【2019年整理】第七章薄膜材料的表征方法
薄膜材料的表征方法
![薄膜材料的表征方法](https://img.taocdn.com/s3/m/8cae116f336c1eb91b375d0e.png)
图3-1 椭偏法测量y和Δ的原理图
椭偏仪一般包括以下几个部分:激光光源、起偏器、样品台、检偏器和光 电倍增管接收系统。图3-1所示是反射消光椭偏仪的原理图,激光光源发 出的光, 经过仪器的起偏器变成线偏振光, 通过补偿器1/4波片形成椭圆 偏振光, 然后投射到待测光学系统薄膜上,待测光学系统具有沿正交坐标 x和y轴的正交线性偏振态, 从待测光学系统射出的光, 偏振态已经发生 了变化(椭圆的方位和形状与原入射椭偏光不同) , 通过检偏器和探测器 就可以进行检测了。
(1)椭偏仪法测量的基本原理 椭圆偏振测量, 就是利用椭圆偏振光通过薄膜时, 其反射和 透射光的偏振态发生变化来测量和研究薄膜的光学性质。 椭偏仪法利用椭圆偏振光在薄膜表面反射时会改变偏振状 态的现象,来测量薄膜厚度和光学常数,是一种经典的测 量方法。 光波(电磁波)可以分解为两个互相垂直的线性偏振的S波 和P波,如果S波和P波的位相差不等于p/2的整数倍时,合 成的光波就是椭圆偏振光。当椭圆偏振光通过薄膜时,其 反射和透射的偏振光将发生变化,基于两种介质界面四个 菲涅耳公式和折射定律,可计算出光波在空气/薄膜/衬底多 次反射和折射的反射率R 和折射率T。
膜厚d 的计算
通常,光波的偏振状态由两个参数描述:振幅和相位。为方便 起见,在椭偏仪法中,采用Ψ 和△这两个参数描述光波反射时 偏振态的变化,它们的取值范围为: 0 ≤Ψ ≤π/ 2 ,0≤△< 2π。 (Ψ , △) 和( Rp , Rs) 的关系定义为总反射系数的比值,如下 式所示 Rp/Rs=tanyexp(iΔ) 式中, tgΨ 表示反射前后光波P、S 两分量的振幅衰减比, △=δp -δs 表示光波P、S 两分量因反射引起的相应变化之 差。 由此可见,Ψ 和△直接反映出反射前后光波偏振状态的变化。 在波长、入射角、衬底等确定的条件下,Ψ 和△是膜厚和薄 膜折射率( n) 的函数,写成一般函数式为Ψ = Ψ( d , n) , △= △( d , n) 结合公式,测量y和Δ,就可以求出薄膜折射率n和薄膜的 厚度d。
薄膜表征技术
![薄膜表征技术](https://img.taocdn.com/s3/m/07cbbd9d02d276a201292e10.png)
d 2 0
台阶上下沉积一层高反射率的金属层;
覆盖半反射半透明的平板玻璃片;
单色光照射时,在玻璃片和薄膜之间光的反射将导致干涉现象; 光干涉形成极大的条件为S=1/2(N-1); 在玻璃片和薄膜的间距S增加S=/2时,将会出现一条对应的干涉条纹,间 隔为0; 薄膜上形成的厚度台阶也会引起光程差S的改变,因而它会使得从显微镜上 观察到的光的干涉条纹发生移动; 条纹移动距离所对应的台阶高度应为h=/(20); 测出0和,即可测得薄膜的厚度。
椭偏法测量和的原理图
椭偏仪一般包括以下几个部分:激光光源、起偏器、样品台、检偏器和光电倍增管接收 系统。上图所示为反射消光椭偏仪的原理图,激光光源发出的光,经过起偏器变为线偏 振光,通过补偿器1/4波片形成椭圆偏振光,然后投射到待测光学系统薄膜上,待测光学 系统具有沿正交坐标X轴和Y轴的正交线性偏振态,从待测光学系统射出的光,偏振态已 经发生了变化(椭圆的方位和形状与原入射椭偏光不同),通过检偏器和探测器就可以
生振荡的原理,应用类似的装置,可以实现透明薄膜厚度的动态监控。由于 在薄膜的沉积过程中,薄膜的厚度在连续不断地变化,因而在其他条件都固 定不变的条件下,将可以观察到反射光的强度出现周期性变化。每一次光强 的变化对应于薄膜厚度的变化为:
h
2n1 cos
1.2 薄膜厚度的光学测量方法-光偏振法(椭偏仪法)
等色干涉条纹法 等色干涉条纹法的实验装置稍有不同。等色干涉条纹法需要将反射镜与薄 膜平行放置,另外要使用非单色光照射薄膜表面,并采用光谱仪分析干涉极 大出现的条件。这样,不再出现反射镜倾斜所引起的等厚干涉条纹,但由光 谱仪仍然可以检测到干涉极大。 相邻两条干涉极大产生的条件为:
S N1 ( N 1)2 2d ( S d ) 2S N 2 d 2(1 2 )
薄膜材料的表征
![薄膜材料的表征](https://img.taocdn.com/s3/m/07d5093d998fcc22bdd10dcb.png)
薄膜材料的表征新能源12级3 班杨铎12191070摘要:薄膜材料和薄膜器件日益广泛应用及其可靠性指标体系的日益健全,要求学术界对其结构和性能的特殊性给出科学解释。
因此,薄膜材料的表征对材料的应用是至关重要的。
薄膜样品结构和性能的表征依赖测试设备及测试方法。
薄膜材料的表征参数通常包括薄膜厚度,这通常用探针法等进行测量;薄膜形貌表征,主要通过扫描隧道显微镜、原子力显微镜等进行测量;薄膜成分的表征,它主要用X 射线电子能谱、俄歇电子能谱来测量;薄膜晶体结构的表征,它通常使用X 射线衍射仪或电子衍射仪来测量;薄膜的应力表征,这可以通过直接测量变形量方法和简介X 射线衍射测量方法等对其来进行测量。
通过对以上内容的概括和总结及对比总结出薄膜材料的测试的研究情况。
关键词:薄膜,测试,表征1. 薄膜简介1.1 薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K +通道、CI-通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
1.2薄膜材料的应用人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。
它的一个很重要的应用就是海水的淡化。
虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%〜3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。
薄膜材料的表征方法完整版本共71页文档
![薄膜材料的表征方法完整版本共71页文档](https://img.taocdn.com/s3/m/b78f743a19e8b8f67c1cb9de.png)
21、没有人陪你走一所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
薄膜材料的表征方法-16-2012
![薄膜材料的表征方法-16-2012](https://img.taocdn.com/s3/m/a0cc616b0b1c59eef8c7b4ef.png)
39
6、扫描隧道显微镜(Scanning Tunneling Microscope-STM)
场发射扫描电子显微镜 Field Emission SEM (FESEM) 分辨率可达1-2 nm
22
PbTiO3 Nanowires
23
24
25
26
27
3、透射电子显微镜
(Transmission Electronic Microscope)
特点:电子束一般不再采取扫 描方式对样品的一定区域进行 扫描,而是固定地照射在样品 中很小的一个区域上;透射电 子显微镜的工作方式是使被加 速的电子束穿过厚度很薄的样 品,并在这一过程中与样品中 的原子点阵发生相互作用,从 而产生各种形式的有关薄膜结 构和成分的信息。 工作模式:影像模式和衍射模 式(两种工作模式之间的转换主要
(2m 1) d 4n1
对于n1<n2的情况,反射极大的条件变为
(m 1) d 2n1
为了能够利用上述关系实现对于薄膜厚度的测量,需 要设计出强振荡关系的具体测量方法。
9
(1)利用单色光入射,但 通过改变入射角度(及反射 角度)的方法来满足干涉条 件的方法被称为变角度干涉 法(VAMFO),其测量装 臵原理图如图。 (2)使用非单色光入射薄 膜表面,在固定光的入射角 度的情况下,用光谱仪分析 光的干涉波长,这一方法被 称为等角反射干涉法 (CARIS)。 注意:以上测量薄膜厚度的方法仅涉及到薄膜厚度引起的光 程差变化以及其导致的光的干涉效应。 10
14
2)称重法
如果薄膜的面积A、密度ρ和质量m可以被精确测定的话, 由公式
m d A
就可以计算出薄膜的厚度d。 缺点:它的精度依赖于薄膜的密度ρ以及面积A的测量精度。
薄膜材料的表征方法
![薄膜材料的表征方法](https://img.taocdn.com/s3/m/64d505d60c22590102029dee.png)
o o o
o
20
30
40
50
60 70 o 2 ( )
80
90 100
5.2 扫描电子显微镜(SEM)
工作原理:由炽热的灯丝阴极发射出的电子在阳极电压的加 速下获得一定的能量。其后,加速后的电子将进 入由两组同轴磁场构成的透镜组,并被聚焦成直 径只有5nm左右的电子束。装置在透镜下面的磁场 扫描线圈对这束电子施加了一个总在不断变化的 偏转力,从而使它按一定的规律扫描被观察的样 品表面的特定区域上。 优点:提供清晰直观的形貌图像,分辨率高,观察景深长, 可以采用不同的图像信息形式,可以给出定量或半定量 的表面成分分析结果等。
关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改
变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化, 不同化学键或基团有特征的分子振动,Δ E反映了指定能级的变化,因此 与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性
分析的依据。
5.5 X射线光电子能谱分析
5.3原子力显微镜(AFM)
AFM的工作原理如图,将一个对微弱力极敏感的微悬臂一端固定,另一端有 一微小的针尖,针尖与样品表面轻轻接触。由于针尖尖端原子与样品表面原子间 存在极微弱的排斥力(10-8~10-6N),通过在扫描时控制这种力的恒定,带有针 尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表 面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描 各点的位置变化,从而可以获得样品表面形貌的信息。
3、扫描电子显微镜提供的其他信号形式 扫描电子显微镜除了可以提供样品的二次电子和背反射电子形貌以外, 同时还可以产生一些其他的信号,例如电子在与某一晶体平面发生相互作 用时会被晶面所衍射产生通道效应,原子中的电子会在受到激发以后从高 能态回落到低能态,同时发出特定能量的X射线或俄歇电子等。接收并分析 这些信号,可以获得另外一些有关样品表层结构及成分的有用信息。
薄膜材料的表征方法
![薄膜材料的表征方法](https://img.taocdn.com/s3/m/aaeb2b02b207e87101f69e3143323968001cf443.png)
紫外-可见光谱法利用紫外-可见光波段的光子能量与材料中价电子的跃迁能量相匹配的特性,通过测量材料对不 同波长光的吸收程度,得到吸收光谱。通过对光谱的分析,可以了解材料的电子结构和分子组成,从而推断材料 的性质和结构。
红外光谱法
总结词
通过测量材料在红外光波段的吸收光谱,分析材料中分子的振动和转动模式。
俄歇电子能谱法
总结词
俄歇电子能谱法是一种高灵敏度、高分辨率的表面分析技术,用于检测薄膜材 料表面的元素组成和化学状态。
详细描述
该方法利用高能电子束轰击薄膜表面,使表面原子发射出俄歇电子,通过测量 俄歇电子的能量分布,可以推断出薄膜表面的元素组成、化学键合状态以及元 素化合物的存在形式。
红外光谱法
详细描述
红外光谱法利用红外光波段的光子能量与材料中分子振动和转动能量相匹配的特性,通过测量材料对 不同波长光的吸收程度,得到吸收光谱。通过对光谱的分析,可以了解材料中分子的振动和转动模式 ,进一步推断材料的结构和性质。
拉曼光谱法
总结词
通过测量材料在拉曼散射过程中的光谱 ,分析材料中分子的振动和旋转模式。
剪切韧性测试
通过测量材料在剪切载荷下的剪切位移或剪切强度,评估材料的 韧性。
感谢您的观看
THANKS
各种类型的薄膜材料。
原子力显微镜
总结词
原子力显微镜是一种高分辨率的表面形貌表征技术,可以用来观察薄膜表面的微观结构 和形貌特征。
详细描述
原子力显微镜利用微悬臂探针在薄膜表面扫描,通过测量探针与薄膜表面之间的相互作 用力,可以实时获得薄膜表面的形貌信息。该方法具有极高的分辨率,能够观察到薄膜
表面的原子级结构,适用于各种类型的薄膜材料。
05 化学性能表征方法
薄膜材料性能表征方法介绍
![薄膜材料性能表征方法介绍](https://img.taocdn.com/s3/m/fdc2c2b9900ef12d2af90242a8956bec0975a5d9.png)
磁损耗法
01
磁损耗法是通过测量磁场中材 料因磁滞、涡流等效应而产生 的能量损耗来表征材料磁学性 能的方法。
02
磁损耗法通常采用交流磁场进 行测量,能够反映材料的动态 磁特性,如磁损耗角正切值等 。
电学性能表征
电导率测试
总结词
电导率测试是评估薄膜材料导电性能的重要手段,通过测量电流与电压的关系,可以获 得材料的电导率。
详细描述
在电导率测试中,将薄膜材料置于电极之间,施加一定的电压,测量流过材料的电流。 通过计算电流与电压的比值,可以得到材料的电导率。电导率的大小反映了材料导电性
能的优劣。
霍尔效应法
磁畴观察法可以用于研究薄膜材料的磁畴行为、磁反转机制等,有助于理 解材料的磁学性质和应用潜力。
06
环境稳定性表征
耐腐蚀性测试
盐雾试验
将薄膜材料置于盐雾环境中,模拟海洋大气环境,观察其抗腐蚀 性能。
酸碱腐蚀试验
将薄膜材料暴露在酸、碱等腐蚀性环境中,检测其抗腐蚀性能。
电化学腐蚀试验
通过电化学方法检测薄膜材料的耐腐蚀性能,包括电化学阻抗谱 和恒电位腐蚀等。
性能表征的必要性
对薄膜材料进行性能表征有助于了解 其物理、化学和机械性质,从而优化 制备工艺和提高产品质量。
性能表征是评估薄膜材料性能与可靠 性,以及进行材料选择和设计的重要 依据。
02
光学性能表征
透射光谱法
总结词
透射光谱法是通过测量薄膜材料透射光强随波长的变化来表征其光学性能的方法。
详细描述
通过测量划痕阻力来确定材料的硬度和韧性。
薄膜材料的表征方法-
![薄膜材料的表征方法-](https://img.taocdn.com/s3/m/53597a42a66e58fafab069dc5022aaea998f41af.png)
❖ 要测膜厚,首先要制备出有台阶得薄膜。制 备台阶得方法常用掩膜镀膜法,即将基片得 一部分用掩膜遮盖后镀膜,去掉掩膜后形成 台阶。由于掩膜与基片之间存在着间隙,因 此这种方法形成得台阶不就是十分清晰,相 对误差也比较大,但可以通过多次测量来提 高精确度,探针扫过台阶时就能显示出台阶 两侧得高度差,从而得到厚度值。
❖ 椭偏光谱学就是一种利用线偏振光经样品反射后转变
为椭圆偏振光这一性质以获得样品得光学常数得光谱 测量方法,它区别于一般得反射透射光谱得最主要特 点在于不直接测算光强,而就是从相位空间寻找材料 得光学信息,这一特点使这种测量具有极高得灵敏度。
❖ 椭偏光谱仪有多种结构,如消光式、光度式等,消光式 椭偏仪通过旋转起偏器与检偏器,对某一样品,在一定 得起偏与检偏角条件下,系统输出光强可为零。由消 光位置得起偏与检偏器得方位角,就可以求得椭偏参 数。然而,这种方法在具有较大背景噪声得红外波段
❖ 主要缺点就是: ①容易滑伤较软得薄膜并引起测量误差; ②对于表面粗糙得薄膜,其测量误差较大; ③需要事先制备带有台阶得薄膜样品; ④只能用来测量制成得薄膜得厚度,不能用于
制膜过程中得实时监控。
3.2 薄膜结构得表征
❖ 薄膜结构得表征方法(扫描电子显微镜:透射电子显微镜;X射线 衍射方法;低能电子衍射与反射式高能电子衍射)
常用薄膜厚度测量方法
❖ 薄膜厚度得测量广泛用到了各种光学方法。这就是因为, 光学方法不仅可被用于透明薄膜,还可被用于不透明薄膜; 不仅使用方便,而且测量精度高。这类方法多利用光得干 涉现象作为测量得物理基础。
❖ 椭圆偏振仪原理及应用:
❖ 在椭圆偏振技术(Ellipsometry)发展起来之前,早期光学常 数得测量通常就是在一定光谱范围内测量正入射样品得 反射率,然后由K-K关系分析获得材料得复折射率、复介 电函数等光学常数。在Drude与Stutt提出物理得测量原 理之后,经过人们得不懈努力,这一方法得到了不断得完善。
薄膜材料的表征
![薄膜材料的表征](https://img.taocdn.com/s3/m/b4aabd23e2bd960590c67750.png)
薄膜材料的表征新能源12级3班杨铎12191070摘要:薄膜材料和薄膜器件日益广泛应用及其可靠性指标体系的日益健全,要求学术界对其结构和性能的特殊性给出科学解释。
因此,薄膜材料的表征对材料的应用是至关重要的。
薄膜样品结构和性能的表征依赖测试设备及测试方法。
薄膜材料的表征参数通常包括薄膜厚度,这通常用探针法等进行测量;薄膜形貌表征,主要通过扫描隧道显微镜、原子力显微镜等进行测量;薄膜成分的表征,它主要用X射线电子能谱、俄歇电子能谱来测量;薄膜晶体结构的表征,它通常使用X射线衍射仪或电子衍射仪来测量;薄膜的应力表征,这可以通过直接测量变形量方法和简介X射线衍射测量方法等对其来进行测量。
通过对以上内容的概括和总结及对比总结出薄膜材料的测试的研究情况。
关键词:薄膜,测试,表征1. 薄膜简介1.1薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
1.2薄膜材料的应用人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。
它的一个很重要的应用就是海水的淡化。
虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。
第七章薄膜材料的表征方法
![第七章薄膜材料的表征方法](https://img.taocdn.com/s3/m/fa967cf9770bf78a652954b1.png)
nc(AB+BC)-AN=2 nchcosθ=Nλ (N-任意正整数)
6.1.1 薄膜厚度的光学测量方法
6.1.1.2 不透明薄膜厚度测量的等厚干涉法
台阶上下沉积一层高反射率的金属层 覆盖半反射半透明的平板玻璃片 单色光照射,玻璃片和薄膜之间光的反射导致干涉现象 光干涉形成极大的条件为S=1/2(N-1)λ 在玻璃片和薄膜的间距S增加ΔS=λ/2时,将出现一条对应
6.3 薄膜结构的表征方法
6.3.1 X射线衍射法
物质对X射线散射的实质是物质中的电子与X光子的相互作用。当入射光子 碰撞电子后,若电子能牢固地保持在原来位置上(原子对电子的束缚力很
强),则光子将产生刚性碰撞,其作用效果是辐射出电磁波-----散射波。这
种散射波的波长和频率与入射波完全相同,新的散射波之间将可以发生相 互干涉-----相干散射。X射线的衍射现象正是基于相干散射之上的。 当物质中的电子与原子之间的束缚力较小(如原子的外层电子)时,电子 可能被X光子撞离原子成为反冲电子。因反冲电子将带走一部分能量,使得
(2)对于表面粗糙的薄膜,其测量误差较大。
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 称量法
精确测定薄膜的A、ρ和m,由h=m/Aρ可计算薄膜厚度h。
缺点:精确度依赖于薄膜的密度ρ以及面积A的测量精度;在
衬底不很规则时,准确测量薄膜的面积也较难。 可用于薄膜厚度的实时测量。 采取将质量测量精度提高至10-8g,同时加大衬底面积并降低 其质量的方法,甚至可以将薄膜厚度的测量精度提高至低于 一个原子层的高水平。
需全部功能的仪器。特别是选区电子衍射技术的应用,使得微
区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行
薄膜材料性能表征方法介绍共70页PPT
![薄膜材料性能表征方法介绍共70页PPT](https://img.taocdn.com/s3/m/419509056294dd88d1d26b31.png)
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭Βιβλιοθήκη 自己知道。——苏联
薄膜材料性能表征方法介绍
![薄膜材料性能表征方法介绍](https://img.taocdn.com/s3/m/603c3608910ef12d2bf9e7b0.png)
场发射扫描电子显微镜 Field Emission SEM (FESEM)
分辨率可达1-2 nm
返回
第十一页,共69页。
第十二页,共69页。
第十三页,共69页。
三、透射电子显微镜 Transmission Electronic Microscope
特点:电子束一般不再采取扫描方式对样品的一定区域
右图是Au薄膜的高分辨率点阵
像,从其中已可以分辨出一个
个Au原子的空间排列。
返回
第十五页,共69页。
第十六页,共69页。
第十七页,共69页。
四、X射线衍射方法
特定波长的X射线束与晶体学平面发生相互作用时会发生X射线的衍射,衍射
现象发生的条件即是布拉格公式
2d sin n
其中,λ为入射的X射线波长,d为相应晶体学面的面
尖在样品表面的扫描,则探针在垂直于样品方向
上高低的变化就反映出样品表面的起伏,如图
(a)。将针尖在样品表面扫描时运动的轨迹直接
在荧光屏或记录纸上显示出来,就得到了样品表
面态密度的分布或原子排列的图象。
恒电流模式
S为针尖与样品间距,I、Vb为隧道电流和偏置
电压,Vz为控制针尖在z方向高度的反第二馈十一电页,压共6。9页。
都携带了样品的不同区域对电子衍射能力的信息。将这一电子束成像放大之后投
影在荧光屏上,就得到了样品组织的透射像。
电子束成像的方式可以被进一步细分为三种:
(1)明场像 即只使用透射电子束,而用光栅档掉所有衍射束的成像方式。
(2)暗场像 透射的电子束被光栅档掉,而用一束衍射束来作为成像光源。
(3)相位衬度 允许两束或多束电子参与成像。
3、扫描电子显微镜提供的其他信号形式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nc(AB+BC)-AN=2 nchcosθ=Nλ (N-任意正整数)
6.1.1 薄膜厚度的光学测量方法
6.1.1.2 不透明薄膜厚度测量的等厚干涉法
台阶上下沉积一层高反射率的金属层 覆盖半反射半透明的平板玻璃片 单色光照射,玻璃片和薄膜之间光的反射导致干涉现象 光干涉形成极大的条件为S=1/2(N-1)λ 在玻璃片和薄膜的间距S增加ΔS=λ/2时,将出现一条对应 的干涉条纹,间隔为Δ0。
化,而θ不变,
h=N1λ1/(2n1cosθ)=N2λ2/(2n1cosθ)
h= -ΔNλ1λ2/[2n1(λ1-λ2)cosθ] 前提条件是已知薄膜的折射率n1,且不随波长λ变化。
6.1.2 薄膜厚度的机械测量方法
6.1.2.1 表面粗糙度仪法
直径很小的触针滑过薄膜表面,同时记录触针在垂直方向的 移动情况并画出薄膜表面轮廓。 可测量表面粗糙度,也可测量特意制备的薄膜台阶高度,得 到薄膜厚度的信息。 垂直位移的分辨率最高可达1nm。 方法简单,测量直观 缺点在于:
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 石英晶体振荡器法
基于适应晶体片的固有振动频率随其质量的变化而变化的物 理现象。 使用石英晶体振荡器测量薄膜厚度需要注意两个问题: 一,石英晶体的温度变化会造成其固有频率的漂移;
二,应采用实验的方法事先对实际的沉积速度进行标定。
在大多数的情况下,这种方法主要是被用来测量沉积速度。 还可反过来控制物质蒸发或溅射的速率,从而实现对于薄膜 沉积过程的自动控制。
h = (m+1)λ/2n1
6.1.1.3 透明薄膜厚度测量的干涉法
第一种,变角度干涉法(VAMFO)
在样品角度连续变化的过程中,在光学显微镜下可以观 察到干涉极大和极小的交替出现。当衬底不透明,且具有一定 的反射率时,光的干涉条件为: h=Nλ/(2n1cosθ) 由干涉极值出现的角度θ′和已知的n1,可以拟合求出N和 薄膜厚度h。
6.2 薄膜形貌的表征方法 电子束与固体样品作用时产生的信号
6.2 薄膜形貌的表征方法
二次电子:外层价电子激发(SEM)
背散射电子:被反弹回来的一部分入射电子
(SEM)
透射电子(TEM)
俄歇电子:内层电子激发(AES,表面层成分分 析)
6.2 薄膜形貌的表征方法
6.2.1 SEM (scanning electron microscope) ---电镜的发展简史
• 1935年,Knoll提出扫描电镜的设计思想
• 1942年, Zworykin等人通过反复研究,设计了第一台用于观察厚试样的扫 描电镜,并提出形貌反差主要是由二次电子发射所致,获得了 50nm的分辨 率。并且建立了现代扫描电镜的基本理论的。 • 第一台商品扫描电镜于1965年研制成功(英国剑桥科学公司MarkⅠ型)。 • 以后直到70年代末,美、英、法、荷兰、日、德等十多家厂商生产和出售了 6000多台扫描电镜,这些公司积极发展新的改进型仪器,但直到现在,扫描 电镜的基本结构与1942年的仪器仍相差不大。 • 后来扫描电镜的发展主要表现在,电子光源 ——如 LaB6阴极、场发射电子 源,反差机理研究及图像处理功能等方面。
第六章 薄膜材料的表征方法
较为广泛的方法:
薄膜的厚度测量
薄膜的形貌和结构的表征
薄膜成分的分析
薄膜附着力的测量
6.1.1 薄膜厚度的光学测量方法
光学方法可被用于透明和不透明薄膜
使用方便,测量精度高
多利用光的干涉现象作为测量的物理基础
6.1.1 薄膜厚度的光学测量方法
6.1.1.1 光的干涉条件
பைடு நூலகம்
将其与电子技术相结合,不仅可实现沉积速度、厚度的检测,
6.2 薄膜形貌的表征方法 电子束与固体样品作用时产生的信号
散射 当一束聚焦电子沿一定方向射到样品上时,在样品物质原 子的库仑电场作用下,入射电子方向将发生改变,称为散 射。 原子对电子的散射还可以进一步分为弹性散射和非弹性散 射。 在弹性散射中,电子只改变运动方向,基本上无能量变化。 在非弹性散射中,电子不但改变方向,能量也有不同程度 的衰减,衰减部分转变为热、光、X射线、二次电子等。
薄膜上形成的厚度台阶也会引起光程差S的改变,因而它会
使得从显微镜中观察到的光的干涉条纹发生移动。 条纹移动Δ所对应的台阶高度应为h=Δλ/(2Δ0)
测出Δ0和Δ,即测出了薄膜的厚度
6.1.1 薄膜厚度的光学测量方法
6.1.1.2 不透明薄膜厚度测量的等色干涉法
使用非单色光源照射薄膜表面 采用光谱仪测量玻璃片、薄膜间距S引起的相邻两个干涉极大 条件下的光波长λ1、λ2,以及台阶h引起的波长差Δλ 由下式推算薄膜台阶的高度
(1)容易划伤较软的薄膜并引起测量误差;
(2)对于表面粗糙的薄膜,其测量误差较大。
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 称量法
精确测定薄膜的A、ρ和m,由h=m/Aρ可计算薄膜厚度h。
缺点:精确度依赖于薄膜的密度 ρ以及面积 A的测量精度;在
衬底不很规则时,准确测量薄膜的面积也较难。 可用于薄膜厚度的实时测量。 采取将质量测量精度提高至 10-8g ,同时加大衬底面积并降低 其质量的方法,甚至可以将薄膜厚度的测量精度提高至低于 一个原子层的高水平。
缺点:必须已知波长λ时薄膜的n1。否则,就需要先由一个假
设的折射率出发,并由测量得到的一系列干涉极值时的入射角 θ′(θ)去拟合它。
6.1.1.3 透明薄膜厚度测量的干涉法
第二种,等角反射干涉法(CARIS)。 使用非单色光入射薄膜表面,在固定光的入射角度的情 况下,用光谱仪分析光的干涉波长λ。
干涉极大或极小出现的条件与上同,但此时N与λ均在变
2 h 1 2 2
等色干涉法的厚度分辨率高于等厚干涉法,可以达到小于1nm
6.1.1 薄膜厚度的光学测量方法
6.1.1.3 透明薄膜厚度测量的干涉法
原理: 在薄膜与衬底均是透明的,且折射率分别为 n1 、 n2 时,薄 膜对垂直入射的单色光的反射率随着薄膜的光学厚度 n1h的变化 而发生振荡。 当n1> n2(n2=1.5,相当于玻璃)时,反射极大的位置: h = (2m+1)λ/4n1 对于n1< n2,反射极大的条件变为: