥3(去掉小数部分),则有:
max Z 3x1 2 x2 2 x1 3x2 14 x 0.5 x 4.5 1 2 s.t. x2 2 x1 , x2 0
(3.5, 2); z 14.5
X1可分为x1≤3;x1≥4,则有:
max Z 3x1 2 x2 2 x1 3x2 14 x 0.5 x 4.5 1 2 s.t. x2 2 x 3 1 x1 , x2 0 (3, 2); z 13
逻辑变量在建立数学模型中的作用
y1 y2 ... ym
中m-k不起作用
(2)割平面法思路
max Z 3 x1 2 x2 2 x1 3 x2 14 s.t. x1 0.5 x2 4.5 x , x 0 且取整数 1 2
第一步:将约束条件决策变量的系数化为整数,用单纯形法求 解出最终单纯形表 找一个分数部
(3)分支定界法
max Z 3 x1 2 x2 2 x1 3 x2 14 s.t. x1 0.5 x2 4.5 x , x 0束,求解。
max Z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0 1 2
max Z 3x1 2 x2 2 x1 3x2 14 x 0.5 x 4.5 1 2 s.t. x2 2 x 4 1 x1 , x2 0
(4, 1);
分支定界法的主要思想和步骤
分支定界法的主要思想和步骤
题目
简述分支定界法的思想。
答案解析
答:分支定界法是一种搜索与迭代的方法,选择不同的分支变量和子问题进行分支。
算法步骤
(1)求整数规划的松弛问题最优解。
(2)若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下一步。
(3)任意选一个非整数解的变量xi,在松弛问题中加上约束xi≤[xi]及xi≥[xi]+1组成两个新的松弛问题,称为分支。
新的松弛问题具有如下特征:当原问题是求最大值时,目标值是分支问题的上界;当原问题足求最小值时,目标值是分支问题的下界。
(4)检查所有分支的解及目标函数值,若某分支的解是整数并且目标函数值大于(max)等于其他分支的目标值,则将其他分支剪去不再计算,若还存在非整数解并且目标值大于( max)整数解的目标值,需要继续分支,再检查,直到得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 8 7 6 5 4 3 p 2 1 0 1 2 3 4 5 6 x1
选 x1进行分枝: (P1) x1 3 x2 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 x1 (P2) x1
4
为空集
P p1
(P1)
Min Z= x1+4x2 x1+2x2 6 x1,x2 0 ,x1 3 整数
解:如果令xi=1表示登山队员携 带物品i,xi=0表示登山队员不携 带物品i,则问题表示成0-1规划:
Max Z= 20x1+15x2 +18x3 +14x4
+8x5 +4x6 +10x7
s.t. 5x1 + 5x2 +2x3 +6x4 +12x5 +2x6 +4x7 25 xi=1或xi=0 i=1,2,….7
s.t. 3x1+4x2 12
用单纯形法可解得相应的松驰问题的最 优解(6/5,21/10),Z=111/10为各分 枝的上界。
分枝:X1 1,x1 2
x2 4 3 2
P1
1 0
1
P2 2
3
4
x1
两个子问题:
(P1)Max
Z=4x1+3x2
4x1+2x2 9
s.t. 3x1+4x2 12 x1,x2 0 , x1 1
例 3-1 :一登山队员做登山准备, 他需要携带的物品有:食品,氧 气,冰镐,绳索,帐篷,照相机 和通讯设备,每种物品的重要性 系数和重量如下:假定登山队员 可携带最大重量为25公斤。
序号
1
2
3
4
5
6
7
物品 食品 氧气 冰镐 绳索 帐篷 相机 设备 重量 重要 系数 5 20 5 15 2 18 6 14 12 8 2 4 4 10
解:如果令xj=1表示携带物品j, xj=0表示不携带物品j,则问题表 示成0-1规划:
Max Z = Σcjxj s.t. Σajxj b
xj=0
或1
数学模型 整数规划(IP)的一般数学模型: Max (min) Z = Σcjxj
s.t. Σaijxj bi(i=1,2,…m)
xj 0且部分或全部是整数
,整数
用单纯形法可解得相应的(P1)的最优 解(1,9/4) Z=10(3/4)
(P2)Max
Z=4x1+3x2 4x1+2x2 9
s.t. 3x1+4x2 12 x1,x2 0 , x1 2
,整数
用单纯形法可解得相应的(P2)的 最优解(2,1/2) Z=9(1/2)
再对(P1)分枝:X1 1
若松驰问题无可行解,则原整数 规划问题也无可行解,计算结束。
若松驰问题有最优解,但其各分量不全 是整数,则这个解不是原整数规划的最 优解,转下一步。 从不满足整数条件的基变量中任选 一 个xl进行分枝,它必须满足xl [xl ] 或xl [xl ] +1中的一个,把这两个约束条件加 进原问题中,形成两个互不相容的子问 题(两分法)。
第三章
整数规划
3-1
整数规划问题
整数规划是一类要求变量取整数值 的数学规划,可分成线性和非线性 两类。 根据变量的取值性质,又可以 分为全整数规划,混合整数规划, 0-1整数规划等。
整数规划是数学规划中 一个较弱的分支,目前只能 解中等规模的线性整数规划 问题,而非线性整数规划问 题,还没有好的办法。
s.t. 2x1+ x2 8
用单纯形法可解得(P4)的最优解 (2,2)Z=10
X1
4
X2 1
P2:无可行解
P:(10/3,4/3) Z=26/3 X1 3 P1:(3,3/2) Z=9
P3:无可行解
X2
2
P4:(2,2) Z=10
原问题的最优解(2,2) Z=10
(P3) x2 1无可行解 (P4) x2
2
Pp 4
(P3)
Min Z= x1+4x2 x1+2x2 6 x1,x2 0, x1 3 ,x2 1整数 s.t. 2x1+ x2 8
无可行解。
(P4)
Min Z= x1+4x2 x1+2x2 6 x1,x2 0, x1 3 ,x2 2整数
s.t. 2x1+ x2 8
用单纯形法可解得(P1)的最优解
(3,3/2)Z=9
(P2) Min Z= x1+4x2 s.t. 2x1+ x2 8
x1+2x2 6
x1,x2 0 x1 4 无可行解。 整数
对(P1) x1 3 选 x2进行分枝: x2 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 x1
例3-2 背包问题( Knapsack
Problem)
一个旅行者,为了准备旅行的必须用品,要 在背包内装一些最有用的东西,但有个数 限制,最多只能装b公斤的物品,而每件物 品只能整个携带,这样旅行者给每件物品 规定了一个“价值”以表示其有用的程度, 如果共有n件物品,第j件物品aj公斤,其价 值为cj.问题变成:在携带的物品总重量不 超过b公斤条件下,携带哪些物品,可使总 价值最大?
定界:把满足整数条件各分枝的最优目 标函数值作为上(max)(下(min))界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与界值比 较,凡不优或不能更优的分枝全剪掉, 直到每个分枝都查清为止。
例5-6 用分枝定界法求解:
Max Z=4x1+3x2 4x1+2x2 9 x1,x2 0 且为整数
X2 2 P : (1,2) Z=10 3
X2
3 P : (0,3)
4
Z=9
原问题的最优解(1,2) Z=10
例5-7 用分枝定界法求解:
Min Z= x1+4x2 x1+2x2 6 x1,x2 0 且取整数
s.t. 2x1+ x2 8
用单纯形法可解得相应的松驰问题的最 优解(10/3,4/3),Z=26/3为各分枝的 下界。
解法概述
当人们开始接触整数规划问题时, 常会有如下两种初始想法: 因为可行方案数目有限,因此经 过一一比较后,总能求出最好方案, 例如,背包问题充其量有2n-1种方式; 连线问题充其量有n!种方式;实际 上这种方法是不可行。
设想计算机每秒能比较 1000000个方式,那么要比较 完20!(大于2*1018)种方式, 大约需要800年。比较完260 种方式,大约需要360世纪。
D
B(9.2,2.4)
假如能求出可行域的“整点凸包”(包 含所有整点的最小多边形OEFGHIJ),则 可在此凸包上求线性规划的解,即为原问 题的解。但求“整点凸包”十分困难。
x2 5 4 3 2 1 O 1 2 3 4 5
D J I
I(2,4)
H
G F 6 E 7 A8 9
B(9.2,2.4)
10
(P1)两个子问题:
(P4)Max Z=4x1+3x2 4x1+2x2 9 x1,x2 0 ,x1 1,
x2
s.t. 3x1+4x2 12
3整数
用单纯形法可解得相应的(P4)的最优 解(0,3) Z=9
X1
2
P2:(2,1/2) Z=9(1/2)
P:(6/5,21/10) Z=111/10 X1 1 P1:(1,9/4) Z=10(3/4)
先放弃变量的整数性要求,解一 个线性规划问题,然后用“四舍五 入”法取整数解,这种方法,只有 在变量的取值很大时,才有成功的 可能性,而当变量的取值较小时, 特别是0-1规划时,往往不能成功。
例3-3
求下列问题:
Max Z=3x1+13x2
s.t.2x1+9x2 40 11x1-8x2 82
D
I(2,4)
B(9.2,2.4)
X1 2 X2 3 X1 6 P X2
P1
P2 P3
X1
ห้องสมุดไป่ตู้3
X1
X2 2
4
P4
7
X2
3
P5
假如放弃整数要求后,用单纯形法 求得最优解,恰好满足整数性要求, 则此解也是原整数规划的最优解。 以上描述了目前解整数规划问题 的两种基本途径。
分枝定界解法 (Branch and Bound Method)
原问题的松驰问题:任何整数规划 (IP),凡放弃某些约束条件(如整数 要求)后,所得到的问题(P) 都称为 (IP)的松驰问题。
最通常的松驰问题是放弃变 量的整数性要求后,(P)为线性 规划问题。
分枝定界法步骤
一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
x1
假如把可行域分解成五个互不相交的子问题P1 P2 P3 P4 P5之和, P3 P5的定义域都是空集,而放弃 整数要求后P1最优解I(2,4),Z1=58 P2最优解 (6,3),Z2=57 P4最优解(98/11,2),Z4=52(8/11)
x2 5 4 3 2 P1 P2 P4 5 6 7 A8 9 10 x1 1 O 1 2 3 4
x2 4 P4 3 2 1 0
(P3) x2 2
(P4) x2 3
P1
P3 1
P2 2
3
4
x1
(P1)两个子问题:
(P3)Max Z=4x1+3x2 4x1+2x2 9 x1,x2 0 ,x1 1,